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Abstract

In this note, the linear structure of the family He(G) of holomorphic
functions in a domain G of a complex Banach space that are not
holomorphically continuable beyond the boundary of G is analyzed.
More particularly, we prove that He(G) contains, except for zero, a
closed (and a dense) vector space having maximal dimension, as well
as a maximally generated free algebra. The results obtained complete
a number of previous ones by several authors.
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1 Introduction and preliminaries

In the last decade there has been a generalized trend for the search for
algebraic structures inside nonlinear sets. This area of research, called line-
ability ([26, 36]), has attracted the attention of many authors and it has been
proven to be quite fruitful, with the appearance of several research papers,
surveys (see, e.g. [22]), and even a monograph ([5]).

In this note, we focus on the family of holomorphic functions G → C
that cannot be holomorphically continued beyond the boundary of G, where
G is a domain in a separable infinite dimensional complex Banach space E.
Our aim is to contribute to complete the existing knowledge on lineability
of the mentioned family.
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Our notation will be rather usual. The symbols N, Q, R, C will stand
for the set of positive integers, the field of rational numbers, the real line
and the field of complex numbers, respectively. By a domain in a complex
Banach space E we mean a nonempty proper connected open subset G of
E. We denote by H(G) the space of all holomorphic functions f : G→ C
(see, e.g., [24] for definitions and properties), and by ∂G the boundary of
G. We say that a function f ∈ H(G) is holomorphically non-extendable
beyond ∂G (or that f is holomorphic exactly on G) whenever there do not

exist two domains G1 and G2 in E and f̃ ∈ H(G1) such that

G2 ⊂ G ∩G1, G1 6⊂ G and f̃ = f on G2.

We denote by He(G) the family of all f ∈ H(G) that are holomorphic
exactly on G. A domain G is called a domain of existence whenever
He(G) 6= ∅. It is well known that every domain of C is a domain of
existence (see [30]), but this fails for higher dimensions (see, e.g., [33]).

Now, a number of lineability concepts –that have been recently coined by
a number of authors, see [6, 9, 10, 13, 15, 18, 23, 27, 29], the survey [22] and
the book [5]– are in order. Namely, if X is a vector space, α is a cardinal
number and A ⊂ X, then A is said to be:

• lineable if there is an infinite dimensional vector space M such that
M \ {0} ⊂ A,

• α-lineable if there exists a vector space M with dim(M) = α and M \
{0} ⊂ A (hence lineability means ℵ0-lineability, where ℵ0 = card (N),
the cardinality of N), and

• maximal lineable in X if A is dim(X)-lineable.

If, in addition, X is a topological vector space, then A is said to be:

• dense-lineable (α-dense-lineable) in X whenever there is a dense vector
subspace M of X satisfying M \ {0} ⊂ A (and dim (M) = α, resp.),

• maximal dense-lineable in X if A is dim(X)-dense-lineable,

• spaceable (α-spaceable) in X if there is a closed infinite dimensional (a
closed α-dimensional, resp.) vector subspace M such that M \ {0} ⊂
A, and

• maximal spaceable in X if A is dim(X)-spaceable.

Finally, when X is a topological vector space contained in some (linear)
algebra then A is called:
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• algebrable if there is an algebra M so that M \ {0} ⊂ A and M is
infinitely generated, that is, the cardinality of any system of generators
of M is infinite.

• densely (closely) algebrable in X if, in addition, M can be taken dense
(closed, resp.) in X.

• α-algebrable if there is an α-generated algebra M with M \ {0} ⊂ A.

• strongly α-algebrable if there exists an α-generated free algebra M
with M \ {0} ⊂ A (for α = ℵ0, we simply say strongly algebrable).

• densely (closely) strongly α-algebrable if, in addition, the free algebra
M can be taken dense (closed, resp.) in X.

Observe that if X is contained in a commutative algebra then a set
B ⊂ X is a generating set of some free algebra contained in A if and only if
for any N ∈ N, any nonzero polynomial P in N variables without constant
term and any distinct f1, . . . , fN ∈ B, we have P (f1, . . . , fN) 6= 0 and
P (f1, . . . , fN) ∈ A. Observe that strong α-algebrability =⇒ α-algebrability
=⇒ α-lineability, and none of these implications can be reversed, see [22,
p. 74].

The reader can found without difficulty further implications, as for in-
stance, dense-lineability =⇒ lineability (as long as dim(X) = ∞), space-
ability =⇒ lineability, closed (dense) algebrability =⇒ spaceability (dense-
lineability, resp.), and many others.

The links between some of the previous concepts can be made more
clear by means of the following diagram, in which the arrows indicate strict
inclusions:

closed strong algebrable

��
closed algebrable

��

// spaceable

��
algebrable // lineable

For every domain G of a separable complex Banach space E, the space
H(G) will be endowed with the topology of uniform convergence on com-
pacta. If E = CN (N ∈ N), H(G) becomes a Fréchet space (i.e. a complete
metrizable locally convex space), but it is no longer metrizable if E is infi-
nite dimensional, see [1, 4, 24]. Note that dim (H(G)) = c (the cardinality
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of the continuum), because G is separable and H(G) ⊂ {continuous fun-
tions G→ C}. The topological size of He(G) is well known, at least in the
finite dimensional case: if G ⊂ CN is a domain of existence then He(G) is
a residual subset of H(G) (see, e.g., [16, Theorem 3.1] or [32, Theorem 3.1]
for one variable and [31, Proposition 1.7.6] for several variables). However,
it has been only recently when the algebraic size has been considered. The
following theorem –whose content has been collected from [7] and [19] (see
also [5, Chap. 3])– tries to summarize the existing results for G ⊂ CN .

Theorem 1.1. (a) If G is a domain in C then He(G) is densely strongly
c-algebrable in H(G).

(b) Assume that N ∈ N and that G ⊂ CN is a domain of existence. Then
He(G) is maximal dense-lineable and closely algebrable in H(G). In
particular, He(G) is spaceable.

Notice that a standard application of Baire’s theorem yields that the
closed algebra obtained in Theorem 1.1(b) cannot be ℵ0-generated. Hence,
for any domain of existence G ⊂ CN , the set He(G) is c-algebrable and
c-spaceable.

Additional properties, as well as growth conditions, can be imposed on
the subspaces discovered in Theorem 1.1, see [17, 37]. Concerning subspaces
X of H(G) (with G ⊂ C), assumed to be endowed with natural topologies,
a collection of results about lineability of He(G) ∩ X can be found in [16,
19, 20, 21, 38]; see also [5, Chap. 7].

In the setting of infinite dimensional holomorphy, the credit of starting
the analysis of lineability for non-extendable functions must go to Alves,
who recently has proved a number of remarkable results (see [2, 3]) that can
be summarized as follows.

Theorem 1.2. Suppose that G is a domain of existence of a separable
complex Banach space E. Then we have:

(a) He(G) is c-lineable.

(b) He(G)∪{0} contains a closed algebra A as well as a dense algebra B,
such that each of them contains an infinite algebraically independent
set. In particular, He(G) is strongly algebrable, as well as densely al-
gebrable (hence dense-lineable) and closely algebrable (hence spaceable)
in H(G).

Remark 1.3. In [3], Alves asserts the dense strong algebrability of He(G)
(he denotes He(G) by G(G)), but in fact he proves the existence of a dense
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algebra B satisfying the property given in Theorem 1.2(b). This property
is weaker than the one corresponding to the original concept of dense strong
algebrability introduced by Bartoszewicz and G la̧b in [13], that we have
adopted in our definitions above. Namely, the dense algebra in [13] should
be generated by an infinite algebraically independent set of elements, not
merely contain such a set, and from the proof in [3] it is not apparent at
all that the algebra B is freely generated itself. For the sake of consistency,
we have mimicked the paper [13] in order to define the notion of closely
strong algebrable family (simply replacing “dense” by “closed”). Under this
terminology, analogously to the “dense” case, the property proved in [3] con-
cerning the existence of an algebra as A in Theorem 1.2(b) is weaker than
the closed strong algebrability. Nevertheless, the shape of these algebras
(see Lemma 2.1 below) will help us to complete Alves’ results.

As a complementary statement, it was shown in [19, Theorem 3.11] that
He(G) is maximal dense-lineable in H(G) under the assumption that the
translated domain G− x0 is balanced for some point x0 ∈ G.

In this note, we will complete these results, so as to prove that the
algebrability –in three senses– of He(G) is maximal in the infinite dimen-
sional case as well. As a consequence, maximal spaceability and maximal
dense-lineability are also obtained. If G is balanced then we will obtain, in
addition, the dense maximal strong algebrability of He(G).

2 Lineability of He(G)

In this section, we formulate two results completing the known maximal
lineability of He(G) in the infinite dimensional case. The reader is referred
to [24, 25, 34] for fundamentals of holomorphy on complex Banach spaces.
In the case G ⊂ CN for some N ∈ N, the space H(G) is completely
metrizable. Then the existence of a closed infinitely generated algebra in-
side He(G) ∪ {0} together with the Baire theorem implies automatically
c-spaceability and c-algebrability of He(G). But this is not immediate if E
has infinite dimension. Indeed, the dense algebra and the closed algebra con-
structed by Alves [3] for the proof of Theorem 1.2 are countably generated
and, in addition, He(G) is not barrelled in the infinite dimensional case (see
[24, Theorem 16.21]), so it is not Baire (see [35, Chapter 2]). This forces us
to search for a different approach.

Nevertheless, we can take advantage of some of the (far-reaching) findings
by Alves. To be more specific, the content of the following auxiliary result
–which will be needed to prove Theorems 2.5 and 2.6– may be found in [3,
Proposition 2.1(b) and Proofs of Theorems 4.3-5.2-6.1].
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Lemma 2.1. Assume that E is a separable complex Banach space and that
G ⊂ E is a domain. We have:

(a) If G is a domain of existence, then for each sequence {xn}n≥1 of
distinct points of G such that limn→∞ dist (xn, ∂G) = 0, and each
sequence {αn}n≥1 ⊂ C, there exists a function f ∈ H(G) such that
f(xn) = αn for every n ∈ N.

(b) There is a sequence {zn}n≥1 ⊂ G such that the family A := {f ∈
H(G) : f(zn) = 0 for each n ∈ N} does not reduces to 0, the set
B = {f ∈ H(G) : exists N ∈ N with f(zn) = 0 for all n ≥ N} is dense
in H(G) and B \ {0} ⊂ He(G).

Firstly, we undertake the question of strong maximal algebrability. We
will need a criterion that was originally given in [11, Proposition 7] by Bal-
cerzak et al. (see also [12, Theorem 1.5] and [14, 28]) for a family F of
functions [0, 1] → R, and then in [19, Proposition 2.3] for the general func-
tions Ω → C. In fact, we shall use a variant of [19, Proposition 2.3] stated
in Lemma 2.2 below. By E+ we denote the algebra of functions C→ C of
the form

ϕ(z) =
m∑
j=1

aje
bjz

for some m ∈ N, some a1, . . . , am ∈ C \ {0} and some distinct b1, . . . , bm ∈
(0,+∞).

Lemma 2.2. Let Ω be a nonempty set and F be a family of functions
Ω → C. Assume that there exists a function f : Ω → C such that f(Ω)
is uncountable and ϕ ◦ f ∈ F for every ϕ ∈ E+. Then F is strongly c-
algebrable. More precisely, if H ⊂ (0,+∞) is a set with card(H) = c and
linearly independent over Q, then

{ erf : r ∈ H}

is a free system of generators of an algebra contained in F ∪ {0}.

Remark 2.3. In [11, Proposition 7] and [19, Proposition 2.3] the family E+
is replaced by the bigger family E of exponential-like functions, in which
the coefficients b1, . . . , bm appearing in its functions ϕ, being distinct, may
move along the whole set R \ {0} or C \ {0} (resp.), not only along (0,+∞).
But this makes no influence in the proof, which can be mimicked from [11,
Proposition 7] or [19, Proposition 2.3], and so it is omitted.

The content of the following auxiliary result is well known; see for ins-
tance [24, Theorem 19.14].
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Lemma 2.4. Assume that E is a separable complex Banach space and that
G is a domain in E. Let f ∈ H(G) satisfying that, for every open ball B
intersecting ∂G, f is unbounded on each connected component of G ∩ B.
Then f ∈ He(G).

We are now ready to establish strong maximal algebrability.

Theorem 2.5. Let E be a separable infinite dimensional complex Banach
space and G be a domain of existence in E. Then the set He(G) is strongly
c-algebrable.

Proof. Firstly, we need a sequence {zn} ⊂ G of pairwise different points
with the property that, for every open ball B intersecting ∂G, the inter-
section of {zn} with every connected component of B ∩ G is infinite and,
in addition, limn→∞ dist(zn, ∂G) = 0. An example of the required sequence
may be defined as follows. Let {αn} be a dense countable subset of G
(recall that E is separable and metrizable, hence any subset of E is sep-
arable as well). Denote B(x, r) := {y ∈ E : ‖y − x‖ < r}, the open
ball with center x ∈ E and radius r > 0. For each n ∈ N, consider
the ball Bn = B(αn, dist(αn, ∂G)) and take a sequence {βn,k}k≥1 ⊂ Bn

such that dist(βn,k, ∂G) < 1
n+k

(n, k ∈ N). Then each one-fold sequence
{zn} ⊂ G (without repetitions) consisting of all distinct points of the set
{βn,k : n, k ≥ 1} has the required properties.

It follows from Lemma 2.1(a) that there exists a function f ∈ H(G)
such that f(zn) = n for all n ∈ N. Fix ϕ ∈ E+. Then there are nonzero
complex numbers a1, . . . , am and distinct b1, . . . , bm ∈ (0,+∞) with ϕ(z) =∑m

j=1 aje
bjz. Since we can assume b1 > · · · > bm, we get

|(ϕ ◦ f)(zn)| ≥ |a1|eb1n
(
1−

m∑
j=2

|aj/a1|e(bj−b1)n
)

for all n ∈ N.

Therefore limn→∞ |(ϕ ◦ f)(zn)| = +∞. But, for every open ball B with
B ∩ ∂G 6= ∅, any component V of B ∩G contains infinitely many points zn.
Thus, ϕ◦f is unbounded on V . According to Lemma 2.4, ϕ◦f ∈ He(G). An
application of Lemma 2.2 with F := He(G) yields the desired conclusion.

Finally, we consider the problem of the existence of closed or dense large
subspaces.

Theorem 2.6. Let E be a separable infinite dimensional complex Banach
space and G be a domain of existence in E. Then the family He(G) is
closely c-algebrable and densely c-algebrable in H(G). In particular, He(G)
is c-spaceable and c-dense-lineable in H(G).
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Proof. Since dim (E) = ∞, the topological dual space E∗ is also infi-
nite dimensional thanks to the Hahn–Banach theorem. It is known that
E∗ ⊂ H(E), so the vector space E∗G of restrictions to G of the members
of E∗ is contained in H(G). When endowed with the dual norm, E∗ is
an infinite dimensional Banach space, so an application of Baire’s theorem
yields dim(E∗) = c. If f0 ∈ H(G) \ {0} then from the Identity Principle
it follows that the set Z of zeros of f0 is a closed subset of G with empty
interior. Consider the family

f0E
∗
G = {fh : h ∈ E∗G},

which is obviously a vector subspace of H(G). Then dim(f0E
∗
G) = c too.

Indeed, let {gi}i∈I (with card(I) = c) be an algebraic basis of E∗, and set
hi = gi|G (i ∈ I). It is evident that the functions f0hi’s generate the space
f0E

∗
G but, in addition, they are linearly independent because, given p ∈ N,

a1, . . . , ap ∈ C and distinct elements i(1), . . . , i(p) of I satisfying

a1f0 hi(1) + · · ·+ apf0 hi(p) = 0 on G,

we have a1gi(1) + · · · + apgi(p) = 0 on the nonempty open set G \ Z. The
Identity Principle implies a1gi(1) + · · · + apgi(p) = 0 on the whole E, so
a1 = · · · = ap = 0. This entails dim(f0E

∗
G) = c, as required.

Now, take the families A,B furnished by Lemma 2.1(b). Choose any
f0 ∈ A \ {0}. On the one hand, it is evident that both A and B are
algebras, that A is closed (for compact convergence implies pointwise con-
vergence) and that A ⊂ B. On the other hand, A\ {0} ⊂ B \ {0} ⊂ He(G)
and f0E

∗
G ⊂ A ⊂ B. Recall also that B is dense. Finally, the algebra A

(and, analogously, the algebra B) is c-generated. Indeed, the cardinal of any
system of generators of A cannot exceed dim(H(G)) = c. But such a sys-
tem cannot be countable because, otherwise, the family A, considered as a
vector space, would be generated by a countable system of vectors (namely,
by the finite products of powers of the elements of the first system), which is
impossible by the preceding paragraph. Therefore A and B are c-generated.
This concludes the proof.

We finish the present section by posing an obvious problem which, as far
as we know, remains unsolved:

Assume that E is a separable infinite dimensional complex Banach
space and that G ⊂ E is a domain. Is He(G) densely/closely strongly
(c-)algebrable?
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3 Balanced domains

In the special case of domains that are balanced with respect to some
point, we will solve partially the last problem in the affirmative; see Theorem
3.3 below. Recall that a subset A of a vector space X is called balanced
if λx ∈ A whenever x ∈ A and λ is a scalar with |λ| ≤ 1. We need
the following lemma, whose content can be extracted from [25, Proposition
3.36].

Lemma 3.1. Suppose that G is a balanced domain of a complex Banach
space E. Then the Taylor series centered at 0 of each f ∈ H(G) converges
to f uniformly on compacta in G. Consequently, the set P of (continuous)
polynomials is dense in H(G).

Remark 3.2. The last result also holds for holomorphic mappings between
complex locally convex spaces and for some topologies different from the one
of the uniform convergence on compacta; see [25].

Theorem 3.3. Let E be a separable infinite dimensional complex Banach
space and G be a domain of existence in E satisfying that G−x0 is balanced
for some x0 ∈ G. Then the set He(G) is densely strongly c-algebrable.

Proof. Since f ∈ He(G) if and only if f(· + x0) ∈ He(G − x0), we can
suppose that x0 = 0 ∈ G and G is balanced. By Lemma 3.1, the set P
is dense in H(G). On the one hand, it follows from the separability of E
that card(C(E)) = c (the cardinality of the family of continuous functions
E → C), so card(P) = c as well. On the other hand, again the separability
of E implies that the cardinality of the family of open subsets of E is c;
indeed, E is second-countable because it is metrizable, hence it possesses a
countable open basis, so that each open subset is a countable union of sets
extracted from a fixed countable family. Therefore there are also c closed
subsets of E and, consequently, the cardinality of the family K of compact
subsets of G is also c. This entails that the family O consisting of all sets

O(P,K, ε) := {f ∈ H(G) : |f(x)− P (x)| < ε} (P ∈ P , K ∈ K, ε > 0)

satisfies card(O) = c as well. Thanks to the density of P in H(G), the
family O is an open basis for the topology of H(G).

Fix a sequence {zn} ⊂ G and a function f ∈ H(G) as in the proof of
Theorem 2.5, so that f(zn) = n for all n ∈ N and, for every open ball B
intersecting ∂G, each connected component of B ∩ G contains infinitely
many points zn. Consider the algebraically free system S := {Fr : r ∈ H}
constructed according to Lemma 2.2, where Fr := er f . Since card(H) = c,
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we get card(S) = c and, as card(O) = c, we are allowed to use H as index
set for O, so that we may write O = {Or = O(Pr, Kr, εr)}r∈H (with the
Or’s pairwise different). For given r ∈ H, let

δr :=
εr

2(1 + supx∈Kr
|Fr(x)|)

and Φr := Pr + δrFr.

Then Φr ∈ Or. Therefore the set {Φr : r ∈ H} is dense in H(G). It then
suffices to show that the algebra C generated by {Φr : r ∈ H} is freely
generated and that each nonzero member of C belongs to He(G). Since
every member of He(G) is nonzero, it is enough to prove that, for every
p ∈ N, every nonzero polynomial P of p complex variables without constant
term and every set r1, . . . , rp of different elements of H, the function F :=
P (Φr1 , . . . ,Φrp) belongs to He(G).

Before going on, a little more notation will be needed. We set N0 =
N ∪ {0}. If p ∈ N then each element of [0,+∞)p (in particular, each
element of Np

0 or Hp) has the form c = (c1, . . . , cp) with cj ≥ 0 for all
j. We let |c| = c1 + · · · + cp. For u,v ∈ [0,+∞)p, we adopt the notation
uv = (u1v1, . . . , upvp), so that |uv| = u1v1 + · · ·+ upvp.

Fix a function F = P (Φr1 , . . . ,Φrp) as above. Then there is a nonempty
subset J ⊂ Np

0 \{(0, . . . , 0)} as well as nonzero reals αm (m ∈ J) such that

F (x) =
∑
m∈J

αm

p∏
j=1

(Prj(x) + δrjFrj(x))mj for all x ∈ G.

Due to the linear Q-independence of r1, . . . , rp, the numbers |mr| (m ∈ J)
are pairwise different, where r = (r1, . . . , rp) . Therefore, there exists a
unique n ∈ J such that |nr| = max{|mr| : m ∈ J}.

Finally, fix an open ball B with B ∩ ∂G 6= ∅. Then take any connected
component V of B∩G. There exists a sequence {ν1 < · · · < νk < · · · } ⊂ N
such that zνk ∈ V for all k ≥ 1. Since any polynomial is bounded on
bounded sets, there is M ∈ (0,+∞) satisfying |Prj(x)| ≤ M (x ∈ V ; j =
1, . . . , p). Now, with the help of the triangle inequality we obtain

|F (zνk)| ≥ |αn|
p∏
j=1

(δrj |Frj(zνk)| −M)nj −
∑

m∈J\{n}

|αm|
p∏
j=1

(δrj |Frj(zνk)|+M)mj

= |αn|
p∏
j=1

(δrje
rjνk −M)nj −

∑
m∈J\{n}

|αm|
p∏
j=1

(δrje
rjνk +M)mj

=: Ak +Bk −→ +∞ as k →∞
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because Ak behaves like e|nr|νk , while Bk is a finite sum of terms each of
them behaving like e|mr|νk (with |nr| > |mr|). Consequently, limk→∞ |F (zνk)|
= +∞, which shows that F is unbounded on V . An application of Lemma
2.4 concludes the proof.
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nonlinear sets in topological vector spaces, Bull. Amer. Math. Soc. 51 (2014), 71–
130.
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