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Abstract. We prove in this paper the existence of dense linear sub-
spaces in the classical holomorphic Lipschitz spaces in the disc all of
whose non-null functions are nowhere differentiable at the boundary.
Infinitely generated free algebras as well as infinite dimensional Banach
spaces consisting of Lipschitz functions enjoying the mentioned property
almost everywhere on the boundary are also exhibited. It is also inves-
tigated the algebraic size of the family of functions in the disc algebra
that either do not preserve Borel sets on the unit circle or possess the
Cantor boundary behavior on the disc.

1. Introduction, Notation and Preliminaries

A real or complex continuous function defined on a real interval I that
is nowhere differentiable at I is called a Weierstrass monster. By applying
Baire’s category theorem, S. Banach and independently S. Marcinkiewicz
[7, 39] (see also [41, Chapter 11] and [47]) obtained in 1931 that the set of
such functions is residual –that is, its complement is of first category– in the
space of continuous functions on I endowed with the topology of uniform
convergence in compacta. Passing to the complex plane, in this paper we
will focus our attention on those continuous nowhere differentiable functions
on the unit circle that can be extended holomorphically on the unit disc with
lipschitzian properties.

Before going on, let us fix some notation, mostly standard. As usual,
the symbols N, N0, Z, Q, R, C, D, D and T will denote the set of positive
integers, the set N∪{0}, the set of all integers, the field of rational numbers,
the real line, the complex plane, the open unit disc {z ∈ C : |z| < 1}, the
closed unit disc {z ∈ C : |z| ≤ 1} and the unit circle {z ∈ C : |z| = 1},
respectively. The symbol c will represent the cardinality of the continuum.
A domain is a connected nonempty open subset of C. The space of all
holomorphic functions on D is denoted by H(D) and it is endowed with
the compact-open topology. The disc algebra is the Banach space A(D)
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of all continuous functions f : D → C with f ∈ H(D), endowed with the
supremum norm. If α ∈ (0, 1] and z0 ∈ A ⊂ C, then a function f : A → C
is said to be α-lipschitzian (or α-hölderian) at z0 whenever

lim sup
z→z0

|f(z)− f(z0)|
|z − z0|α

<∞.

Moreover, lipschitzian means 1-lipschitzian, while hölderian means
α-hölderian for some α.

Some terminology extracted from the new theory of lineability will be also
needed (see [2,4,5,10,18,20,23,27,28,46] for concepts and results). Assume
that κ is a cardinal number, X is a vector space and A ⊂ X. The subset
A is said to be lineable if there is an infinite dimensional vector space M
such that M \ {0} ⊂ A, and κ-lineable if such an M can be found so as to
satisfy dim (M) = κ. If, in addition, X is a topological vector space, then
the subset A is said to be spaceable in X whenever there is a closed infinite
dimensional vector subspace M of X such that M \ {0} ⊂ A, while A is
κ-dense-lineable in X if there is a dense vector subspace M of X such
that dim (M) = κ and M \{0} ⊂ A. Now, assume that X is a vector space
contained in some linear algebra. Then the subset A is called algebrable if
there is an infinitely generated algebra M –that is, the cardinality of any
system of generators of M is infinite– such that M \ {0} ⊂ A. Finally, A is
said to be strongly κ-algebrable if there exists an κ-generated free algebra M
with M \ {0} ⊂ A. Recall that if X is contained in a commutative algebra,
then a set B ⊂ X is a generating set of some free algebra contained in A if
and only if for any N ∈ N, any nonzero polynomial P in N variables without
constant term and any distinct f1, . . . , fN ∈ B, we have P (f1, . . . , fN ) 6= 0
and P (f1, . . . , fN ) ∈ A.

Starting from Gurariy [31] –who in 1991 proved the lineability of the class
of the Weierstrass monsters– a number of mathematicians have investigated
and established the diverse degrees of lineability for this class, and even for
smaller classes, as for instance for the class of continuous nowhere hölderian
functions: see [3, 11,12,26,32,34,43].

By identifying continuous periodic functions on R with continuous func-
tions on T, it is natural to pass to the complex plane and study both topo-
logical and algebraic size of the family of Weierstrass monsters in the disc
algebra, that is, of the set of all f ∈ A(D) such that f |T is nowhere differ-
entiable. The residuality of this set –and even of the smaller one of those
f ∈ A(D) with f |T nowhere hölderian– has been proved by Eskenazis and
Makridis [24,25] in 2014 (see also [35]). In [16] the lineability of the class of
Weierstrass monsters in the disc algebra is studied. Specifically, it is there
proved that the set

NL(T) := {f ∈ A(D) : f |T is not lipschitzian at any point of T}
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and hence the bigger set

ND(T) := {f ∈ A(D) : f |T is not differentiable at any point of T}
are c-dense-lineable in A(D). The assertion is reinforced in [14], where it is
shown that the set

NH(T) := {f ∈ A(D) : f |T is not hölderian at any point of T},
which is contained in NL(T), is strongly c-algebrable and c-dense-lineable
in A(D). Moreover, there exists a closed infinite dimensional Banach space
all of whose nonzero members f are in A(D) but f |T is not hölderian at any
point of T.

Our aim in this paper is to contribute to complete these results about
“holomorphic Weierstrass monsters” in the setting in the disc algebra. Spe-
cifically, it will be shown in Section 3 that, for α ∈ (0, 1), the class of α-
lipschitzian holomorphic functions in D that are nowhere differentiable at
the circle is c-dense-lineable in the natural topology, so dense-lineable in an
optimal sense in terms of dimension. By allowing good behavior on measure-
negligible subsets of T, corresponding spaceability and strong algebrability
results are also obtained. In a different –but related– order of ideas, we prove
in Section 4 the existence of large algebraic structures inside the family of
functions in the disc algebra presenting a strange behavior at the boundary,
such as Cantor boundary behavior or non-preservation of Borel sets. Section
2 will be devoted to recall a number of auxiliary results about holomorphic
functions in the disc and lineability.

2. Some preliminary results

For background on holomorphic Lipschitz spaces the reader is referred
to [22, Chap. 5] and [42, Chap. 8]. Given α ∈ (0, 1), the classical holomorphic
Lipschitz space Λα(D) is defined as the set of all analytic functions on D such
that

(2.1) |f(z)− f(w)| ≤ C|z − w|α (z, w ∈ D).

for some constant C ∈ (0,+∞) depending on f . Such functions are uni-
formly continuous on D, so they extend continuously on D and, conse-
quently, every space Λα(D) is contained in the disc algebra A(D). Note
that from the continuity and the maximum modulus principle, one gets that
f ∈ Λα(D) if and only if f ∈ H(D) and a Lipschitz condition of order α as
in (2.1) is satisfied for z, w ∈ T. A natural norm on Λα(D) is the one given
by

‖f‖α := |f(0)|+ sup
z 6=w
z,w∈D

|f(z)− f(w)|
|z − w|α

,

which makes Λα(D) a non separable Banach space with a topology that is
finer than the one inherited from H(D).

According to [30, Theorem 1], the following result is at our disposal.
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Theorem 2.1. Let f be an analytic function in D given by a power series
with Hadamard gaps:

f(z) =

∞∑
k=0

akz
nk ,

with
nk+1

nk
≥ λ > 1 for all k ∈ N. Then f ∈ Λα(D) if and only if ak = O(n−αk )

as k →∞.

For 0 < α ≤ 1, the holomorphic small Lipschitz space of order α is defined
to be the class Λα(D) consisting of all functions f ∈ Λα(D) such that

|f(z)− f(w)| = o(|z − w|α) (z, w ∈ D and z → w).

It happens that Λα(D) is a closed subspace of Λα(D) under the Lip-α-norm
‖ · ‖α, so (Λα(D), ‖ · ‖α) is also a Banach space. If 0 < α < β ≤ 1, then we
have that

(2.2) Λβ(D) ⊂ Λα(D) ⊂ Λα(D) ⊂ A(D),

all the inclusions being strict and continuous for the respective topologies.
Moreover, as a consequence of Mergelyan’s approximation theorem in Lip-
α-norm (see [40, p. 205]), we get the next assertion.

Theorem 2.2. For every α ∈ (0, 1] the polynomials form a dense subset of
Λα(D) in Lip-α-norm. Consequently, (Λα(D), ‖ · ‖α) is a separable Banach
space.

The following auxiliary assertion is useful in order to obtain dense-linea-
bility from lineability. Its proof can be found in [17, Theorem 2.3] (see also
[3, Theorem 2.2 and Remark 2.5] and [2, Section 7.3]).

Theorem 2.3. Assume that X is a metrizable separable topological vector
space and that κ is an infinite cardinal number. Suppose that A and B are
subsets of X such that A + B ⊂ A, A ∩ B = ∅, B ∪ {0} contains a dense
vector subspace of X, and A is κ-lineable. Then A is κ-dense-lineable in X.

Note that since the space X is metrizable and separable, its cardinality is
card(X) = c and hence dim(X) ≤ c. Then c-dense-lineability is the optimal
degree of dense-lineability that one can expect for a subset A ⊂ X.

In order to construct large algebras of strange functions, we will employ
the next lemma, that is inspired by the method used in [29] based on the
superpositions of a fixed function belonging to the considered class with the
representatives of some well chosen algebra of functions.

Lemma 2.4. Let Ω be a nonempty set, κ be a cardinal number and F
be a family of functions Ω → C. Assume that there exist an κ-generated
free algebra Φ consisting of entire functions and a function f : Ω → C
satisfying that f(Ω) has an accumulation point in C and ϕ ◦ f ∈ F for
every ϕ ∈ Φ \ {0}. Then F is strongly κ-algebrable.
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Proof. Consider the set A := {ϕ ◦ f : ϕ ∈ Φ}, that is an algebra con-
tained in F ∪ {0}. Assume that B is a free generator system for Φ with

card (B) = κ. Trivially, B̃ := {ϕ ◦ f : ϕ ∈ B} is a generator system for

A. Moreover, card (B̃) = κ = card (B) because ϕ ◦ f 6= ψ ◦ f as soon as
ϕ 6= ψ (ϕ,ψ ∈ Φ). Indeed, if ϕ ◦ f = ψ ◦ f , then ϕ = ψ on the set f(Ω),
which has an accumulation point in C, and so ϕ = ψ on the whole C by

the Identity Principle for analytic functions. Finally, B̃ is a free genera-
tor system. To prove this, assume that N ∈ N, that P is a polynomial

of N complex variables and that ϕ̃1, . . . , ϕ̃N are distinct functions in B̃
satisfying P (ϕ̃1, . . . , ϕ̃N ) = 0 on Ω. There are mutually different functions
ϕ1, . . . , ϕN ∈ B with ϕ̃i = ϕi ◦ f (i = 1, . . . , N). Therefore, Q ◦ f = 0
on Ω, where Q := P (ϕ1, . . . , ϕN ). It follows that Q = 0 on f(Ω). Again,
the Identity Principle tells us that Q = 0 on C, which implies P = 0
because B is algebraically free. Thus, A is an κ-generated free algebra,
which concludes the proof. �

Remark 2.5. An explicit example in which the technique of the last lemma
is applied with κ = c is provided in [1], where Φ is the algebra generated
by a family of entire functions {fσ}σ∈(0,1) such that the exponential growth
order of fσ equals σ. Another example is given in [6, Proposition 7] (see
also [9]), where Φ is chosen to be –in the complex version given in [13]– the
algebra generated by the entire functions ecz (c ∈ H), where H ⊂ (0,+∞)
is a linearly Q-independent set.

3. Weierstrass monsters in the classical holomorphic Lipschitz
spaces

In this section, we shall be able to find a rich algebraic structure inside
the subset of Λα(D) given by

ΛαND(T) := {f ∈ Λα(D) : f |T is not differentiable at any point of T},

where α ∈ (0, 1). Let ΛαNL(T) denote the (smaller) class of functions f in
Λα(D) such that f |T is nowhere Lipschitz, that is,

ΛαNL(T) :=

{
f ∈ Λα (D) : lim sup

z∈T, z→z0

∣∣∣f(z)−f(z0)
z−z0

∣∣∣ = +∞ for every z0 ∈ T
}
.

The next two theorems assert lineability and dense-lineability for these sets
in an optimal degree.

Theorem 3.1. For every α ∈ (0, 1), the set ΛαNL(T) is c-lineable. Hence
ΛαND(T) is also c-lineable.

Proof. Let us fix any β ∈ (α, 1), as well as any odd integer b such that
b1−β > 1 + 3π

2 . Then

b−β > b−1(1 +
3π

2
).
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Hence, there exists a positive number c such that

b−β > c > b−1(1 +
3π

2
).

Then

bc > 1 +
3π

2
and b−1 < c < b−β.

We define

M := span

{
fa(z) =

∞∑
n=0

anzb
n

: c < a < b−β

}
.

If c < a < b−β, then abβ < 1 and so an = O((bn)−β). By Theorem 2.1 we
obtain that M is a vector subspace of Λβ(D), which in turn is contained in
Λα(D). That is, M ⊂ Λα(D).

We will prove that the set
{
fa : c < a < b−β

}
is linearly independent.

Let us suppose that λ1fa1 + λ2fa2 + · · · + λkfak = 0 for some k ∈ N,
c < ak < · · · < a2 < a1 < b−β and λ1, . . . , λk ∈ C. Then

∞∑
n=0

(λ1a
n
1 + λ2a

n
2 + · · ·+ λka

n
k) zb

n
= 0

for every z ∈ D, so the uniqueness of coefficients of the Taylor series yields
λ1a

n
1 + λ2a

n
2 + · · · + λka

n
k = 0 for every n ∈ N0. For n = 0, . . . , k − 1, we

obtain a set of k conditions given by the following system:
1 1 · · · 1
a1 a2 · · · ak
...

...
...

ak−1
1 ak−1

2 · · · ak−1
k




λ1

λ2
...
λk

 =


0
0
...
0

 .

The previous matrix is a Vandermonde matrix, so its determinant is not 0
because a1, . . . , ak are all different. Therefore, λ1 = λ2 = · · · = λk = 0.
This proves that the set

{
fa : c < a < b−β

}
is linearly independent and thus

dim (M) = c.

We will prove that M \ {0} ⊂ ΛαNL(T). If f ∈M \ {0}, then there are
k ∈ N, c < ak < · · · < a2 < a1 < b−β and λ1, . . . , λk ∈ C \ {0} such that
f = λ1fa1 + · · · + λkfak . We may assume λ1 = 1 because ΛαNL(T) is
invariant under scaling.

Let z0 be any fixed point in T and let x0 ∈ R such that z0 = eiπx0 . For
each m ∈ N there is sm ∈ Z such that bmx0 − sm ∈ (−1/2, 1/2]. We define

tm := bmx0 − sm ∈ (−1/2, 1/2] and xm :=
sm − 1

bm
.

Then xm = x0 − 1+tm
bm → x0 as m→∞, so limm→∞ e

iπxm = z0.
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For each j ∈ {1, . . . , k} we consider the function uj : R→ R defined as

uj (x) = Re
[
faj
(
eiπx

)]
=
∞∑
n=0

anj cos (bnπx) .

Then

uj (xm)− uj (x0)

xm − x0
=

∞∑
n=0

anj
cos (bnπxm)− cos (bnπx0)

xm − x0
= Sj,m + Tj,m,

where

Sj,m :=

m−1∑
n=0

anj
cos (bnπxm)− cos (bnπx0)

xm − x0

and

Tj,m :=

∞∑
n=0

am+n
j

cos (bm+nπxm)− cos (bm+nπx0)

xm − x0
.

Now, using the relationship cos (x+ y)− cos (x− y) = −2 sinx sin y (x, y ∈
R), we derive that

|Sj,m| =

∣∣∣∣∣∣
m−1∑
n=0

anj

−2 sin
(
bnπxm+bnπx0

2

)
sin
(
bnπxm−bnπx0

2

)
xm − x0

∣∣∣∣∣∣
≤

m−1∑
n=0

π (b aj)
n

∣∣∣∣∣sin
(
bnπ xm−x02

)
bnπ xm−x02

∣∣∣∣∣ .
Since

∣∣ sinx
x

∣∣ ≤ 1 for every x ∈ R and aj > c, we obtain

(3.1) |Sj,m| ≤
m−1∑
n=0

π (b aj)
n = π

(b aj)
m − 1

b aj − 1
≤ π

bc− 1
(b aj)

m .

Note that since b, sm ∈ Z and b is odd, we have

cos
(
bm+nπxm

)
= cos

(
bm+nπ

sm − 1

bm
)

= cos (bn (sm − 1)π) = − (−1)sm

and

cos
(
bm+nπx0

)
= cos

(
bm+nπ

sm + tm
bm

)
= cos (bnπsm + bnπtm)

= cos (bnπsm) cos (bnπtm)− sin (bnπsm) sin (bnπtm)

= (−1)sm cos (bnπtm) .

Therefore, we get

Tj,m =

∞∑
n=0

am+n
j

− (−1)sm − (−1)sm cos (bnπtm)

−1+tm
bm

= (−1)sm (b aj)
m
∞∑
n=0

anj
1 + cos (bnπtm)

1 + tm
.
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Now, note that anj ·
1+cos(bnπtm)

1+tm
≥ 0 for every n,m, j and that cos (πtm) ≥ 0

because tm ∈ (−1/2, 1/2], so

|Tj,m| ≥ (b aj)
m · a0

j ·
1 + cos

(
b0πtm

)
1 + tm

≥ (b aj)
m 1

1 + 1
2

=
2

3
(b aj)

m .

Moreover, since aj < b−β, we have

|Tj,m| = (b aj)
m
∞∑
n=0

anj
1 + cos (bnπtm)

1 + tm

≤ (b aj)
m
∞∑
n=0

(
b−β
)n 2

1− 1
2

=
4 (b aj)

m

1− b−β
.

Consequently, we are led to

(3.2)
2

3
(b aj)

m ≤ |Tj,m| ≤
4

1− b−β
(b aj)

m .

Therefore, by (3.1) and (3.2), we obtain∣∣∣∣uj (xm)− uj (x0)

xm − x0

∣∣∣∣ = |Sj,m + Tj,m| ≤
π

bc− 1
(b aj)

m +
4

1− b−β
(b aj)

m

=

(
π

bc− 1
+

4

1− b−β

)
(b aj)

m

and∣∣∣∣uj (xm)− uj (x0)

xm − x0

∣∣∣∣ ≥ |Tj,m| − |Sj,m| ≥
2

3
(b aj)

m − π

bc− 1
(b aj)

m

=
2
(
bc− 1− 3π

2

)
3(bc− 1)

(b aj)
m .

If we define

d =
π

bc− 1
+

4

1− b−β
> 0, e =

2
(
bc− 1− 3π

2

)
3(bc− 1)

> 0,

then we get

(3.3) e (b aj)
m ≤

∣∣∣∣uj (xm)− uj (x0)

xm − x0

∣∣∣∣ ≤ d (b aj)
m .

Next, we study the function vj : R→ R defined as

vj (x) = Im
[
faj
(
eiπx

)]
=

∞∑
n=0

anj sin (bnπx) .

Observe that

vj (xm)− vj (x0)

xm − x0
=

∞∑
n=0

anj
sin (bnπxm)− sin (bnπx0)

xm − x0
= S′j,m + T ′j,m,
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where

S′j,m :=

m−1∑
n=0

anj
sin (bnπxm)− sin (bnπx0)

xm − x0

and

T ′j,m :=
∞∑
n=0

am+n
j

sin (bm+nπxm)− sin (bm+nπx0)

xm − x0
.

By using the relationship sin (x+ y)− sin (x− y) = 2 cosx sin y (x, y ∈ R),
we can estimate

∣∣S′j,m∣∣ =

∣∣∣∣∣∣
m−1∑
n=0

anj

2 cos
(
bnπxm+bnπx0

2

)
sin
(
bnπxm−bnπx0

2

)
xm − x0

∣∣∣∣∣∣
≤

m−1∑
n=0

π (b aj)
n

∣∣∣∣∣sin
(
bnπ xm−x02

)
bnπ xm−x02

∣∣∣∣∣ .
Since

∣∣ sinx
x

∣∣ ≤ 1 for every x ∈ R and aj > c, we obtain

(3.4)
∣∣S′j,m∣∣ ≤ m−1∑

n=0

π (b aj)
n = π

(b aj)
m − 1

b aj − 1
<

π

bc− 1
(b aj)

m .

Now, we consider the series T ′j,m. Since b, sm ∈ Z, we have on the one hand
that

sin(bm+nπxm) = sin
(
bm+nπ

sm − 1

bm
)

= sin(bnπ(sm − 1)) = 0.

On the other hand, since b is odd,

sin
(
bm+nπx0

)
= sin

(
bm+nπ

sm + tm
bm

)
= sin (bnπsm + bnπtm)

= sin (bnπsm) cos (bnπtm) + cos (bnπsm) sin (bnπtm)

= (−1)sm sin (bnπtm) .

Therefore

T ′j,m =
∞∑
n=0

am+n
j

− (−1)sm sin (bnπtm)

−1+tm
bm

= (−1)sm (b aj)
m
∞∑
n=0

anj
sin (bnπtm)

1 + tm
.

Since aj < b−β and tm ∈ (−1/2, 1/2], we obtain

(3.5)
∣∣T ′j,m∣∣ ≤ (b aj)

m
∞∑
n=0

(
b−β
)n 1

1− 1
2

=
2

1− b−β
(b aj)

m .

If we define

h =
π

bc− 1
+

2

1− b−β
> 0,

then it follows from (3.4) and (3.5) that, for every j ∈ {1, . . . , k},

(3.6)

∣∣∣∣vj (xm)− vj (x0)

xm − x0

∣∣∣∣ =
∣∣S′j,m + T ′j,m

∣∣ ≤ h (b aj)
m .
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We recall that f = fa1 + λ2fa2 + · · ·+ λkfak , where c < ak < · · · < a2 <
a1 < b−β and λ2, . . . , λk ∈ C \ {0}. For each j = 2, . . . , k, let pj , qj ∈ R be
such that λj = pj + iqj . Then

f
(
eiπx

)
= u1 (x) + iv1 (x) +

k∑
j=2

(pj + iqj) (uj (x) + ivj (x)) .

Hence

Re
f
(
eiπxm

)
− f

(
eiπx0

)
xm − x0

=
u1 (xm)− u1 (x0)

xm − x0
+

k∑
j=2

pj
uj (xm)− uj (x0)

xm − x0

−
k∑
j=2

qj
vj (xm)− vj (x0)

xm − x0
.

It follows from (3.3) and (3.6) that∣∣∣∣∣f
(
eiπxm

)
− f

(
eiπx0

)
xm − x0

∣∣∣∣∣ ≥
∣∣∣∣∣Re

f
(
eiπxm

)
− f

(
eiπx0

)
xm − x0

∣∣∣∣∣
≥
∣∣∣∣u1 (xm)− u1 (x0)

xm − x0

∣∣∣∣− k∑
j=2

∣∣∣∣pj uj (xm)− uj (x0)

xm − x0

∣∣∣∣− k∑
j=2

∣∣∣∣qj vj (xm)− vj (x0)

xm − x0

∣∣∣∣
≥ e (b a1)m −

k∑
j=2

d (b aj)
m |pj | −

k∑
j=2

h (b aj)
m |qj |

= (b a1)m
[
e−

k∑
j=2

d |pj |
(
aj
a1

)m
−

k∑
j=2

h |qj |
(
aj
a1

)m ]
.

Finally, since 0 < aj/a1 < 1 for each j = 2, . . . , k and b a1 > bc > 1, we
deduce that

lim
m→∞

∣∣∣∣∣f
(
eiπxm

)
− f

(
eiπx0

)
xm − x0

∣∣∣∣∣ = +∞.

Since

lim
m→∞

xm − x0

eiπxm − eiπx0
=

1

iπeiπx0
6= 0,

we obtain

lim
m→∞

∣∣∣∣∣f
(
eiπxm

)
− f (z0)

eiπxm − z0

∣∣∣∣∣ =

= lim
m→∞

∣∣∣∣ xm − x0

eiπxm − eiπx0

∣∣∣∣ ·
∣∣∣∣∣f
(
eiπxm

)
− f

(
eiπx0

)
xm − x0

∣∣∣∣∣ = +∞.

This implies that f is not lipschitzian at z0, that is, f ∈M . Thus, we have
shown that M \ {0} ⊂ ΛαNL(T) and the proof is concluded. �
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Remark 3.2. The last theorem makes no sense for the case α = 1, because
every Λ1-function is 1-lipchitzian on T. Even the set {f ∈ Λ1(D) : f is
nowhere differentiable on T} is empty, because any function of bounded
variation on a real interval is differentiable almost everywhere [48, p. 32].

Theorem 3.3. Let α ∈ (0, 1). Then the set ΛαNL(T) is c-dense-lineable
in Λα(D). Hence ΛαND(T) is also c-dense-lineable in Λα(D).

Proof. Let P denote the set of restrictions to D of the family of all polyno-
mials on C. By Mergelyan’s theorem in Lip-α-norm (Theorem 2.2), Λα (D)
is a separable Banach space with the Lip-α-norm and P is a dense vector
subspace of Λα (D). Moreover, if g ∈ ΛαNL(T), P ∈ P and z0 ∈ T, then
there exists a sequence (zm)∞m=1 in T such that

lim
m→∞

∣∣∣∣g (zm)− g (z0)

zm − z0

∣∣∣∣ = +∞.

Then

lim
m→∞

∣∣∣∣(g + P ) (zm)− (g + P ) (z0)

zm − z0

∣∣∣∣ ≥
≥ lim

m→∞

∣∣∣∣g (zm)− g (z0)

zm − z0

∣∣∣∣− ∣∣P ′ (z0)
∣∣ = +∞.

Hence g + P is not lipschitzian at z0. This proves that g + P ∈ ΛαNL(T),
that is, ΛαNL(T)+P ⊂ ΛαNL(T). Moreover, of course, ΛαNL(T)∩P = ∅.
It follows from Theorem 2.3 (with X = Λα(D), A = ΛαNL(T), B = P and
κ = c) that ΛαNL(T) is c-dense-lineable in Λα(D). �

Concerning the existence of large closed subspaces, we may obtain some
kind of spaceability if we relax the condition of “not lipschtzian at any
point of the circle” up to “not lipschitzian at almost everywhere on the
circle”. Here “almost everywhere” (a.e.) is understood with respect to the
Lebesgue measure dθ

2π on T and the full-measure subset of T such that f is
not lipschitzian at every point of it may depend on f . For every α ∈ (0, 1),
we denote

ΛαNLae(T) :=
{
f ∈ Λα(D) : f is not lipchitzian a.e. on T

}
Spaceability for this set is got with a finer topology. In passing, strong
algebrability is also obtained. The following elementary lemma is needed.

Lemma 3.4. Let us suppose that A ⊂ C, z0 ∈ A, z0 is not an isolated point
of A, f : A → C is a function that is continuous but not lipchitzian at z0,
and g : Ω → C is holomorphic, where Ω is a domain with Ω ⊃ f(A). If
g′(f(z0)) 6= 0, then g ◦ f is not lipchitzian at z0.

Proof. There is a sequence (zm)∞m=0 ⊂ A \ {z0} such that |f(zm)− f(z0)| ≥
m|zm − z0| for all m ∈ N. Since f(zm)→ f(z0) as m→∞, we get

lim
m→∞

∣∣∣∣g(f(zm))− g(f(z0))

f(zm)− f(z0)

∣∣∣∣ = |g′(f(z0))| > 0.



12 BERNAL, BONILLA, LÓPEZ, AND SEOANE

Hence, there exists m0 ∈ N such that∣∣∣∣g(f(zm))− g(f(z0))

f(zm)− f(z0)

∣∣∣∣ > |g′(f(z0))|
2

for all m ≥ m0. It follows that

|(g ◦ f)(zm)− (g ◦ f)(z0)| ≥ m|g′(f(z0))|
2

· |zm − z0|

for all m ≥ m0, and we are done. �

Theorem 3.5. Assume that α ∈ (0, 1). Then the following holds:

(a) The set ΛαNLae(T) is strongly c-algebrable.
(b) There exists an infinite dimensional Banach space B of holomorphic

functions in D such that B \ {0} ⊂ ΛαNLae(T).
(c) The set ΛαNDae(T) of all functions f ∈ Λα(D) such that f is not

differentiable a.e. on T also satisfies the properties in (a) and (b).

Proof. (a) Pick any f ∈ ΛαNL(T) as well as any c-generated free algebra Φ
consisting, except for zero, of nonconstant entire functions (see Remark 2.5).
For every g ∈ Φ \ {0}, the set {w ∈ C : g′(w) = 0} has no accumulation
points, so the set S := {w ∈ f(T) : g′(w) = 0} is finite. Moreover,
g ◦ f ∈ Λα(D) because g is entire.

Let f∗ denote the radial limit function of f , which is defined for each
eiθ ∈ T as

f∗(eiθ) = lim
r→1−

f(reiθ).

Since f ∈ A(D) ⊂ H1 (the Hardy space of order 1 on the disc), it is known
that, given w ∈ C, the set {eiθ ∈ T : f∗(eiθ) = w} has null measure (see
[44, p. 345]). Since f is continuous on D, it follows that f∗ = f on T, so
each set {z ∈ T : f(z) = w} has null measure. Hence the set

Ef :=
⋃
w∈S
{z ∈ T : f(z) = w}

has null measure and g′(f(z0)) 6= 0 for every z0 ∈ T \ Ef . According to
Lemma 3.4 (with A = T and Ω = C), the function g ◦ f is not lipschitzian
at any z0 ∈ T \ Ef . This shows that g ◦ f ∈ ΛNLae(T). Then Lemma 2.4
(with F = ΛαNLae(T)) yields the conclusion.

(b) Let us consider the function v(z) = e−|z|, as well as the weighted space
of entire functions associated to v defined as

Hv (C) := {g ∈ H(C) : sup
z∈C

v(z)|g(z)| <∞},

that is a Banach space under the norm ‖g‖v := supz∈C(v(z)|g(z)|) (see, e.g.,
[38]). Convergence in this norm implies uniform convergence on compacta.
We pick any f ∈ ΛαNL(T) and define the vector space

B := {g ◦ f : g ∈ Hv(C) and g(0) = 0}.
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If g ◦ f ∈ B \ {0} with g ∈ Hv(C) and g(0) = 0, then the function g
cannot be constant and, as in (a), we get that g ◦ f ∈ ΛαNLae(T). That is,
B \ {0} ⊂ ΛαNLae(T). Moreover, it follows from the identity principle for
analytic functions that every function h ∈ B has a unique representation
h = g ◦ f with g ∈ Hv(C) and g(0) = 0. It is also obtained that the
functions

{
fk : k ∈ N

}
form a linearly independent subset of B (note that

the monomials zk are in Hv(C)). Finally, it is easy to see that the formula
‖h‖ = ‖g‖v provides B with a norm, that is complete because ‖ · ‖v is
complete on Hv(C).

(c) This follows from (a) and (b) because ΛαNLae(T) ⊂ ΛαNDae(T). �

A natural problem is to study the size of the intersection of all classes
ΛαNL(T). We are going to show that its size is large, at least in the topo-
logical sense (see Proposition 3.6 below). For this, we consider the vector
space

Λ(D) :=
⋂

0<α<1

Λα(D)

and its subset of functions that are not lipschitzian at any point of T:

ΛNL(T) :=
⋂

0<α<1

ΛαNL(T).

Note that thanks to the inclusions (2.2) we get

Λ(D) =
⋂

0<α<1

Λα(D) =
⋂
n∈N

Λ
n

n+1 (D) =
⋂
n∈N

Λ n
n+1

(D).

For each n ∈ N, let Xn := Λ n
n+1

(D). Since the sequence {Xn}n≥1 is decreas-

ing and each inclusion Xn+1 ↪→ Xn is linear and continuous, the natural
topology on Λ(D) =

⋂
n≥1Xn appears to be the topology τπ of the projec-

tive limit of the sequence of Banach spaces {(Xn, ‖ · ‖ n
n+1

)}n≥1 (see, e.g.,

[33, Section 11, especially pp. 154–155]). Since every Xn is a separable Ba-
nach space, we have that τπ makes Λ(D) a separable Fréchet space, that is, a
separable metrizable complete locally convex space. In fact, the restrictions
to Λ(D) of the norms ‖ · ‖ n

n+1
(n = 1, 2, . . . ) generate the topology of τπ.

Notice that we have the Baire category theorem at our disposal.

Proposition 3.6. The set ΛNL(T) is a residual subset of Λ(D).

Proof. For a continuous function h : D→ C, we will set

‖h‖∞ := sup
z∈D
|h(z)|.

A basis of the topology of Λ(D) is formed by all the sets{
g ∈ Λ(D) : ‖g − f‖ n

n+1
< ε, n ∈ {1, . . . , N}

}
,

where f ∈ Λ(D), ε > 0 and N ∈ N. But since the set P of polynomials is
dense in Λ(D) (because P is dense in each Λ n

n+1
) and ‖ · ‖ n

n+1
≤ ‖ · ‖ m

m+1
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whenever n ≤ m, we can take the family

{V (P, ε, n) : P ∈ P, ε > 0, n ∈ N},
as a basis, where

V (P, ε, n) :=
{
g ∈ ΛNL(T) : ‖g − P‖ n

n+1
< ε
}
.

Observe first that we can write

Λ(D) \ ΛNL(T) =

∞⋃
m,p=1

Ym,p

where

Ym,p = {f ∈ Λ(D) : ∃z0 ∈ T such that

|f(z)− f(z0)| ≤ m|z − z0| if z ∈ T and |z − z0| < 1/p}.

We will prove that each Ym,p is closed in Λ(D). Let (fi)
∞
i=1 be a sequence

in Ym,p that converges to f ∈ Λ(D). In particular, fi → f uniformly on D.
For every i there exists zi ∈ T such that |f(z)− f(zi)| ≤ m|z − zi| if z ∈ T
and |z − zi| < 1/p. We can assume that (zi)

∞
i=1 converges to z0 ∈ T. Given

z ∈ T such that |z − z0| < 1/p, there is i0 such that |z − zi| < 1/p for all
i ≥ i0. If i ≥ i0, then

|f(z)− f(z0)| ≤|f(z)− fi(z)|+ |fi(z)− fi(zi)|+
+ |fi(zi)− f(zi)|+ |f(zi)− f(z0)|
≤2‖fi − f‖∞ +m|z − zi|+ |f(zi)− f(z0)| → m|z − z0|

Hence, |f(z)− f(z0)| ≤ m|z− z0|, which shows that Ym,p is closed in Λ(D).
To sum up, we have obtained that Λ(D) \ ΛNL(T) is an Fσ set.

According to the Baire category theorem, it suffices to show that each
set Ym,p has empty interior. With this aim, fix (m, p, n) ∈ N3, ε > 0 and
P ∈ P. It is enough to exhibit a function belonging to V (P, ε, n)\Ym,p. For

every entire function g and every pair (z, w) ∈ D we have

g(z)− g(w) =

∫
[w,z]

g′(ξ) dξ.

Then we derive that |g(z)− g(z)| ≤ ‖g′‖∞|z−w|. In particular, we get that

(3.7) sup
z,w∈D
z 6=w

∣∣∣∣zk − wkz − w

∣∣∣∣ ≤ k
for all k ∈ N and also |P (z)−P (w)| ≤ ‖P ′‖∞|z−w| for all z, w ∈ T. Choose
an k ∈ N with

k >
4n+1 · 2(m+ ‖P ′‖∞)n+1

εn+1

and define

λ :=
ε

2 k
n

n+1 2
1

n+1

and f(z) := P (z) + λ zk ∈ P ⊂ Λ(D).
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We obtain

‖f − P‖ n
n+1

= ‖λ zk‖ n
n+1

= λ sup
z,w∈D
z 6=w

|zk − wk|
|z − w|

n
n+1

= λ sup
z,w∈D
z 6=w

( ∣∣∣∣zk − wkz − w

∣∣∣∣
n

n+1

· |zk − wk|
1

n+1

)
.

By (3.7),

‖f − P‖ n
n+1
≤ ε

2 k
n

n+1 2
1

n+1

· k
n

n+1 · sup
z,w∈D
z 6=w

|zk − wk|
1

n+1 =
ε

2
< ε.

Hence f ∈ V (P, ε, n). Finally, fix z0 ∈ T. Since the modulus of the deriva-
tive of zk at z0 is k, we have that∣∣∣zk − z0

k

z − z0

∣∣∣ > k

2

whenever z is close enough to z0. If we choose such a z ∈ T with |z − z0| <
1/p, then

|f(z)− f(z0)| ≥ λ|zk − z0
k| − |P (z)− P (z0)|

≥ λ k

2
|z − z0| − ‖P ′‖∞|z − z0|

=
( ε k

4 k
n

n+1 2
1

n+1

− ‖P ′‖∞
)
|z − z0|

> (m+ ‖P ′‖∞ − ‖P ′‖∞)|z − z0| = m|z − z0|.

In other words, f 6∈ Ym,p, as required. Thus, we have proved that each
Ym,p is closed and has empty interior and, consequently, the set ΛNL(T) is
residual in Λ(D). �

In view of the previous results, the following questions arise naturally:
(a) Is ΛαNL(T) spaceable in Λα(D)? Is it (strongly) algebrable?
(b) What lineability properties does the family ΛNL(T) enjoy?

Remark 3.7. As a related result, given any α ∈ (0, 1), we may assert
spaceability in Λα(D) for the family

F := Λα(D) \
⋃

α<β≤1

Λβ(D).

For this, we can invoke a theorem due to Kitson and Timoney [36, Theo-
rem 3.3] asserting that if {Zn}∞n=1 is a sequence of Banach spaces, X is a
Fréchet space and Tn : Zn → X are continuous linear mappings such that
Y := span

(⋃
n∈N Tn(Zn)

)
is not closed in X, then the complement X \ Y

is spaceable in X. Let X := Λα(D), α(n) := α + 1−α
n , Zn := Λα(n)(D) and
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Tn be the natural inclusion Zn ↪→ X. Note that by the inclusions (2.2) we
have that

Y :=
⋃

α<β≤1

Λβ(D) =
⋃
n∈N

Λα(n)(D) = span
( ⋃
n∈N

Tn(Λα(n)(D))
)
.

On the one hand, the set Y is dense in X because P ⊂ Y . On the other
hand, Y is not closed in X because, otherwise, we would have Y = X, which
is not possible because X is a Baire space and Y is a set of first category in
X. Indeed, we have that Y =

⋃∞
n,m=1 Yn,m, where

Yn,m :=
{
f ∈ Λα(D) : |f(z)− f(w)| ≤ m|z − w|α(n) for all z, w ∈ D

}
,

and similarly (but in an easier way) to the proof of Proposition 3.6, one
can see that each Yn,m is a closed subset in Λα(D) with empty interior.
Consequently, the mentioned theorem by Kitson and Timoney applies, so
F = X \ Y is spaceable in Λα(D).

4. Non-preservation of Borel sets and Cantor boundary
behavior on the unit circle

Recall that the σ-algebra B of Borel sets in the one-point compac-
tification C∞ = C ∪ {∞} of C is defined as the smallest σ-algebra that
contains all open sets. It is well known that the preimage of a Borel set
under a continuous mapping is again a Borel set, whereas the image of a
Borel set need not to be a Borel set. Given a subset A ⊂ C, we say that a
complex-valued mapping f preserves Borel sets on A if f is defined on A
and the following property holds:

B ⊂ A, B ∈ B =⇒ f(B) ∈ B.

As a consequence of the Lusin–Purves Theorem [19], a function f ∈ A(D)
preserves Borel sets on T if and only if the set

{w ∈ C : w = f(z) for uncountably many z ∈ T}

is countable. If f is a complex-valued function defined on T, then it is said
that the image of the unit circle under f is a Peano curve if it covers a
nonempty open subset of the plane.

Let Fo,∞,T be the family of all functions f ∈ A(D) assuming every value
of some open set –depending on f– uncountably many times on T. As a
consequence of Theorem A in [8], if a > 1 and b ∈ {2, 3, 4 . . . }, then the
function

fa,b(z) :=

∞∑
n=1

zb
n

na

belongs to Fo,∞,T.

Theorem 4.1. The set Fo,∞,T is strongly c-algebrable.
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Proof. Take a function f := fa,b as above. Then there is an open set U ⊂ C
such that f assumes every point of U uncountable many times on T. If ϕ is
any nonconstant entire function, then ϕ(U) is also open and ϕ ◦ f assumes
every point of ϕ(U) uncountable many times on T. That is, ϕ ◦ f ∈ Fo,∞,T
for every nonconstant entire function ϕ. Finally, it suffices to apply Lemma
2.4 with Ω = D, F = Fo,∞,T and Φ any of the free algebras given in Remark
2.5. �

Corollary 4.2. The set of functions f ∈ A(D) such that f(T) is a Peano
curve is strongly c-algebrable.

Remarks 4.3. 1. As a consequence of Theorem 4.8 in [15], the family of
continuous functions f : [0, 1] → C such that f([0, 1]) covers a nonempty
open set of C is strongly ℵ0-algebrable, where ℵ0 = card (N). Then this
result is strengthened by Corollary 4.2.

2. Other examples of A(D)-functions such that f(T) is a Peano curve can
be found in [45].

Corollary 4.4. The set of functions in f ∈ A(D) such that f does not
preserve Borel sets on the unit circle is strongly c-algebrable.

Let us now consider for a function f ∈ A(D) the decomposition

C∞ \ f(T) =
⋃
j≥1

Wj ,

where the Wj are connected components. Let ∂f(D) and ∂Wj denote the
C∞-boundary of f(D) and Wj , respectively. According to Dong, Lau and
Liu [21, Definition 1.1] (see also [37]), a function f ∈ A(D) is said to have
the Cantor boundary behavior on D if f−1(∂f(D)) and all f−1(∂Wj) are
Cantor-type sets, that is, each of these pre-images is uncountable, nowhere
dense and closed in T.

A remarkable result due to Dong et al. [21, Theorem 5.3] asserts that if
f ∈ A(D) is nonconstant and the set of limit points of {z ∈ D : f ′(z) = 0}
equals T, then f has the Cantor boundary behavior on D. As an example,
the function

fq,β(z) :=
∞∑
n=1

q−βnzq
n
,

where 0 < β < 1 and q ≥ 2 is an integer, satisfies that the set of limit points
of {z ∈ D : f ′p,β(z) = 0} equals T [21, Corollary 6.5].

Moreover if g is an analytic function defined on a domain Ω ⊃ f(D) and
f is a function in A(D) such that the set of limit points of {z ∈ D : f ′(z) = 0}
equals T, then the chain rule implies that g ◦ f shares the same property.
This allows us to construct a large algebras of functions satisfying it: just
fix a function fq,β as above and apply Lemma 2.4 together with Remark
2.5. This yields the following result, which puts the end on this paper.
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Theorem 4.5. The set of functions in A(D) such that the set of limit points
of {z ∈ D : f ′(z) = 0} equals T is strongly c-algebrable. Hence the set of
functions in A(D) having the Cantor boundary behavior on D is strongly
c-algebrable.

Acknowledgements. The first author was supported by the Plan Andaluz
de Investigación de la Junta de Andalućıa FQM-127 Grant P08-FQM-03543
and by MEC Grant MTM2015-65242-C2-1-P. The second author was sup-
ported by MINECO MTM2016-75963-P. The third and fourth authors were
supported by the Spanish Ministry of Economy, Grant MTM2015-65825-P.

References
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nowhere Gevrey differentiability, Israel J. Math. 205 (2015), no. 1, 127–143.

[11] F. Bayart and L. Quarta, Algebras in sets of queer functions, Israel J. Math. 158
(2007), no. 1, 285–296.
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additivity in RR, J. Math. Anal. Appl. 369 (2010), no. 1, 265–272.
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