=

STRUCTURAL ASPECTS OF THE NON-UNIFORMLY
CONTINUOUS FUNCTIONS AND THE UNBOUNDED
FUNCTIONS WITHIN (C(X)

RAFAEL AYALA-GOMEZ, LUIS BERNAL-GONZALEZ, MARIA DEL CARMEN
CALDERON-MORENO, AND JOSE ANTONIO VILCHES-ALARCON

Dedicated to the loving memory of our colleague Bernardo Cascales (1958-2018)

ABSTRACT. We prove in this paper that if a metric space supports a
real continuous function which is not uniformly continuous then, under
appropriate mild assumptions, there exists in fact a plethora of such
functions, in both topological and algebraical senses. Corresponding
results are also obtained concerning unbounded continuous functions on
a non-compact metrizable space.

1. INTRODUCTION

It is a well known fact that, if (X,d) and (Y,p) are metric spaces
such that (X,d) is compact, then any continuous mapping f : X — Y
is uniformly continuous, that is, it satisfies that, given & > 0, there is
d > 0 such that p(f(z), f(2')) < e for every pair of points x,2’ € X with
d(z,z") < 0 (see e.g. [40, Chap. 3]). However, the reciprocal assertion is not
true, even though we consider (Y, p) = (R, d.), the real line endowed with
the Euclidean distance. Indeed, if X is an infinite set and we endow it with

the discrete metric
_J 0 ifx=y
pa(x,y) = { 1 ifrty

then (X,d) is not compact but any function (in particular, any continu-
ous function) X — R is uniformly continuous. Recall that uniform con-
tinuity depends strongly upon the metrics. For instance, if X = {1/n :
n=1,2...} and f(1/n) := n (n > 1), then d. and py are equivalent
metrics on X, but f : (X,pq) — (R,de) is uniformly continuous while
f:(X,de) = (R,d.) is not.

Turning to compact spaces, what is true is the following characterization
—due to Hewitt [23] in 1948 of this kind of spaces: a metrizable space X is
compact if and only if every continuous function X — R is bounded.
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In 1958 Atsuji [5] gave a fairly comprehensive list of characteristic pro-
perties of those metric spaces for which any real continuous function defined
on them is uniformly continuous. From now on, these spaces will be called
Atsuji spaces (they are also frequently called UC spaces in the literature).
Specifically, and under this terminology, it was proved in [5] the following
result, among others. As usual, if X is a topological space and A C X, then
we denote by A’ the set of limit points of A in X. We warn that along this
paper the symbol C does not necessarily mean strict inclusion.

Theorem 1.1. Let (X,d) be a metric space. The following properties are
equivalent:

(a) (X,d) is an Atsuji space.

(b) The subset X' is compact and, for each e > 0, there exists § > 0 such
that d(z1,z2) > & whenever x1 and x4 are distinct points satisfying
d(z1,2) > e < d(ze,x) forall z € X'.

Prior to this, spaces on which continuity equals uniform continuity had
been studied by Nagata [41], Monteiro and Peixoto [37], and Isiwata [27].
Other characterizations of Atsuji spaces were provided by Rainwater [43],
Hadziivanov [22], Mréwka [39], Waterhouse [46], Wong [47], Toader [45],
Hueber [25], Beer [9-11], Chaves [18], Borsik [16], and Jain and Kundu
[28] (see also [29] for characterizations of those metric spaces whose com-
pletions are Atsuji spaces). Moreover, in 1955 Levine [33] was able to give
necessary and sufficient conditions for a subset of the Euclidean real line R
to be an Atsuji space, and this characterization was extended in 1960 by
Levine and Saunders [34] to subsets of any prescribed metric space (X, d)
(corresponding results when the final space is not necessarily (R, d.) are also
obtained in [34]). The problem of describing those metrizable topological
spaces admitting a compatible Atsuji distance has been considered by Na-
gata [41], Levsenko [35], Rainwater [43], Mréwka [39] and Beer [11]. It is
important to mention that any Atsuji distance is complete (see [45]) and,
since a metrizable space for which every compatible distance is complete is
already compact (Niemytzki- Tychonoff’s theorem), one derives that each
non-compact metrizable space has a compatible non-Atsuji distance. More-
over, characterizations of compactness of metric spaces in terms of uniform
continuity have been provided by Hueber [25] and Snipes [44].

Starting from a non-Atsuji metric space (X, d), a natural question is the
analysis of the size and structure of the family of continuous functions on
X that are not uniformly continuous. Such analysis, which will be carried
out in Section 3, is the main aim of this paper. It will be proved that, under
appropriate conditions, the mentioned family is very large in both topolo-
gical and algebraic senses, so as to contain large —that is, dense or closed
infinite dimensional— vector subspaces as well as infinitely generated alge-
bras. Corresponding results for size and structure of the family of unbounded
continuous functions defined on a non-compact metrizable topological space
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will be provided in Section 4. Section 2 is devoted to exhibit the neces-
sary notation and background in order to deal with the above mentioned
question.

2. NOTATION, LINEABILITY AND PRELIMINARY RESULTS

Unless explicitly stated, the real line R will always be endowed with
the Euclidean metric de(x,y) = |z —y|. As usual, N will denote the set of
positive integers, while Ny := NU{0}. We set ¢ := card (R), the cardinality
of the continuum. If (X,d) is a metric space, z € X and ¢ > 0, then
Bj(z,€) represents the open ball {y € X : d(z,y) < e}. If X and Y are
topological spaces and A C X then A and C(X,Y) will stand, respectively,
for the closure of A in X and for the set of continuous functions X — Y.
Also, we define C(X) := C(X,R), which is a vector space. If X and
Y are metric spaces, then by UC(X,Y) we represent the family of all
uniformly continuous functions X — Y. Consistently, we denote UC(X) :=
UC(X,R). We are interested in the set nUC(X,Y) := C(X,Y)\UC(X.Y),
and specially in

nUC(X) :=nUC(X,R) = C(X) \ UC(X),

which is nonempty whenever X is a non-Atsuji metric space. For a me-
trizable topological space X, we shall also consider the set BC(X) of all
bounded continuous functions X — R as well as its complement

nBC(X) :=C(X)\ BC(X),
which by Hewitt’s theorem is nonempty if and only if X is non-compact.

A topological space Y is said to be an absolute extensor if, for every nor-
mal topological space X, every closed subset A C X and every f € C(A,Y),
there exists F' € C(X,Y) such that F|4 = f. Under this terminology, Ti-
etze’s extension theorem (see, e.g., [40, pp. 219-222]) asserts that R is an
absolute extensor. As another example, any product space I’ ~where J is
a nonempty set and [ is an interval of the real line— is an absolute extensor
and, in general, any product space [] jeJ Y; of absolute extensors is also an
absolute extensor: see [36, VII.8.34]. Recall that every metrizable space is
normal.

A linear topological space is called a Fréchet space if it is locally convex
and completely metrizable. It is well known that the topology of every
Fréchet space X is defined by a distance d(z,y) = ||z — y||, where || - || is
an F-norm on X, that is, a functional || - || : X — [0,400) satisfying the
following properties for all z,y € X and all scalars \: ||z +y| < ||z|+ |yl
| Az]| < |lz|| if Al <1, limy—o||[Az|| =0, and ||z|| = 0 implies = = 0; see
[30].

In the following theorem we collect a number of well known results about
o-compactness and the compact-open topology on a space of continuous
functions; see e.g. [24, pp. 325-326, 342 and 405-406] or [20]. Recall that a
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topological space is called o-compact if it is a countable union of compact
subspaces, and second-countable if it possesses a countable open basis. For
background on nets, see, e.g., [32].

Theorem 2.1. Assume that X is a Ty-locally compact topological space and
that (Y, p) is a metric space. The following holds:

(a) If X is second-countable then it is metrizable and o-compact.

(b) X is o-compact if and only if there is a sequence {U,}n>1 of open
sets such that X = Un>1 U, each U, is compact and U, C Un+1
for all n € N. a

(¢) If X is o-compact then there is a metric D on C(X,Y) generating
the compact-open topology Ti, that is, the metric D satisfies the
following property: A net (fo)acs C C(X,Y) tendsto f € C(X,Y)
uniformly on each compact subset of X if and only if D(fa,f) — 0
(e J).

In fact, under the assumptions of (c) and the notation in (b), a distance
in C(X,Y) generating the compact-open topology is

_ - i . SUPzeU,, p(f(l‘),g($))
DU =2 30 T supyear, oL (). g(e))

Moreover, it is easy to prove that if Y is complete then D is complete.
Hence (see, e.g., [42]) (C(X,Y),Tk) becomes a Baire space provided that
Y is complete and X is 15, locally compact and o-compact.

Sometimes the problem of “gluing” two uniformly continuous functions on
two respective subsets of a topological space arises naturally. Not always this
operation yields a uniformly continuous function, even if the global function
is continuous. For instance, if X = {1,—-1,1/2,-1/2,1/3,-1/3,...}, A =
{1/n: neN}and B={-1/n: n € N}, then X = AU B, the function
Ji(X,d.) > (R,d.) given by

0 ifzeA

f(x)—{ 1 ifzeB
is continuous and both restrictions f|4, f|p are uniformly continuous, but
f is not uniformly continuous. In general, we can say that if (X,d) and
(Y,p) are metric spaces and that A and B are subsets of X such that
X = AUB and d(A,B) > 0 then, trivially, every function f : X — Y
with f|4 and f|p uniformly continuous is uniformly continuous. But this is
a rather uncommon situation. More interesting and useful is the following
result, which will be used in Section 3 and follows from [26, Corollary 16] as
a special case. (Incidently the property of f relative to A in [26, Corollary

16] is called strong uniform continuity of f on A; this variational notion has
been studied in depth by Beer and Levi.)
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Lemma 2.2. Assume that (X,d) and (Y,p) are metric spaces and that
feCX)Y). Let A, B C X be subsets such that X = AUB, A is
compact and f|p is uniformly continuous. Then f € UC(X,Y).

Some terminology extracted from the modern theory of lineability (see
[3,14] for concepts and results) will be also needed. Assume that « is a
cardinal number, Z is a vector space and A C Z. Then A is said to be
lineable if there is an infinite dimensional vector space M such that M\{0} C
A, and a-lineable if such an M can be found so as to satisfy dim (M) = a.
If, in addition, Z is a topological vector space, then the subset A is said
to be spaceable (a-dense-lineable, resp.) in Z whenever there is a closed
infinite dimensional (a dense, resp.) vector subspace M of Z such that
M\ {0} C A (such that dim (M) =« and M \ {0} C A, resp.).

Now, assume that Z is a vector space contained in some (linear) algebra.
Then the subset A is called algebrable if there is an infinitely generated
algebra M —that is, the cardinality of any system of generators of M is
infinite- so that M \ {0} C A; and, if « is a cardinal number, then A is
said to be strongly a-algebrable if there exists an a-generated free algebra
M with M \ {0} C A. Recall that if Z is contained in a commutative
algebra, then a set B C Z is a generating set of some free algebra contained
in A if and only if for any N € N, any nonzero polynomial P in N
variables without constant term and any distinct fi,..., fy € B, we have

P(fi,...,fn) #0 and P(f1,...,fn) € A.

The following auxiliary assertion will be useful in order to achieve dense-
lineability from mere lineability. Its proof can be found in [13, Theorem 2.3]
(see also [4, Theorem 2.2 and Remark 2.5] and [3, Section 7.3]).

Theorem 2.3. Assume that Z is a metrizable separable topological vector
space and that ~ is an infinite cardinal number. Suppose that A and B
are subsets of Z such that A+ B C A, ANB = &, B is a dense vector
subspace of Z, and A is y-lineable. Then A is vy-dense-lineable in Z.

Note that since the space Z is metrizable and separable, its cardinality
satisfies card(Z) < ¢ and hence dim(Z) < ¢. Then c-(dense-)lineability is
the optimal degree of (dense-)lineability that one can expect for a subset
AcCZ.

In order to construct large algebras of functions satisfying special pro-
perties, we shall employ the next lemma, that is inspired by the method
used in [21] based on the superpositions of a fixed function belonging to
the considered class with the representatives of some well chosen algebra of
functions.

Lemma 2.4. Let € be a nonempty set, « be a cardinal number and F be
a family of functions @ — R. Assume that there exist an «-generated free
algebra ® consisting of analytic functions R — R and a function f : Q - R
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satisfying that f(Q) has an accumulation point in R and po f € F for
every ¢ € ®\ {0}. Then F is strongly a-algebrable.

Proof. Consider the set A := {pof: ¢ € ®}, that is an algebra contained in
FU{0}. Assume that B is a free generator system for & with card (B) = a.
Trivially, B := {oof: ¢ € B} is a generator system for A. Moreover,
card (g) = o = card (B) because pof # o f assoonas ¢ # Y (p, 9 € D).
Indeed, if po f = 1o f then ¢ = 9 on the set f(€2), which has an
accumulation point in R, and so ¢ = 1 on the whole R by the Identity
Principle for analytic functions (see, e.g., [1]). Finally, B is a free generator
system. To prove this, assume that N € N, that P is a polynomial of N
real variables and that ©1,..., N are distinct functions in B satisfying

P(o1,...,on) =0 on .

There are mutually different functions ¢1,...,ox € B with ¢; = ¢; o f
(i=1,...,N). Therefore Qo f =0 on £, where @ := P(p1,...,0on). It
follows that @ = 0 on f(2), and again the Identity Principle tells us that
@ = 0 on R, which implies P = 0 because B is algebraically free. Thus,
A is an a-generated free algebra, which concludes the proof. (I

Remark 2.5. Explicit examples in which the technique of the last lemma
(with a = ¢) is applied are provided in [2,6-8,21]. In [12] a complex version
of such technique is used. We need for our goals the family ® considered
in [6]. In the next lemma we list the properties of ® that will be used in
Section 3.

Lemma 2.6. There exists an algebra ® of functions R — R satisfying the
following properties:

(a) @ is freely c-generated.

(b) Every ¢ € ® is analytic on R.

(c) For every ¢ € @\ {0}, we have limg_,  |@(x)| = +o0.

(d) @ is stable under derivations, that is, if ¢ € ® then ¢’ € ®.

Proof. Let H C (0,+00) be alinearly Q-independent set satisfying card (H) =
¢. For each ¢ € H, we denote ¢.(x) := e“*. Let ® be the algebra generated
by {¢c}een-

On the one hand, (b) follows from the facts that every . is analytic
on R and the analytic functions on R form an algebra. On the other
hand, (a) is a consequence of (¢). And (d) is easily deduced from the fact
that (e, )71 -+ (g )?)' = (C1j1 + -+ + CNIN)Porjetotensy for all reals
c1y...,cy and all natural numbers ji,...,jn. Therefore, we only have to
prove (b).

With this aim, let us represent each N-tuple (r1,...,7n) € RY by r,
and set |r| :==r;1 4+ -4+ 7y and r-s:=rys; + -+ rysy. Assume that
¢ € @\ {0}. Then there exist an N € N, mutually different ¢;,...,cxy € H
and a nonzero polynomial P in N real variables such that P does not
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possess constant term and ¢ = P(@c,,...,pcy). Specifically, there exists a
nonempty finite set J C NV \ {(0,0,...,0)} and scalars a; € R\ {0} such
that P(r1,...,oN8) = Y ey a1’ - oy . Hence

o(z) = Zaj e®3% for all x € R.
jeJ

Let k be the unique element in J such that c¢-k = max{c-j: j € J}.
Note that k is unique due to the linear Q-independence of the ¢;’s. Then
c-j—k-c<0 forall je J\{k}. Of course, j-c > 0 for all j € J. Finally,
the conclusion of (b) is obtained from the inequality

()| = ek (’Oék! - > \aj\e(c'j—ok)x)

je\{k}

and the facts that limg 400 KT = 450 and limg— 400 elei=ke)z — () for

all je J\ {k} O

3. TOPOLOGICAL AND ALGEBRAIC PROPERTIES OF THE SET OF
NON-UNIFORMLY CONTINUOUS FUNCTIONS

In this section, we shall be able to find a rich algebraic structure inside
the subset of non-uniformly continuous functions, assuming that the space
of departure is non-Atsuji and satisfies appropriate conditions. Concerning
topological size, the next theorem shows the denseness of the mentioned
subset and the existence of some “reasonable” structure in it.

Recall that if Z is a topological space and A C Z, then A is called a Gy
set if A is a countable intersection of open subsets of Z, an F, set if it is a
countable union of closed subsets of Z, a G, set if it is a countable union
of G5 subsets, and an Fjs set if it is a countable intersection of F, subsets.
Recall that 7x denotes compact-open topology. The first three parts of the
following theorem are surely known, but since we have not been able to find
a reference we provide a proof of them.

Theorem 3.1. Assume that (X,d) and (Y, p) are metric spaces, and that
X is locally compact and o-compact. We have:

(a) UC(X,Y) is an Fy5 subset of (C(X,Y),7K).

(b) nUC(X,Y) is a G5, subset of (C(X,Y),Tk).

(¢) If Y is either an absolute extensor or a Fréchet space over R then
UC(X,Y) is densein (C(X,Y),7k). In particular, UC(X) is dense
in (C(X),TK).

(d) If (X,d) is a non-Atsuji space and Y is a Fréchet space over R
whose metric p is induced by an F-norm defining the topology of Y,
then nUC(X,Y) is a dense subset of (C(X,Y),7k). In particular,
nUC(X) is dense in (C(X),7k).
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Proof. (a) Note first that the set UC(X,Y’) can be written as
vex, )= U Fus (1)

neN keN
where F,j = {f € C(X,Y) : p(f(z),f(y)) < % for all (z,y) € X x X
with d(z,y) < +}. If (fj) C Fur is a sequence tending to some f of the
(metrizable, by Theorem 2.1) space C(X,Y), then from the continuity of
the map p:Y xY — R and the fact that Tx-convergence implies pointwise

convergence it follows that f € F), ;. Hence each set F,  is closed, which
together (1) tells us that UC(X,Y) is an Fj; set.

(b) This is a consequence of (a) because the complement of an Fy5 subset is
a G5, subset.

(c) Recall that the sets
V=V(f,Le):={ge C(X,Y): p(f(x),g9(x)) <e forall x € L}

(f € C(X,Y), e >0, K a compact subset of X) form a basis for the 7x-
topology of C(X,Y’). Fix such asubset V. In order to prove the denseness of
UC(X,Y), we search for some g € UNUC(X,Y). With this aim, consider
the sequence {Uy,},>1 of open sets such that X = {J,~; Un, each U, is
compact and U, C U,41 (n € N) provided by Theorem 2.1(b). Since
{Un}n>1 is in particular increasing, we can select an m € N with K C Up,.
Now, X is normal because it is metrizable. Assume that Y is an absolute
extensor. Fix any point yo € Y. Since the closed sets U,,, X \ Un+1 are
disjoint, the function U, U (X \ Upns1) — R given by f on U, and ¥
on X \ U1 is well defined and continuous. Then there exists a function
g € C(X,Y) such that

gg-=1[f and glx\v,.,, = Yo
The same conclusion holds if Y is a real Fréchet space because any metriza-
ble space is paracompact (see, e.g., [40, Theorem 41.4]), and any continuous
function on a closed subset (with the restricted topology) of a Hausdorff
paracompact space Z with values in a real Fréchet space extends to a con-
tinuous function on Z (see [36, X.3.33]). To summarize, we have that g is
continuous, Up, 41 is compact, g|x\p,,., is constant (so g|x\¢,,., is uniformly

continuous) and X = Up+1U (X \ Up41). Therefore Lemma 2.2 applies and
we conclude that g € UC(X,Y). But g = f on K because U,, D U,, D K.
Thus, trivially, g € V and g € VNUC(X,Y), as required.

(d) By assumption, we have that p(z,y) = || — y||, where || - is an
F-norm on Y defining its topology. From the hypothesis we can select a
continuous function fy: X — R that is not uniformly continuous. Fix any
nonzero vector yo € Y, and consider the mapping f : X — Y given by
f(z) == fo(x)yo. It is evident that f € C(X,Y). Then f € nUC(X,Y):
indeed, there are sequences (u,) and (v,) in X and an « > 0 such that

d(up,vn) = 0 as n— o0 but |fo(un) — fo(vy)| > a for all n € N.
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Since || - || is an F-norm and |a/(fo(un) — fo(vn))] < 1, it follows that
p(f (un), f(on)) = [[f (un) = f(oa) | = |(fo(un) — fo(vn)) ol = llagoll >0

for all n € N, which proves the claim. Now, from the statement (c) we have
that UC(X,Y) is dense in (C(X,Y),7x). But C(X,Y) is a vector space
and UC(X,Y) is a vector subspace of C(X,Y’), which implies that the set
of translates

fHUCX,)Y)={f+g: g UC(X,Y)}

satisfies f + UC(X,Y) C nUC(X,Y). Since (C(X,Y), k) is a topological
vector space, we conclude that the translation

geC(X,)Y)— f+ge€C(X,Y)

is a homeomorphism, from which it follows that f+ UC(X,Y) is dense in
(C(X,Y),7K), and so its superset nUC(X,Y’) is also dense. O

The next two theorems assert algebrability, dense-lineability and space-
ability for the set nUC(X) in a high degree. No extra condition will be
needed to guarantee algebrability. Recall that a subset A of a topological
space X is said to be discrete whenever A’ = @& or, that is equivalent, the
restricted topology on A is the discrete one.

Theorem 3.2. Let (X,d) be a non-Atsuji metric space. Then the set
nUC(X) is strongly c-algebrable.

Proof. We are going to built a non-uniformly continuous function f: X — R
satisfying that there exist three mutually disjoint sequences (), (yn), (2n) C
X such that f(z,) = n, f(yn) = n+1,f(2,) = 2 for all n € N and
d(xn,yn) — 0 as n — oco. Assume that this has already been done. Let
® be the family furnished in Lemma 2.6, and take ¢ € @\ {0}. Ac-
cording to assertions (c) and (d) of the mentioned lemma, we have that
lim, 4+ o0 |/ ()| = +00. Then there exists zg € R with |¢'(x)] > 1 for all
x > xg. It follows from the mean value theorem that

(o f)(@n) = (o fllun)l = lp(n) —pn+1)|=1-|n—(n+1)[=1
provided that n > xg. Therefore

d(xn, yn) = 0 but de((p o f)(zn), (po f)(yn)) 7= 0 as n — occ.

This tells us that ¢ o f € nUC(X). Observe that, since f(z,) = = (n € N),
the set f(X) has 0 as a limit point. It now suffices to apply Lemma 2.4
with Q:= X, a:=c¢ and F :=nUC(X).

Thus, our unique task is to construct a function f as claimed at the
beginning of the proof. According to Theorem 1.1, we have that at least one
of the following assertions holds:

(i) The set X' is not compact.

(ii) There exists « > 0 such that, for every § > 0, there are z,y € X
with d(z, X') > a <d(y,X’) and 0 < d(z,y) < 0.
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Assume first that (i) is true. Then there exists an infinite set S C X’
without limit points in X', so without limit points in X, because X' is
always closed. Then we can select a countable set A = {u, : n € N} C §
with the u,,’s mutually different. Let us set z,, := ug,_1, 2, := u2, (n € N),
B :={zp}n>1 and C := {zp}n>1. Then A, B and C are closed sets with
A'=B' =2 =C" and BNC = @. Define, for each n € N, the number

11
Y, = min {E’ 3 d(xn, A\ {zn}) }
Note that ~, > 0. Since z, € X', there exists y, € X such that y, # =,
and d(Zn,Yn) < Yn- The triangle inequality implies that d(yy,z) > 7, for
all z € (A\{zn})U{yr: k € N\ {n}}. In particular, the y,’s are pairwise
distinct, the set D := {y, : n € N} isclosed, D' = & and DNA = @. Then
the set ' := AU D is closed and E' = @. Hence any function defined on
E (with the restricted topology) is continuous. Now, it is enough to extend
—via Tietze’s extension theorem— continuously to the whole X the function
f1E =R given by f(z,) =n, f(yn) :=n+1, f(zn) =1 (n €N).
Finally, suppose that (ii) holds. Consider the number « > 0 furnished
by (ii). On the one hand, the condition on « entails that the set F :=
{z € X : d(z,X") > a} (where it is understood that F' = X if X' = @) is
infinite: otherwise, just take § := min{d(z,y) : =,y € F, x # y} to arrive
at a contradiction. The continuity of the mapping = € X — d(z, X’) € R
shows that [’ is closed. On the other hand, the set F' is discrete because
it is closed (so F' C F') and therefore I C F N X' = @. Observe that
every subset of F' is discrete and hence closed. We begin by choosing points
x1,y1 € F with 0 < d(z1,y1) < 1. Since F is infinite, we can pick z; €
F\ {z1,y1}. Now, we proceed by induction. Assume that n € N and
that mutually different points x1,y1,21,...,Tn, Yn, 2n have been selected
in F so as to satisfy d(zp,yr) < % for all k € {1,2,...,n}. Let us set

G:= {xlaybzl’-"»wnaynazn} and
. 1 ) ‘
§; = mm{m,mm{d(m‘,y) : x,yeG,x#y}} >0 (jeN).

According to (ii), for each j € N we can find points u;,v; € F' such that
0 < d(uj,v;) < 0. Then, by the choice of d;, the set {uj,v;} NG is either
empty or a singleton. Assume, by way of contradiction, that {u;,v;} NG
is a singleton for all j € N, say, {u;,v;} NG = {u;}. Since G is finite, at
least one w € G equals u; for infinitely many j € N. That is, there is a
sequence {ji1 < jo < --- < ji <---} C N such that v;, € By(w,dj,) \ {w}.
As 0j, — 0, we conclude that w € F', which is absurd. Consequently, there
must be an m € N such that {up,v,} NG = @. If we define z,41 :=
Umy Ym+1 := Upy and then we choose any z,41 € F\ (GU{Znt1,Ym+1}),
we get 3(n + 1) mutually different points x1,y1,21 ..., Tnt1, Ynt1, 2nt1 € F
with d(xg, yr) < % for all k€ {1,2,...,n,n+ 1}. Hence, we obtain three
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countably infinite, mutually disjoint sets
H:={z,:neN}, I:={y,: neN} and J:={z,: neN}

satisfying d(xn,yn) — 0 as n — oo. Moreover, all of them are discrete,
which implies that the set K := HUJUI is (closed and) discrete. Finally,
the claimed function f can be obtained as in the end of case (i). O

The following result studies the algebraic-topological size of nUC(X) as
a subset of C'(X).

Theorem 3.3. Assume that (X,d) is a locally compact o-compact non-
Atsugi metric space, and endow the space C(X) with the compact-open
topology T . Then the following holds:

(a) The set nUC(X) is c-dense-lineable in C(X).
(b) The set nUC(X) is spaceable in C(X).

Proof. (a) According to Theorem 3.1(c), the set UC(X) is dense in C'(X).
It follows from Theorem 3.2 that nUC(X) is strongly c-algebrable, hence
c-lineable. It is well known (see, e.g., [17, p. 198]) that if (K, d) is a compact
metric space then C'(K) is separable under the uniform metric. From this
fact and Tietze’s extension theorem (as applied to an exhaustive sequence
of compact subsets K C X), it is easily derived that the metrizable space
(C(X),7K) is separable as well. Since UC(X) is a vector space, we get
nUC(X)+UC(X) Cc nUC(X). The conclusion follows from Theorem 2.3
as soon as we take Z =C(X), A=nUC(X), B=UC(X) and v =r¢.

(b) As in the proof of Theorem 3.2, we can construct two disjoint sequences
(z,) and (y,) of mutually distinct points of X such that S := {z,, : n €
N} U{y, : n € N} is a discrete subset and d(z,,y,) — 0 as n — co. Then
we can select pairwise disjoint open sets W), such that z,,,y, € W, (n € N).
Choose a countable family {/Nj},>; of infinite, mutually disjoint subsets of
N. For each k € N consider the closed sets Sy := {x,, : n € Ny} U{yy, :
n € N}, Cp := X \ Upen, Wn and Fy := Sp U Cy. Since Sy NCy = @
and any function on a discrete set is continuous, we have that the function
gr. - Fi, = R given by

n if t=ux,, n€ N,
ge(x) =< n+1 if z=y,, ne Ny
0 if x e Cy

is continuous.

By Tietze’s extension theorem, there is a function f; € C(X) such that
fr|lFr, = gk For each function f : X — R we consider its (set-theoretical)
support supp(f) := {z € X : f(z) # 0}. Since fr = gr = 0 on Cy,
it follows that supp(fx) C U,en, Wn- The fact that the sets W,’s are
pairwise disjoint entails that the supp(fi)’s are also mutually disjoint. Fix
a nonempty compact set K C X. Let p < ¢ be natural numbers and
€1,€2,...,¢q be prescribed real scalars. Fix « € K. Then either f;(z) =0
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for all j € {1,...,p} or there is exactly one m € {1,...,p} such that
fm(x) # 0 (in which case fj(z) = 0forall j € {p+1,---,¢}). In both cases,
we deduce |E§:1 cifi(x)] < \Z?zl cjfj(z)|. It follows that there exists a
constant C € (0,+00) (in fact, Cx = 1) such that [[3°F_; ¢;fjllx <
Ck - || Z?Zl ¢ifjllx, where |||k = sup,ex |h(x)|. Since the collection of
seminorms {||-||x : K C X compact} defines the Fréchet topology of C'(X),
we obtain via Nikolskii’s theorem for Fréchet spaces (see, e.g., [31, Theorem
5.1.8, p. 67]) that {fx}ren is a basic sequence in C(X). Therefore M :=
span { fx }ren —its closed linear span— equals the set of functions of the form

[e.e]

> apfr with o €R forall k€N (2)

k=1
that are Tx-convergent in C'(X). Note that 7x-convergence implies point-
wise convergence and that, given x € X, each series as in (2) reduces to at
most one nonzero term when evaluated at x. Note also that M is a closed
vector space and, since the fi’s are linearly independent (this follows from
the disjointness of their supports), we get that M is infinite dimensional.

It remains to prove that M \ {0} C nUC(X). For this, fix F' € M \ {0},
so that F' = > 72, apfk, a series as in (2) being 7x-convergent. Let m :=
min{k € N: ap # 0}, Ny = {n1 <na <--- <mj <---}, zj ;= 1, and
uj 1= yYn,. Since uj,v; € supp(fx) (j € N, k #m) and d(z,,yn) — 0 as
n — 0o, we derive d(zj,u;) — 0 and

|F'(25) = F(uy)| = [exll fr(@n;) = filyn,)| = lerllng +1 = nj| = |ex| 7= 0
as j — oo, from which we conclude that F € nUC(X). O

4. TOPOLOGICAL AND ALGEBRAIC PROPERTIES OF THE SET OF
UNBOUNDED CONTINUOUS FUNCTIONS

As in the case of non-uniformly continuous functions on non-Atsuji
spaces, we can find, under appropriate conditions, many unbounded con-
tinuous functions, in both topological and algebraical senses. Our results
are collected in the following two theorems. Sometimes, the proofs will fol-
low patterns that are similar to those of the corresponding theorems on
non-uniform continuity.

The first result concerns algebraic size, in which case not any special
condition on the departure space X —apart from its non-compactness— is
needed.

Theorem 4.1. Let X be a non-compact metrizable space. Then the set
nBC(X) is strongly c-algebrable.

Proof. Since X is not compact, Hewitt’s theorem [23] guarantees the exis-
tence of a function in nBC(X). However, we need a modification of the
original proof of [23] in order to construct such a function with additional
properties. If fact, our proof has some items similar to the one of Theorem
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3.2, but somewhat less involved. Since X is metrizable and noncompact,
there is an infinite subset A C X with A’ = @. Then we can extract
from A two disjoint countably infinite subsets B = {z, : n € N} and
C = {yn : n € N} (with the z,,’s pairwise different, and the same for the
yn’s). Therefore B’ = @ = (', and so B and C are closed sets. Hence
B UC is a closed set carrying the discrete topology. Then any function on
B U C is continuous. In particular, the function g: BUC — R given by

oo ={ 4 HT

soifz=y,

is continuous. Then Tietze’s extension theorem guarantees the existence
of a function f € C(X) such that f|puc = g. Consequently, for such a
function f we have got sequences (z), (yn) C X such that f(z,) — +oo
and f(yn) = % — 0 as n — oo. Take the algebra ® furnished by Lemma
2.6. It follows from the statement (c) of this lemma that |p(f(z,))] — +o0
as n — oo for every ¢ € ®\ {0}. Therefore po f € nBC(X) for such
functions ¢. Moreover, the set f(X) has 0 as a limit point because f(X) D
{% : n € N}. Finally, it is enough to apply Lemma 2.4 with the characters
Q:=X, a:=c and F:=nBC(X). O

Recall that a subset of a Baire space is called residual whenever its com-
plement is of the Baire first category or, equivalently, whenever it contains
some dense G subset.

Theorem 4.2. Assume that X is a locally compact o-compact non-compact
metrizable space, and endow the space C(X) with the compact-open topology
T . Then the following holds:

(a) The set nBC(X) is residual in C(X).
(b) The set nBC(X) is c-dense-lineable in C(X).
(¢c) The set nBC(X) 1is spaceable in C(X).

Proof. (a) Recall that (C(X), Tx) is a completely metrizable space, hence a
Baire space. Observe that BO(X) = |J,cn Fn, where F,, := {f € C(X) :
|f(x)| < n for all z € X}. Since Tx-convergence implies pointwise conver-
gence, we derive that each set F}, is closed. Therefore

nBC(X) = (] Gn,

neN

where every G, := FS is open. This proves that nBC(X) is a G subset.
In order to see that nBC(X) is residual, it is enough to show that it is
dense. To this aim, we shall prove that BC(X) is dense. This can be done
in the same was as the proof of part (c) in Theorem 3.1, just by replacing
Y, p and yo by R, d. and 0, respectively. Indeed, the continuous function
g : X — R resulting with this approach is 0 outside a compact set (so
bounded) and satisfies g € U, where U is a prefixed basic open set for 7.
On the one hand, since X is not compact, Hewitt’s theorem [23] guarantees
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the existence of a function h € nBC(X). On the other hand, BC(X) is a
vector subspace of C'(X), which implies

h+ BC(X) C nBC(X,Y).

Since the translation mapping g € C(X) — h+ g € C(X) is a homeomor-
phism from the topological vector space C(X) into itself, it follows that the
set h+ BC(X) (and so nBC(X)) is dense in C'(X).

(b) According to Theorem 4.1, nBC(X) is strongly c-algebrable, hence c-
lineable. Now, the proof of (a) shows that the set BC(X) is dense in C(X).
Moreover it is a vector space, hence f+ g € nBC(X) if f € nBC(X) and
g € BC(X). Of course, BC(X) N nBC(X) = @. Then it suffices to apply
Theorem 2.3 with Z = C(X), A=nUC(X), B=UC(X) and v=c.

(¢) According to Theorem 2.1(b), there is a sequence {On}n>1 of open sets

such that X = Un21 O,, each O, is compact and O, C O,,; for all
n € N. Since X is not compact, there exists an infinite set A C X such
that A’ = @. In particular, A is closed. Let m(1) be the first m € N with

AN Oy # @, and choose 1 € AN Oyy,(1). Since O,,(1) is compact, the set

(A\A{z1}) N Oyy(1y s finite, so that we can take m(2) € N satisfying

m(2) =min{m € N: m >m(1) and (A\{z1}) N Om \ O(my) # &}.

Choose z2 € (A \ {z1}) N (Opy2) \ O(m1)). By this procedure, we can
obtain recursively a strictly increasing sequence {m(n)},>1 C N as well as
a countable set B := {z,, : n € N} C A such that the x,’s are pairwise
different and z,, € V,, for all n € N, where we have set V,, := U, \ﬁ
and Uy, := Oy, (with the convention Up := ). Note that B’ = & and,
in particular, B (and any subset of B) is closed. Note also that (U,) is
a sequence of open sets such that X = J,~; Uy, each U, is compact and
U, C Uyyq forall n € N. Observe that the open sets V;, satisfy V,,NV,, = @
if m # n. Since every metrizable space is regular, we can select, for each
n € N, an open set W, satisfying

Ty €W,y C W,, C V,.

Choose a countable family {Nj},>1 of infinite, mutually disjoint subsets of
N. For each k € N, we set Fj, := {z,, : n € Ny} U (X \ Unen, W), which
is closed. Let us define the function gi : Fr, — R by

| n ifx =z, with n € Nj
gr(x) = { 0 otherwise.

Since {z, : n € N} and X \ U, ey, Wn are disjoint closed sets and gy
is continuous on each of them, we deduce that g € C(Fy). Once again,
Tietze’s extension theorem comes in our help, so as to produce a function
fr € C(X) such that fi|p, = gr. It follows that fr =0 on X\ UnENk W,
and so supp(fx) C U,c N, Wa. The fact that the sets W,’s are pairwise
disjoint (as W,, C V,,) entails that the supports supp(fx) (k € N) are also
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mutually disjoint. From Nikolskii’s theorem for Fréchet spaces, we derive as
in the proof of Theorem 3.3(b) that {fx}ren is a basic sequence in C(X).
Therefore, its closed linear span M :=span { fx }reny equals the set of func-
tions of the form

> apfr with ax €R forall k€N (3)
k=1

that are 7x-convergent in C(X). Then M is a closed vector space and
the disjointness of the supp(fi)’s shows once again that M is infinite di-
mensional. It is then enough to prove that every F' € M \ {0} belongs
to nBC(X). This is easy, because such an F' has the form (3) with some
am # 0. But F(z,) = am - fm(xn) = apy-n for n € Np,. The set Ny, being
infinite, one derives that F' is unbounded. ([

5. FINAL REMARKS

1. Recall that if a metric space (X, d) is non-Atsuji then it is non-compact.
So, according to Theorem 4.1, nBC(X) is strongly c-algebrable. Moreover,
nUC(X) is also strongly c-algebrable due to Theorem 3.2. But a glance to
the proof of this theorem shows that, in fact, the set

nBC(X)NnUC(X)

of unbounded, non-uniformly continuous functions X — R is strongly c-
algebrable. Similar conclusions follow from Theorems 3.3 and 4.2 regarding
dense-lineability and spaceability. Concerning this double property of un-
boundedness plus nonuniform continuity, and in the specific case in which
(X,d) = (R,d.), Moothathu [38, Theorem 3.7] has recently proved that,
given an unbounded uniformly continuous function g : R — R, the collec-
tion of all bounded, uniformly continuous functions f : R — R having the
property that f-g € nBC(R) NnUC(R) is c-lineable.

2. In the case (X,d) = (R,d.), we can even assert a little more about the
algebrability of the set of unbounded non-uniformly continuous functions.
Namely, the set nBC(R) N nUC(R) is densely strongly c-algebrable. This
means that there exists a dense freely c-generated algebra all of whose
nonzero members belong to nBC(R) NnUC(R). Indeed, consider the freely
c-generated ® constructed in Lemma 2.6. Recall that ® was generated by
the functions ¢.(x) = e“* (¢ € H), where H is an appropriate subset of
(0, 400). The set of these functions is separating, that is, given = # y in R,
at least one of these functions f satisfies f(x) # f(y): simply take f = ¢,
with ¢ any point in H. Then the Stone-Weierstrass theorem (see, e.g.,
[24, p. 425]) guarantees that the algebra & is dense in C([a,b]) (endowed
with the topology of uniform convergence) for every interval [a,b] C R.
Since convergence in C'(R) is equivalent to convergence in each C([a, b]), we
obtain the desired result.
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3. Finally, and turning back to a general locally compact o-compact non-
Atsuji metric space (X, d), we also can find large algebraic structures in the
family of bounded non-uniformly continuous functions BC(X) N nUC(X).
Namely, this set is spaceable in the (Banach) space BC'(X) endowed with
the supremum norm || - ||, and c-dense-lineable in (C(X),7x). In order
to see this, notice that if in the proof of Theorem 3.3(b) we had take the
functions g : Fr, — R (k € N) given by

0 ifx=x, ne N,
ge(x) =< 1 if x =y,, ne€ Ni
0 if zeCy

instead of the ones provided in the mentioned proof, then we would have
obtained extensions fr € C(X) that are bounded (in fact, with || fx|lcc =
sup{|gr(x)| : © € F} = 1) thanks to Tietze’s extension theorem for bounded
functions (see, e.g., [15, p. 91]). An application of Nikolskii’s theorem for Ba-
nach spaces (see, e.g., [19, pp. 36-38]) leads easily to the conclusion that (fx)
is a basic sequence. Therefore its closed linear span M in (BC(X), || - |lco)
happens to be an infinite dimensional closed vector subspace, and arguing
as in the ending part of the proof of Theorem 3.3(b) one can conclude that
M\{0} C nUC(X). This shows the claimed spaceability. Now, a well-known
consequence of the Baire category theorem tells us that dim (M) = ¢. Hence
A := BC(X)NnUC(X) is v-lineable, where « := ¢. By Theorem 3.1(c), the
set UC(X)isdensein (C(X),7k), but an analysis of its proof reveals —again
via Tietze’s extension theorem for bounded functions— that the approxima-
ting function g € VNUC(X,Y) (with Y = R) can be taken bounded. In
other words, the set B := BC(X)NUC(X) is dense in C(X). Moreover,
since BC'(X) and UC(X) are vector spaces, we obtain that B is a dense
vector subspace of Z := C(X) and A+ B C A. Of course, ANB = @. The
claimed c-dense-lineability of A follows after an application of Lemma 2.3.

We want to pose here the following question:

Is BC(X)NnUC(X) (strongly) algebrable?
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