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Abstract

Let A be an unbounded Arakelian set in the complex plane whose
complement has infinite inscribed radius, and ψ be an increasing po-
sitive function on the positive real numbers. We prove the existence
of a dense linear manifold M of entire functions all of whose non-
zero members are Birkhoff-universal, such that each function in M
has overall growth faster than ψ and, in addition, exp(|z|α)f(z) → 0
(z → ∞, z ∈ A) for all α < 1/2 and f ∈ M . With slightly more res-
trictive conditions on A, we get that the last property also holds for
the action Tf of certain holomorphic operators T . Our results unify,
extend and complete recent work by several authors.
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1 Introduction and known results

Several analysts have recently focussed their attention to find entire func-
tions bearing a behavior which is “extremely wild” and “extremely tamed”
simultaneously. To be more specific, it has been proved the existence of en-
tire functions f that are universal in the sense of Birkhoff and are bounded
(or even tend to zero as z →∞) on several families of prescribed sets, such
as lines, strips, angles or even bigger ones. This decay can be very rapid.
Additional properties may be incorporated, for instance, the function f can
present an overall growth rate that is as fast as desired. Finally, the structure
of the family of such functions is very rich, namely, it can contain, except for
zero, a dense linear submanifold of the space of entire functions.

Let us fix some notation and terminology, and provide a short account of
the related results up to date.

As usual, the symbols N, N0, R, C, C∞ stand for the set of positive
integers, the set N ∪ {0}, the real line, the complex plane and the extended
complex plane, respectively. If a ∈ C and r > 0, then B(a, r) (B(a, r))
denotes the open (closed, respectively) ball with center a and radius r. If
A ⊂ C then A0, A, ∂A will represent, respectively, the interior, the closure
and the boundary of A in C. The inscribed radius of A is defined by %(A) :=
sup{r > 0 : there exists a ball B of radius r with B ⊂ A}. If ε > 0, we set
B(A, ε) := {z ∈ C : d(z, A) ≤ ε}, where d(z, A) := inf{|z − a| : a ∈ A}.
A subset A ⊂ C is called an Arakelian set if A is closed in C and C∞ \ A
is connected and locally connected in C∞. By Σ1, Σ2 we denote the family
of all strips (i.e., plane regions between two parallel straight lines) and the
family of all sectors sβ := {z : 0 ≤ arg z ≤ β} (β ∈ (0, 2π)), respectively.

By E we denote the space of entire functions, that is, holomorphic func-
tions on C. The space E is endowed with the topology of the uniform conver-
gence in compacta, so that E becomes a completely metrizable topological
vector space. If Φ ∈ E then its exponential type is defined as τ(Φ) = inf{B ∈
(0,+∞) : there exists A ∈ (0,+∞) such that |Φ(z)| ≤ AeB|z| for all z ∈ C}.
A function Φ ∈ E is said to be of exponential type whenever τ(Φ) < +∞,
that is, there are two constants A, B ∈ (0,+∞) such that |Φ(z)| ≤ AeB|z|

(z ∈ C). If, specially, τ(Φ) = 0 then we say that Φ of subexponential type.
If Φ(z) :=

∑∞
n=0 anz

n is an entire function of exponential type then the

2



expression

Φ(D) =
∞∑
n=0

anD
n

defines a (continuous, linear) operator Φ(D) : E → E (see [9]). Here D0 = I
(the identity), D1 = D, D2 = D◦D, . . . , where Df := f ′ is the differentiation
operator. Observe that the special cases Φ(z) = z, Φ(z) = eaz yield the
respective operator Φ(D) = D, Φ(D) = Ta. Here Ta denotes the translation
operator with vector a, defined by Taf = f(·+ a). We have that an operator
T : E → E commutes with the translations (i.e., T Ta = Ta T for all a ∈ C) if
and only if T = Φ(D) for some Φ ∈ E with exponential type (see for instance
[25]).

The maximum modulus function of a function f ∈ E will be denoted
by Mf , that is, Mf (r) := max{|f(z)| : |z| = r} = max{|f(z)| : |z| ≤ r}
(r > 0).

In 1929, Birkhoff [11] proved the existence of a function f ∈ E whose
family of translates {f(a + ·) : a ∈ C} is dense in E. Such a function
is called a Birkhoff-universal function. In a more general setting, Birkhoff-
universal functions are precisely the hypercyclic vectors of E with respect
to the translations operators Ta (see [26], [27] and [14]), but this generality
will not be considered in the sequel. The harmonic analogue of Birkhoff’s
theorem –that is, E is replaced by the space H of harmonic functions on RN–
can be found in Armitage-Gauthier’s paper [4].

An interesting problem is whether (Birkhoff-)universality is compatible
to apparently opposite properties, such as boundedness or even rapid decay
to zero (as z → ∞) on large sets. A number of results have been recently
produced in this vein.

Namely, Bonilla [15, Theorem 1] discovered in 2000 that, given α > 0,
there exists a dense linear manifold M ⊂ H such that every function v ∈
M \ {0} is universal, and lim

||x||→∞
x∈S

||x||αDβv(x) = 0 for every v ∈ M , every

multi-index β and every hyperplane strip S.

Calderón-Moreno [17] proved in 2002 that, given an α < 1
2
, a continuous

function ϕ : [0,+∞) → (0,+∞) which is integrable on (1,+∞), a sequence
F = {hn}∞n=1 of non-constant entire functions, and two sequences {Ψi,n}∞n=1

(i = 1, 2) of entire functions of subexponential type (with Ψ2,n 6= 0 for all n),
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there exists a dense linear manifold M ⊂ E satisfying

(a) lim
z→∞
z∈S

exp(|z|3/2ϕ(|z|))f(z) = 0 (S ∈ Σ1 ∪ Σ2, f ∈M),

(b) lim
z→∞
z∈S

exp(|z|α)(Ψ1,n(D)f)(z) = 0 (S ∈ Σ1 ∪ Σ2, f ∈M),

(c) The relative growth order %hn(f) := lim sup
r→∞

logM−1
hn

(Mf (r))

log r
= ∞

(f ∈M \ {0}, n ∈ N), and

(d) Ψ2,n(D)f is Birkhoff-universal (f ∈M \ {0}, n ∈ N).

Independently, Costakis and Sambarino [19, Theorem 5] proved in 2004 that,
given a compact set K ⊂ C, there exists an entire function f whose translates
z 7→ f(z + n) (n ∈ N) are dense in E such that f tends to zero on every
“translated” sector K + {z : ε ≤ arg z ≤ 2π(1 − ε)} (ε ∈ (0, 1)). And
Gharibyan, Luh and Niess [24, Theorem 1.1] demonstrated that, given a
sector S := {z = z0 + reit : r ≥ 0, t ∈ [t0 − τ, t0 + τ ]} (z0 ∈ C, t0 ∈ R,
0 < τ < π), there is a dense subset M ⊂ E such that every function ϕ ∈ M
is bounded on S and Birkhoff-universal.

Finally, Bernal and Bonilla [10, Theorem 3.3] were able to establish that,
for a prescribed closed subset F ⊂ C, the following conditions are equivalent:

(i) There exists a Birkhoff-universal function f that is bounded on F .

(ii) There exists an Arakelian subset A of C such that F ⊂ A and
%(C \ A) = +∞.

In this paper, we provide a rather general statement about the existence
of large linear manifolds of Birkhoff-universal functions with rapid decay on
certain sets, even under the action of appropriate operators. The results
established in the preceding paragraphs are then obtained as consequences.
Finally, it is worth noting that our findings can be expressed in terms of
the recently introduced notion of dense-lineability, see the work [6] by Aron,
Gurariy and Seoane. Namely, if X is a topological vector space and A ⊂ X,
then A is said to be dense-lineable provided that there is a dense linear
manifold M ⊂ X such that M \ {0} ⊂ A.
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2 Universal functions with rapid decay

We devote this section to state our main assertions. But, before this, we
need a number of preliminary results, which are incorporated in the following
six lemmas. Lemma 2.1, whose proof can be found in [20], gives an “analytic”
way to generate Arakelian sets. Lemma 2.2 is a special case of [10, Theorem
3.1]. Lemma 2.3 is elementary and provides us with a topological way to
construct Arakelian sets from known ones. Lemma 2.4 is a special instance of
[10, Lemma 2.1]. Lemma 2.5 is an important tangential approximation result
due to Arakelian (see [1] or [23, pp. 153–154]). Lemma 2.6 is the Malgrange-
Ehrenpreis surjectivity theorem (see [22], [28] or [9, p. 87]). Finally, Lemma
2.7 contains an elementary topological result which is frequently used in
approximation theory. Since we have been unable to find an explicit reference
of it, a proof will be provided.

Lemma 2.1. Let A ⊂ C. If f is a Birkhoff-universal entire function that
is bounded on A, then

A0 := {z ∈ C : |f(z)| ≤ sup
A
|f |}

is an Arakelian subset of C.

Lemma 2.2. If A is a subset of C and there exists a Birkhoff-universal
function f ∈ E such that f is bounded on A, then %(C \ A) = +∞.

Lemma 2.3. Let A be an Arakelian subset in C.

(a) If V is a bounded connected open subset of C with V \ A 6= ∅, then
A \ V is an Arakelian subset in C.

(b) If {Sn : n ∈ N} is a countable family of pairwise disjoint sets with
Sn ∩A = ∅ (n ∈ N), such that each Sn is either a singleton or a closed
ball, and the sets Sn go to ∞ (in the sense that infz∈Sn |z| → ∞ as
n→∞), then

F := A ∪
∞⋃
n=1

Sn

is an Arakelian subset of C.
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Lemma 2.4. If A is a subset of C with %(A) = +∞ and B is any closed
ball, then %(A \B) = +∞.

If F ⊂ C, then by A(F ) we denote the class of functions g : F → C which
are continuous on F and holomorphic on F 0.

Lemma 2.5. If F is an Arakelian subset of C, then for every g ∈ A(F ) and
every continuous function ε : [0,+∞)→ (0,+∞) with∫ +∞

1

t−3/2 log

(
1

ε(t)

)
dt < +∞,

there is a function f ∈ E such that

|f(z)− g(z)| < ε(|z|) for all z ∈ F.

Lemma 2.6. Let Φ be a non-zero entire function with exponential type.
Then the differential operator Φ(D) : E → E is surjective.

Recall that a topological space X is called a T1-space if each singleton
{x} is a closed set, and that X is called perfect if it lacks isolated points.

Lemma 2.7. Let X be a T1, perfect topological space whose topology is defined
by an increasing family d1 ≤ d2 ≤ · · · ≤ dn ≤ · · · of pseudodistances.
Assume that {xn : n ∈ N} and {yn : n ∈ N} are two countable subsets of X
such that {xn : n ∈ N} is dense in X and

lim
n→∞

dn(xn, yn) = 0.

Then the set {yn : n ∈ N} is also dense in X.

Proof. From the hypotheses it follows that X is a metrizable space and that
the expression

d(x, y) :=
∞∑
n=1

1

2n
· dn(x, y)

1 + dn(x, y)
(x, y ∈ X)

defines a distance generating the topology of X.

Each finite subset F is closed, because X is T1. Moreover, F has empty
interior. Indeed, suppose by way of contradiction that F 0 6= ∅. Then F 0 is
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open, finite (hence closed) and has at least two points. Choose a minimal
non-empty open subset A ⊂ F 0. Then A has at least two points a, b. Since X
is T1, there is an open set U such that a ∈ U and b 6∈ U . Denote B = A∩U .
Then B is a nonempty open subset of F 0 and it is a proper subset of A,
which contradicts the selection of A.

For each n ∈ N we get

d(xn, yn) ≤
n∑
k=1

1

2k
dk(xn, yn)

1 + dk(xn, yn)
+

∞∑
k=n+1

1

2k
≤ 2dn(xn, yn) +

1

2n
.

Thus d(xn, yn)→ 0 as n→∞. Fix α ∈ X and ε > 0. Then there exists N ∈
N with d(xn, yn) < ε/2 for all n > N . If we set F := {x1, x2, . . . , xN}, then
F is a closed set with empty interior, so the set {x ∈ X : d(x, α) < ε/2} \F
is a nonempty open set. By denseness, we derive the existence of a m > N
such that xm belongs to the last set, whence d(xm, α) < ε/2. By the triangle
inequality, d(ym, α) < ε, which proves the denseness of {yn : n ∈ N}.

We are now ready to establish our results about dense-lineability of fa-
milies of “tamed” universal functions.

Theorem 2.8. Assume that A is an unbounded subset of C. Then the
following properties are equivalent:

(a) There is an Arakelian subset A0 ⊂ C such that A ⊂ A0 and %(C\A0) =
+∞.

(b) Given two functions ϕ, ψ : [0,+∞)→ (0,+∞) such that ϕ is continu-
ous and integrable on [1,+∞), and ψ is increasing, there exists a linear
submanifold M = M(A,ϕ, ψ) ⊂ E satisfying the following:

(i) M is dense in E.

(ii) Each non-zero function in M is Birkhoff-universal.

(iii) lim
z→∞
z∈A

exp(ϕ(|z|)|z|3/2)f(z) = 0 for all f ∈M .

(iv) lim
r→∞

Mf (r)

ψ(r)
= +∞ for all f ∈M \ {0}.
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Proof. Assume that (b) holds. Then, if we choose, say, ϕ(t) :=
1

1 + t4/3
,

we obtain from (i), (ii), (iii) the existence of at least a Birkhoff-universal
function f that is bounded on A. From Lemma 2.1, and with the notation
of it, we get that the set A0 is an Arakelian subset with A ⊂ A0 such that f
is bounded on A0. By Lemma 2.2, we get %(C \ A0) = +∞, which is (a).

Suppose now that (a) is true. Since A ⊂ A0, we have that (iii) holds for
A if it does for A0. Hence we can assume that A is an Arakelian set such
that %(C \ A) = +∞. Fix two functions ϕ, ψ : [0,+∞) → (0,+∞) with ϕ
integrable on (1,+∞), ϕ continuous, and ψ increasing.

Let {Pn : n ∈ N} be a dense countable subset of E, for instance, the
set of polynomials whose coefficients have rational real and imaginary parts.
Our goal is to construct an appropriate sequence {fn : n ∈ N} of universal
functions such that

lim
n→∞

sup
z∈Bn
|fn(z)− Pn(z)| = 0, (1)

where Bn := B(0, n) (n ∈ N). For if (1) were true then Lemma 2.7 applies
with X := E and dn(f, g) := supz∈Bn |f(z) − g(z)| (f, g ∈ E, n ∈ N).
Consequently, the sequence {fn} would be dense. Hence the set

M := span {fn : n ∈ N} (2)

would be a dense linear submanifold of E, which is (i).

Since C\A 6= ∅, there exists n0 ∈ N such that B0
n+1\A 6= ∅ for all n ≥ n0.

By Lemma 2.3(a), A \ B0
n+1 is an Arakelian set (n ≥ n0). From Lemma 2.4

we can select a sequence of pairwise disjoint closed balls B(cp, p + 1) such
that B(cp, p + 1) ∩ A = ∅ for all p ∈ N. We split the sequence of centers
cp into two sequences, namely, ap := c2p−1, bp := c2p. Let Kp := B(ap, p)
(p ∈ N). Observe that

lim
p→∞

min
z∈Kp
|z| = +∞ (3)

and
lim
p→∞

bp =∞. (4)

Indeed, if (3) were not true, then one could choose two sequences {p1 < p2 <
· · · } ⊂ N, zj ∈ Kpj (j ∈ N) and a positive finite constant M with |zj| ≤ M

8



for all j ∈ N. Hence some subsequence of (zj) would converge to a finite
point, which is absurd because |zj − zk| ≥ 2 for all j, k with j 6= k. Then (3)
holds. The proof of (4) is analogous.

By extracting a subsequence if necessary, we can assume that |b1| < |b2| <
|b3| < · · · and

|z| > 2p (z ∈ Kp, p ∈ N). (5)

For n ≥ n0, denote by J(n) the least m ∈ N satisfying Bn ∩Km = ∅ and
bm 6∈ Bn. According to (3), (4) and Lemma 2.3(b), the set

Fn := (A \B0
n+1) ∪Bn ∪ {bp : p ≥ J(n)} ∪

∞⋃
p=J(n)

Kp

is an Arakelian subset of C.

Now, we consider a partition of N into infinitely many sequences {p(n, 1) <
p(n, 2) < · · · < p(n, k) < · · · } (n ∈ N).

Let us define, by induction, two sequences of functions {gn}n≥n0 , {fn}n≥n0

(after it, we can complete, if necessary, the sequences by defining gj = gn0 ,
fj = fn0 for j = 1, . . . , n0 − 1). Assuming that the functions gj ∈ A(Fj),
fj ∈ E have been fixed for j < n, we define the function gn : Fn → C
(n ≥ n0) as

gn(z) =



0 if z ∈ A \B0
n+1

Pn(z) if z ∈ Bn

1 + |bp+1|Ψ(|bp+1|) +
n−1∑
j=n0

Mfj(|bp|) if z = bp (p ≥ J(n))

0 if z ∈ Kp(j,k) (j ∈ N \ {n}, k ∈ N, p(j, k) ≥ J(n))
Pk(z − ap(n,k)) if z ∈ Kp(n,k) (k ∈ N, p(n, k) ≥ J(n)),

where the sum
∑n−1

j=n0
is considered as 0 for n = n0, which fixes gn0 without

ambiguity. The functions fn (n ≥ n0) are selected inductively by using the
Arakelian theorem. Specifically, we consider the function εn : [0,+∞) →
(0,+∞) given by

εn(t) =
1

n(1 + t) exp(t1/4 + t3/2ϕ(t))
.
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It is straightforward that each of these functions satisfies∫ ∞
1

t3/2 log
1

εn(t)
dt < +∞.

By Lemma 2.5, there exists an entire function f such that

|fn(z)− gn(z)| < εn(|z|) (z ∈ Fn). (6)

According to (6) and the definition of gn, εn, we have:

|fn(z)| < exp(−|z|1/4 − |z|3/2ϕ(|z|)) (z ∈ A \B0
n+1), (7)

|fn(z)− Pn(z)| < 1

n
(z ∈ Bn), (8)∣∣∣∣∣fn(bp)− 1− |bp+1|Ψ(|bp+1|)−

n−1∑
j=n0

Mfj(|bp|)

∣∣∣∣∣ < 1 (p ≥ J(n)), (9)

|fn(z)| < 1

1 + |z|
(z ∈ Kp(j,k), j 6= n, k ∈ N, p(j, k) ≥ J(n)) (10)

|fn(z)−Pp(n,k)(z−ap(n,k))| <
1

1 + |z|
(z ∈ Kp(n,k), k ∈ N, p(n, k) ≥ J(n)).

(11)

It follows from (8) that (1) holds, so the linear manifold defined by (2) is
dense in E. Then (i) has been proved. In order to prove (iii), it is enough to
show, by linearity and by the fact that B0

n+1 is bounded, that

lim
n→∞

z∈A\B0
n+1

exp(ϕ(|z|)|z|3/2)fn(z) = 0 (n ≥ n0).

This derives from (7).

As for the growth of the members of M , let us fix f =
N∑

j=n0

λjfj ∈M \{0},

where the λj are complex constants and λN 6= 0. Note that, thanks to (9),

Mf (|bp|) ≥ |f(bp)|

≥ |λNfN(bp)| −
N−1∑
j=n0

|fj(bp)|

≥ |λNfN(bp)| −
N−1∑
j=n0

Mfj(|bp)|)

> |bp+1|Ψ(|bp+1|) (p ≥ J(N)).
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To each r ≥ |bJ(N)| we can associate a unique p = p(r) ≥ J(N) such that
|bp| ≤ r < |bp+1|. Since Ψ is increasing and (4) holds, we get

Mf (r)

Ψ(r)
≥ Mf (|bp|)

Ψ(|bp+1|)
> |bp(r)+1| → +∞ (r →∞),

which proves (iv).

It remains to prove that each function f =
∑N

j=n0
λjfj as before (we may

assume λN = 1, for a nonzero scalar multiple of a universal function is still
universal) is Birkhoff-universal. To this end, we consider the ball Bk (with
k ≥ J(N)) and estimate for z ∈ Bk the following:

|f(z + ap(N,k))− Pk(z)| ≤ |fN(z + ap(N,k))− Pk(z)|+
N−1∑
j=n0

|fj(z + ap(N,k))|

<
N − n0 + 1

1 + |z + ap(N,k)|
≤ N − n0 + 1

1 + k
≤ N − n0 + 1

1 + |ap(N,k)| − |z|

≤ N − n0 + 1

1 + 2p(N, k)− k
≤ N − n0 + 1

1 + k
. (12)

We have used (10), (11) together with the fact that if z ∈ Bk then z+ap(N,k) ∈
B(ap(N,k), k) ⊂ Kp(N,k). Thus

lim
k→∞

sup
Bk

|f(·+ ap(N,k))− Pk| = 0.

A new application of Lemma 2.7 shows us the denseness of {f(· + ap(N,k)) :
k ≥ 1}. Consequently, the translates of f form a dense subset of E, and this
is (ii).

Remarks 2.9. 1. In the last theorem, we can replace property (ii) by the
following stronger one:

(ii’) For each f ∈ M \ {0} and each non-zero operator T : E → E
commuting with the translations, the function Tf is Birkhoff-universal.

Indeed, if T is as above, then T = Φ(D) for some non-zero entire function
Φ with exponential type. According to Lemma 2.6, T is surjective. Hence T
has dense range. Let f ∈M \ {0}. By (ii), the set {Taf : a ∈ C} is dense in
E. Since T commutes with the translations, we obtain {Ta(Tf) : a ∈ C} =
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T ({Taf : a ∈ C}), that is dense because T has dense range. Thus Tf is
universal.

2. If in the formulation of Theorem 2.8, we replace the increasing function
ψ by a family F = {hn}∞n=1 of non-constant entire functions then we can
change (iv) to

(iv’) lim
r→∞

logM−1
hn

(Mf (r))

log r
=∞ for all f ∈M \ {0} and all n ∈ N.

Indeed, we can construct an increasing function ψ satisfying ψ(n) =
max{Mhj(n

n) : j = 1, . . . , n} (n ∈ N). Let M be the linear manifold
constructed in Theorem 2.8 for this ψ. Fix N ∈ N and f ∈ M \ {0}.
Since limr→∞

Mf (r)

ψ(r)
= +∞, we get an r0 > 0 with Mf (r) > ψ(r) for

r > r0. If n > max{N, r0} one obtains Mf (n) > ψ(n) ≥ MhN (nn). Hence
logM−1

hN
(Mf (n)) > n log n, and (iv’) follows. Conversely, from the Weier-

strass interpolation theorem for entire functions (see [30, Chapter 15]) it
follows that if an increasing function ψ : [0,+∞) → (0,+∞) is prescribed
and (iv’) holds then we can take hn = h for all n, where h is an entire func-
tion with h(k) = kψ(k) (k ≥ 1). Then (iv) is derived easily by using that
Mf and ψ are increasing.

3. For any unbounded set A ⊂ C and any function g : A → C one has
that limz→∞

z∈A
g(z) exists and equals w0 if and only if limz→∞

z∈B
g(z) exists and

equals w0 for all unbounded sets B ⊂ C with B \ A bounded. If we choose
ϕ(t) := (1+ t)−3/2 and A := C\{z = x+ iy : y2 < x}, then for each compact
set K ⊂ C and each ε ∈ (0, 1) the set B := K + {z : ε ≤ arg z ≤ 2π(1− ε)}
satisfies that B \ A is bounded. Since the sequence (an) in the proof of
Theorem 2.8 can be selected here within N, we obtain Costakis-Sambarino’s
result [19, Section 5] given in Section 1. And an adequate rotation of the last
set A can be used to cover Gharibyan-Luh-Niess’ theorem [24, Theorem 1.1]
also given in the Introduction.

Theorem 2.10. Let A be an unbounded subset of C. Suppose that µ ∈
(0,+∞) is such that B(A, µ) ⊂ A0 for some Arakelian set with %(C \ A0) =
+∞. Assume that ψ : [0,+∞)→ (0,+∞) is an increasing function.

Then there exists a linear submanifold M = M(A, µ, ψ) ⊂ E satisfying
the following:
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(i) M is dense in E.

(ii) For every f ∈M \ {0}, f is Birkhoff-universal.

(iii) lim
z→∞
z∈A

exp(|z|α)(Φ(D)f)(z) = 0 for all f ∈M , all α < 1/2 and all Φ ∈ E

with τ(Φ) < µ.

(iv) lim
r→∞

Mf (r)

ψ(r)
= +∞ for all f ∈M \ {0}.

Proof. According to the statement of Theorem 2.8 and its proof, for the

function ϕ(t) :=
1

(2 + t) log2(2 + t)
(t ≥ 0) –which is continuous on [0,+∞)

and integrable on (1,+∞)– there are functions fn (n ∈ N) such that the
linear manifold M := span {fn : n ∈ N} satisfies (i), (ii), (iv) and

lim
z→∞
z∈A0

exp(|z|3/2ϕ(|z|))f(z) = 0 for all f ∈M. (13)

Then our unique task is to show that, given f ∈ E, then (iii) holds provided
that (13) is true for f .

By hypothesis, B(z, µ) ⊂ A0 for all z ∈ A. Fix a real number α < 1/2
as well as a function Φ ∈ E with τ(Φ) < µ. Choose any β ∈ (α, 1

2
) and

any ν ∈ (τ(Φ), µ). Let Φ(z) =
∑∞

n=0 cnz
n be the Taylor expansion of Φ.

According to [13, p. 11], we have the following expression for τ(Φ):

τ(Φ) = lim sup
n→∞

(n!|cn|)1/n.

Then there is a constant C ∈ (0,+∞) such that

|cn| ≤ C
νn

n!
(n ∈ N0). (14)

On the other hand, we have that

lim
t→+∞

(t+ µ)α

t3/2ϕ(t)
= 0.

In particular, there is R0 > 0 such that

(|ξ|+ µ)α < |ξ|3/2ϕ(|ξ|) (|ξ| > R0). (15)

13



Let ε > 0. By (13), there exists R1 > R0 satisfying

exp(|ξ|3/2ϕ(|ξ|))|f(ξ)| < ε(µ− ν)

Cµ
(|ξ| > R1). (16)

If z ∈ A, then the counterclockwise oriented circle γ(z) with center z and
radius µ is contained in A0. By using (14), (15), (16) and the Cauchy integral
formula for derivatives, we obtain the following estimates, that are valid for
|z| > R0 + µ:

| exp(|z|β)(Φ(D)f)(z)| =

∣∣∣∣∣exp(|z|β)
∞∑
n=0

cnf
(n)(z)

∣∣∣∣∣
=

∣∣∣∣∣exp(|z|β)
∞∑
n=0

n!cn
2πi

∮
γ(z)

f(ξ)

(ξ − z)n+1
dξ

∣∣∣∣∣
≤ exp(|z|β)

∞∑
n=0

n!|cn|
2π

2πµ · 1

µn+1
· sup{|f(ξ)| : ξ ∈ B(z, µ)}

≤ exp(|z|β)
∞∑
n=0

C

(
ν

µ

)n
sup{|f(ξ)| : ξ ∈ B(z, µ)}

≤ Cµ

µ− ν
· sup{exp((|ξ|+ µ)α)|f(ξ)| : ξ ∈ B(z, µ)}

≤ Cµ

µ− ν
· sup{exp(|ξ|3/2ϕ(|ξ|))|f(ξ)| : ξ ∈ B(z, µ)} < ε.

This had to be shown.

Remarks 2.11. 1. Under the hypotheses of the last theorem, we have that,
in particular, the decay given by (iii) holds for every Φ ∈ E with subexpo-
nential type.

2. Concerning Theorem 2.10, the set A := C \ [{z = x + iy : x ≥ 0, 0 ≤

y ≤ 1

x+ 1
}∪

∞⋃
n=2

B(2n, n) is an Arakelian set with %(C\A) = +∞ such that,

for any µ > 0, B(A, µ) is not contained in any Arakelian set A0 satisfying
%(C \ A0) = +∞.

14



3. Under the less restrictive hypothesis on A in Theorem 2.8, we get a linear
manifold M satisfying (i), (ii), (iv) and limz→∞

z∈A
exp(|z|α)f(z) = 0 for all α < 1

2

and all f ∈M .

If in the proof of Theorem 2.8 we replace the functions εn used there by
the functions

εn(t) :=
1

n(1 + t) exp(t1/4 + t3/2ϕ(t) + t3/2

(2+t) log2(2+t)
)

(n ≥ 1, t ≥ 0)

then we can combine the formulations and the proofs of both Theorems 2.8,
2.10 to yield the following result.

Theorem 2.12. Assume that A is an unbounded subset of C and that there
exists µ > 0 satisfying B(A, µ) ⊂ A0 for some Arakelian set A0 with %(C \
A0) = +∞. Suppose that ϕ, ψ : [0,+∞)→ (0,+∞) are functions such that
ϕ is continuous, ψ is increasing and ϕ is integrable on (1,+∞).

Then there exists a linear submanifold M = M(ϕ, ψ, µ) ⊂ E satisfying
the following properties:

(i) M is dense in E.

(ii) Each nonzero function in M is Birkhoff-universal.

(iii) lim
z→∞
z∈A

exp(ϕ(|z|)|z|3/2)f(z) = 0 for all f ∈M and

lim
z→∞
z∈A

exp(|z|α)(Φ(D)f)(z) = 0 for all f ∈ M , all α < 1
2

and all Φ ∈ E

with τ(Φ) < µ.

(iv) lim
r→∞

Mf (r)

ψ(r)
= +∞ for all f ∈M \ {0}.

3 Concluding remarks

1. If we choose A := C \ {z = x+ iy : x > 1, −x1/2 < y < −x1/3} (with any
µ > 0) in Theorem 2.12 then every set B ∈ Σ1 ∪ Σ2 (see notation in Section
1) satisfies that B \ A is bounded. From this and Remarks 2.9.1, 2.9.2, first

15



part of 2.9.3 and 2.11.1, the results by Calderón-Moreno [17] given in the
Introduction follow. But observe that our linear manifold does not depend
upon α (the second limit in (iii) holds for all α < 1

2
).

2. In view of Theorems 2.10 and 2.12, it is natural to pose the following
question, whose answer is unknown to us: If the condition concerning µ is
satisfied by A for all µ > 0, does it hold that

lim
z→∞
z∈A

exp(|z|α)(Tf)(z) = 0

for all α < 1
2
, all f ∈ M and all operators T : E → E commuting with the

translations ?

3. In the harmonic setting, Bonilla’s result [15, Theorem 1] stated in the
Introduction can be extended, replacing the strips S by a fixed set A ⊂ RN for
which there are µ > 0 and an Arakelian set A0 ⊂ RN with B(A, µ) ⊂ A0 and
%(C\A0) = +∞ (with similar meanings as in C for “Arakelian set”, “B(A, µ)”
and “%(·)”). To see this, just use (as in [15]) Cauchy’s estimates for harmonic
functions [7, p. 3] (not needed if one only wants to get limx→∞

x∈A
||x||αv(x) =

0, that is, the case β = (0, . . . , 0)) as well as the harmonic analogue of
Arakelian’s approximation theorem given in [5, Theorem 1.1].

4. Some restriction on α is necessary in Theorems 2.10, 2.12. Indeed, if
α > 1/2 and A is the sector S1/α then an application of Phragmén-Lindeloff’s
theorem (see for instance [29]) yields that f is constant (so not universal)
whenever lim z→∞

z∈S1/α

exp(|z|α)f(z) = 0. We do not know whether α = 1/2 is

possible.

5. Existence of Birkhoff-universal entire functions enjoying some kind of
controlled overall growth (but not necessary bounded on prescribed sets)
was obtained in the analytic case by Duios-Ruis [21], Chan and Shapiro [18],
Arakelian and Hakobian [2], and in the harmonic case by Armitage [3].

6. A stronger kind of universality is the so-called frequent hypercyclicity, a
concept coined by Bayart and Grivaux in which some vector “visits many
times” a prescribed open set under the action of an operator (see [8] and
[16] for the precise definition and properties). In the special case of transla-
tion operators on E, Blasco, Bonilla and Grosse-Erdmann [12] have recently
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proved the existence of frequent Birkhoff-universal entire functions whose
growth satisfies certain restrictions.
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