Universal entire functions for affine endomorphisms of \mathbb{C}^N

 \mathcal{D}

L. Bernal-González

Abstract

In this paper the affine endomorphisms of \mathbb{C}^N which support compositionally universal entire functions are completely characterized.

1 Introduction

Throughout this paper \mathbb{N} will denote the set of all positive integers, and if $N \in \mathbb{N}$ then \mathbb{C}^N will stand for the N-dimensional complex space. In particular, \mathbb{C}^1 is the complex plane \mathbb{C} . The closed polydisk of radius $r \geq 0$ centered at the origin is $D(r) = \{z = (z_1, \ldots, z_N) \in \mathbb{C}^N : ||z|| \leq r\}$, where $||z|| = \max_{1 \leq j \leq N} |z_j|$. A domain G of \mathbb{C}^N is a nonempty connected open subset of \mathbb{C}^N . By H(G) we denote the space of holomorphic functions $f : G \to \mathbb{C}$, endowed with the topology of uniform convergence in compacta. In particular, $H(\mathbb{C}^N)$ is the space of entire functions of N complex variables. It is well known that H(G) becomes a separable Fréchet space under the above topology. The symbol Aut (G) will stand for the group of all automorphisms (= biholomorphic bijective selfmappings) on G.

In 1929 Birkhoff [8] constructed an entire function which is 'universal' for translations. In fact, he proved essentially that given $b \in \mathbb{C} \setminus \{0\}$ there exists

^{*}Partially supported by Plan Andaluz de Investigación Junta de Andalucía FQM-127. 2000 Mathematics Subject Classification: Primary 47A16. Secondary 32E30, 47B38.

Key words and phrases: universal entire function, composition operator, endomorphism of \mathbb{C}^N , holomorphic convexity.

Author's address: Departamento de Análisis Matemático. Avda. Reina Mercedes, Apdo. 1160. 41080-Sevilla, Spain. *E-mail:* lbernal@us.es.

a function $f \in H(\mathbb{C})$ such that its sequence of translates $\{f(\cdot + nb) : n \in \mathbb{N}\}$ is dense in $H(\mathbb{C})$.

Birkhoff's theorem can be observed under the point of view of the operator theory as a universality result; namely, if $\varphi : \mathbb{C} \to \mathbb{C}$ denotes the translation $z \mapsto z + b$ then the composition operator

$$C_{\varphi}: f \in H(\mathbb{C}) \mapsto f \circ \varphi \in H(\mathbb{C})$$

is universal. In general, if X is a (necessarily separable) topological vector space and T is an operator (= continuous linear selfmapping) on X then (T_n) is said to be universal (or hypercyclic) provided that there exists some vector $x \in X$ -called universal for T- for which the orbit $\{T^n x : n \in \mathbb{N}\}$ of x under T is dense in X. Here (T^n) represents the sequence of iterates $T^1 = T, T^2 = T \circ T, \ldots$ of T. It is easy to see that the set of universal vectors is dense. The operator T is called hereditarily universal if and only if given a sequence $\{n_1 < n_2 < \cdots\} \subset \mathbb{N}$ there is a vector $x \in X$ such that $\{T^{n_k}x : n \in \mathbb{N}\}$ is dense in X. If X is Baire and metrizable and T is universal (hereditarily universal) then the set of universal vectors for T (for each sequence (T^{n_k}) , respectively) is residual, that is, its complement is of first category. These notions can be easily extended to a sequence (T_n) of operators. See [16] for a good account about these concepts and their history.

Since 1929 many papers have dealt with the subject of universality through translations in one (complex) variable, but only a few ones in several variables. Let us make a brief report, now in the language of the universality of operators; see also the survey [16] –specially its Section 4a– which contains a rather complete list of references including domains $G \neq \mathbb{C}$ and spaces $X \neq H(G)$. In 1976 Luh [21] proved that for a prescribed unbounded sequence $(b_n) \subset \mathbb{C}$ the sequence (C_{φ_n}) is universal on $H(\mathbb{C})$, where φ_n is the translation $z \mapsto z + b_n$. In 1984 Duyos-Ruis [11] showed by functional analysis methods that $C_{\varphi}(\varphi(z) = z + b, b \in \mathbb{C} \setminus \{0\})$ is universal on $H(\mathbb{C})$ (hence there is a residual subset of universal functions), while the residuality of the (C_{φ_n}) -universal entire functions (where the φ_n are the above translations) was observed by Grosse-Erdmann [15] and Gethner and Shapiro [12]. In 1995 Bernal and Montes [6] were able to show the same result for a sequence $\{\varphi_n(z) = a_n z + b_n : n \in \mathbb{N}\} \subset \operatorname{Aut}(\mathbb{C});$ recall that $\varphi \in \operatorname{Aut}(\mathbb{C})$ if and only if φ is a nonconstant affine endomorphism of \mathbb{C} , that is, there are $a, b \in \mathbb{C}$ with $a \neq 0$ and $\varphi(z) = az + b$. Specifically, they proved that (C_{φ_n}) is universal

if and only if the sequence $\{\min\{|b_n|, |b_n/a_n|\} : n \in \mathbb{N}\}$ is unbounded, from which they derived that if φ is an affine endomorphism of \mathbb{C} then

C_{φ} is universal if and only if φ is a translation,

that is, $\varphi(z) \equiv z+b$ for some $b \in \mathbb{C} \setminus \{0\}$. As for several variables, the history is not too long. In 1941 Seidel and Walsh [23] proved a non-Euclidean version of Birkhoff's theorem for the unit disk, and in 1979 Chee [10] extended this to the unit polidisk and ball of \mathbb{C}^N . León [20] has recently characterized the corresponding universal sequences of automorphisms in both domains. In the case of the euclidean translations $\varphi(z) = z + b$ ($z \in \mathbb{C}^N$, $b \in \mathbb{C} \setminus \{0\}$) in several variables –where $z = (z_1, \ldots, z_N)$, $b = (b_1, \ldots, b_N)$, and these will be the standard representations of z, b along the current paper– the natural extensions of the theorems of Birkhoff and Luh are covered by [13, Section 5] and by the recent papers [1], [3, Section 2] and [7] (see also [2] and [3] for a matricial extension of Zappa's result [24], which in turn is a multiplicative version in $\mathbb{C} \setminus \{0\}$ of Birkhoff's theorem).

In view of the above discoveries, it is natural to pose the problem of characterizing those mappings $\varphi \in \operatorname{Aut}(\mathbb{C}^N)$ such that C_{φ} is universal on $H(\mathbb{C}^N)$. Nevertheless, a complete description of $\operatorname{Aut}(\mathbb{C}^N)$ (see for instance [4], [5] and [22] for a study of some subfamilies of it) is unknown up to date. Although there are plenty of automorphisms of \mathbb{C}^N , the simplest among them are with no doubt the affine linear mappings (or 'affine endomorphisms') from \mathbb{C}^N into itself which are invertible. Each affine endomorphism S = S(A, b) is biunivocally determined by a pair (A, b), where $A := [a_{ij}]_{i,j=1,\dots,N}$ is a matrix with complex entries and b is a fixed vector of \mathbb{C}^N ; so S is given by

$$S(z) = Az + b$$
 for all $z \in \mathbb{C}^N$.

Observe that as we make the calculation S(z) = Az + b it is convenient to consider the vectors z and b as 'column' vectors. It is clear that $S \in Aut(\mathbb{C})$ if and only if S is one-to-one if and only if S is onto if and only if $det(A) \neq 0$.

Hence the main aim of this paper is to characterize the universality of the composition operator $C_S : H(\mathbb{C}^N) \to H(\mathbb{C}^N)$ generated by an affine endomorphism S = S(A, b) in terms of the matrix A and the vector b. This will be accomplished in Section 3 where we prove, among other things, that C_S is universal if and only if S is univalent and has no fixed point. In Section 2 we present a number of statements that will reveal useful for our goal.

2 Several auxiliary results

This section is devoted to background material on N-dimensional complex approximation that will be needed for the work of Section 3.

From now on G will represent a domain in \mathbb{C}^N . Let us denote by H(G, G)the set of all holomorphic selfmappings $\varphi = (\varphi_1, \ldots, \varphi_n)$ on G, that is, $\varphi(G) \subset G$ and each component $\varphi_j : G \to \mathbb{C}$ $(j = 1, \ldots, N)$ is a holomorphic function. Then if $\varphi \in H(G, G)$ the composition operator $C_{\varphi} : H(G) \to H(G)$ is well defined. Of course, Aut $(G) \subset H(G, G)$. Our first lemma prevents us to use non-injective selfmappings to obtain C_{φ} -universality.

Lemma 2.1. If $\varphi \in H(G,G)$ and C_{φ} is universal on H(G) then φ is oneto-one and has no fixed points.

Proof. The results contained in this lemma are well known in the one-dimensional context, see for instance [9, pages 3 and 10]. The proof given on page 10 of that monograph for the necessity of univalence works, word for word, in several variables. Indeed, if φ identifies two distinct points a and b of G, then so does the *n*-th component φ_n of φ , and so does $f \circ \varphi_n$ for each n and each $f \in H(G)$. Thus if g is a limit point of the C_{φ} -orbit of f, then g(a) = g(b), hence (because some $g \in H(G)$, namely an appropriate coordinate function, takes different values at a and b) no f holomorphic on G can include every function in H(G) in the closure of its orbit. Hence C_{φ} is not universal.

Finally, if $a \in G$ were a fixed point for φ and $f \in H(G)$ were C_{φ} -universal then by considering the compact set $K = \{a\}$ the closure in \mathbb{C}^N of the set $\{f(\varphi^n(a)) : n \in \mathbb{N}\} = \{f(a)\}$ would be dense in \mathbb{C} , which is absurd. \Box

A set $B \subset \mathbb{C}^N$ is said to be $H(\mathbb{C}^N)$ -convex (see [17] or [19]) whenever $\widetilde{B} = B$, where

$$\widetilde{B} := \{ z \in \mathbb{C}^N : |f(z)| \le \sup_{t \in B} |f(t)| \text{ for all } f \in H(\mathbb{C}^N) \}.$$

The next generalization of Runge's approximation theorem for several complex variables is a special case of a statement that can be found in [17, Theorem 4.3.2 and following note].

Proposition 2.2. Let f be a holomorphic function in a neighborhood of an $H(\mathbb{C}^N)$ -convex compact subset K of \mathbb{C}^N . Then there is a sequence $(f_j) \subset H(\mathbb{C}^N)$ such that $f_j \to f$ $(j \to \infty)$ uniformly on K.

In 1965 Kallin [18] proved an important separation lemma in several variables, from which the following proposition –that will be crucial for our approximation problem– is a particular case. The word "convex" means "geometrically convex", that is, a set $B \subset \mathbb{C}^N$ is convex whenever $z, w \in B$ implies $\lambda z + (1 - \lambda)w \in B$ for all $\lambda \in [0, 1]$.

Proposition 2.3. If K and L are disjoint convex compact sets in \mathbb{C}^N then $K \cup L$ is $H(\mathbb{C}^N)$ -convex.

In connection with the last proposition we point out that it is not known yet whether the disjoint union of 4 closed balls in \mathbb{C}^N is $H(\mathbb{C}^N)$ -convex.

The following lemma settles the question of which sequences of automorphisms are adequate to generate universality. Following [6], we say that a sequence $(\varphi_n) \subset H(G, G)$ is *run-away* if and only if given a compact set $K \subset G$ there exists $n_0 = n_0(K) \in \mathbb{N}$ such that $K \cap \varphi_{n_0}(K) = \emptyset$; and we say that a function $\varphi \in H(G, G)$ is *non-recurrent* whenever its sequence (φ^n) is run-away.

Lemma 2.4. Suppose that φ is an affine automorphism of \mathbb{C}^N . Then C_{φ} is universal on $H(\mathbb{C}^N)$ if and only if φ is non-recurrent.

Proof. Let us suppose that C_{φ} is universal and that, by way of contradiction, φ is not non-recurrent. Then there is a compact set K such that $K \cap \varphi^n(K) \neq \emptyset$ for all $n \in \mathbb{N}$. Choose a sequence $(z_n) \subset K$ with $(\varphi_n(z_n)) \subset K$ and a C_{φ} -universal function $f \in H(G)$. Consider the constant function $g(z) = 1 + \max_K |f|$. We have that, for every $n \in \mathbb{N}$,

$$\max_{z \in K} |g(z) - f(\varphi^n(z))| \ge ||g(z)| - |f(\varphi^n(z_n))|| = 1 + \max_K |f| - |f(\varphi^n(z_n))| \ge 1,$$

which is a contradiction.

Conversely, assume that φ is non-recurrent. Our final goal is to show that the set M of universal functions for C_{φ} is residual (so nonempty). Since H(G) is a second-countable Baire space, Birkhoff's transitivity theorem (see for instance [14, 9.20]) asserts that M is a dense G_{δ} -subset (hence residual) if and only if for every pair of nonempty open subsets A and B of $H(\mathbb{C}^N)$ there exists some $m \in \mathbb{N}$ with

$$(C_{\varphi})^m(A) \cap B = \emptyset. \tag{1}$$

Note that $(C_{\varphi})^n = C_{\varphi^n}$ $(n \in \mathbb{N})$. Fix A, B as before. Then there exists $\varepsilon > 0, R > 0$ and $f, h \in H(\mathbb{C}^N)$ such that $A \supset A_1 := \{g \in H(\mathbb{C}^N) : \max_{z \in D(R)} |g(z) - f(z)| < \varepsilon\}$ and $B \supset B_1 := \{g \in H(\mathbb{C}^N) : \max_{z \in D(R)} |g(z) - h(z)| < \varepsilon\}$. Since φ is non-recurrent, there exists $m \in \mathbb{N}$ such that $D(R) \cap \varphi^m(D(R)) = \emptyset$. But $\varphi_m(D(R))$ is a convex compact set because φ^m is continuous and convex-preserving (that is, $\varphi^m(C)$ is convex whenever C is convex; this is true because φ is affine). Then $L := D(R) \cup \varphi^m(D(R))$ is $H(\mathbb{C}^N)$ -convex by Proposition 2.3. Fix U and V open subsets in \mathbb{C}^N such that $D(R) \subset U, \varphi^m(D(R)) \subset V$ (so $U \cup V \supset L$) and $U \cap V = \emptyset$. Define the function $F : U \cap V \to \mathbb{C}$ as

$$F(z) = \begin{cases} f(z) & \text{if } z \in U \\ h(\varphi^{-m}(z)) & \text{if } z \in V, \end{cases}$$

which is holomorphic on $U \cup V$. Hence by Proposition 2.2 there exists an entire function g satisfying

$$|F(z) - g(z)| < \varepsilon$$
 for all $z \in L$.

But from the definition of F we get

$$|g(z) - f(z)| < \varepsilon$$
 for all $z \in D(R)$.

and

$$|g(z) - h(\varphi^{-m}(z))| < \varepsilon \text{ for all } z \in \varphi^m(D(R)).$$

The last display is clearly equivalent to

$$|g(\varphi^m(z)) - h(z)| < \varepsilon$$
 for all $z \in D(R)$.

In other words, $g \in A_1$ and $(C_{\varphi})^m g \in B_1$. Thus, $g \in A$ and $(C_{\varphi})^m g \in B$, so (1) holds.

Remark 2.5. The proof of Lemma 2.4 can be easily modified to obtain the following extension: Suppose that G is a convex domain of \mathbb{C}^N and that (φ_n) is a sequence in Aut(G) of convex-preserving mappings. Then (C_{φ_n}) is universal if and only if (φ_n) is run-away. Moreover, in this case there exists a residual subset of universal functions. Suffice to say that if G is convex then the polidisks D(R) of the proof of Lemma 2.4 can be replaced to convex

compact subsets of G and that Birkhoff's transitivity theorem also works with a sequence (T_n) of mappings from a Baire space into a second-countable space, see [16, Theorem 1]. It might be interesting to investigate whether the last lemma can be extended to non-convex domains or to sequences of automorphisms that do not preserve convexity.

3 Universal functions for endomorphisms

From now on A will represent an $(N \times N)$ -matrix with complex entries and b will be a fixed vector in \mathbb{C}^N .

Lemma 2.4 focuses attention on the dynamics of affine mappings of \mathbb{C}^N . In order to characterize when they generate universal composition operators, we need to know which of such mappings are non-recurrent. We are now ready to state our main result.

Theorem 3.1. Assume that $S : \mathbb{C}^N \to \mathbb{C}^N$ is an affine endomorphism, say Sz = Az + b ($z \in \mathbb{C}^N$). Consider the composition operator C_S generated by S. Then the following properties are equivalent:

- (a) S has no fixed point in \mathbb{C}^N and $\det(A) \neq 0$.
- (b) The vector b is not in ran(A I) and $det(A) \neq 0$.
- (c) C_S is universal.
- (d) C_S is hereditarily universal.

Proof. (a) \iff (b): Simply observe that $b \in \operatorname{ran}(A - I)$ if and only if there exists $z_0 \in \mathbb{C}^N$ such that $(A - I)z_0 = b$ if and only if $Az_0 + b = z_0$ for some $z_0 \in \mathbb{C}^N$ if and only if $Sz_0 = z_0$ for some $z_0 \in \mathbb{C}^N$.

(d) \implies (c): This is trivial.

(c) \implies (a): If C_S is universal then S is one-to-one (hence det $(A) \neq 0$) and has no fixed point by Lemma 2.1.

(b) \implies (d): Since det $(A) \neq 0$, S is an affine automorphism of \mathbb{C}^N . Let us prove that S is non-recurrent. Denote by J the Jordan matrix of A. Then there is an invertible $(N \times N)$ -matrix Q such that $A = QJQ^{-1}$. Define

$$c := Q^{-1}b$$
 and $Mz := Jz + c$ $(z \in \mathbb{C}^N)$.

It is easy to see that $b \notin \operatorname{ran}(A - I)$ if and only if $c \notin \operatorname{ran}(J - I)$. On the other hand, non-recurrence is preserved by similarities; more precisely, if $\varphi \in H(\mathbb{C}^N, \mathbb{C}^N)$ and $\psi \in \operatorname{Aut}(\mathbb{C}^N)$, then φ is non-recurrent if and only $\psi \circ \varphi \circ \psi^{-1}$ is non-recurrent. Since $S = Q \circ M \circ Q^{-1}$ we obtain that S is non-recurrent if and only if M is.

The matrix J is a direct sum of Jordan blocks J_j . The vector c has components corresponding to each of these blocks and to say $c \notin \operatorname{ran}(J-I)$ is to say that at least one of these component, say c_j is not in $\operatorname{ran}(J_j - I_j)$. Here I_j is the identity matrix having the same dimension as J_j . Let M_j be the restriction of M to the direct summand of \mathbb{C}^N on which J_j acts, i.e., $M_j z_j = J_j z_j + c_j$. It suffices to prove that S_j is non-recurrent (this follows from the fact that if \mathbb{C}^N is represented as a product space, then each compact subset of \mathbb{C}^N is contained in a product of compact subsets corresponding to the factors of \mathbb{C}^N). Hence we may drop the subscripts and assume that Jitself is a Jordan block with $c \notin \operatorname{ran}(J-I)$. In particualr, J - I is not invertible. Thus the spectrum of J is the singleton $\{1\}$, so J itself has just 1's on the main diagonal and the first superdiagonal, and zeros elsewhere. But, by induction, one obtains

$$M^{n}z = J^{n}z + \sum_{k=0}^{n-1} J^{k}c \quad (z \in \mathbb{C}^{N}, n \in \mathbb{N}).$$

The "1" in the (N, N) position is crucial here; it is also the (N, N) entry of any power of M, and in all these powers the rest of the N-th row consists of zeros. Thus $(M^n z)_N$, the N-th component of $M^n z$, is $z_N + nc_N$. Now $c \notin \operatorname{ran}(J-I)$ means $c_N \neq 0$, hence as $n \to \infty$ the N-th component of $M^n z$ goes to infinity uniformly on each compact subset of \mathbb{C}^N . Hence $||S^n z|| \to +\infty \quad (n \to \infty)$ in the same way. It is easy to see that because of this M is recurrent.

Consequently, S is non-recurrent and, due to Lemma 2.4, C_S is universal. Finally, observe that if we fix a sequence $\{n_1 < n_2 < \cdots\} \subset \mathbb{N}$ then the same reasoning above –replacing n to n_j – shows that (M^{n_j}) (hence (S^{n_j})) is run-away, which by Remark 2.5 proves that $(C_{S^{n_j}})$ is universal. In other words, C_S is hereditarily universal.

Remarks 3.2. 1. The proof of Theorem 3.1 reveals that, even in the case that S is not invertible, we have: S has no fixed point if and only if $b \notin$

 $\operatorname{ran}(A - I)$ if and only if S is non-recurrent. Observe also that, by Rouché– Frobenius' theorem, the middle condition can be expressed as $\operatorname{rank}(A - I) < \operatorname{rank}(A - I|b)$, where A - I|b represents the $(N \times (N + 1))$ -matrix obtained from A - I by adding the column b to A - I. In addition, note that if S is non-recurrent then 1 is an eigenvalue of A.

2. There are other popular automorphisms of \mathbb{C}^N which are not affine. For example there are the "shears" introduced by Rosay and Rudin [22], and defined by

$$\sigma(z) = z + f(\Lambda(z))u \quad (z \in \mathbb{C}^N),$$

where Λ is a linear functional on \mathbb{C}^N with $\Lambda(u) = 0$, u is a fixed non-zero and f is an entire function of one complex variable that is never zero. Since $\sigma^n(z) = z + nf(\Lambda(z))$, it is clear that σ is non-recurrent, hence if σ preserved convexity then the induced composition operator would be universal. Shears are of interest because the group they generate is known to be dense in the full automorphism group of \mathbb{C}^N [5]. The example of Rosay–Rudin can be generalized: Let Λ be a linear map on \mathbb{C}^N onto a proper subspace, and let fbe an entire function non-zero on ran Λ . Then $\sigma(z) := z + f(\Lambda(z))$ defines an automorphism of \mathbb{C}^N with the same iteration properties as the one above.

ACKNOWLEGEMENT

The author wants to thank the referee for suggesting helpful comments which led to significant improvements in this paper.

References

- Y. Abe, Universal holomorphic functions in several variables, Analysis 17 (1997), 71–77.
- [2] Y. Abe, Universal functions on complex special linear groups, in: Communications in difference equations (Poznán, 1988), Gordon and Breach, Amsterdam, 2000, pp. 1–8.
- [3] Y. Abe and P. Zappa, Universal functions on complex general linear groups, J. Approx. Theory 100 (1999), 221–232.
- [4] P. Ahern and F. Forstneric, One parameter automorphism groups on C², Complex Variables 27 (1995), 245–268.

- [5] E. Andersen and L. Lempert, On the group of holomorphic automorphisms of \mathbb{C}^n , Invent. Math. 110 (1992), 371–388.
- [6] L. Bernal-González and A. Montes-Rodríguez, Universal functions for composition operators, Complex Variables 27 (1995), 47–56.
- [7] L. Bernal-González and J.A. Prado-Tendero, Sequences of differential operators: exponentials, hypercyclicity and equicontinuity, Ann. Polon. Math. 77 (2001), 169–187.
- [8] G.D. Birkhoff, Démonstration d'un théorème élémentaire sur les fonctions entières, C. R. Acad. Sci. Paris 189 (1929), 473–475.
- [9] P.S. Bourdon and J.H. Shapiro, Cyclic Phenomena for Composition Operators, Memoirs of the Amer. Math. Soc. 596, vol. 125 (1997), 1–105.
- [10] P.S. Chee, Universal functions in several complex variables, J. Austral. Math. Soc. (Series A) 28 (1978), 189–196.
- [11] S.M. Duyos-Ruis, Universal functions of the structure of the space of entire functions, Soviet Math. Dokl. 30 (1984), 713–716.
- [12] R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), 281–288.
- [13] G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), 229–269.
- [14] W.H. Gottschalk and G.A. Hedlund, Topological dynamics, Amer. Math. Soc., Providence, RI, 1955.
- [15] K.-G. Grosse-Erdmann, Holomorphe Monster und universelle Funktionen, Mitt. Math. Sem. Giessen 126 (1987), 1–84.
- [16] K.-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. 36 (1999), 345–381.
- [17] L. Hormander, An introduction to complex analysis in several variables, North Holland, Amsterdam, 1973.

- [18] E. Kallin, Polynomial convexity: The three sphere problem, in: Proceedings of Conference on Complex Analysis, Minneapolis, Springer-Verlag, Berlin/New York, 1965, pp. 301–304.
- [19] S. Krantz, Function theory of several complex variables, John Wiley and Sons, New York, 1982.
- [20] F. León-Saavedra, Universal functions on the unit ball and the polydisk, Contemp. Math. 232 (1999), 233–238.
- [21] W. Luh, On universal functions, Colloq. Math. Soc. János Bolyai 19 (1976), 503–511.
- [22] J.P. Rosay and W. Rudin, Holomorphic mappings from \mathbb{C}^n to \mathbb{C}^n , Trans. Amer. Math. Soc. 310 (1988), 47–86.
- [23] W.P. Seidel and J.L. Walsh, On approximation by Euclidean and non-Euclidean translates of an analytic function, Bull. Amer. Mat. Soc. 47 (1941), 916–920.
- [24] P. Zappa, On universal holomorphic functions, Bollettino U. M. I. (7) 2-A (1988), 345–352.