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Abstract

In this paper, the authors introduce the dense-image operators T as those with a
wild behaviour near of the boundary of a domain G, via certain subsets. The relation-
ship with other kinds of operators with wild behaviour is studied, proving that the new
concept generalizes the earlier of omnipresent, but there is no good relationship with
the strongly omnipresent operators. We obtain, among other results, that the following
kinds of operators are dense-image: onto linear operators; operators with local dense
range satisfying soft conditions; Volterra complex integral operators plus infinite order
differential operators, multiplication operators. In addition, holomorphic selfmappings
and entire functions generating dense-image right or left composition operators are
completely characterized.
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1 Introduction and notation

In what follows N will be the set of positive integers, N0 = N ∪ {0}, C
is the complex plane, C∞ is the extended complex plane C ∪ {∞}, B(a, r)
is the euclidean open ball with center a and radius r (a ∈ C, r > 0). The
open unit ball is D = B(0, 1). G will stand for a nonempty open subset of
C (or a complex domain, that is, a nonempty connected open subset of C),
∂G is the boundary of G in C∞. We denote O(∂G) = {V ⊂ C∞ : V is
open and V ∩ ∂G 6= ∅}. If A ⊂ C then A represents the closure of A in C∞,
and ‖f‖A := supz∈A |f(z)|, where f is a complex function defined on A, and
LT(A) := {affine linear transformations τ(z) = az + b such that τ(D) ⊂ A}.
H(G) denotes, as usual, the Fréchet space of holomorphic functions on G,
endowed with the topology τ of local uniform convergence in G. In particular,
H(G) is a Baire space. Let K(G) be the family of compact subsets of G
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and K1(G) the family of compact subsets K of G such that each connected
component of C∞ \K contains at least one connected component of C∞ \G.
It is known that the family

{D(f,K, ε) : f ∈ H(G), K ∈ K1(G), ε > 0},

where D(f,K, ε) = {g ∈ H(G) : |g(z) − f(z)| < ε for all z ∈ K}, is a basis
for τ . An operator on H(G) is a continuous self-mapping T : H(G)→ H(G),
not necessarily linear.

As a consequence of a well-known result about interpolation [15, Theorem
15.13], a function f ∈ H(G) can be found in such a way that f(A) is dense in
C, where A is a prefixed non-relatively compact subset of G (see also [7], [8,
Chapter IV], [11]). The first author [2] has proved the fact that, given A ⊂ G,
the set of functions f ∈ H(G) such that f (j)(A) is dense in C for all f ∈ N0

is residual in H(G) if and only if A is not relatively compact in G.
In 1998, the second author [6] extended these facts by considering operators

each of them being the sum of an infinite order differential operator and an
integral operator. Given an operator T on H(G) and a subset A ⊂ G, we
denote M(T,A) = {g ∈ H(G) : (Tg)(A) is dense in C}. Then the main result
of [6] reads as follows.

Theorem 1.1 Let G ⊂ C be a simply connected domain, A ⊂ G, b ∈ G,
Φ(z) =

∑∞
j=0 ajz

j an entire function of subexponential type if G 6= C and of
exponential type if G = C, and let ϕ : G×G→ C be an analytic function with
respect to both variables. Consider the linear operator T on H(G) defined by

Tf(z) =
∫ z

b
ϕ(z, t)f(t)dt (z ∈ G)

where the integral is taken along any rectifiable curve in G joining b to z. Then
the following properties are equivalent:

1. Either

(a) Φ(z) ≡ 0 on G and for every compact subset L of G there exist
a ∈ A \ L and z ∈ G such that ϕ(a, z) 6= 0, or

(b) Φ(z) 6≡ 0 on G and A is not relatively compact in G.

2. M(T + Φ(D), A) is residual in G.

3. M(T + Φ(D), A) 6= ∅.

We have denoted Φ(D) =
∑∞
j=0 ajD

j, D is the differentiation operator

Df = f ′, D0 = I = the identity operator and Dj+1 = D ◦Dj. It is easy to see
that Φ(D) is a well-defined operator under the conditions of Theorem 1.1.
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By following another point of view, through “modified” cluster sets, ope-
rators on H(G) with a wild behaviour near the boundary can be studied.
Inspired by the notion of “monster” introduced and developed by W. Luh [12]
and K.G. Grosse-Erdmann [10] (see also [13], [14] and [16]), the authors have
recently presented the concept of “T -monster” and its associated notion of
“strongly omnipresent operator” in the next way.

Given an operator T on H(G), we say that a function f ∈ H(G) is a T -
monster if and only if for each g ∈ H(D) and each t ∈ ∂G there exist two
sequences {an}n and {bn}n in C such that anz + bn → t as n→∞ uniformly
on D, anz + bn ∈ G (for all n ∈ N and all z ∈ D) and (Tf)(anz + bn)→ g(z)
as n→∞ locally uniformly in D.

We say that T is strongly omnipresent whenever each subset U(T, g, ε, r, V ) :=
{f ∈ H(G) : there exists τ ∈ LT(V ∩ G) such that ‖(Tf) ◦ τ − g‖rD < ε}
(g ∈ H(D), ε > 0, r ∈ (0, 1), and V ∈ O(∂G)) is dense in H(G).

In [3] the authors proved that:

(1) Every strongly omnipresent operator T is omnipresent [1], i.e., the set
R(T, V,W ) := {f ∈ H(G) : exists z ∈ V ∩G such that (Tf)(z) ∈ W} is
dense in H(G), for every V ∈ O(∂G) and every non-empty open subset
W ⊂ C.

(2) T is strongly omnipresent if and only if the set M(T ) of T -monsters is
residual.

See [3–5] for examples of strongly omnipresent operators.
Our aim in this paper is:

(i) To introduce a new type of mapping, namely, the “dense-image opera-
tors”, with wild behavior near the boundary of a domain via the image
of plane sets, and to study its possible relationship with omnipresent and
strongly omnipresent operators.

(ii) To construct new dense-image operators from other ones and to give
sufficient conditions for an operator to be dense-image.

(iii) To give several concrete examples of dense-image operators.

We are going to develop each of these points in each of the following three
sections.

2 What is a dense-image operator?

Assume that T is an operator on H(G). We say that T is a dense-image
operator (DI-operator) if and only if M(T,A) is residual in H(G), for every
non-relatively compact subset A ⊂ G.
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Remark 2.1 In [6] it is proved that the set M(T,A) is always a Gδ-subset, in
fact, it can be written as a countable intersection of sets HA(T, δ, w) := {g ∈
H(G) : there exists a ∈ A such that |(Tg)(a) − w| < δ}, where δ > 0 and
w ∈ C. So M(T,A) is residual if and only if it is dense in H(G).

Remark 2.2 We directly demand A to be non-relatively compact because
otherwise M(T,A) is empty due to the continuity of T . As we can see in
Theorem 1.1 or Example 2.5, the converse is not true.

Remark 2.3 It is obvious that for each subset A of G which is not relatively
compact there exist a point t ∈ A∩∂G and a sequence {an}n ⊂ A with an → t
as n→∞. Furthermore, M(T,A) ⊂M(T,B) whenever A ⊂ B ⊂ G.

From the last remark, we can easily obtain an alternative definition for
DI-operators.

Theorem 2.4 Let T be an operator on H(G). Then the following two condi-
tions are equivalent:

(1) T is a DI-operator.

(2) For each point t ∈ ∂G and each sequence {an}n ⊂ G with an → t as
n→∞ the set M(T, {an}n) is dense in H(G).

A first example of DI-operator is, by Theorem 1.1, any nonzero sum of differ-
ential and antidifferential infinite order operators and in particular all nonzero
operators Φ(D) and Ψ(D−1b ) (hence the identity operator I) are dense-image
and strongly omnipresent (see [3]). Here Ψ is any non-zero function that is
holomorphic in a neighbourhood of the origin, b ∈ G, Ψ(D−1b ) =

∑∞
j=0 bjD

−j
b ,

D0
b = I and, for each j ∈ N, D−jb f (f ∈ H(G)) denotes the unique j-

antiderivative F of f such that F (k)(b) = 0 (k ∈ {0, 1, . . . , j − 1}). Note
that Ψ(D−1b ) can be easily expressed as an integral operator T as in Theo-
rem 1.1, for certain ϕ(z, t) depending only on the difference z − t. The ways
these two properties (“dense-image” and “strongly omnipresent”) have been
obtained are very similar and one could believe that both properties are the
same. This is not true, however, as we are going to see in the next examples.

Example 2.5 If {zn}n is a sequence in D\{0} such that
∑∞
n=1(1−|zn|) < +∞

then its associated Blaschke product is

B(z) =
∞∏
1

|zn|
zn

zn − z
1− znz

.

Then B(z) defines a function which is holomorphic in D. In addition, if
E ⊂ ∂D is the set of accumulation points of {zn}n, then B(z) extends to
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be holomorphic on C \ (E ∪ {zn−1 : n ∈ N}) (see [9, Theorem 6.1]). If we
choose zn = 1 − 1

n2 (n ≥ 2) then E = {1} and B ∈ H(C \ [{1} ∪ {1 + 1
n2−1 :

n ≥ 2}]). Since each factor has modulus 1 on ∂D we have that B(z) 6= 0 for
all z ∈ Γ := (∂D) \ {1} (in fact, |B| = 1 on Γ).

Summarizing, we have obtained a function B(z) satisfying:

(1) B ∈ H(D),

(2) B(z) = 0 if and only if z ∈ {1− 1
n2 : n ≥ 2},

(3) there exists a dense subset Γ ⊂ ∂D such that for every t ∈ Γ there exists
limz→tB(z) ∈ C \ {0}.

Consider the mapping

T : H(D) → H(D)
f 7→ Tf(z) = B(z)f(z).

Then T is a strongly omnipresent operator (see [4, Theorem 3.7]) but not a
DI-operator. Indeed, if we take A = {1− 1

n2 : n ≥ 2} then A is not relatively
compact in D and M(T,A) = ∅ because Tf(A) = {0} for all f ∈ H(D).

The latter is a linear example. Let us give an additional one. If we compare
Corollary 4.2 of this paper with Corollary 3.2 of [4], we obtain that each compo-
sition operator Cϕ on H(C) with ϕ transcendent is also strongly omnipresent
but not dense-image.

Example 2.6 In [4], it is shown that for each entire function ϕ the left-
composition operator Lϕ : H(G) → H(G) given by Lϕf = ϕ ◦ f is not
strongly omnipresent if ϕ is not onto, so by Theorem 4.3 (see Section 4) for
each entire function ϕ which is non-constant and non-onto the mapping Lϕ is
a DI-operator which is not strongly omnipresent. In fact, if ϕ is not onto then
M(Lϕ) is empty, so there exist DI-operators without any monster.

The above example is always non-linear, so the question may be asked,
is every linear DI-operator strongly omnipresent? We point out here that
there are linear omnipresent operators which are not strongly omnipresent [4,
Example 3.6].

Let us see now the relationship between DI-operators and omnipresent op-
erators.

Proposition 2.7 Let t ∈ ∂G and let {an}n be a sequence in G with an → t
as n→∞. Then M(T, {an}n) ⊂ R(T, V,W ) for every non-empty open subset
W of C and every open set V with t ∈ V .
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Proof. Fix a non-empty open subset W ⊂ C and an open set V with t ∈ V .
Since an → t (n → ∞), there exists n0 ∈ N such that an ∈ V ∩ G for all
n ≥ n0. Let f be an element of M(T, {an}n). Then

W ∩ (Tf){an : n ≥ n0} 6= ∅
because (Tf){an : n ≥ n0} is dense in C and W is open. So there exists
n1 ∈ N such that an1 ∈ G ∩ V and Tf(an1) ∈ W , whence

f ∈ R(T, V,W ).

The proof is finished. ♦

In particular, if for each point t of a dense subset Γ of ∂G there exists a
sequence {an} ⊂ G with an → t as n → ∞ and M(T, {an}n) dense in H(G)
we have that T is omnipresent. From here we get the next corollary:

Corollary 2.8 Every DI-operator is omnipresent.

Observe that, by Example 2.5, the converse is not true. In fact, it is easy
to check that the example provided in [4, Example 3.6] is not dense-image
either. Hence, by assertion (1) in the Introduction, we have that linear om-
nipresent operators strictly include both dense-image operators and strongly
omnipresent operators. However, as in Theorem 2.4, we can characterize the
omnipresent operators in terms of sequences near the boundary.

Theorem 2.9 The following two conditions are equivalent:

(1) T is an omnipresent operator.

(2) There is a dense subset of Γ ⊂ ∂G such that for every t ∈ Γ there exists
a sequence {an}n ⊂ G with an → t as n→∞ and M(T, {an}n) dense in
H(G).

Proof. (2)⇒ (1) is done. We need to prove (1)⇒ (2).
Fix t ∈ Γ, w ∈ C and δ > 0, and for each n ∈ N consider the open ball

Vn := B(t, 1
n
). Then R(T, Vn, B(w, δ)) ∩D(h,K, ε) 6= ∅ (for all h ∈ H(G), all

K ∈ K(G) and all ε > 0), by (1). So, we can find a function f ∈ D(h,K, ε)
and a point an ∈ Vn ∩ G such that |Tf(an) − w| < δ. In this manner the
sequence {an}n is in G, an → t as n → ∞ and H{an}n(T, δ, w) is dense in
H(G). Therefore, M(T, {an}n) is dense in H(G) by Remark 2.1, and the
proof is finished. ♦

To finish this section we provide the next corollary (not known up to now)
of Theorem 1.1 and Corollary 2.8. Φ and Ψ denote entire functions, with Φ of
exponential type if G = C and of subexponential type if G 6= C.

Corollary 2.10 Every operator T = Φ(D) + Ψ(D−1) which is not identically
zero is omnipresent on H(G).
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3 General conditions for DI-operators

As promised in the first section, here we are going to furnish sufficient con-
ditions for an operator to be dense-image. Because in the first three results
the reasoning is very similar to that in [4, Section 2], we do not include their
proofs. Let us only point out that Lemma 3.1 together with the Open Mapping
Theorem yields Theorem 3.2.

Lemma 3.1 Let T, S : H(G) → H(G) be operators and A ⊂ G. Then we
have S−1(M(T,A)) = M(TS,A).

Theorem 3.2 Let T, S : H(G)→ H(G) be operators, in such a way that T is
a DI-operator and S is linear and onto. Then TS is a DI-operator.

Corollary 3.3 If S is an onto linear operator on H(G) then S is DI-operator.

Before providing additional results we consider it convenient to isolate the
following local stability condition:

For every K ∈ K(G), there exists a compact set M ⊂ G
satisfying that for every a ∈ G \M, every δ > 0 and
every f ∈ H(G) there exist a closed ball B ⊂ G \K

and α > 0 such that for every g ∈ H(G)
‖f − g‖B < α =⇒ |Tf(a)− Tg(a)| < δ.


(P )

Observe that, for instance, the operators Φ(D) satisfy (P ). This is an easy
exercise if one employs Cauchy’s inequalities.

Theorem 3.4 Let T be an operator on H(G) such that:

(a) M(T,A) 6= ∅ for all non-relatively compact subsets A ⊂ G.

(b) T satisfies condition (P ).

Then T is a DI-operator.

Proof. Fix a non-relatively compact subset A ⊂ G, w ∈ C, δ > 0, K ∈ K1(G),
h ∈ H(G) and ε > 0. We have to prove that HA(T, δ, w) ∩ D(h,K, ε) is not
empty. Let M be the compact subset associated to K furnished by condition
(P ).

Take a function f in M(T,A\M) (note that A\M is not relatively compact
in G). Then f ∈ HA\M(T, δ/2, w), and there exists a point a ∈ A \M such
that

|Tf(a)− w| < δ

2
. (1)
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By (P ), there exist α > 0 and a closed ball B ⊂ G \ K such that for all
ϕ ∈ H(G),

‖ϕ− f‖B < α =⇒ |Tϕ(a)− Tf(a)| < δ

2
. (2)

Consider the compact set L := K ∪ B. Note that K ∩ B = ∅, so each
connected component of the complement of L contains at least one component
of the complement of G, as K does. Pick open subsets G1, G2 ⊂ G with
G1 ∩ G2 = ∅ and K ⊂ G1, B ⊂ G2. Denote G0 = G1 ∪ G2. Therefore G0 is
open and L ⊂ G0 ⊂ G. Define the function F : G0 → C as

F (z) =

{
h(z) if z ∈ G1

f(z) if z ∈ G2.

Then F ∈ H(G0), and an application of Runge’s theorem [15, Chap. 13] yields
the existence of a rational function f1 with poles outside G such that

‖F − f1‖L < min{ε, α}.

Thus, f1 ∈ H(G), and it holds that

‖f1 − h‖K < ε (3)

and
‖f1 − f‖B < α.

Therefore, by (2),

|Tf1(a)− Tf(a)| < δ

2
. (4)

Now, by the triangle inequality, (1) and (4), we have

|Tf1(a)− w| < δ. (5)

And, joining (3) and (5),

f1 ∈ D(h,K, ε) ∩HA(T, δ, w).

Consequently, the proof is finished. ♦

When we have “wild behavior” of T on just one function and “good beha-
vior” on a dense set of functions we are able to show that T is a DI-operator.
Here the linearity is needed.

Lemma 3.5 Let T : H(G) → H(G) be a linear operator, t ∈ ∂G and let
{an}n be a sequence in G with an → t as n→∞. Suppose that there exists a
dense subset D of H(G) such that for each function h ∈ D,

∃ lim
n→∞

(Th)(an) ∈ C.

Then, if M(T, {an}n) is not empty, M(T, {an}n) is a dense subset of H(G).
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Proof. Take f ∈M(T, {an}n). We have only to prove that f+h ∈M(T, {an}n)
for all h ∈ D.

Fix w ∈ C and δ > 0. Then there exists N ∈ N such that

|Th(an)− lh| <
δ

2
(∀n ≥ N), (1)

where lh = limn→∞ Th(an) (∈ C). Since (Tf)({an}n) = C∞, we also have
(Tf)({an : n ≥ N}) = C∞ so we can find a natural number m ∈ N with
m ≥ N and

|Tf(am)− (w − lh)| <
δ

2
. (2)

Therefore, by (1), (2) and the triangle inequality, we have

|T (f + h)(am)− w| = |Tf(am) + Th(am)− w| ≤

|Tf(am)− (w − lh)|+ |Th(am)− lh| < δ.

So, (T (f + h))({an}n) = C∞ and this completes the proof. ♦

Theorem 3.6 Let T be a linear operator on H(G) satisfying

(1) There exists a dense subset D in H(G) with the property that for each
h ∈ D and each t ∈ ∂G

∃ lim
z→t

(Th) ∈ C.

(2) M(T,A) is not empty for every non-relatively compact subset A ⊂ G.

Then T is a DI-operator.

Proof. By Remark 2.1 we need only prove that for each t ∈ ∂G and each
sequence {an}n ⊂ G with an →∞, as n→∞, we have

(1) + [M(T, {an}n) 6= ∅] implies [M(T, {an}n) is dense].

But this is clear, because (1) gives us the hypothesis of Lemma 3.5. So, the
proof is finished. ♦

For instance, condition (1) in the above theorem is satisfied by a diffe-
rential operator Φ(D) and by a finite-order antidifferential operator Ψ(D−1),
whenever G is a bounded, simply connected domain in C: just take D =
{polynomials}.

In our next statement we furnish a sufficient condition for an operator
“pointwise dense range near the boundary” to be dense-image. We meet again
property (P ).
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Theorem 3.7 Let T be an operator on H(G) such that the following two
properties are satisfied:

(A) T satisfies condition (P ).

(B) For each point t ∈ ∂G there exists an open subset V ⊂ C∞ with t ∈ V
satisfying that the set {(Tf)(a) : a ∈ E, f ∈ H(G)} is dense in C for
each infinite subset E ⊂ V ∩G.

Then T is a DI-operator.

Proof. Fix a point t ∈ ∂G, a sequence {an}n ⊂ G with an → t as n → ∞,
two positive numbers δ and ε, a complex number w, a subset K ∈ K1(G) and
a function h ∈ H(G). We have to show that

H{an}n(T, δ, w) ∩D(h,K, ε) 6= ∅.

Again, there is a compact set M ⊂ G associated to K satisfying the property
stated in (P ).

Since an → t as n → ∞, {an} ⊂ G and t ∈ ∂G, there exists N ∈ N such
that the set E := {an : n ≥ N} is infinite and is contained in (V ∩G) \M .

So, by (B), we obtain a function f ∈ H(G) and a natural number m ≥ N
with

|Tf(am)− w| < δ

2
.

But, since by (A), T satisfies (P ) and am ∈ (V ∩G) \M ⊂ G \M , there exist
a closed ball B ⊂ G \K and a positive number α such that if ϕ ∈ H(G) and
‖f − ϕ‖B < α then |Tϕ(am)− Tf(am)| < δ/2.

Now, we have only to continue the proof in the same way as in Theorem
3.4. ♦

Note that, as a consequence, we obtain again, independently, that I is a
DI-operator.

It is evident that the sum T + S of two DI-operators need not be a DI-
operator: take, for instance, T = I, S = −I. In the next result it is shown
that if T is DI-operator and it is possible to exert a control on S near the
boundary, then we can sum T and S without loss of wild behavior.

Theorem 3.8 Let T, S : H(G)→ H(G) be operators. Assume that:

(a) T is a DI-operator.

(b) For every f ∈ H(G) and every t ∈ ∂G,

∃ lim
z→t

(Sf)(z) ∈ C.
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Then, T + S is a DI-operator.

Proof. We need only check that M(T, {an}n) ⊂ M(T + S, {an}n) for each
sequence {an}n ⊂ G with an → t ∈ ∂G as n→∞. The way to obtain this is
analogous to that used in Lemma 3.5. ♦

To finish this section we want to say something about the product of map-
pings. We have that a non-zero multiple of a DI-operator is trivially a DI-
operator. In general, we can make sure that the product of T and S is a
DI-operator if T is and S keeps a control.

Lemma 3.9 Let T , S be operators on H(G), t ∈ ∂G and {an}n ⊂ G with
an → t as n → ∞. Then, for each function f ∈ M(T, {an}n) such that there
exists limn→∞ Sf(an) ∈ C \ {0}, we have f ∈M(T · S, {an}n).

Here (T ·S)f := (Tf)·(Sf). The proof of the latter lemma is straightforward
and is left to the reader. As a consequence of Lemma 3.9, we obtain

Theorem 3.10 Let T , S be operators on H(G) satisfying:

(a) T is DI-operator.

(b) For all t ∈ ∂G and all f ∈ H(G),

∃ lim
z→t

Sf(z) ∈ C \ {0}.

Then, T · S is a DI-operator.

4 Examples of DI-operators

Up to now we have, by Theorem 1.1, only one specific type of DI-operator,
which includes differential, antidifferential, and some integral operators.

In this section we are going to give some examples which are essentially
different from the previous ones, such as composition operators.

Recall that if ϕ ∈ H(G,G) := {f ∈ H(G) : f(G) ⊂ G} then its associated
composition operator is the mapping defined as

Cϕ : f ∈ H(G) 7→ f ◦ ϕ ∈ H(G).

It is easy to see that Cϕ is in fact an operator on H(G).

Theorem 4.1 Let G ⊂ C be a domain, A ⊂ G, and ϕ ∈ H(G,G). Then the
following three properties are equivalent:

(a) ϕ(A) is not relatively compact in G.
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(b) M(Cϕ, A) is residual in H(G).

(c) M(Cϕ, A) is not empty.

As a consequence, Cϕ is a DI-operator if and only if ϕ takes non-relatively
compact subsets to non-relatively compact subsets.

Proof. (c)⇒ (a) is an immediate consequence of two facts, namely, Remark
2.2 and M(Cϕ, A) = M(I, ϕ(A)). (b) ⇒ (c) is trivial. To get (a) ⇒ (b) we
have only to take into account the above equality and that, by Theorem 1.1,
I is a DI-operator. So the proof is complete. ♦

Observe that the condition on ϕ in the second part of the last theorem is
equivalent to ϕ is proper, that is, the preimage ϕ−1(K) of each compact set
K ⊂ G is again a compact set.

Corollary 4.2 Assume that ϕ is an entire function and consider the compo-
sition operator Cϕ on H(C). Then the following properties are equivalent:

(a) Cϕ is a DI-operator.

(b) M(Cϕ, A) is not empty for every non-relatively compact subset A ⊂ C.

(c) ϕ is a non-constant polynomial.

Proof. It is clear that non-constant polynomials are the unique entire func-
tions preserving the property of being not relatively compact for subsets.

♦

As a second example, we can consider the left-composition operators. If
ϕ is an entire function, the left-composition operator associated to ϕ is the
(generally non-linear) continuous self-mapping given by

Lϕ : f ∈ H(G) 7→ ϕ ◦ f ∈ H(G).

It happens that Lϕ is omnipresent if and only if ϕ is non-constant: take T = I
and g = ϕ in Theorem 1(c) of [1]. Therefore, by Corollary 2.8, it is a necessary
condition. Let us see that it is also a sufficient condition for Lϕ to be a DI-
operator.

Theorem 4.3 Let ϕ be an entire function. Then the following properties are
equivalent:

(a) Lϕ is a DI-operator.

(b) M(Lϕ, A) is not empty for every non-relatively compact subset A ⊂ G.

(c) ϕ is non-constant.

12



Proof. It is obvious that (a)⇒ (b)⇒ (c). So, we need only get (c)⇒ (a).
Let us try to apply Theorem 3.7 under the assumption that ϕ is non-

constant. Note that the continuity of ϕ guarantees that (P ) is satisfied. Fur-
thermore, if {wn}n is a dense sequence in C and fn is the constant function
fn(z) := wn (n ∈ N) then, for any fixed a ∈ G, the set {(Lϕfn)(a) : n ∈ N} =
ϕ({wn : n ∈ N}) is dense in C because ϕ(C) is. Therefore (A) and (B) in
Theorem 3.7 are fulfilled and Lϕ is a DI-operator. ♦

To finish this section (and the paper) we want to study the multiplication
operator. Let T be an operator on H(G) and let ψ ∈ H(G). Then the
multiplication operator MψT : H(G) → H(G) is defined as (MψT )f(z) =
ψ(z)Tf(z). By Theorem 3.10 we know that if ψ extends to ∂G as a continuous
function, always non-zero in the boundary, and T is a DI-operator then MψT is
also a DI-operator. However, in several cases we can ask for a weaker condition
for ψ. Note that because of the Analytic Continuation Principle, ψ(z) 6= 0
near the boundary of G (i.e., ψ(z) 6= 0 for all z ∈ G \L, for some compact set
L ⊂ G) if and only if the set Z(ψ) = {z ∈ G : ψ(z) = 0} of zeros of ψ is finite.

Theorem 4.4 Suppose that ψ ∈ H(G) and that T is an operator on H(G)
satisfying the following properties:

(a) The zero set Z(ψ) is finite.

(b) There exists L ∈ K(G) such that for each a ∈ G \L the set {Tf(a) : f ∈
H(G)} is dense in C.

(c) T satisfies condition (P ).

Then MψT is a DI-operator.

Proof. Fix a non-relatively compact subset A ⊂ G, w ∈ C, δ > 0, h ∈ H(G),
K ∈ K1(G), and ε > 0. Let us associate to K the compact set M given by
condition (P).

Observe that A\(M∪Z(ψ)∪L) 6= ∅. Pick a ∈ A\(M∪Z(ψ)∪L) (⊂ G\M),
whence ψ(a) 6= 0.

From (b), there is a function f ∈ H(G) such that

|(Tf)(a)− w

ψ(a)
| < δ

2|ψ(a)|
. (1)

Consider G1, G2, and G0 as in the proof of Theorem 3.4 and the function
F : G0 → C defined as

F (z) =

{
h(z) if z ∈ G1

f(z) if z ∈ G2.

13



Again F ∈ H(G0), and an application of Runge’s theorem gives us a function
g ∈ H(G) with

‖g − h‖K < ε (2)

and
‖g − f‖B < α,

where the positive number α and the closed ball B ⊂ G \K are provided by
(c), but with δ replaced by δ

2|ψ(a)| when (P ) is used. Therefore,

|Tg(a)− Tf(a)| < δ

2|ψ(a)|
. (3)

Now (1), (3) and the triangle inequality lead us to

|(MψTg)(a)− w| = |ψ(a)Tg(a)− w| ≤ δ. (4)

Finally, by joining (2) and (4),

g ∈ HA(MψT, δ, w) ∩D(h,K, ε),

as needed. ♦
Since T := I trivially satisfies conditions (b) and (c) above, we obtain the

next corollary. Its “only if” part follows from the fact that if Z(ψ) is infinite
then it is not relatively compact in G, but M(Mψ, Z(ψ)) = ∅.

Corollary 4.5 If ψ ∈ H(G) then the mapping Mψ : H(G) → H(G) defined
as Mψf(z) = ψ(z)f(z) is a DI-operator if and only if Z(ψ) is finite.

To finish, observe that if we let ψ ≡ 1 in Theorem 4.4 then one gets that
(b) plus (c) imply that T is dense-image. But this criterion is weaker than
Theorem 3.7 because (B) of Theorem 3.7 is weaker than (b) of Theorem 4.4.
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