TITLE: HOLOMORPHIC FUNCTIONS HAVING LARGE IMAGES UNDER THE ACTION OF DIFFERENTIAL OPERATORS.

AUTHOR: LUIS BERNAL-GONZÁLEZ.

AFFILIATION: DEPARTAMENTO DE ANÁLISIS MATEMÁTICO. FACULTAD DE MATEMÁTICAS. AVENIDA REINA MERCEDES. APARTADO 1160. 41080 SEVILLA, SPAIN. E-MAIL: lbernal@cica.es.

FOOTNOTES TO THE TITLE: *This work is supported in part by D.G.E.S. grant PB96-1348.

1991 Mathematics Subject Classification: Primary 30E10. Secondary 46E10, 47E05.

Key words and phrases: Entire function of subexponential type, infinite order differential operator, residual set, holomorphic function, relatively compact sequence, linear metric space, large images.
ABBREVIATED TITLE: OPERATORS AND LARGE IMAGES.

NAME AND MAILING ADDRESS OF THE AUTHOR TO WHOM PROOFS SHOULD BE SENT: LUIS BERNAL-GONZÁLEZ. DEPARTAMENTO DE ANÁLISIS MATEMÁTICO. FACULTAD DE MATEMÁTICAS. AVENIDA REINA MERCEDES. APARTADO 1160. 41080 SEVILLA, SPAIN.

E-MAIL: lbernal@cica.es.
HOLOMORPHIC FUNCTIONS HAVING LARGE IMAGES

UNDER THE ACTION OF DIFFERENTIAL OPERATORS

By

LUIS BERNAL-GONZÁLEZ*

Abstract. We prove in this note that, given a simply connected domain G in the complex plane and a sequence of infinite order linear differential operators generated by entire functions of subexponential type satisfying suitable conditions, then there are holomorphic functions f on G such that the image of any open subset under the action of those operators on f is arbitrarily large. This generalizes an earlier result about images of derivatives. A known statement about close orbits is also strengthened.

1. INTRODUCTION AND NOTATION

In this paper we denote, as usual, by \mathbb{N} the set of positive integers, by \mathbb{C} the field of complex numbers and by $D(a, r)$ the open disk $\{z \in \mathbb{C} : |z - a| < r\}$. If G is a nonempty open subset of \mathbb{C}, then $H(G)$ will stand for the Fréchet space of holomorphic functions on G, endowed with the topology of the uniform convergence on compact subsets. A domain (=nonempty open subset) $G \subset \mathbb{C}$ is said to be simply connected whenever its complement with respect to the extended complex plane is connected. Recall that, by Runge’s theorem [4, pp. 92-97], if G is a simply connected
domain then the set of polynomials is dense in $H(G)$. If $A \subset \mathbb{C}$ is a subset with at least one finite accumulation point and G is simply connected, then the linear manifold

$$H_A = \text{span} \{ e_a : a \in A \}$$

is dense in $H(G)$ (see, for instance, [7, p. 97], [6, pp. 259-260] and [2, Section 4]). We have denoted here $e_a(z) = \exp(az)$ ($z \in \mathbb{C}$). The diameter of a subset $A \subset \mathbb{C}$ is $\text{diam} (A) = \sup \{|z - w| : z, w \in A\}$.

Every entire function $\Phi(z) = \sum_{j=0}^{\infty} c_j z^j$ generates a formal “infinite order linear differential operator” with constant coefficients given by $\Phi(D) = \sum_{j=0}^{\infty} c_j D^j$, where D denotes the differentiation operator $Df = f'$ and $D^0 = I$ = the identity operator.

The function Φ is said to be of exponential type if and only if there are constants $K_1, K_2 \in (0, +\infty)$ such that

$$|\Phi(z)| \leq K_1 e^{K_2|z|} \quad (z \in \mathbb{C}).$$

Φ is said to be of subexponential type if and only if for every $\varepsilon > 0$ there is a constant $K = K(\varepsilon) \in (0, +\infty)$ such that

$$|\Phi(z)| \leq K e^{\varepsilon|z|} \quad (z \in \mathbb{C}).$$

Each function of subexponential type is obviously of exponential type. With essentially the same methods of Valiron [9, p. 35] (see also [3, pp. 58-60] and [2, Theorem 5]), it can be proved that $\Phi(D)$ is a well-defined operator on $H(G)$ as soon as Φ
is of subexponential type (and, in fact, on \(H(C) \) if \(\Phi \) is just of exponential type). The reader is referred to [8] for a systematic study of this kind of operators.

From now on, if \(X \) is a linear metric space, then we denote \(||x|| = d(x, 0) \) for \(x \in X \), where \(d \) is the (translation-invariant) metric of \(X \). For instance, the translation-invariant metric

\[
d(f, g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{\sup_{K_n} |f - g|}{1 + \sup_{K_n} |f - g|} \quad (f, g \in H(G))
\]

generates the natural topology of \(G \). Here \((K_n) \) is an exhaustive nondecreasing sequence of compact subsets of \(G \). In 1987, R. M. Gethner and J. H. Shapiro [5], when studying the existence of universal vectors for certain kinds of operators on spaces of holomorphic functions, proved the following related result [5, Theorem 2.4].

THEOREM A. Suppose \(T \) is a continuous linear operator on a separable complete linear metric space \(X \) and \(T^n x \to 0 \) \((n \to \infty)\) for every \(x \in D \), where \(D \) is a dense subset of \(X \) and \(T^n = T \circ T \circ \cdots \circ T \) \((n \text{ times})\). Let \((x_n) \) be a sequence in \(X \) such that \(x_n \to 0 \) \((n \to \infty)\). Then the set of vectors \(x \in X \) for which

\[
\liminf_{n \to \infty} ||T^n x - T^n x_n|| = 0
\]

is a dense \(G_\delta \) subset of \(X \).

As an application of Theorem A to function theory, it is shown in [5, Theorem 3.7] the next theorem, that establishes the existence of entire functions for which many derivatives have “large images” on prefixed arbitrarily small open subsets.
THEOREM B. Suppose \((\rho_n)\) is an unbounded, increasing sequence of positive numbers for which \(\lim_{n \to \infty} \frac{\rho_n^{1/n}}{n} = 0\). Then there exists a dense \(G_\delta\) subset \(M\) of \(H(G)\) satisfying that, for every \(f \in M\) and every nonempty open set \(V \subset G\), there are infinitely many \(n \in \mathbb{N}\) such that \(f^{(n)}(V) \supset D(0, \rho_n)\).

Our aim in this note is to extend the latter result to certain kinds of infinite order differential operators on simply connected domains. In passing, Theorem A can also be manifestly strengthened.

2. SETS OF POINTS CLOSE TO THE ORBIT OF A RELATIVELY COMPACT SEQUENCE

We start with an elementary lemma. Let \(X\) be a topological space, \((Y, d)\) a metric space and denote, as usual, by \(C(X, Y)\) the space of all continuous mappings from \(X\) into \(Y\). If \(\sigma = (s_n)\) and \(\tau = (T_n)\) are sequences in \(X\) and \(C(X, Y)\) respectively, then we put

\[
M(\sigma, \tau) = \{ x \in X : \liminf_{n \to \infty} d(T_n x, T_n s_n) = 0 \}.
\]

LEMMA 1. If \(X, (Y, d), \sigma = (s_n)\) and \(\tau = (T_n)\) are as before, then \(M(\sigma, \tau)\) is a \(G_\delta\) subset of \(X\).

Proof. Fix a point \(x \in X\). Observe that \(x \in M(\sigma, \tau)\) if and only if for each
pair $N, k \in \mathbb{N}$ there is $n > N$ such that $d(T_n x, T_n s_n) < 1/k$, that is,

$$M(\sigma, \tau) = \bigcap_{N \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} \bigcup_{n > N} T_n^{-1}(G_{n, k}),$$

where $G_{n, k} = \{ y \in Y : d(y, T_n s_n) < 1/k \}$, which is an open ball in X. Since T_n is continuous, $T_n^{-1}(G_{n, k})$ is open in X and so $M(\sigma, \tau)$ is a G_δ subset.

For every sequence $\sigma = (s_n)$ in X, denote

$$LP(\sigma) = \{ \alpha \in X : \alpha \text{ is a limit point for } (s_n) \}.$$

$LP(\sigma)$ may well be empty. If X and Y are topological vector spaces, then $L(X, Y)$ will stand for the subspace of $C(X, Y)$ of all linear mappings from X into Y. Recall that a subset in a Baire space is residual if and only if it contains a dense G_δ subset.

The next result generalizes Theorem A.

THEOREM 1. Assume that X and Y are linear metric spaces, in such a way that X is a Baire space. Let $\sigma = (s_n)$ and $\tau = (T_n)$ be sequences in X and $L(X, Y)$, respectively. Suppose that the following three conditions are satisfied:

(a) σ is relatively compact.

(b) $\lim_{n \to \infty} T_n \alpha = 0$ for every $\alpha \in LP(\sigma)$.

(c) There exists a dense subset $\mathcal{D} \subset X$ such that $\liminf_{n \to \infty} ||T_n x|| = 0$ for all $x \in \mathcal{D}$.

Then $M(\sigma, \tau)$ is residual in X.

7
Proof. Note that, by (a), $LP(\sigma)$ is not empty. Recall that $\|x\| = d_1(x, 0)$ for every $x \in X$ and $\|y\| = d(y, 0)$ for every $y \in Y$, where d_1, d are the metrics on X, Y (resp.), which are translation-invariant. By Lemma 1, $M(\sigma, \tau)$ is a G_δ subset of X.

Let us keep in mind the notation of the proof of that lemma. Since X is Baire and the sets $S(N, k) := \bigcup_{n>N} T_n^{-1}(G_n, k)$ ($N, k \in \mathbb{N}$) are open, it suffices to show that every $S(N, k)$ is dense in X. For this, fix $N, k \in \mathbb{N}$, a point $x_0 \in D$ and $\varepsilon > 0$. By (c), there is a sequence $n_1 < n_2 < \ldots < n_j < \ldots$ of positive integers such that

$$\lim_{j \to \infty} \|T_{n_j}x_0\| = 0.$$

But σ is relatively compact, so there is a point $\alpha \in X$ and a subsequence $m_1 < m_2 < \ldots < m_j < \ldots$ of (n_j) such that

$$\lim_{j \to \infty} \|s_{m_j} - \alpha\| = 0.$$

From (b), we have that

$$\lim_{j \to \infty} \|T_{m_j} \alpha\| = 0.$$

In particular, there exists $n > N$ such that $\|T_n x_0\| < \frac{1}{2k}$, $\|T_n \alpha\| < \frac{1}{2k}$ and $\|s_n - \alpha\| < \varepsilon$. Define the point

$$x = x_0 + s_n - \alpha.$$

Then $\|x - x_0\| = \|s_n - \alpha\| < \varepsilon$ and, by linearity, $d(T_n x, T_n s_n) = \|T_n x - T_n s_n\| = \|T_n x_0 - T_n \alpha + T_n s_n - T_n s_n\| \leq \|T_n x_0\| + \|T_n \alpha\| < \frac{1}{2k} + \frac{1}{2k} = \frac{1}{k}$.

8
Thus, $x \in S(N, k) \cap \{z \in X : d_1(z, x_0) < \varepsilon\}$, that is, every point $x_0 \in \mathcal{D}$ is in the closure of $S(N, k)$. But \mathcal{D} is dense in X. Consequently, $S(N, k)$ is also dense in X, as required.

3. DIFFERENTIAL OPERATORS AND LARGE IMAGES

In this section we extend Theorem B to differential operators. Recall that if $\Phi(z) = \sum_{j=0}^{\infty} c_j z^j$ is a nonconstant entire function, then its multiplicity for the zero at the origin is $m = \min\{j \in \{0, 1, 2, \ldots\} : c_j \neq 0\}$. We start with the following easy lemma, whose proof is omitted since it is a simple calculation.

Lemma 2. If a, b are complex numbers with $a \neq 0$, and $m \in \mathbb{N}$, then

$$ (aD^m + bD^{m+1})(\frac{1}{a} \frac{z^{m+1}}{(m+1)!} - \frac{b}{a^2 m!}) = z \quad (z \in \mathbb{C}). $$

Theorem 2. Let G be a simply connected domain of \mathbb{C}, $\Phi_n(z) = \sum_{j=0}^{\infty} c_{n,j} z^j$ ($n \in \mathbb{N}$) nonconstant entire functions of subexponential type and (ρ_n) an unbounded sequence of positive numbers. Denote by $m(n)$ the multiplicity of Φ_n for the zero at the origin. Suppose that the following conditions are fulfilled:

1. The sequence $(m(n))$ is unbounded.
2. $\max\{\limsup_{n \to \infty} \frac{1}{1+m(n)} (\frac{\rho_n}{|c_{m(n)}^{(n)}|})^{\frac{1}{1+m(n)}}), \limsup_{n \to \infty} \frac{1}{1+m(n)} (\frac{|c_{m(n)}^{(n)}|}{|c_{m(n)}^{(n)}|})^{\frac{1}{1+m(n)}} \}
 \leq \frac{1}{\varepsilon \cdot \text{diam}(G)}.$

Then there exists a residual subset M of $H(G)$ satisfying that, for every $f \in M$
and every nonempty open subset $V \subset G$, there are infinitely many $n \in \mathbb{N}$ for which
$$(\Phi_n(D)f)(V) \supset D(0, \rho_n).$$

Proof. Let us try to apply Theorem 1. Firstly, observe that every $\Phi_n(D)$ is a well-defined linear operator on $H(G)$. We start in a way that is very similar to the proof of [5, Theorem 3.7]. By the definition of multiplicity, $c_j^{(n)} = 0$ whenever $j < m(n)$ ($n \in \mathbb{N}$). Since $(m(n))$ is unbounded, we can assume without loss of generality that $1 \leq m(n) \uparrow \infty$. Indeed, there exists a subsequence $(m(n_k))$ such that $1 \leq m(n_k) \uparrow \infty$. Then (2) obviously holds if we change $(m(n))$ to $(m(n_k))$. If the statement of the theorem is true when $(m(n))$ is nondecreasing and unbounded (as we will prove immediately), then one would get the existence of a residual subset $M \subset H(G)$ with the property that, for every $f \in M$ and every nonempty open subset $V \subset G$, $(\Phi_{n_k}(D)f)(V) \supset D(0, \rho_{n_k})$ for infinitely many $k \in \mathbb{N}$. But then, trivially, the same conclusion holds by changing (n_k) to the entire sequence of positive integers.

Consequently, we can start with the following hypotheses: $1 \leq m(n) \uparrow \infty$ and

$$\max\{\limsup_{n \to \infty} \frac{1}{m(n)} \left(\frac{\rho_n}{|c^{(n)}_{m(n)}|} \right)^{\frac{1}{m(n)}}, \limsup_{n \to \infty} \frac{1}{m(n)} \left(\frac{\rho_n |c^{(n)}_{m(n)+1}|}{|c^{(n)}_{m(n)}|^2} \right)^{\frac{1}{m(n)}}\} \leq \frac{1}{e \cdot \text{diam}(G)},$$

because of (2) and the fact $\frac{m(n)}{m(n)+1} \to 1$ ($n \to \infty$). By Stirling’s formula, $\frac{1}{m(n)} \sim \frac{1}{e \cdot m(n)!^{1/m(n)}}$ ($n \to \infty$), so the two numbers $\limsup_{n \to \infty} \left(\frac{\rho_n}{(m(n)+1)! |c^{(n)}_{m(n)}|} \right)^{\frac{1}{m(n)+1}}$ and

$$\limsup_{n \to \infty} \left(\frac{\rho_n |c^{(n)}_{m(n)+1}|}{(m(n))! |c^{(n)}_{m(n)}|^2} \right)^{\frac{1}{m(n)}}$$

are $\leq \frac{1}{\text{diam}(G)}$.

Fix a disk $D(w, \varepsilon) \subset G$ and associate to it the sequence of degree one monomials
\begin{align*}
(f_n) \text{ defined as } \\
\quad f_n(z) = \frac{2\rho_n}{\varepsilon} \cdot (z - w) \quad (z \in \mathbb{C}).
\end{align*}

Consider the sequence of functions \((g_n)\) given by

\begin{align*}
\quad g_n(z) = \frac{2\rho_n}{\varepsilon} \cdot \left[\frac{1}{c_{m(n)}^{(n)}} \cdot \frac{(z - w)^{m(n)+1}}{(m(n) + 1)!} - \frac{c_{m(n)+1}^{(n)}}{(c_{m(n)}^{(n)})^2} \cdot \frac{(z - w)^{m(n)}}{m(n)!} \right] \quad (z \in \mathbb{C}).
\end{align*}

Observe that \(D^j((z - w)^k) = 0\) whenever \(j > k\). This and Lemma 2 yield

\begin{align*}
\quad (\Phi_n(D)g_n)(z) &= (c_{m(n)}^{(n)} D^{m(n)} + c_{m(n)+1}^{(n)} D^{m(n)+1})g_n(z) \\
\quad &= \frac{2\rho_n}{\varepsilon} (z - w) = f_n(z) \quad (z \in \mathbb{C}).
\end{align*}

Now, fix a compact subset \(K \subset G\). Then there are positive numbers \(r, R\) such that

\begin{align*}
\sup_{z \in K} |z - w| < r < R < \text{diam}(G), \text{ so } \frac{1}{R} > \frac{1}{\text{diam}(G)}. \text{ Hence there exists } n_0 \in \mathbb{N}
\end{align*}

such that \(\frac{\rho_n}{(m(n)+1)!|c_{m(n)}^{(n)}|} \frac{1}{m(n)+1} \quad \text{and} \quad \frac{\rho_n |c_{m(n)+1}^{(n)}|}{m(n)!|c_{m(n)}^{(n)}|^2} \frac{1}{m(n)}\) are less that \(1/R\) for all \(n \geq n_0\). If \(z \in K\) and \(n \geq n_0\), we obtain

\begin{align*}
|g_n(z)| &\leq \frac{2}{\varepsilon} \cdot \frac{\rho_n}{|c_{m(n)}^{(n)}|} \cdot \frac{|z - w|^{m(n)+1}}{(m(n) + 1)!} + 2 \cdot \frac{\rho_n |c_{m(n)+1}^{(n)}|}{|c_{m(n)}^{(n)}|^2} \cdot \frac{|z - w|^{m(n)}}{m(n)!} \\
&< \frac{2}{\varepsilon} \cdot \left(\frac{r}{R} \right)^{1+m(n)} + \frac{2}{\varepsilon} \cdot \left(\frac{r}{R} \right)^{m(n)} \to 0 \quad (n \to \infty).
\end{align*}

Thus, \(g_n \to 0 \quad (n \to \infty)\) uniformly on compact subsets of \(G\). In particular, the null function is the unique limit point of \((g_n)\), i.e., \(LP((g_n)) = \{0\}\). If \(P\) is a fixed polynomial, then \(D^j P = 0\) for all \(j > \text{degree}(P)\). But there is \(n_1 \in \mathbb{N}\) with \(m(n) > \text{degree}(P)\) for all \(n > n_1\), so \(\Phi_n(D)P = \sum_{j=m(n)}^{\infty} c_j^{(n)} D^j P = 0\).
for all \(n > n_1 \), which implies, trivially, that \(\Phi_n(D)P \to 0 \) \((n \to \infty)\) in \(H(G) \).

Then conditions (a), (b), (c) of Theorem 1 are fulfilled if we take \(X = H(G) = Y \),
\(T_n = \Phi_n(D) \) \((n \in \mathbb{N})\), \(s_n = g_n \) \((n \in \mathbb{N})\) and \(D = \{\text{polynomials}\} \) (note that, trivially,
\(T_n \alpha \to 0 \) as \(n \to \infty \) if \(\alpha = 0 \)). Therefore the set \(M(\sigma, \tau) \) is residual in \(H(G) \) for
\(\sigma = (s_n) \), \(\tau = (T_n) \). We now relabel \(M(\sigma, \tau) = H(w, \varepsilon) \) because it depends upon
the disk \(D(w, \varepsilon) \).

Next, let us observe that \(H(w, \varepsilon) \) is precisely the set of holomorphic functions
\(f \) on \(G \) for which some subsequence of \((\Phi_n(D)f - f_n)\) tends to zero uniformly on
compact subsets of \(G \). Therefore, for every \(f \in H(w, \varepsilon) \), there are infinitely many
positive integers \(n \) satisfying \(|(\Phi_n(D)f)(z) - f_n(z)| < 1 \) for all \(z \in \partial D(w, \varepsilon) \) and
\(\rho_n > 1 \), since \((\rho_n)\) is unbounded. Fix one of these \(n \), a point \(a \in D(0, \rho_n) \) and a
point \(z \in \partial D(w, \varepsilon) \). We have that

\[
|((\Phi_n(D)f)(z) - a) - (f_n(z) - a)| < 1 < \rho_n = 2\rho_n - \rho_n
\]

\[
< \frac{2}{\varepsilon} \rho_n \cdot \varepsilon - |a| = |f_n(z)| - |a| \leq |f_n(z) - a|
\]

so by Rouché’s Theorem [1, p. 153], \(\Phi_n(D)f \) takes the value \(a \) in \(D(w, \varepsilon) \). Then
\(D(0, \rho_n) \subset (\Phi_n(D)f)(D(w, \varepsilon)) \).

Denote \(M = \{f \in H(G) : \text{given any nonempty open subset } V \subset G \text{ there are}
infinitely many } n \in \mathbb{N} \text{ with } D(0, \rho_n) \subset (\Phi_n(D)f)(V)\} \). If \(\{D(w_j, \varepsilon_j) : j \in \mathbb{N}\} \)
is the set of all open disks contained in \(G \) having rational radii and centers with
rational coordinates, then it is an open basis for G and

$$M = \bigcap_{j \in \mathbb{N}} H(w_j, \varepsilon_j).$$

Since $H(G)$ is a Baire space and each $H(w_j, \varepsilon_j)$ is residual, we conclude that M is residual, as required.

// // //

Remarks.

1. Observe that the “high order” coefficients of the functions Φ_n do not appear in condition (2) of Theorem 2.

2. We have put $m(n) + 1$ instead of $m(n)$ on some denominators in condition (2) in order to avoid that such denominators can be zero.

3. The statement of Theorem 2 holds for $G = \mathbb{C}$ if the word “subexponential” is replaced to “exponential” (see Section 1). The same is true for Theorems 3,4 below.

4. Theorem B is a special case of Theorem 2: Take $G = \mathbb{C}$, $\Phi_n(z) = z^n$ $(n \in \mathbb{N})$. Note that here $\text{diam}(G) = \infty$, $m(n) = n$, $c_{m(n)}^{(n)} = 1$ and $c_{m(n)+1}^{(n)} = 0$ $(n \in \mathbb{N})$. Note also that, trivially, the hypothesis $\lim_{n \to \infty} \frac{n^{1/n}}{n} = 0$ in Theorem B is equivalent to

$$\max\{\limsup_{n \to \infty} \frac{n^{1/(n+1)}}{n^{1/n}} - 0\} \leq 0.$$

Next, we state an additional result in order to have large images under differential operators. This time, the result does not contain Theorem B as a special case. However, the sequence of multiplicities $(m(n))$ need not be bounded. Since the proof is parallel to that of Theorem 2, we will abridge it. Just one observation before giving the promise assertion: If $a \in \mathbb{C}$, then $\Phi(D)e_a = \Phi(a)e_a$, because
\[D^j e_a = a^j e_a \quad (j \geq 0). \]

THEOREM 3. Let \(G \) be a simply connected domain of \(\mathbb{C} \), \(\Phi_n(z) = \sum_{j=0}^{\infty} c_j^{(n)} z^j \) \((n \in \mathbb{N})\) nonconstant entire functions of subexponential type and \((\rho_n)\) an unbounded sequence of positive numbers. Denote by \(m(n) \) the multiplicity of \(\Phi_n \) for the zero at the origin. Suppose that the following conditions are fulfilled:

1. There exists a point \(c \in \mathbb{C} \setminus \{0\} \) with \(\Phi_n(c) \neq 0 \) for every \(n \in \mathbb{N} \) and
 \[
 \lim_{n \to \infty} \frac{\rho_n}{\Phi_n(c)} = 0.
 \]
2. \[
 \lim_{n \to \infty} \frac{\rho_n R^{m(n)}}{|c_m(n)| \cdot m(n)!} = 0 \quad \text{for every } R \in (0, \text{diam}(G)).
 \]
3. There exists a subset \(A \subset \mathbb{C} \) with at least one finite accumulation point such that \(\lim_{n \to \infty} \Phi_n(a) = 0 \) for all \(a \in A \).

Then the same conclusion of Theorem 2 holds.

Proof. Fix \(\varepsilon_0 > 0 \) with the property that \(|\frac{e^t - 1}{t}| > |c|/2 \) for all \(t \in D(0, \varepsilon_0) \), where \(c \) is the point provided by condition (1). This time we associate to every disk \(D(w, \varepsilon) \subset G \) (with \(0 < \varepsilon < \varepsilon_0 \)) the sequence of functions \((f_n) \) given by

\[
 f_n(z) = \frac{4 \rho_n}{c \varepsilon \cdot \Phi_n(c)} \cdot e^{c(z-w)} - 1 \quad (z \in \mathbb{C}).
\]

Then \(\Phi_n(D) g_n = f_n \), where we have denoted

\[
 g_n(z) = \frac{4 \rho_n}{c \varepsilon \cdot \Phi_n(c)} \cdot e^{c(z-w)} - \frac{4 \rho_n}{c \varepsilon \cdot c_m(n) \cdot m(n)!} \cdot (z - w)^{m(n)} \quad (z \in \mathbb{C}).
\]

Again the three conditions (a), (b), (c) in Theorem 1 are satisfied if we take \(X = H(G) = Y, T_n = \Phi_n(D), s_n = g_n \) \((n \in \mathbb{N})\) and \(D = \text{span}\{e_a : a \in A\} \). Indeed,
\(g_n \to 0 \ (n \to \infty) \) in \(H(G) \) by (1) and (2). On the other hand, if \(\varphi \in \mathcal{D} \), then there are finitely many complex constants \(c_1, \ldots, c_p \) and points \(a_1, \ldots, a_p \) in \(A \) such that \(\varphi = \sum_{j=1}^{p} c_j e_{a_j} \). Therefore \(T_n \varphi = \sum_{j=1}^{p} c_j T_n e_{a_j} = \sum_{j=1}^{p} c_j \Phi_n(a_j) e_{a_j} \to 0 \ (n \to \infty) \) by (3).

The remainder of the proof is similar to that of Theorem 2 as soon as one realizes that

\[
|f_n(z)| = \frac{4}{|c|\varepsilon} \rho_n |e^{z-w} - 1| \geq \frac{4}{\varepsilon} \rho_n \frac{|z-w|}{2} = 2\rho_n
\]

for every \(n \in \mathbb{N} \) and every \(z \in \partial D(w, \varepsilon) \).

We finish with a consequence of Theorems 2,3 for the iterates of a single differential operator \(\Phi(D) \). Observe that the operator generated by a punctual product \(\Phi(z) \ldots \Phi(z) \) (\(n \) times) is the compositional product \(\Phi(D) \circ \ldots \circ \Phi(D) \) (\(n \) times), and that every \(\Phi^n \) is of subexponential type whenever \(\Phi \) is. The proof, which is left to the reader, is based upon the following three elementary facts about a non-constant entire function \(\Phi(z) = \sum_{j=0}^{\infty} c_j z^j \) with multiplicity \(m \) for the zero at the origin:

1) For every \(n \in \mathbb{N} \), \(mn \) is the multiplicity of \(\Phi^n \).

2) If \(\{c_j^{(n)} : j \geq 0\} \) is the sequence of Taylor coefficients of \(\Phi^n \), then \(c_{mn}^{(n)} = c_m^n \) and \(c_{mn+1}^{(n)} = nc_{m-1}^{n-1} c_{m+1} \).

3) For each \(r > 0 \), the sets \(A(r) = \{z \in \mathbb{C} : |\Phi(z)| < r\} \) and \(B(r) = \{z \in \mathbb{C} : |\Phi(z)| > r\} \) are nonempty and open. In particular, \(A(1) \) has at least one finite
acumulation point and $B(1 + |c_0|) \setminus \{0\}$ is not empty.

Observe again that c_m is the only coefficient relevant to the conclusion of the next result. Theorem 4 also contains Theorem B as a special case.

THEOREM 4. Let G be a simply connected domain of the complex plane, $\Phi(z) = \sum_{j=0}^{\infty} c_j z^j$ a nonconstant entire function of subexponential type with multiplicity m and (ρ_n) an unbounded sequence of positive numbers. Suppose that one of the following properties is satisfied:

(1) $c_0 \neq 0$ and $\limsup_{n \to \infty} \frac{\rho_n}{|c_0|^m} = 0$.

(2) $c_0 = 0$ and $\limsup_{n \to \infty} \frac{\rho_n^{1/n}}{n^m} \leq \left(\frac{m \cdot \text{diam}(G)}{e \cdot \text{diam}(G)} \right)^m \cdot |c_m|$.

Then the same conclusion of Theorem 2 holds.

Only a remark before the end. Fix $N \in \mathbb{N}$. By considering sequences of functions of the form $f_n(z) = \alpha(n, \varepsilon)(z - w)^N$ or of the form $f_n(z) = \alpha(n, \varepsilon)[e^{c(z-w)} - \sum_{j=0}^{N-1} \frac{c^j(z-w)^j}{j!}]$ ($n \in \mathbb{N}$), where c and $\alpha(n, \varepsilon)$ are appropriate constants, the interested reader (if any) could try to show that, under suitable conditions on the Taylor coefficients $c_j^{(n)}$ of the entire functions Φ_n (or on the coefficients c_j of a single Φ), there exists a residual subset $M \subset H(G)$ with the following property: for each member $f \in M$ and each nonempty open subset $V \subset G$, there are infinitely many $n \in \mathbb{N}$ for which the equation $f^{(n)}(z) = w$ has at least N solutions in V for every $w \in D(0, \rho_n)$.

16
REFERENCES

Luis Bernal-González
Departamento de Análisis Matemático
Facultad de Matemáticas
Avenida Reina Mercedes. Apartado 1160
41080 Sevilla (Spain)
E-mail: lbernal@cica.es