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In this paper a new sort of operators, the Taylor shifts, is introduced. They appear
as a generalization of weighted backward shifts on the spaces of entire functions
and of holomorphic functions in the unit disk. Necessary and sufficient conditions
for the existence of universal functions with respect to a sequence of such operators
are investigated. Several earlier results are derived as consequences.
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1. INTRODUCTION AND NOTATION

Let G denote an open subset of the complex plane C, N the set of positive integers,

No = N ∪ {0} and D the open unit disk in C. H(G) denotes, as usual, the space

of holomorphic functions on G, endowed with the topology of uniform convergence

on compact subsets. H(G) is a second-countable Fréchet space, so a Baire space.

In a Baire space X, a subset is residual when it contains a dense Gδ subset of X.

Such a subset is “very large” in X (see [9, pp.213-214 and 238] and [12, pp.40-

41]). If the complement of G in the extended plane C ∪ {∞} is connected, then

polynomials are dense in H(G) by Runge’s theorem (see [14, pp.288-291]). In
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particular, polynomials are dense in H(C) and H(D).

In [5] the following definition of universality is given: If X is a Fréchet space,

T is a continuous linear operator on X and x ∈ X, then the vector x is called

T–universal if its orbit {Tn(x) : n ∈ N} is dense in X (in [6] universal vectors

are called hypercyclic). It is obvious that T has a non-zero non-universal vector if

and only if X has a nontrivial T -invariant closed subset. We will also use a more

general notion of universality, which can be found in [7], namely: Let X and Y be

topological spaces and Tn : X → Y (n ∈ N) a sequence of continuous mappings.

Then an element x ∈ X is called {Tn}∞1 –universal if the set {Tn(x) : n ∈ N}

is dense in Y . Clearly, in order that universal vectors can exist in X, Y must be

separable.

In [5] Gethner and Shapiro used topological categories to obtain quick proofs

of existence of universal functions on some function spaces. For instance, they

strengthen MacLane’s theorem ([11]; see also [2]): There exist entire functions

(even a residual set of them) for which the sequence of successive derivatives is

dense in H(C). In fact, this result had been found by Duyos Ruiz [4] in 1984.

In [8] Große-Erdmann established the following sharp result on the growth of this

kind of functions: Given any function φ : (0,+∞) → (0,+∞) with φ(r) → ∞ as

r → ∞, there is an entire function f for which {f (n) : n ∈ No} is dense in H(C)

such that |f(z)| = O(φ(r) · exp r
r1/2

) as |z| = r → ∞, while there is no such a function

with |f(z)| = O( exp r
r1/2

).

In other order of ideas, the author and A. Montes-Rodŕıguez have recently

studied [1] the universality of a sequence of composition operators on H(G) defined

by a sequence of automorphisms on a plane domain G.

In [5] conditions are obtained for a backward shift on a Hilbert space to have
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universal vectors. For a survey of results on shift operators on Hilbert spaces, the

reader is referred to Shields’ survey article [15]. We point out that Bourdon [3]

has recently proved that if an arbitrary operator on a separable Banach space has a

universal vector, then there is a dense, invariant linear manifold consisting, except

for zero, entirely of universal vectors. In [6] the existence of a dense, invariant linear

submanifold each of whose non-zero elements is universal is proved by Godefroy and

Shapiro for differential operators other than the scalar multiples of the identity on

the Fréchet space of entire functions H(Cn) and for λS, where S is a generalized

backward shift on a Banach space and λ ∈ C is a scalar of sufficiently large modulus.

A generalized backward shift on a Fréchet spaceX is defined (see [6, pp.238 and 262])

as a bounded linear operator S on X obeying the following conditions: 1) the kernel

of S is one dimensional; 2) the set ∪{ker(Sn) : n = 0, 1, ...} is dense in X. This is

a generalization of Rolewicz’s theorem [13] which asserts that if B is the ordinary

backward shift on a separable Hilbert space relative to a fixed orthonormal basis

{ej}∞1 , i.e., B(
∑∞

j=1 ajej) =
∑∞

j=1 aj+1ej , then λB has a universal vector whenever

|λ| > 1. In the negative side, it is shown in [6, Section 5.4] that no scalar multiple

λB of the ordinary backward shift B defined on H(C) relative to the monomial

basis {zn}∞0 , i.e.,

f(z) =
∞∑
j=0

ajz
j 7→ Bf(z) =

f(z)− f(0)

z
=

∞∑
j=0

aj+1z
j ,

has universal functions.

Our aim in this paper is to present a new class of operators on H(C) and H(D),

namely, the Taylor shifts, and show under what conditions they have universal

functions. They appear as a generalization of weighted backward shifts relative

to the latter basis. The differentiation operator Tf = f ′ is a special case. Our

theorems extend several earlier results. Several problems are proposed in the last
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section.

2. A SUFFICIENT CONDITION FOR UNIVERSALITY

We now present a slight improvement of a result about universality given in [5, 6,

8 and 10]. The hypotheses on the spaces X and Y are the same as in [8], but the

conditions on the operators are weaker. Furthermore, we do not use any product

spaces in our proof.

THEOREM 2.1 Let X be a linear topological space that is a Baire space, Y a linear

topological space that is second-countable, D ⊂ X dense in X, D′ ⊂ Y dense in

Y and Tn : X → Y (n ∈ N) a countable family of continuous linear mappings

satisfying the following condition:

(C) For every d ∈ D and every d′ ∈ D′ there exist a sequence {xp :

p ∈ N} ⊂ X and positive integers n1 < n2 < n3 < . . . such that

xp → 0, Tnp(d) → 0 and Tnp(xp) → d′ (p → ∞).

Then the set of {Tn}∞1 –universal vectors of X is residual.

Proof Let {Vm : m ∈ N} be a countable basis for the topology of Y . Denote

by E the set

E = {x ∈ X : {Tn(x) : n ∈ N} is dense in Y }.

We have to prove that E is residual. But we can rewrite E as

E =
∩

{Hm : m ∈ N}

where

Hm =
∪

{T−1
n (Vm) : n ∈ N}.
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Clearly, each Hm is open and E is Gδ. Thus, it suffices to show that Hm is dense.

For this, fix a nonempty open subset S ⊂ X and choose a ∈ X, b ∈ Y , A ⊂ X,

B ⊂ Y such that a+ A + A ⊂ S, b+ B + B + B ⊂ Vm and A (B, respectively) is

a neighborhood of the origin of X (of Y , respectively). By hypothesis, we can find

d ∈ D and d′ ∈ D′ with d ∈ a+A and d′ ∈ b+B. We apply (C) on these elements

d, d′:

There is p ∈ N such that xp ∈ A, Tnp(d) ∈ B and Tnp(xp) ∈ d′ + B. Define

x ∈ X by x = xp + d. Then x ∈ d + A ⊂ a + A + A ⊂ S and Tnp(x) = Tnp(xp) +

Tnp
(d) ∈ d′ +B +B ⊂ b+B +B +B ⊂ Vm. Hence x ∈ S ∩Hm and Hm is dense.

3. TAYLOR SHIFTS

Let E be either of the spaces H(C) or H(D). We have to distinguish these two

cases in the definition. If f ∈ E and R > 0 (with R < 1 if E = H(D)), we denote

||f ||R = sup{|f(z)| : |z| ≤ R}.

DEFINITION 3.1 An operator T : E → E is said to be a Taylor shift if there are

two functions m : No → No and α : No → C satisfying:

1) m is injective.

2) There exists a constant β ∈ (0,∞) such that m(j) ≥ βj ∀j ∈ N if E = H(C)

(such that m(j) ≤ βj ∀j ∈ N if E = H(D)).

3) The sequence {|α(j)|1/j : j ∈ N} is bounded if E = H(C) (has a lim sup not

greater than 1 if E = H(D)).

4) If f ∈ E and f(z) :=
∑∞

j=0 ajz
j, then

Tf(z) :=
∞∑
j=0

α(j)am(j)z
j . (1)
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If T is as in the definition, we denote T = τ(m,α). The ordinary backward

shift is τ(m,α) with m(j) = j + 1, α(j) = 1. The ordinary derivative operator

Tf = f ′ is the Taylor shift τ(m,α) with m(j) = j + 1, α(j) = j + 1.

THEOREM 3.2 Let T = τ(m,α) be a Taylor shift. Then:

a) T is well defined, that is, the series in (1) converges at every z ∈ C or D for

each f ∈ E.

b) T is linear and continuous.

Proof a) Let f(z) :=
∑∞

j=0 ajz
j ∈ E. Assume that E = H(C). We must

prove that the convergence radius of the series in (1) is infinite or, equivalently,

lim
j→∞

|α(j)am(j)|1/j = 0. There exists a constant A ∈ (0,∞) with |α(j)| ≤ Aj for all

j ∈ N. Since |am(j)|1/m(j) → 0 (j → ∞) we have, for j large enough,

|α(j)am(j)|1/j = |α(j)|1/j(|am(j)|1/m(j))m(j)/j ≤ A(|am(j)|1/m(j))β ,

and the right hand side tends to zero when j → ∞.

Assume that E = H(D). We must prove that the convergence radius of the

series in (1) is not less than one or, equivalently: Given µ > 1, |α(j)am(j)| <

µ(1+β)j for j large enough. But |α(j)| < µj and |am(j)| < µm(j) for j large enough.

Consequently, |α(j)am(j)| < µj+m(j) ≤ µ(1+β)j for j large enough.

b) The linearity of T is trivial. Let us show the continuity. Fix R ∈ (0,∞)

(with R < 1 if E = H(D)). We must find M,S ∈ (0,∞) (with S < 1 if E = H(D))

such that

||Tf ||R ≤ M ||f ||S (∀f ∈ E).

If f(z) =
∑∞

j=0 ajz
j and |z| ≤ R, then |Tf(z)| ≤

∑∞
j=0 |α(j)||am(j)|Rj . Assume
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that E = H(C). If A is a constant as in the proof of a), then

|Tf(z)| ≤
∞∑
j=0

|am(j)|(AR)j ≤
∞∑
j=0

|am(j)|(1 +AR)j

≤
∞∑
j=0

|am(j)|(1 +AR)m(j)/β ≤
∞∑
j=0

|aj |(1 +AR)j/β ,

because m is injective. If S = (2 +AR)1/β then, by Cauchy’s inequalities,

|aj | ≤
||f ||S
Sj

(∀j ∈ No).

Thus

||Tf ||R ≤
∞∑
j=0

||f ||S
(
1 +AR

2 +AR

)j/β

= M ||f ||S ,

as required, where

M =

(
1−

(
1 +AR

2 +AR

)1/β
)−1

.

Assume that E = H(D). Fix A ∈ (1, 1/R). There is jo ∈ N such that

|α(j)| < Aj (∀j > jo). Then

|Tf(z)| ≤
jo∑
j=0

|α(j)am(j)|Rj +

∞∑
j=jo+1

|am(j)|(AR)j ≤ max
0≤j≤jo

|α(j)|
jo∑
j=0

|am(j)|+

∞∑
j=jo+1

|am(j)|(AR)m(j)/β ≤ max
0≤j≤jo

|α(j)|
jo∑
j=0

|am(j)|+
∞∑
j=0

|aj |(AR)j/β ,

because AR < 1 and m is injective. We apply again Cauchy’s inequalities to obtain

||Tf ||R ≤ M ||f ||S ,

as required, where

M = jo max
0≤j≤jo

|α(j)|
(

2

1 +AR

)max0≤j≤j0
m(j)/β

+

(
1−

(
2AR

1 +AR

)1/β
)−1
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and

S =

(
1 +AR

2

)1/β

.

The next theorem shows that, under a smooth hypothesis just in the case

E = H(C), compositions of Taylor shifts are Taylor shifts too. It also shows how

to generate Taylor shifts linearly from two ones. Its proof is straightforward and

left to the reader.

THEOREM 3.3 Let T = τ(m,α) and S = τ(m∗, α∗) be two Taylor shifts. Assume

that λ, µ ∈ C. Then:

a) λτ(m,α) + µτ(m,α∗) is the Taylor shift τ(m,λα+ µα∗).

b) If E = H(D), S ◦ T is the Taylor shift τ(m ◦m∗, α∗ · (α ◦m∗)).

c) If E = H(C) and the sequence {|α(m∗(j))|1/j : j ∈ N} is bounded, S ◦ T is the

Taylor shift τ(m ◦m∗, α∗ · (α ◦m∗)).

COROLLARY 3.4 Let T = τ(m,α) be a Taylor shift on E and n ∈ N. Denote m0

= the identity on No, m
n = m ◦m ◦ ... ◦m, Tn = T ◦ T ◦ ... ◦ T (n times). Then:

a) If E = H(D), Tn is the Taylor shift τ(mn,
∏n−1

k=0 α ◦mk).

b) If E = H(C) and each sequence {|α(mk(j))|1/j : j ∈ N} (k = 0, 1, ..., n − 1) is

bounded, Tn is the Taylor shift τ(mn,
∏n−1

k=0 α ◦mk).

For instance, every power Bn of the ordinary backward shift B and every n-

derivative operator f 7→ f (n) are Taylor shifts τ(m,α), with m(j) = j+n, α(j) = 1

and m(j) = j + n, α(j) = (j + 1)(j + 2) · ... · (j + n), respectively.

4. EXISTENCE OF UNIVERSAL FUNCTIONS

We study in this paragraph necessary and sufficient conditions for a Taylor shift to
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have universal functions. A necessary one is provided by the following theorem.

THEOREM 4.1 Let {Tn = τ(mn, αn) : n ∈ N} be a sequence of Taylor shifts

satisfying:

1) lim inf
n→∞

(inf{mn(j)− j : j ∈ No}) > 0.

2) The set {|αn(j)|1/(1+mn(j)) : j ∈ No, n ∈ N} is bounded if E = H(C) (bounded

by a constant less than one if E = H(D)).

Then {Tn}∞1 is an equicontinuous family of operators. In particular, there is

no {Tn}∞1 –universal function in E.

Proof Firstly, assume that E = H(C). If we let V (R, ε) = {f ∈ E : ||f ||R <

ε}, then {V (R, ε) : R, ε > 0} is a fundamental system of neighborhoods of the

origin for E. Fix ε > 0 and R > 0. Let f(z) :=
∑∞

j=0 ajz
j ∈ V (S, δ) with S, δ > 0.

If |z| ≤ R, then

|Tnf(z)| ≤
∞∑
j=0

|αn(j)amn(j)|R
j .

By hypothesis, there exist γ, ρ ∈ (0,+∞) and N ∈ N such that |αn(j)| ≤ γ1+mn(j)

(∀j ∈ No, ∀n ∈ N) and mn(j) ≥ j + ρ (∀j ∈ No, ∀n ≥ N). Now, Cauchy’s

inequalities say us that |ak| ≤ ||f ||S/Sk (∀k ∈ No), so

|Tnf(z)| ≤
∞∑
j=0

γ1+mn(j)
||f ||S
Smn(j)

Rj

and, if S > γmax{1, R} and n ≥ N ,

|Tnf(z)| ≤ γ||f ||S
∞∑
j=0

Rj

(S/γ)mn(j)
≤ γ||f ||S

∞∑
j=0

Rj

(S/γ)j+ρ

=
γ||f ||S
(S/γ)ρ

∞∑
j=0

(
γR

S
)j ≤ γ1+ρ

Sρ−1(S − γR)
||f ||S .

9



Hence we get
∪

n≥N

Tn(V (S, δ)) ⊂ V (R, ε) just by taking S ∈ (γmax{1, R},+∞) and

δ ∈ (0, ε(S−γR)Sρ−1

γ1+ρ ). Consequently, {Tn}∞N is equicontinuous. So, {Tn}∞1 is too.

The proof for the case E = H(D) runs over the same steps excepting that here

R and γ are less than one and S should be chosen in the interval (γ, 1), which in

turn guarantees S > γR too.

Remark We have put 1+mn(j) instead of mn(j) in condition 2) just in order

to avoid the denominator of the exponent of |αn(j)| can be zero.

Theorem 4.1 enables us to obtain as an easy corollary the result on a scalar

multiple λB of the ordinary backward shift B stated in the introduction [6, Section

5.4]. It suffices to take αn(j) = λn, mn(j) = j + n (∀j ∈ No, ∀n ∈ N).

The next theorem gives us a sufficient condition for universality. It, indeed,

provides a residual set of universal functions. Alternatively, it may be regarded as

a “H(C)− or H(D)−version” of Rolewicz’s theorem [13]. The new conditions 1)

and 2) are formally similar to those in Theorem 4.1 but, of course, they point at

the opposite direction.

THEOREM 4.2 Let {Tn = τ(mn, αn) : n ∈ N} be a sequence of Taylor shifts

satisfying:

1) lim
n→∞

(inf{mn(j) : j ∈ No}) = +∞.

2) For each q ∈ No, the sequence { min
0≤j≤q

|αn(j)|1/(1+mn(j)) : n ∈ N} is not bounded.

Then the set of all functions of E which are {Tn}∞1 –universal is residual.

Proof We apply Theorem 2.1 to X = Y = E, D = D′ = {polynomials}. Let

P be a polynomial. From 1) there exists no ∈ N such that mn(j) > degree(P ) for

all j ∈ No and all n > no. Then Tn(P ) = 0 for all n > no. Now fix a polynomial
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Q with degree(Q) = q, say

Q(z) =

q∑
j=0

bjz
j .

By 2), there exists a sequence of positive integers n1 < n2 < n3 < ... with the

following property: Given ε ∈ (0, 1) and R ∈ (0,∞) (with R < 1 if E = H(D)),

there is po ∈ N such that

|βp(j)|1/(1+qp(j)) >
R

ε

for all p > po and all j ∈ {0, 1, ..., q}, where we have set

βp = αnp and qp = mnp .

Then

|βp(j)| >
(
R

ε

)1+qp(j)

≥ Rqp(j)

ε
R (j = 0, 1, ..., q; p > po).

Hence

max
0≤j≤q

Rqp(j)

|βp(j)|
−→ 0 (p → ∞) (2)

for all R > 0 (with R < 1 if E = H(D)).

Define fp (p ∈ N) by

fp(z) =

q∑
j=0

bj
βp(j)

zqp(j).

Then fp ∈ E (in fact, it is a polynomial) for all p ∈ N and (2) shows that ||fp||R → 0

(p → ∞) for all R > 0 (with R < 1 if E = H(D)). Finally,

Tnpfp(z) =
∞∑
j=0

βp(j)
bj

βp(j)
zj = Q(z)

for all p ∈ N and all z ∈ C or D.

We summarize: Given P ∈ D and Q ∈ D′, we have found sequences n1 < n2 <

. . . and {fp : p ∈ N} ⊂ E with fp → 0, Tnp(fp) → Q and, obviously, Tnp(P ) → 0
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(p → ∞). Consequently, condition (C) in Theorem 2.1 is satisfied and the proof is

complete.

We conclude with two concrete examples.

Examples a) The n-derivative operators Tn = τ(mn, αn) are Taylor shifts and

satisfy hypotheses 1) and 2) in Theorem 4.2, because lim
n→∞

(inf{mn(j) : j ∈ No}) =

lim
n→∞

(inf{j + n : j ∈ No}) = lim
n→∞

n = +∞ and, for each q ∈ No,

lim
n→∞

( min
0≤j≤q

|αn(j)|1/(1+mn(j)) = lim
n→∞

( min
0≤j≤q

|(j + 1)(j + 2) · ... · (j + n)|1/(1+j+n))

≥ lim
n→∞

(n!)1/(1+q+n) ≥ lim
n→∞

(
n

e
)n/(n+q+n) = +∞. Hence, we recover the extension

of MacLane’s theorem given in [4] and [5].

b) Theorem 4.2 allows much play. For instance, there exists a residual set of func-

tions f ∈ E whose orbits {Tn(f) : n ∈ N} are dense in E, where Tn : E → E is the

operator defined as

f(z) =

∞∑
j=0

ajz
j 7→ Tnf(z) =

∞∑
j=0

nn2 logn

n+ j
a2j+n2zj .

5. FINAL REMARKS AND OPEN PROBLEMS

1) We propose the obvious problem of filling in the lack between theorems 4.1

and 4.2: Which are the sharp conditions on sequences {mn}∞1 and {αn}∞1 for the

sequence {τ(mn, αn)}∞1 to be equicontinuous (to have universal functions, respec-

tively)?

2) We point out here that a Taylor shift need not be a generalized backward shift

in the sense of Godefroy and Shapiro [6] (see Introduction), so their method cannot

be used to furnish a linear manifold of universal vectors for {Tn}∞1 , even in the case

that {Tn}∞1 consists of the iterates of a Taylor shift.
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3) In relation to Große-Erdmann’s result [8] (see Introduction), it would be inter-

esting to know which is the lowest growth allowed for an entire function f in order

to be universal for a sequence of Taylor shifts on H(C) (the sequence of derivative

operators is a special case).

4) A weaker property than universality, namely, cyclicity, might also be studied: Is

there a {Tn}∞1 −cyclic function in E, that is, a function f ∈ E such that the linear

span of {Tn(f) : n ∈ N} is dense in E?
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