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Abstract

We show that exponential growth is the critical discrete rate of
growth for zero-free entire functions which are universal in the sense
of MacLane. Specifically, it is proved that if the lower exponential
growth order of a zero-free entire function f is finite, then f cannot be
hypercyclic for the derivative operator; and, if a positive function ϕ
having infinite exponential growth is fixed, then there exist zero-free
hypercyclic functions which are controlled by ϕ along a sequence of
radii tending to infinity.
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1 Introduction

In 1952 MacLane [23] proved the existence of an entire function whose se-
quence of derivatives is dense in the space of entire functions. A large num-
ber of related results have been published from his finding. Among them,
one can find several statements dealing with combinations of the mentioned
density with other special properties, such as rate of growth or absence of
zeros, see below. Our aim in this paper is to contribute in this research by
considering all three properties simultaneously.
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In the next paragraphs we will settle the pertinent terminology, notation
and framework, and make a brief account of results.

If G is a domain in the complex plane C, by H(G) we denote, as
usual, the space of holomorphic functions on G endowed with the topol-
ogy of convergence in compacta. Then H(G) is a Polish space, that is,
it is separable and completely metrizable. In the special case G = C we
obtain the space H(C) of entire functions. The extended complex plane
is C∞ := C ∪ {∞}. If a ∈ C and r > 0, then D(a, r) and D(a, r)
will stand, respectively, for the open disk and the closed disk with cen-
ter a and radius r. If f ∈ H(C), its maximum modulus function is de-
fined as M(f, r) = max{|f(z)| : z ∈ D(0, r)} (r > 0). For a function
ϕ : (0,+∞) → (0,+∞) with limr→∞ ϕ(r) = ∞, the exponential growth
order and the lower exponential growth order are respectively defined by

ρ(ϕ) = lim supr→∞
log logϕ(r)

log r
and ρ̃(ϕ) = lim infr→∞

log logϕ(r)

log r
. Ob-

serve that ρ(ϕ) = inf{µ > 0 : there is r0 = r0(µ) > 0 such that ϕ(r) < er
µ

for all r > r0}, while ρ̃(ϕ) = sup{µ > 0 : there is r0 = r0(µ) > 0 such
that ϕ(r) > er

µ
for all r > r0}. Note specially that ρ̃(ϕ) = +∞ if and

only if limr→∞
ϕ(r)

erk
= +∞ for all k ≥ 1. The same concepts for an entire

function f are defined by ρ̃(f) = ρ̃(M(f, ·)) and ρ(f) = ρ(M(f, ·)) (with
ρ̃(f) := 0 =: ρ(f) if f is constant), see [11].

As for universality, [18] and [5] are excellent surveys. Assume that X
and Y are topological spaces. Then a sequence Tn : X → Y (n ≥ 1) is called
universal whenever there is a point x0 ∈ X –called universal for (Tn)– such
that the orbit {Tnx0 : n ≥ 1} of x0 under (Tn) is dense in Y . The set of
universal elements for (Tn) is denoted by U((Tn)). If X = Y and X is a
topological vector space, then an operator T on X (that is, T : X → X is
a continuous linear selfmapping) is said to be hypercyclic provided that the
sequence (T n) of iterates (T 1 := T , T 2 = T ◦ T and so on) is universal; in
this case the corresponding universal vectors are called hypercyclic for T .
The symbol HC(T ) will stand for the set of such hypercyclic vectors.

In the latter terminology, MacLane’s theorem tells us that the derivative
operator D : f ∈ H(C) → f ′ ∈ H(C) is hypercyclic. In fact, he proved in
[23] that there are D-hypercyclic functions of exponential type τ(f) = 1.
Recall that τ(f) = inf{µ > 0 : there is r0 = r0(µ) > 0 such that M(f, r) <
eµr for all r > r0}. Duyos-Ruiz [16] noted in 1984 that no D-hypercyclic
function f with τ(f) < 1 can exist. Herzog [20] showed in 1988 the existence
of a D-hypercyclic function growing not faster than rer. In 1990, Grosse-
Erdmann proved the next sharp statement about the growth of MacLane-
universal entire functions, see [17].
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Theorem 1.1. There is no D-hypercyclic entire function such that |f(z)| =
O(er/

√
r) as r →∞. However, given any function ϕ : (0,+∞)→ (0,+∞)

with ϕ(r) → ∞ as r → ∞, the set of D-hypercyclic functions f with
|f(z)| = O(ϕ(r)er/

√
r) as r →∞ is dense in H(C).

Corresponding results about harmonic functions on RN , shift operators
on H(C) and certain differential operators on H(C) can be found in [1,2], [19,
Section 6] and [9,15], respectively. The growth of entire functions presenting
the stronger property of frequent hypercyclicity (for D) introduced by Bayart
and Grivaux [4] is considered in [12], [10] and [13].

In 1994, Herzog [21] demonstrated the existence of zero-free entire func-
tions which are universal for D (even with zero-free first derivative; see
extensions to differential operators in [7] and [8]). The study of permissible
rates of growth of D-hypercyclic zero-free entire functions seems to be new,
and we initiate it in this note. We show that exponential growth is the
critical discrete rate of growth for these functions. Specifically, it is proved
that if the lower exponential growth order of a zero-free entire function f
is finite, then f cannot be hypercyclic for the derivative operator; and, if a
positive function ϕ having infinite exponential growth is fixed, then there
exist zero-free hypercyclic functions which are controlled by ϕ along a se-
quence of radii tending to infinity, see Section 3. Section 2 will be devoted
to give some instrumental assertions.

2 Preliminary results

We are going to state three statements that will be crucial in the proof
of our main result. The first one (Theorem 2.1) comes from G. Pólya ([25],
see also [26]) and concerns the dynamics of zeros of derivatives. The second
one (Theorem 2.3) is due to G. Herzog [21] and provides a useful criterion
for induced universality. Finally, the third statement is the so-called Borel-
Carathéodory inequality (Theorem 2.4), see for instance [22, pp. 53–54].

Definition 2.1. If f ∈ H(C), then the final set Lf of f is the set of all
points z0 ∈ C∞ satisfying the following property: every neighborhood of z0

contains zeros of infinitely many of the functions f (n) (n ≥ 1).

Theorem 2.1. If f(z) = p(z)eq(z), where p and q are polynomials with
degree(q) ≥ 2 then Lf consists of degree(q) equally spaced rays emanating
from one point.

We insert here an elementary lemma which will be used later. Note that
F might be, for instance, the family of translations z 7→ z + a (a ∈ C).
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Lemma 2.2. Assume that f is an entire function for which there exists a
family F ⊂ H(C) satisfying the following properties:

(a) F ⊂ {f (n) : n ≥ 1}.
(b) There is a dense subset D of C such that, for every z0 ∈ D, there exists

ϕ ∈ F \ {0} with ϕ(z0) = 0.
Then Lf is maximal, that is, Lf = C∞. In particular, Lf is maximal if f is
D-hypercyclic.

Proof. Let z0 ∈ D. According to (b), we can select a function ϕ ∈ F \ {0}
with ϕ(z0) = 0. Consider an open neighborhood V of z0. Without loss of
generality we may assume that V = D(z0, R) for some R > 0 and that z0 is
the unique point of V where ϕ vanishes. Set ε := min|z−z0|=R/2 |ϕ(z)| > 0.
By (a), there exists a strictly increasing sequence {kn} of positive integers
such that

sup
z∈D(z0,

R
2

)

|f (kn)(z)− ϕ(z)| < ε

for every n = 1, 2, . . .. A straightforward application of Rouché’s theorem [3]
shows that V contains at least one zero of each function f (kn) and therefore
z0 ∈ Lf . Hence D ⊂ Lf . But Lf is clearly closed in C∞, so Lf = C∞.

Now, we are going to see that under appropriate conditions the univer-
sality of a sequence (Tn) can be transmited to the sequence (Tn|A) of its
restrictions to a Gδ-subset A ⊂ X. Recall that, by Alexandroff’s theorem
(see [24]), a subset A of a completely metrizable topological space X is
completely metrizable (so Baire) whenever A is Gδ.

Theorem 2.3. Assume that X is a Polish space and Y is a separable
metrizable space. Let dX , dY be distances inducing the topologies of X, Y ,
respectively. Let {Ak}k≥1 be a sequence of open subsets of X with A =⋂∞
k=1 Ak 6= ∅. Suppose that Tn : X → Y (n ≥ 1) is a sequence of continuous

mappings satisfying that U((Tn)) is residual in X. If

lim
k→∞

sup
n≥1

inf
z∈A

(dX(ak, z) + dY (Tnak, Tnz)) = 0

for every sequence (ak)k≥1 with ak ∈ Ak (k = 1, 2, ...), then U((Tn|A)) is
residual in A.

Theorem 2.4. Let f be analytic on D(0, R). Then for 0 < r < R we have

M(f, r) ≤ R + r

R− r
( max
|z|=R

Ref(z) + |f(0)|).
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3 Main result

We start with the following two lemmas. The first one prevents certain
functions to be MacLane-universal, while the second one –which might be of
some interest in itself– gives a sufficient condition for induced universality
on the space of analytic functions.

Lemma 3.1. If f(z) = p(z)eq(z), where p and q are polynomials, then f /∈
HC(D).

Proof. If degree(q) ≥ 2, simply combine Theorem 2.1 and Lemma 2.2. Sup-
pose now that degree(q) ≤ 1. Then f(z) = p(z)eaz+b for some a, b ∈ C. By
induction, it can be seen that f (n)(z) = pn(z)eaz+b, where pn is a polynomial
with degree(pn) ≤ degree(p). Therefore {f (n) : n ≥ 1} ⊂ M , where M is a
finite-dimensional (so closed) subspace of H(C). Hence {f (n)}n≥1 cannot be
dense in H(C).

If G ⊂ C is a domain, the topology of H(G) is generated by the distance

d(f, g) =
∞∑
j=1

1

2j
‖f − g‖j

1 + ‖f − g‖j
,

where ‖h‖j = supz∈Kj |h(z)| (j ≥ 1, h ∈ H(G)) and (Kj) is a fixed exhaus-

tive sequence of compact subsets of G, that is, Kj ⊂ K0
j+1 (S0 denotes the

interior of S) and G =
⋃∞
j=1Kj.

Lemma 3.2. Let (Ak) be a sequence of subsets of G whose intersection
A :=

⋂∞
k=1Ak is nonempty. Suppose that Tn : H(G) → H(G) (n ≥ 1) is

a sequence of continuous mappings such that U((Tn)) is residual in H(G).
Assume that the following conditions are fulfilled:

(i) For every k ≥ 1 and every f ∈ Ak there exist a domain Ω = Ω(k, f) ⊃
Kk and a sequence (hm) ⊂ A such that hm → f (m → ∞) uniformly
on compacta in Ω.

(ii) For every n ≥ 1, every domain Ω ⊂ G, every sequence (fm) ⊂ H(G)
and every function f ∈ H(G), we have:

fm → f in H(Ω) =⇒ Tnfm → Tnf in H(Ω).

Then U((Tn|A)) is residual in A.

Proof. Let us apply Theorem 2.3. Choose X := H(G) =: Y and dX := d =:
dY . Let (fk) ⊂ H(G) be a sequence with fk ∈ Ak (k ≥ 1). Fix k ≥ 1 and
consider f := fk. By (i), there are a domain Ω ⊃ Kk and a sequence (hm) ⊂
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A such that hm → f compactly in Ω. From (ii), Tnhm → Tnf compactly in
Ω for each n. In particular, we obtain that limm→∞ ||Tnhm − Tnf ||k = 0.

Hence limm→∞(||hm−f ||j+||Tnhm−Tnf ||j) = 0 for every n ≥ 1 and every
j ∈ {1, 2, ..., k}. Given δ > 0, a positive integer m = m(δ, n, k) can be found
in such a way that ||hm− f ||j + ||Tnhm−Tnf ||j < δ or all j ∈ {1, . . . , k}, so

d(f, hm) + d(Tnf, Tnhm) <
k∑
j=1

δ

2j
+

∞∑
j=k+1

1

2j
+

∞∑
j=k+1

1

2j
= δ + 21−k.

Then infh∈A(d(f, h) + d(Lnf, Lnh)) < δ + 21−k for all δ > 0 and all n ≥ 1.
Therefore we get

sup
n≥1

inf
h∈A

(d(fk, h) + d(Tnfk, Tnh)) ≤ 21−k → 0 (k →∞).

Consequently, the conditions in Theorem 2.3 are fulfilled, so obtaining the
residuality of U((Tn|A)) in A.

Remark 3.3. Condition (ii) in the preceding lemma is a kind of “superconti-
nuity” for each Tn. This property is satisfied, for instance, by the differential
operators Φ(D), with Φ an entire function of subexponential type (see for
instance [6] or [7, Theorem 4]). In particular, (ii) is satisfied by the se-
quence Tn := Dn (n ≥ 1). Recall that an entire function is said to be of
subexponential type τ(f) = 0. Operators Φ(D) with Φ nonconstant and of
subexponential type are hypercyclic on H(G) for any domain G ⊂ C (see
[8]). Godefroy and Shapiro had demonstrated in 1991 the hypercyclicity of
Φ(D) on H(C) for every nonconstant entire function Φ of exponential type
(i.e. with τ(Φ) < +∞).

We are now ready to state our theorem.

Theorem 3.4. (a) There is no D-hypercyclic entire function f with finitely
many zeros satisfying ρ̃(f) < +∞.
(b) If ϕ : (0,+∞) → (0,+∞) is a function with ρ(ϕ) = +∞ (so if ρ̃(ϕ) =
+∞) then there is a D-hypercyclic zero-free entire function f such that

lim infr→∞
M(f, r)

ϕ(r)
< +∞.

Proof. Let us proof the negative part (a). Suppose, by way of contradiction,
that there is an entire function f ∈ HC(D) with finitely many zeros such
that ρ̃(f) < +∞. We set p(z) := 1 if f has no zeros, and p(z) := (z −
z1) · · · (z−zN) if z1, . . . , zN are the zeros of f (counting multiplicities). Since
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M(p, r) = 1 or M(p, r) ∼ rN (r → ∞), we also have ρ̃(g) < +∞, where
g := f/p. Observe that g is an entire function without zeros. Hence g = eh

for some h ∈ H(C). From ρ̃(g) < +∞ and |g| = eReh we derive the existence
of a natural number k and of a sequence 0 < R1 < R2 < · · · < Rn → ∞
such that

Reh(z) ≤ Rk
n (|z| = Rn; n = 1, 2, . . . ).

Let rn := Rn/2. By Theorem 2.4, we get

M(h, rn) ≤ 2rn + rn
2rn − rn

( max
|z|=Rn

Reh(z) + |h(0)|)

≤ 3(2krkn + |h(0)|) ≤ Crkn (n ≥ 1) (1)

for an appropriate constant C ∈ (0,+∞). Now, by Cauchy’s inequalities
and (1) we have for all n ≥ 1 that

|aj| ≤
M(h, rn)

rjn
≤ Crk−jn ,

where aj (j = 0, 1, 2, ...) are the MacLaurin coefficients of h. Letting n→∞
we get aj = 0 for all j > k. Thus h is a polynomial. Since f = peh, Lemma
3.1 tells us that f /∈ HC(D). This contradiction proves (a).

As for (b), assume that ϕ is as in the hypothesis. Then one can find a
sequence 0 < s1 < s2 < · · · < sn < · · · → ∞ satisfying

ϕ(sn) > es
n
n (n = 1, 2, . . . ). (2)

Consider the set

B := {zero-free entire functions} ∩ {f ∈ H(C) : lim inf
r→∞

M(f, r)

ϕ(r)
< +∞}.

Our aim is to show that B ∩ HC(D) 6= ∅. For this, it is enough to show
that A ∩ HC(D) 6= ∅, where A :=

⋂∞
k=1 Ak and Ak := {f ∈ H(C) :

f(z) 6= 0 for all z ∈ D(0, k) and there exists n = n(k, f) > k such that
|f(z)| < es

n
n for all z ∈ D(0, sn)}. Indeed, by (2) any function f ∈ A

satisfies lim infn→∞
M(f, sn)

ϕ(sn)
≤ 1, so A ⊂ B.

Observe that each Ak is an open set in H(C), so A is a Gδ-subset. In
order to apply Lemma 3.2, we choose G := C, Kn := D(0, n) and Tn := Dn

(n ≥ 1). Since D is hypercyclic on a completely metrizable space, we obtain
that U((Tn)) (= HC(D)) is residual in X (see [18]). Moreover, A 6= ∅; in
fact, every function eP with P polynomial belongs to A, because M(P, r) <
r1+degree(P ) asymptotically. Note also that A ∩HC(D) = U((Tn|A)).
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As said in Remark 3.3, condition (ii) in Lemma 3.2 is satisfied. Hence
our task is to demonstrate that (i) is also satisfied. To do this, fix k ≥ 1
and f ∈ Ak. Since D(0, k) is compact, there is ε > 0 such that f(z) 6= 0
for all z ∈ D(0, k + 2ε). By simple connectedness, we can find a function
g ∈ H(D(0, k + 2ε)) with f(z) = eg(z) on such disk. Select a sequence of
polynomials (Pm) tending uniformly to g on D(0, k+ε). From the inequality
|ez − ew| ≤ emax{Rez,Rew}|z − w| (z, w ∈ C) we get

lim
m→∞

sup
z∈D(0,k+ε)

|ePm(z) − eg(z)| = 0.

In particular, we have that ePm → f compactly in D(0, k + ε). Finally,
choose Ω := D(0, k + ε) and hm := ePm (m ≥ 1). Since hm ∈ A, we obtain
(i) and the theorem is proved.

Final remarks. 1. The special case of zero-free functions is included in
part (a) of Theorem 3.4. Trivially, (a) also holds if we replace “ρ̃(f) < +∞”
by “ρ(f) < +∞”. Furthermore, according to Remark 3.3 and the preceding
proof, part (b) of the theorem holds for Φ(D)-hypercyclic zero-free functions,
where Φ is a nonconstant entire function of subexponential type.

2. We want to pose here the following question: can the conclusion of (b)

be improved to lim supr→∞
M(f, r)

ϕ(r)
< +∞, that is, |f(z)| = O(ϕ(r)) as

|z| = r → ∞? Our conjecture is yes, at least if one reinforce the condition
on ϕ to ρ̃(ϕ) = +∞.

3. According to the results of Bourdon [14] on every hypercyclic operator
and of Shkarin [28] on the operator D, we obtain thanks to Lemma 2.2 that
the family of entire functions having maximal final set is dense-lineable (it
contains, except for zero, a dense vector subspace) and spaceable (it contains,
except for zero, a closed infinite dimensional vector subspace) in H(C).
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