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ABSTRACT

A characterization of ZZt × ZZ
2
2-cocyclic Hadamard matrices is described, de-

pending on the notions of distributions, ingredients and recipes. In particular,
these notions lead to the establishment of some bounds on the number and
distribution of 2-coboundaries over ZZt × ZZ

2
2 to use and the way in which they

have to be combined in order to obtain a ZZt × ZZ
2
2-cocyclic Hadamard matrix.

Exhaustive searches have been performed, so that the table in p. 132 in [4] is
corrected and completed. Furthermore, we identify four different operations
on the set of coboundaries defining ZZt × ZZ

2
2-cocyclic matrices, which preserve

orthogonality. We split the set of Hadamard matrices into disjoint orbits, de-
fine representatives for them and take advantage of this fact to compute them
in an easier way than the usual purely exhaustive way, in terms of diagrams.
Let H be the set of cocyclic Hadamard matrices over ZZt × ZZ

2
2 having a sym-

metric diagram. We also prove that the set of Williamson type matrices is a
subset of H of size |H|

t
.
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1. INTRODUCTION

Hadamard matrices are n× n square matrices H with entries in {1,−1} such that
every pair of rows (respectively, columns) are orthogonal, that is, HHT = nIn.

Due to this nice combinatorial property, Hadamard matrices have many appli-
cations in a wide variety of fields, such as Signal Processing, Coding Theory and
Cryptography (see [6] for details). Consequently, there is a real interest in knowing
enough Hadamard matrices for practical use.

It is a straightforward exercise to prove that the order of a Hadamard matrix has
to be 1, 2 or a multiple of 4 (as soon as three or more rows have to be simultaneously
orthogonal one to each other). Unfortunately, the Hadamard Conjecture about the
existence of these matrices for every order 4t remains unproved since the XIXth
Century.

Nowadays, there are three orders less than 1000 for which no Hadamard matrix
is known: 668 = 4 · 167, 716 = 4 · 179, and 892 = 4 · 223. Furthermore, there are 9
orders in the range [1000, 2000] for which no Hadamard matrix is known (see [6, 5]
for details).

One of the most promising techniques for constructing Hadamard matrices is the
cocyclic approach (see [7, 8, 6]). A cocyclic matrix Mf over a group G is a matrix
Mf = (f(g, h)), for f a 2-cocycle over G, that is, a function f : G ×G → {1,−1}
such that for every a, b, c ∈ G, f(a, b) · f(ab, c) · f(a, bc) · f(b, c) = 1.

Actually, many well known families of Hadamard matrices, such as Sylvester’s,
Paley’s, Williamson’s and Ito’s, have shown to be cocyclic over appropriate groups
(see [6] for details). This has provided inspiration for the Cocyclic Hadamard
Conjecture, which states that cocyclic Hadamard matrices exist for every order 4t.

In this paper we are interested in characterizing cocyclic Hadamard matrices
over ZZt × ZZ

2
2, which include the family of symmetric Williamson type Hadamard

matrices.
Following the indications of [1], we will describe bounds on the number of 2-

coboundaries over ZZt × ZZ
2
2 to be combined, as well as their distribution (in terms

of what we call ingredients and recipes), in order to construct a ZZt × ZZ
2
2-cocyclic

Hadamard matrix.
This information will allow us to design an exhaustive search for ZZt×ZZ

2
2-cocyclic

Hadamard matrices for 3 ≤ t ≤ 13, so that the table in p. 132 in [4] is corrected
and completed.

Next, we will introduce what we call diagrams, a visual representation of the
coboundaries which define a ZZt×ZZ

2
2-cocyclic matrix and we will study four different

operations on the set of coboundary matrices over ZZt×ZZ
2
2: complements, rotations,

swappings and dilatations. In particular, these operations extend to operations over
ZZt × ZZ

2
2-cocyclic matrices, which will be proved to preserve orthogonality. These

operations partition the set of ZZt ×ZZ
2
2-cocyclic matrices into disjoint orbits, which

can be easily computed once one element is known. Among all the elements of an
orbit, a representative can be chosen, in a standard way that will be made precise.

Finally, by applying these ideas to the task of searching for cocyclic Hadamard
matrices over ZZt × ZZ

2
2, we have been able to extend the table in p. 132 in [4]

for values of t in the range 3 ≤ t ≤ 23, and to explain the fact that the set of
symmetric Williamson type Hadamard matrices obtained from symmetric diagrams
is in proportion 1

t
with respect to the full set of ZZt×ZZ

2
2-cocyclic Hadamard matrices.
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We organize the paper as follows. Section 2 is dedicated to describe all about
ZZt × ZZ

2
2-cocyclic Hadamard matrices. In Section 3 we introduce the notions of

distribution, ingredients and recipes, in terms of which we find some upper and
lower bounds on the number of 2-coboundaries over ZZt × ZZ

2
2 which have to be

combined in order to get ZZt × ZZ
2
2-cocyclic Hadamard matrices, as well as the

way in which they have to be distributed, and the results obtained. Section 4 is
dedicated to the description of diagrams, after a discussion about the convenience
of using the whole set of coboundaries instead of the basis, in order to represent
ZZt × ZZ

2
2-cocyclic matrices. Section 5 defines four operations on ZZt × ZZ

2
2-cocyclic

matrices which preserve orthogonality, and which have a nice interpretation in
terms of diagrams. These operations split the set of ZZt × ZZ

2
2-cocyclic Hadamard

matrices into disjoint orbits, which can be generated from any of their elements
(for instance by its representative). In Section 6 we focus on the case of ZZt × ZZ

2
2-

cocyclic Hadamard matrices obtained from symmetric diagrams, which in turn
permit counting the number of Williamson type Hadamard matrices. We also
include some final remarks and further work.

2. ZZt × ZZ
2

2
-COCYCLIC HADAMARD MATRICES

Consider the group G = ZZt×ZZ
2
2, a basis B = {∂2, . . . , ∂4t−2, β1, β2, γ} for 2-cocycles

over G is described in [2], and consists of 4t− 3 coboundaries ∂k, two cocycles βi

coming from inflation and one cocycle γ coming from transgression.
It has been observed that cocyclic Hadamard matrices over ZZt × ZZ

2
2 mostly

use all the three representative cocycles β1, β2 and γ simultaneously (see [4] for
details). We will assume that every cocyclic matrix M is obtained as a product
M = M∂i1

. . .M∂iw
·R, for 2 ≤ i1 < . . . < iw ≤ 4t− 2, where R = Mβ1 ·Mβ2 ·Mγ .

Here M∂i
refers to the generalized coboundary matrix associated to the ith-

element in G, with the ith-row and the ith-column negated, as introduced in [2].
In particular, there are three coboundary matrices which are not in B: M∂1 ,

M∂4t−1 and M∂4t . Consequently, every ZZt×ZZ
2
2-cocyclic matrix Mf using R may be

expressed as a pointwise product of matrices in {M∂1 , . . . ,M∂4t} in 8 different ways,
just one of which does not use any of M∂1 , M∂4t−1 and M∂4t (and gives precisely
the expression of Mf as a linear combination of elements in B). Actually, suppose

that Mf = R ·
4
∏

k=1

∏

ij∈Jk

M∂ij
, where Jk ⊂ {1, . . . , 4t} is a subset of indexes which

are congruent to k modulo 4. Then Mf may be expressed as the pointwise product
of the coboundary matrices of indexes belonging to any of the following 8 sub-
sets: (J1, J2, J3, J4), (J̄1, J̄2, J3, J4), (J1, J̄2, J̄3, J4), (J1, J̄2, J3, J̄4), (J̄1, J2, J̄3, J4),
(J̄1, J2, J3, J̄4), (J1, J2, J̄3, J̄4), (J̄1, J̄2, J̄3, J̄4), where J̄k = {k+4i : 0 ≤ i ≤ t−1}\Jk
denotes the complementary subset of Jk.

It is known that a cocyclic matrix is Hadamard if and only if the summation
of each row but the first is zero (this is the cocyclic Hadamard test, see [8, 4] for
instance). Furthermore, as proved in [1], a ZZt ×ZZ

2
2-cocyclic matrix is Hadamard if

and only if the summation of each of the rows from 5 to 2t+2 is 0, and an equivalent
characterization of the cocyclic Hadamard test may be described in terms of n-paths
(cn) and n-intersections (In) (the interested reader is referred to [1] for a precise
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definition about paths and intersections). In particular, the following result derives
straightforwardly from the work in [1].

Proposition 2.1. For ZZt × ZZ
2
2-cocyclic matrices:

1. the summation of a row n ≡ 1 mod 4 is zero if and only if

cn = t, (1)

2. the summation of a row n ≡ 0, 2, 3 mod 4 is zero if and only if

cn = In. (2)

In the following section we analyze the number cn of n-paths of a ZZt×ZZ
2
2-cocyclic

matrix. Focusing in rows n ≡ 1 mod 4, we will obtain upper and lower bounds on
the number of coboundaries to combine in order to get a ZZt×ZZ

2
2-cocyclic Hadamard

matrix. Furthermore, we will characterize the distribution of these coboundaries in
terms of ingredients and recipes.

3. DISTRIBUTIONS, INGREDIENTS AND RECIPES

Firstly, we analyze the way in which n-paths are generated on ZZt × ZZ
2
2-cocyclic

matrices, depending on the value of n modulo 4.

Lemma 3.1. Characterization of n-paths of coboundaries on ZZt × ZZ
2
2-cocyclic

matrices:

1. If n ≡ 1 mod 4, M∂i−n+1 forms an n-path with M∂i
.

2. If n ≡ 2 mod 4, M∂
i−n+2−(−1)i

forms an n-path with M∂i
.

3. If n ≡ 3 mod 4, M∂
i−n+3−2(−1)

⌈ i mod 4
2

⌉
forms an n-path with M∂i

.

4. If n ≡ 0 mod 4, M∂
i−n+4+(−1)i(1−4(1−⌊ i mod 4

2
⌋))

forms an n-path with M∂i
.

Proof.
This may be checked by direct inspection.

Now we focus our attention on rows n ≡ 1 mod 4. From Lemma 3.1, it is clear
that n-paths consists of groups of coboundaries in the same coset modulo 4.

Lemma 3.2. Given 1 ≤ i 6= j ≤ 4t, i ≡ j mod 4, there exists one and only one
row n, 5 ≤ n ≤ 2t+ 2, n ≡ 1 mod 4, such that M∂i

and M∂j
form an n-path.

Corollary 3.3. Along the t−1
2 rows n ≡ 1 mod 4, 5 ≤ n ≤ 2t+2, any k cobound-

aries ∂i1 , . . . , ∂ik in the same coset modulo 4 give rise to a total amount of k(t−k)
2

paths.

Proof.



ON ZZt × ZZ
2
2-COCYCLIC HADAMARD MATRICES 5

Along the t−1
2 rows n ≡ 1 mod 4, 5 ≤ n ≤ 2t+2, any k coboundaries ∂i1 , . . . , ∂ik

in the same coset modulo 4 might give rise to k t−1
2 paths. Actually, this is not the

case, since we know from Lemma 3.2 that every pair of such coboundaries forms a
path at one and only one of these rows n. Thus the total amount of paths has to
be reduced in the number of pairs in which the k coboundaries may be grouped.

This gives k t−1
2 − k(k−1)

2 = k t−k
2 , as claimed.

Example: For t = 5, the set of k = 2 coboundaries {∂14, ∂18} defines exactly
2 5−2

2 = 3 paths in rows congruent to 1, namely, 1 path at row 5, {(∂18, ∂14)} and
2 paths at row 9, {(∂14), (∂18)}.

Table A in Appendix [3], shows the total amount k(t−k)
2 of paths produced by k

coboundaries in the same coset modulo 4, for odd values of t.

Proposition 3.4. This table has many valuable combinatorial properties:

1. The table is symmetric.

2. The numbers in the central columns are triangular numbers, of the type
n(n+1)

2 .

3. Subtracting from a number in the central columns any of the numbers of the
same row, gives as result a triangular number as well.

4. Reciprocally, subtracting from a number in the central columns any triangular
number gives as result a number of the same row.

Proof.

1. The table is symmetric, since k coboundaries give rise to k(t−k)
2 paths, exactly

the same amount of paths produced by t− k coboundaries, (t−k)k
2 .

2. The numbers in the central columns are triangular numbers. Actually, t−1
2

coboundaries give rise to n(n+1)
2 paths, where t = 2n+ 1.

3. Subtracting from a number in the central columns any of the numbers of the
same row, gives as result a triangular number as well. Indeed, subtracting
k(t−k)

2 paths from t2−1
8 gives t2−1−4kt+4k2

8 = (t−2k)2−1
8 =

t−2k−1
2 · t−2k+1

2

2 .

4. The argument above fits here as well.

Attending to the condition (1), in order to get a ZZt × ZZ
2
2-cocyclic Hadamard

matrix, a necessary (but not sufficient!) condition is to select ki coboundaries in
the coset i mod 4, such that there is a total amount of t t−1

2 paths along the t−1
2

rows n ≡ 1 mod 4, 5 ≤ n ≤ 2t+ 2. This motivates the following definition.

Definition 3.5. A distribution is a tuple (k0(t−k0)
2 , k1(t−k1)

2 , k2(t−k2)
2 , k3(t−k3)

2 ),
0 ≤ kj ≤ ki ≤ t−1

2 for j ≥ i, such that

3
∑

i=0

ki(t− ki)

2
=

t(t− 1)

2
. (3)
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Proposition 3.6. For any odd t, there always exists at least one distribution

(k0(t−k0)
2 , k1(t−k1)

2 , k2(t−k2)
2 , k3(t−k3)

2 ). Furthermore, there are as many different dis-
tributions as decompositions of t−1

2 as the summation of four triangular numbers.

Proof.

The maximum possible number of paths is 4 t2−1
8 = t2−1

2 , when ki =
t−1
2 , ∀i, so

that the relation (3) fails to hold by a difference m = t2−1
2 − t(t−1)

2 .
In 1796 Gauss proved that any positive integer can be decomposed as the summa-

tion of three (not necessarily different) triangular numbers, some of which may be
eventually zero. Consequently, there exist three triangular numbers 0 ≤ t1, t2, t3 ≤
t2−1
8 such that m = t1 + t2 + t3.

Thus t2−1
2 = 4 t2−1

8 −m = t2−1
8 + ( t

2−1
8 − t1) + ( t

2−1
8 − t2) + ( t

2−1
8 − t3). Taking

into account Proposition 3.4, there exist integers 0 ≤ k3 ≤ k2 ≤ k1 ≤ t−1
2 such

that ( t
2−1
8 − ti) = ki(t−ki)

2 , and therefore ( t
2−1
8 , k1(t−k1)

2 , k2(t−k2)
2 , k3(t−k3)

2 ) is a
distribution, in the sense of Definition 3.5.

The second part is a straightforward consequence.

This proposition provides a method for finding the set of distributions for a given
t, in terms of decompositions of t−1

2 as the summation of four triangular numbers

0 ≤ t0 ≤ t1 ≤ t2 ≤ t3 ≤ t2−1
8 .

Proposition 3.7. Let k be a positive integer. Then:

1. k is a triangular number if and only if −1+
√
1+8k

2 is an integer.

2. The greatest triangular number less or equal to k is tn, for n = ⌊−1+
√
1+8k

2 ⌋.

3. If k is decomposed as the summation of m triangular numbers tij , 1 ≤ j ≤ m,

then max
j

{tij} ≥ tn, for n = ⌈−1+
√

1+8 k
m

2 ⌉.

Proof.
It suffices to notice that k is a triangular number if and only if there exists

an integer n such that tn = nn+1
2 = k. Equivalently, if and only if the equation

n2

2 + n
2 − k has a positive integer solution (which, a fortiori, is −1+

√
1+8k

2 ).

Proposition 3.7 leads straightforwardly to an algorithm for constructing the full
set of distributions for a given t (see Algorithm 1 in Appendix [3]).

Table B in Appendix [3], shows the complete set of distributions obtained from
Algorithm 1, for 3 ≤ t ≤ 25.

Notice that the knowledge of the full set of distributions implies the knowl-
edge about the number of coboundaries which have to be used in order to get a

ZZt × ZZ
2
2-cocyclic Hadamard matrix, since each summand ki(t−ki)

2 is in one to one
correspondence to the values ki and t − ki (see Table A). In spite of this fact, we
may bound the number of coboundaries to be combined a bit further.
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Lemma 3.8. For any decomposition of n into k summands, say n = n1+ . . .+nk

We have
∑k

i=1 n
2
i ≥ 1

k

(

∑k
i=1 ni

)2

. In fact, one could check that

k
∑

i=1

n2
i −

1

k

(

k
∑

i=1

ni

)2

=
1

k

∑

1≤j<i≤k

(ni − nj)
2 ≥ 0. (4)

Proposition 3.9. Let (k0(t−k0)
2 , k1(t−k1)

2 , k2(t−k2)
2 , k3(t−k3)

2 ) be a distribution. Call
n = k0 + k1 + k2 + k3. Then

1.

⌈ t−
√
4t− 3

2
⌉ ≤ k3 ≤ ⌊ t+

√
4t− 3

2
⌋. (5)

2.

⌈2(t−
√
t)⌉ ≤ n ≤ ⌊2(t+

√
t)⌋. (6)

Proof.

Let (k0, k1, k2, k3) generate a distribution (k0(t−k0)
2 , k1(t−k1)

2 , k2(t−k2)
2 , k3(t−k3)

2 ).
On one hand, condition (3), gives 4k23 − 4k3t+ t2 − 4t+ 3 ≤ 0 which proves (5).

On the other hand, simplifying (3), we get t

3
∑

i=0

ki − t2 + t =

3
∑

i=0

k2i . Now, by

Lemma 3.8

3
∑

i=0

k2i ≥
3
∑

i=0

(
n

4
)2, (7)

and so tn− t2 + t ≥ n2

4
, obtaining (6).

Remark 1. Condition (6) may be tightened, depending on the coset of n =
k0 + k1 + k2 + k3 modulo 4, substituting the lower bound in (7) by the most
homogeneously distributed partition of n into four parts.

Remark 2. The bounds in Proposition 3.9 are very tight, as has been checked
experimentally. The first gap occurs for t = 71, and consists in just one coboundary.

Once we know that a distribution is available for a given value of t, the next
step is looking for appropriate subsets of ni coboundaries in the cosets i mod 4 in
B such that the amount of n-paths along rows n ≡ 1 mod 4, 5 ≤ n ≤ 2t − 1 fits
that distribution.

Example: For t = 5, the distribution (3, 3, 2, 2) corresponds to a repartition of
(2, 2, 1, 1) coboundaries in each of the cosets modulo 4 (although we can consider
3 instead of 2 and 4 instead of 1 coboundaries in each case). Now, for each subset
of ki coboundaries, we can compute the number of n-paths defined along the rows
congruent to 1 (this can be computed in only one coset, they are disjoint).
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Definition 3.10. An ingredient produced by a subset of k coboundaries in B in
the same coset modulo 4 is the column vector whose entries are the number of n-
paths produced by these k coboundaries along rows n ≡ 1 mod 4, 5 ≤ n ≤ 2t − 1.
A recipe is a collection of 4 ingredients (one for each different coset i modulo 4),
arranged as a matrix of 4 columns, such that the sum of each of the rows is t.

Example: For t = 5, the set of k = 2 coboundaries {∂14, ∂18} (and also any set
{∂14+i, ∂18+i} mod 4t for any i) define the ingredient [1, 2]t. One recipe for t = 5,

will be

[

1
2

]

,

[

2
1

]

,

[

1
1

]

,

[

1
1

]

.

Consequently, if a subset of {n1, n2, n3, n4} coboundaries in B defines a recipe,
this subset of coboundaries satisfies the condition (1), and therefore the summation
of each of the rows n ≡ 1 mod 4, 5 ≤ n ≤ 2t− 1 is zero.

Proposition 3.11. The notion of recipe does not depend on the order of its in-
gredients.

Proof.
Attending to Lemma 3.1, ∂i forms an n-path with ∂i−n+1, independently on

the coset i mod 4, for n ≡ 1 mod 4, 5 ≤ n ≤ 2t − 1. In particular, n-paths are
constructed from those coboundaries in B in the same coset mod 4, which differ in
n−1
4 positions in the 5-cycles.
This way, if a subset of coboundaries of the coset i mod 4 produces an ingredient,

the same is produced by the translation of this subset to any other coset mod 4.
Eventually, this translation could produce a coboundary ∂i which is not in B.

This is not a source of difficulties, since such prohibited subsets of coboundaries
may be substituted by their complements in the 5-cycles. Since the substitution of
any amount of paths by their complementary in a cycle does not change the total
amount of paths, this operation preserves the ingredient.

Finding a recipe is the first step in the process of constructing a ZZt×ZZ
2
2-cocyclic

Hadamard matrix, since any subset of coboundaries in B defining a recipe satisfies
condition (1) and conversely.

Turning our attention to rows not congruent to 1, where the number of paths
must be equal to the number of intersections in order to fullfill the Hadamard
test, the following proposition gives a condition about when the relation (2) is also
satisfied (and hence a ZZt × ZZ

2
2-cocyclic Hadamard matrix has been found).

Proposition 3.12. A subset of coboundaries in B satisfies condition (2) (i.e. the
summation of the nth-row is zero, for n ≡ 0, 2, 3 mod 4, 6 ≤ n ≤ 2t + 2), if and
only if the number of n-paths of even length is itself even, half of them starting and
ending with coboundaries in cosets i1, i2 mod 4, the other half starting and ending
in coboundaries in cosets i3, i4 mod 4, ij 6= ik for j 6= k.

Proof.
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As we commented in Section 2., we are using R = 1t ⊗









1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1









as

the matrix coming from representative cocycles.
Consequently, intersections in rows n ≡ 2 mod 4 can occur in positions (n, i), for

i ≡ 2, 0 mod 4. Similarly, intersections in rows n ≡ 3 mod 4 can occur in positions
(n, i), for i ≡ 2, 3 mod 4. Finally, intersections in rows n ≡ 0 mod 4 can occur in
positions (n, i), for i ≡ 3, 0 mod 4. Taking into account Lemma 3.1, it follows that
n-paths consists in properly alternating coboundaries in:

• Either cosets (1, 2) mod 4, either cosets (3, 0) mod 4, for n ≡ 2 mod 4.
• Either cosets (2, 0) mod 4, either cosets (1, 3) mod 4, for n ≡ 3 mod 4.
• Either cosets (2, 3) mod 4, either cosets (1, 0) mod 4, for n ≡ 0 mod 4.

Hence any n-path of odd length produces exactly one intersection (i.e. shares
exactly one negative entry) with R at the nth-row. On the other hand, n-paths of
even length produces either 2 or 0 intersections, depending on the cosets modulo 4
of n and the initial coboundary of the n-path. More precisely:

• If n ≡ 2mod 4, then an n-path of even length will produce two intersections at
the nth-row if and only if the coset i of the initial coboundary is i ≡ 2, 0mod 4.

• If n ≡ 3mod 4, then an n-path of even length will produce two intersections at
the nth-row if and only if the coset i of the initial coboundary is i ≡ 2, 3mod 4.

• If n ≡ 0mod 4, then an n-path of even length will produce two intersections at
the nth-row if and only if the coset i of the initial coboundary is i ≡ 3, 0mod 4.

Summing up, each n-path of odd length produces 1 intersection, and each n-path
of even length produces either 2 or 0 intersections. Hence, the only circumstance
in which the amounts of intersections and n-paths both coincide is precisely when
half the n-paths of even length give rise to 2 intersections, whereas the remaining
half of n-paths of even length do not produce any intersections at all.

Example: For t = 5, the set {{∂14, ∂18}, {∂3, ∂11}, {∂8}, {∂5}}, of 6 = 2 + 2 + 1 +
1 coboundaries corresponding to the recipe showed after Definition 3.10 defines
a Hadamard matrix, because paths of even length at rows congruent to 2, 3, 0
are balanced. On the other hand, the set {{∂10, ∂14}, {∂3, ∂11}, {∂8}, {∂5}} (which
corresponds to the same recipe) does not define a Hadamard matrix, because it
fails the Hadamard test at row 8, being its 8-paths (∂14, ∂11), (∂10), (∂3), (∂5), (∂8),
there is only one path of even length, so the number of intersections at row 8 can
not be equal to the number of 8-paths.

Now it is straightforward to design an algorithm (see algorithm 2 in Appendix
[3]), searching exhaustively for ZZt × ZZ

2
2-cocyclic Hadamard matrices for odd t.

Table I shows an exhaustive calculation of ZZt ×ZZ
2
2-cocyclic Hadamard matrices

(last column) for odd t, 3 ≤ t ≤ 13, in terms of distributions (second column),
number of different ingredients produced by the coboundaries needed (third column)
and recipes found (fourth column). The fifth column shows how many of the recipes
are “productive", in the sense that they actually give rise to ZZt × ZZ

2
2-cocyclic

Hadamard matrices.
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t distribution #ingredients #recipes #Had.recipes #Had.matrices

3 (1, 1, 1, 0) (1, 1, 1, 1) 4 4 24

5 (3, 3, 2, 2) (2, 2, 1, 1) 12 12 120

7 (6, 6, 6, 3) (4, 4, 4, 1) 28 24 336

(6, 5, 5, 5) (4, 3, 3, 3) 60 36 504

9 (10, 10, 9, 7) (10, 10, 7, 4) 756 108 1944

9 (9, 9, 9, 9) (7, 7, 7, 7) 60 24 432

11 (15, 14, 14, 12) (26, 20, 20, 10) 5580 120 2640

13 (21, 21, 21, 15) (74, 74, 74, 14) 19320 144 3744

(21, 21, 18, 18) (74, 74, 34, 34) 29208 72 1872

(20, 20, 20, 18) (57, 57, 57, 34) 21612 108 2808

TABLE I. ZZt × ZZ
2
2-cocyclic Hadamard matrices from Algorithm 2

4. ON BASIS, GENERATORS AND DIAGRAMS

In this section we introduce some elementary notations, and give the notion of
diagram, a very useful presentation of a ZZt×ZZ

2
2-cocyclic matrix. In particular, the

notion of symmetry in a diagram (see Definition 4.2) will lead to a fast Hadamard
test for ZZt × ZZ

2
2-cocyclic matrices, which we state in Theorem 4.3.

Cocyclic matrices over ZZt × ZZ
2
2 can be visualized by diagrams which represent

the coboundaries which appear in the expression of the matrix.

Definition 4.1. Given a pointwise product of coboundaries M∂d1
. . .M∂dk

· R
defining a cocyclic matrix over ZZt × ZZ

2
2, its diagram is a 4 × t matrix, such that

{aij}1≤i≤4, 1≤j≤t is ×, (aij = ×) if 4t− 4(j− 1)− 3+ i mod 4t ∈ {d1, . . . , dk} and
empty elsewhere.

Remark 3. The definition of diagram has to do with the expression of the
matrix in terms of the coboundaries, so every cocyclic matrix over ZZt × ZZ

2
2 has

eight different diagrams.

Example: For instance, one Hadamard matrix for t = 5 is given by the following
coboundaries {{14, 18}, {3, 11}, {8}, {5}}. A presentation of this subset of cobound-
aries as a 4× t matrix, such that coboundaries mod i are placed at row i− 1 is:

∣

∣

∣

∣

∣

∣

∣

∣

18 14 10 6 2
19 15 11 7 3

20 16 12 8 4
17 13 9 5 1

∣

∣

∣

∣

∣

∣

∣

∣

, or in short,

∣

∣

∣

∣

∣

∣

∣

∣

× × − − −
− − × − ×
− − − × −
− − − × −

∣

∣

∣

∣

∣

∣

∣

∣
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Diagrams are a very useful tool. This presentation of the coboundaries allows us
to read easily the adjacency conditions, the number of paths, their length and the
number of intersections they produce at each row n.

Every row of a diagram represents one 5-cycle. Actually, the diagram is not a
matrix, but a cylinder, the first and last columns being adjacent. The paths in rows
not congruent to 1 can be read by alternating pair of rows in the diagram. In the
previous example, the set of coboundaries selected defines the following 8-paths:
(14, 11), (3, 18), (8), (5).

Among the two paths of even length, (3, 18) produces 2 intersections (at positions
3 and 15), and (14, 11) produces no intersection (it has −1 at positions 14 and 6).
So whether they give 0 or 2 intersections comes from the congruency class module
4 of its first (or last) coboundary. This can be easily checked in any diagram.

Definition 4.2. A diagram associated to a pointwise product of coboundaries
M = M∂1 . . .M∂k

R is called symmetric if the × are symmetric with respect to a
column. If one of the diagrams representing a cocyclic matrix is symmetric, so
are all other diagrams (they are obtained by complementing some of the rows, and
symmetry is preserved). We will say, by extension, that the cocyclic matrix presents
symmetry (the matrix is not symmetric, the diagram is).

Theorem 4.3. If a cocyclic matrix over ZZt × ZZ
2
2 is represented by a symmetric

diagram and has exactly t paths in rows congruent to 1 mod 4, then it is Hadamard.

Proof.

Taking into account Proposition 2.1, we have to prove that the number of paths
coincide with the number of intersections for rows 6, 7, 8 and congruent. Each path
of odd length give one intersection, and the only thing to prove is that paths of
even length are equally distributed between those giving 0 intersections and those
giving 2 intersections. As these paths of even length come in pairs (they do not use
any of the coboundaries on the symmetry axis) the character of each path is the
opposite of its symmetric, so its number is balanced and the result holds.

5. OPERATIONS

In this section we will study four different operations on the set of coboundary
matrices over ZZt × ZZ

2
2: complements, rotations, swappings and dilatations. In

particular, these operations extend to operations over ZZt × ZZ
2
2-cocyclic matrices,

which will be proved to preserve orthogonality. These operations partition the set
of ZZt×ZZ

2
2-cocyclic matrices into disjoint orbits, which can be easily computed once

one element is known. Among all the elements of an orbit, a representative can be
chosen, in a standard way that will be made precise.
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5.1 Complements. The group ZZ2

Given a set of coboundaries, t, and one of the four congruency classes mod 4, for
instance i-th, 1 ≤ i ≤ 4, we can consider the cocyclic matrix defined by the set of
coboundaries obtained by substituting the subset of coboundaries belonging to the
i-th congruency by its complement.

Definition 5.1. Let {{c2j2}, {c3j3}, {c4j4}, {c1j1}} with jk ≡ k mod 4, be a set
of coboundaries. The complement in the i-th component , 1 ≤ i ≤ 4, denoted
Ci({{c2j2}, {c3j3}, {c4j4}, {c1j1}}), is the union of the complement of {ciji} in the
i-th component and the rest of the initial coboundaries.

For instance , if we choose i = 2:

C2({{14, 18}, {3, 11}, {8}, {5}}) = {{2, 6, 10}, {3, 11}, {8}, {5}}

Lemma 5.2. The only complement to compute is the complement with respect to
the component congruent to 2.

Proof.
If we consider any other complement, there will appear one of the coboundaries

1, 4t − 1 or 4t. Substitution of the expression of this coboundary in terms of the
basis of coboundaries gives us the complement with respect to the congruency 2.

If two different sets of coboundaries give the same cocyclic matrix their com-
plements define the same matrix. It suffices to compute the image of the different
expressions for a cocyclic matrix and check that we get the different expressions
for its image. So, there is no imprecision when we say the complement matrix of a
cocyclic matrix over ZZt × ZZ

2
2.

Theorem 5.3. If a set a coboundaries define a Hadamard matrix, so does its
complement.

Proof.
It suffices to check that the hypotheses of Theorem 4.3 are satisfied.
In rows congruent to 1, the complement of a set of coboundaries in a cycle is

another set which determines the same number of paths. For the other rows, just
observe that the complement preserves symmetry in the diagram.

Remark 4. Note that the operation complement modifies the number of cobound-
aries, substituting the k0 coboundaries congruent to 2 mod 4 by t−k0 coboundaries.

This operation can be observed as an action of the group ZZ2 over the set of
ZZt × ZZ

2
2-cocyclic matrices. For every Hadamard cocyclic matrix over ZZt × ZZ

2
2, we

can consider its orbit. This orbit has exactly 2 elements.
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5.2 Rotations. The group ZZt

Given that the Hadamard condition for a cocyclic matrix over ZZt×ZZ
2
2 depends on

the conditions of position and adjacency of the coboundaries defining such matrix,
one natural idea is rotating the positions of the coboundaries.

Definition 5.4. Let {{c2j2}, {c3j3}, {c4j4}, {c1j1}} with jk ≡ k mod 4, be a set of
coboundaries. The i-rotated set, 0 ≤ i ≤ t − 1 of this set of coboundaries, denoted
by Ti({{c2j2}, {c3j3}, {c4j4}, {c1j1}}) is the set:

{{c2j2−4i}, {c3j3−4i}, {c4j4−4i}, {c1j1−4i}}
where additions are mod 4t.

For instance, for i = 2

T2({{14, 18}, {3, 11}, {8}, {5}}) = {{6, 10}, {3, 15}, {20}, {17}}
The i-rotation operation moves the marked positions i places to the right.
As in the complement operation, i-rotation over each of the eight expressions

for a Hadamard matrix gives each of the eight expressions of the same cocyclic
Hadamard matrix, so we are rigourous when speaking of the i-rotated of a matrix.

This operation can be observed as an action of the group ZZt over the set of
ZZt × ZZ

2
2-cocyclic matrices. The element i, 0 ≤ i ≤ t − 1 acts on every cocyclic

matrix by substracting 4i mod 4t to each of the coboundaries defining the matrix.

Theorem 5.5. The i-rotated set of a set defining a cocyclic Hadamard matrix
over ZZt × ZZ

2
2 defines a Hadamard matrix too.

Proof.
Rotations preserve the relative positions of the coboundaries in the diagram and,

thus, the number, length and intersections defined by the paths.

Remark 5. There is no need to consider symmetry condition for this proof.
For every Hadamard cocyclic matrix over ZZt × ZZ

2
2, we can consider its orbit. This

orbit has exactly t elements.

Remark 6. Notice that the complement and rotation operations commute.

5.3 Swappings. The group S4

The word swapping explains clearly the effect of this operation on a set of cobound-
aries. The marked positions are permuted among the rows in the diagram.

Given the set of coboundaries {ciji} for 1 ≤ i ≤ 4, we will denote {ciji} + k the
set of coboundaries obtained by adding k to each of their indexes.

Definition 5.6. For the set of coboundaries {{c2j2}, {c3j3}, {c4j4}, {c1j1}} we de-
fine the swapping operations:

• s12({{c2j2}, {c3j3}, {c4j4}, {c1j1}}) = {{c1j1}+ 1, {c3j3}, {c4j4}, {c2j2} − 1}.
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• s13({{c2j2}, {c3j3}, {c4j4}, {c1j1}}) = {{c2j2}, {c1j1}+ 2, {c4j4}, {c3j3} − 2}.

• s14({{c2j2}, {c3j3}, {c4j4}, {c1j1}}) = {{c2j2}, {c3j3}, {c1j1}+ 3, {c4j4} − 3}.

Although we have defined three operations, any composition of them can be con-
sidered, obtaining one of the possible 24 permutations on the rows of the diagram.

For instance, for t = 5

s13({{14, 18}, {3, 11}, {8}, {5}}) = {{14, 18}, {7}, {8}, {1, 9}}

Theorem 5.7. If {{c2j2}, {c3j3}, {c4j4}, {c1j1}} is a set of coboundaries defining
a Hadamard cocyclic matrix over ZZt×ZZ

2
2, then sij({{c2j2}, {c3j3}, {c4j4}, {c1j1}}),

1 ≤ i < j ≤ 4 is also a Hadamard cocyclic matrix over ZZt × ZZ
2
2.

Proof.
Once again, it suffices to check whether the hypotheses of Theorem 4.3 are satis-

fied. On one hand, any swapping preserves the number of paths in rows congruent
to 1. On the other hand, any permutation of the rows in the diagram preserves
symmetry.

Remark 7. This result can be proved without using the symmetry condition,
one only need to assume that the paths of even length giving 2 and 0 intersections,
are equally distributed among the two subsets of components defined in each row,
attending to the congruency mod 4 of the coboundaries.

This gives us an action of S4 on diagrams, which commute with complement and
rotations. Depending on the diagram (i.e. on the size of the permutation group of
its rows), the orbit can have less than 24 elements (actually, 1,4,6,12 or 24).

5.4 Dilatations. The group ZZ
∗
t

As we have seen, the orthogonality of a cocyclic matrix over ZZt×ZZ
2
2 is determined

by the position and adjacency of the coboundaries which define it. This is the
reason because of rotating the rows of a diagram preserves the orthogonality of the
corresponding ZZt × ZZ

2
2-cocyclic matrix. Now we are interested in other kind of

geometric transformations: homothecies.

Definition 5.8. Given a set of coboundaries S determining a diagram with col-
umns (Ct, · · · , C1), the r-th dilatation applied to S, with r ∈ ZZ

∗
t , denoted by Vr(S),

is the set corresponding to the image of the diagram under the homothecy with ratio
r and center the column placed at the right hand-side of the diagram.

As the column located at the right-hand side corresponds to the coboundaries
2, 3, 4, 1, a formula for Vr is given by Vr(∂k) = ∂h, for

h = 4

((

k − (k mod 4)

4
· r
)

mod t

)

+ (k mod 4). (8)
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For instance, for r = 2

V2({{14, 18}, {3, 11}, {8}, {5}}) = {{6, 14}, {3, 19}, {12}, {9}}

Remark 8. Notice that a dilatation Vr defines a bijection over the set of ZZt ×
ZZ

2
2-coboundaries if and only if r ∈ ZZ

∗
t .

Theorem 5.9. Dilatations Vr with r ∈ ZZ
∗
t preserve the orthogonality of a ZZt ×

ZZ
2
2-cocyclic matrix.

Proof.
It suffices to check whether the hypotheses of Theorem 4.3 are satisfied. In

rows congruent to 1, dilatations define some permutation on the number of paths
defined (a permutation of the entries in the ingredient), so the total number of
paths remains equal to t.

Since the image diagram is symmetric as well, the result holds.

Remark 9. The size of the orbit of a symmetric ZZt×ZZ
2
2-cocyclic matrix under

the action of dilatations is, at most, φ(t), φ being the Euler’s totient function.

Remark 10. Depending on the diagrams, the image under dilatations can co-
incide with the image under some of the previously defined operations; for instance
the action on the previous example of the dilatation V2 coincides with the action
of the composition s23T4.

5.5 Orbits and representatives

Definition 5.10. The total orbit of a cocyclic Hadamard matrix over ZZt ×ZZ
2
2 is

the union of all orbits under the action of complement, rotations, swappings and
dilatations.

Definition 5.11. A representative of a total orbit is a set of coboundaries asso-
ciated to a diagram, with minimal number of coboundaries, symmetric with respect
to the central column, and with an increasing number of coboundaries on each row
of the diagram.

Example: One Hadamard matrix for t = 5 is given by the following cobound-
aries {{14, 18}, {3, 11}, {8}, {5}}, and the representative for its total orbit will be
{{10}, {11}, {8, 16}, {1, 17}}.

Table C in Appendix [3], gives us the description of all Hadamard matrices
obtained in Table I, split in orbits, which can be generated by its representatives
under the action of the four operations previously defined. The second column
shows the size of the orbit under complement/rotation/swapping/dilatations, when
providing new matrices.



16 ALVAREZ, GUDIEL AND GUEMES

6. THE SYMMETRIC CASE

We have computed the full set of Zt × Z
2
2-cocyclic Hadamard matrices for t ≤ 13.

There are two special repartitions of coboundaries attending to their congruency,
for every Hadamard matrix. One is the repartition given by the expression of the
matrix with respect to the basis. And the other is the minimal repartition (this
last one can correspond to the matrix, or to its complement). When performing
calculations we can restrict to the minimal repartition, in order to simplify the
search, avoiding 15 of the 16 possible repartitions for each distribution.

The rotation, swapping and dilatations preserve the number of coboundaries
involved. On the other hand, the image of the Hadamard matrix does not depend
on the chosen representation (from the possible eight). Thus we can obtain the
whole orbit of the matrix under all these operations by only knowing the expression
of the matrix with the minimal repartition, so we can restrict the searching to this
easier case.

Once this is done, we can compute the complement of each of the obtained
matrices, to complete the orbit under all operations.

6.1 The symmetric-diagram case (t ∈ [15, 23])

The diagrams of all the matrices obtained for t ≤ 13 were symmetric (symmetry is
a sufficient condition to pass the Hadamard test in rows congruent to 2, 3, 0 module
4, so, assuming symmetry, the Hadamard test reduces to check if the number of
paths in rows congruent to 1 is exactly t).

By following this idea, we have computed the set of cocyclic Hadamard matrices
over ZZt × ZZ

2
2, having a symmetric diagram for 15 ≤ t ≤ 23, which are listed in

Tables D and E in Appendix [3], in terms of their representatives and the size of
their total orbit under complement/rotation/swapping/dilatations, when providing
new matrices.

6.2 Williamson type matrices

The first row of Table II shows the number of Williamson type matrices obtained
in [4], together with the total number of cocyclic Hadamard matrices over ZZt ×ZZ

2
2

which we have computed.

t 3 5 7 9 11 13 15 17 19 21 23

♯Will. 8 24 120 264 240 648 576 − − − −
♯H. 24 120 840 2376 2640 8424 8640 13056 34200 31248 12144

TABLE II. Williamson type / ZZt × ZZ
2
2-cocyclic Hadamard

matrices (only for symmetric diagrams if t ≥ 15)

It can be observed that the set of Williamson type Hadamard matrices seems to
be in proportion 1

t
with respect to the set of ZZt × ZZ

2
2-cocyclic Hadamard matrices

consisting of symmetric diagrams. We now prove the validity of this fact.
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By Lemma 3.4 in [4], any Williamson type matrix is Hadamard equivalent to a
cocyclic matrix over ZZt × ZZ

2
2, which is t× t back-circulant by blocks 4× 4,









W1 . . . . . . Wt

W2 ··· Wt W1

··· ··· ··· ···
Wt W1 . . . Wt−1









, Wi =









ni xi yi zi
xi −ni zi −yi
yi −zi −ni xi

zi yi −xi −ni









, (9)

with Wi+1 = Wt−i+1 for 1 ≤ i ≤ t− 1.
This matrix (9) is a pointwise product of the representative matrix R and a

certain set of generalized coboundaries {M∂d1
, . . . ,M∂dk

}. The additional condition
Wi+1 = Wt−i+1 for 1 ≤ i ≤ t−1, leaving W1 alone means that the symmetry column
in the diagram representing the matrix (9) is, precisely, the last one to the right,
which is associated to the coboundaries ∂2, ∂3, ∂4, ∂1. This fact leads us to conclude
that:

Proposition 6.1. Let H the set of cocyclic Hadamard matrices over ZZt × ZZ
2
2,

having a symmetric diagram. Then, the set of Williamson type matrices of type (9)

is a subset of H of size |H|
t

. Moreover, for each element H ∈ H, one and only one
of the rotated matrices TiH, 1 ≤ i ≤ t, is a Williamson type matrix.

Proof.
The condition needed tells us that the diagram has to be symmetric with respect

to the last column, which is only possible for one of the rotated.

So, the predicted number of Williamson type matrices for t ∈ [17, 23] will be
13056/17 = 768, 34200/19 = 1800, 31248/21 = 1488 and 12144/23 = 528.

6.3 More Hadamard matrices (t ∈ [25, 63])

Moreover, the result about Williamson type matrices allows us to go beyond t = 23.
Actually, we have identified every Williamson type matrix exhibited in the Kouk-
ouvinos website [9] (which corresponds to a certain decomposition of 4t as a sum of
squares) as a pointwise product of coboundaries and computed the whole orbit of
matrices for t ∈ [25, 39]. We show the results obtained in Table F in Appendix [3],
and give the size of its orbit under the action of complement/rotation/swapping/di-
latations, when providing new matrices.

The Koukouvinos website [9] only gives an example of each equivalence class of
Williamson type Hadamard matrices for small orders, and not the total number
of these matrices. However we have checked that the numbers of Williamson type
Hadamard matrices we predict by using our computation of symmetric-diagram
cocyclic Hadamard matrices and dividing by t, for t ∈ [17, 23], is the same as if
we take the examples in [9] in each order and compute the sum of their orbit sizes
under our operations.

We conjecture that one can obtain the total number of Williamson type Hada-
mard matrices for t ∈ [25, 63] from [9] by just computing the sum of the orbit sizes
for each order. That is to say, we conjecture that any Williamson type matrix H ′



18 ALVAREZ, GUDIEL AND GUEMES

Hadamard equivalent to a given Williamson type matrix H is in the orbit of H
under our operations.

Finally we show the total number of Hadamard matrices that we have computed
so far

t 3 5 7 9 11 13 15 17 19 21 23

♯H. 24 120 840 2376 2640 8424 8640 13056 34200 31248 12144

t 25 27 29 31 33 35 37 39 41 43 45

♯H. 75000 64152 19488 33480 79200 − 53280 7488 4920 14448 12960

t 47 49 51 53 55 57 59 61 63

♯H. − 24696 58752 − 26400 24624 − 21960 9072

TABLE III. ZZt × ZZ
2
2-cocyclic Hadamard matrices computed

6.4 Further questions

After an observation process, some questions come into our minds:

• All ZZt × ZZ
2
2-cocyclic Hadamard matrices obtained so far have a symmetric

diagram up to t = 13, and we have taken advantage of it when computing
them for t ∈ [15, 23] by restricting ourselves to the symmetric case. Can this
symmetry assumption be proved? Does a ZZt×ZZ

2
2-cocyclic Hadamard matrix

exist coming from a non symmetric diagram?

• In case that the answer to the second question above is affirmative, then
it would be interesting to look for ZZt × ZZ

2
2-cocyclic Hadamard matrices in

those orders for which no Williamson type Hadamard matrix is known to
exist, such as t = 35 [9].

• Now that we have proved that our operations preserve orthogonality, arises
the question: do these operations preserve Hadamard equivalence classes?
Rotations, dilatations and some of the swappings do, because they can be
expressed in terms of the bundle operation defined by Horadam in [6] (this
fact will be detailed elsewhere). In addition, for values of t below 23, the
number of orbits coincide with the number of non equivalent Williamson
type matrices computed in [9], so the result is probably true in general.
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APPENDIX: TABLES AND ALGORITHMS

Algorithm 1: Constructing the set of distributions for t.

Input: t

k = { }

for i1 from ⌈−1+
√

t

2
⌉ to ⌊−1+

√
4t−3

2
⌋ do

for i2 from ⌈−1+

√

1+4
t−1−i1(i1+1)

3

2
⌉ to

min(i1, ⌊−1+
√

1+4(t−1−i1(i1+1))

2
⌋) do

for i3 from ⌈−1+
√

1+2(t−1−i1(i1+1)−i2(i2+1))

2
⌉

to min(i2, ⌊−1+
√

1+4(t−1−i1(i1+1)−i2(i2+1))

2
⌋)

do

x =
−1+

√
1+4(t−1−i1(i1+1)−i2(i2+1)−i3(i3+1))

2

if x is an integer, then k = k ∪ {(x, i3, i2, i1)} fi

od

od

od

l = { }

for i from 1 to length(k) do

l = l ∪ {( t2−1
8

− ki,1,
t2−1

8
− ki,2,

t2−1
8

− ki,3,
t2−1

8
− ki,4)}

od

Output: l
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Algorithm 2: Exhaustive search for ZZt × ZZ
2
2-Hadamard matrices.

Input: t.

Calculate the valid distributions for t.

Calculate all the ingredients associated to every distribution.

Construct the set of recipes corresponding to each distribution.

Determine those subsets of coboundaries defining a recipe.

Check whether these subsets satisfy the balanced distribution of even n-paths for n ≡
2, 3, 0 mod 4, 6 ≤ n ≤ 2t+ 2.

Output: the full set of ZZt × ZZ
2
2-Hadamard

matrices.

Table A shows the total amount k(t−k)
2 of paths produced by k coboundaries in

the same coset modulo 4, for odd values of t.

t\k 1 . . . t−1
2

t+1
2

. . . 1

3 1 1

5 2 3 3 2

7 3 5 6 6 5 3

9 4 7 9 10 10 9 7 4

11 5 9 12 14 15 15 14 12 9 5

13 6 11 15 18 20 21 21 20 18 15 11 6

...
...

...
...

TABLE A. Paths produced from k coboundaries in rows n ≡ 1 mod 4.
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Table B shows the complete set of distributions obtained from Algorithm 1, for
3 ≤ t ≤ 25.

t t(t−1)
2

distributions t0 + t1 + t2 + t3 = t−1
2

3 3 (1, 1, 1, 0) 0 + 0 + 0 + 1 = 1

5 10 (3, 3, 2, 2) 0 + 0 + 1 + 1 = 2

7 21
(6, 6, 6, 3)
(6, 5, 5, 5)

0 + 0 + 0 + 3 = 3
0 + 1 + 1 + 1 = 3

9 36
(10, 10, 9, 7)
(9, 9, 9, 9)

0 + 0 + 1 + 3 = 4
1 + 1 + 1 + 1 = 4

11 55 (15, 14, 14, 12) 0 + 1 + 1 + 3 = 5

13 78
(21, 21, 21, 15)
(21, 21, 18, 18)
(20, 20, 20, 18)

0 + 0 + 0 + 6 = 6
0 + 0 + 3 + 3 = 6
1 + 1 + 1 + 3 = 6

15 105
(28, 28, 27, 22)
(28, 27, 25, 25)

0 + 0 + 1 + 6 = 7
0 + 1 + 3 + 3 = 7

17 136
(36, 35, 35, 30)
(35, 35, 33, 33)

0 + 1 + 1 + 6 = 8
1 + 1 + 3 + 3 = 8

19 171
(45, 45, 42, 39)
(45, 42, 42, 42)
(44, 44, 44, 39)

0 + 0 + 3 + 6 = 9
0 + 3 + 3 + 3 = 9
1 + 1 + 1 + 6 = 9

21 210
(55, 55, 55, 45)
(55, 54, 52, 49)
(54, 52, 52, 52)

0 + 0 + 0 + 10 = 10
0 + 1 + 3 + 6 = 10
1 + 3 + 3 + 3 = 10

23 253
(66, 66, 65, 56)
(65, 65, 63, 60)

0 + 0 + 1 + 10 = 11
1 + 1 + 3 + 6 = 11

25 300

(78, 78, 72, 72)
(78, 77, 77, 68)
(78, 75, 75, 73)
(75, 75, 75, 75)

0 + 0 + 6 + 6 = 12
0 + 1 + 1 + 10 = 12
0 + 3 + 3 + 6 = 12
3 + 3 + 3 + 3 = 12

TABLE B. Distributions in terms of decompositions of t−1
2

= t0 + t1 + t2 + t3.
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t orbit representative

3 2× 3× 4× 1 = 24 {{}, {7}, {8}, {5}}

5 2× 5× 12× 1 = 120 {{10}, {11}, {8, 16}, {1, 17}}

7 2× 7× 24× 1 = 336 {{14}, {11, 15, 19}, {8, 16, 24}, {1, 13, 25}}
2× 7× 12× 3 = 504 {{10, 18}, {11, 19}, {4, 28}, {1, 13, 25}}

9 2× 9× 12× 3 = 648 {{14, 22}, {15, 19, 23}, {4, 16, 24, 36}, {1, 13, 21, 33}}
2× 9× 24× 3 = 1296 {{14, 22}, {3, 19, 35}, {12, 16, 24, 28}, {1, 9, 25, 33}}
2× 9× 24× 1 = 432 {{14, 18, 22}, {11, 19, 27}, {8, 20, 32}, {1, 17, 33}}

11 2× 11× {{18, 22, 26}, {7, 15, 31, 39},
24× 5 = 2640 {4, 16, 32, 44}, {9, 13, 21, 29, 33}}

13 2× 13× {{22, 26, 30}, {3, 15, 23, 31, 39, 51},
24× 3 = 3744 {8, 16, 20, 36, 40, 48}, {1, 5, 17, 33, 45, 49}}

2× 13× {{18, 22, 30, 34}, {7, 15, 39, 47},
24× 3 = 1872 {8, 12, 24, 32, 44, 48}, {1, 5, 21, 29, 45, 49}}

2× 13× {{14, 18, 34, 38}, {15, 23, 27, 31, 39},
24× 3 = 1872 {8, 24, 28, 32, 48}, {5, 17, 25, 33, 45}}

2× 13× {{14, 18, 34, 38}, {15, 19, 27, 35, 39},
12× 3 = 936 {4, 12, 28, 44, 52}, {1, 9, 25, 41, 49}}

TABLE C. Orbits of ZZt × ZZ
2
2-cocyclic Hadamard matrices
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t/orbit/#H. representative

15 2× 15× 24× 4 2880 {{18, 22, 38, 42}, {7, 19, 27, 35, 43, 55},
{16, 20, 28, 32, 36, 44, 48}, {1, 9, 25, 29, 33, 49, 57}}

15 2× 15× 24× 4 2880 {{10, 14, 46, 50}, {7, 19, 27, 35, 43, 55},
{8, 12, 24, 32, 40, 52, 56}, {1, 5, 9, 29, 49, 53, 57}}

15 2× 15× 24× 2 1440 {{14, 26, 34, 46}, {11, 15, 27, 35, 47, 51},
{16, 20, 28, 32, 36, 44, 48}, {1, 5, 21, 29, 37, 53, 57}}

15 2× 15× 12× 4 1440 {{14, 26, 30, 34, 46}, {15, 27, 31, 35, 47},
{12, 16, 24, 40, 48, 52}, {9, 13, 21, 29, 37, 45, 49}}

17 2× 17× 24× 4 3264 {{18, 30, 34, 38, 50}, {3, 23, 31, 35, 39, 47, 67},
{16, 20, 28, 36, 44, 52, 56}, {1, 13, 21, 25, 41, 45, 53, 65}}

17 2× 17× 24× 4 3264 {{18, 30, 34, 38, 50}, {3, 23, 27, 35, 43, 47, 67},
{4, 16, 28, 36, 44, 56, 68}, {13, 17, 21, 29, 37, 45, 49, 53}}

17 2× 17× 24× 4 3264 {{18, 30, 34, 38, 50}, {7, 15, 31, 35, 39, 55, 63},
{12, 20, 24, 36, 48, 52, 60}, {5, 9, 13, 21, 45, 53, 57, 61}}

17 2× 17× 24× 4 3264 {{18, 26, 30, 38, 42, 50}, {3, 19, 31, 39, 51, 67},
{8, 24, 32, 36, 40, 48, 64}, {9, 13, 17, 33, 49, 53, 57}}

19 2× 19× 24× 9 8208 {{18, 30, 34, 42, 46, 58}, {15, 19, 23, 39, 55, 59, 63},
{8, 16, 28, 36, 40, 44, 52, 64, 72}, {5, 21, 25, 29, 37, 45, 49, 53, 69}}

19 2× 19× 12× 9 4104 {{10, 30, 34, 42, 46, 66}, {11, 31, 35, 39, 43, 47, 67},
{4, 12, 16, 32, 40, 48, 64, 68, 76}, {1, 9, 13, 29, 37, 45, 61, 65, 73}}

19 2× 19× 24× 9 8208 {{10, 30, 34, 42, 46, 66}, {15, 27, 35, 39, 43, 51, 63},
{8, 16, 32, 36, 40, 44, 48, 64, 72}, {5, 9, 25, 33, 37, 41, 49, 65, 69}}

19 2× 19× 24× 3 2376 {{6, 10, 34, 42, 66, 70}, {11, 23, 27, 35, 43, 51, 55, 67},
{8, 16, 20, 36, 44, 60, 64, 72}, {1, 5, 9, 29, 45, 65, 69, 73}}

19 2× 19× 24× 3 2736 {{6, 10, 34, 42, 66, 70}, {7, 15, 31, 35, 43, 47, 63, 71},
{12, 20, 24, 36, 44, 56, 60, 68}, {1, 5, 9, 25, 49, 65, 69, 73}}

19 2× 19× 24× 9 8208 {{22, 30, 34, 42, 46, 54}, {7, 15, 19, 35, 43, 59, 63, 71},
{4, 16, 20, 36, 44, 60, 64, 76}, {9, 13, 17, 25, 49, 57, 61, 65}}

TABLE D. ZZt × ZZ
2
2-cocyclic Hadamard matrices [15-19]

(only for symmetric diagrams)
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t/orbit/#H./representative

21 2× 21× 24× 2 2016

{{22, 26, 38, 46, 58, 62}, {3, 15, 19, 27, 39, 47, 59, 67, 71, 83},
{8, 12, 16, 24, 40, 48, 64, 72, 76, 80}, {13, 21, 25, 29, 33, 49, 53, 27, 61, 69}}

21 2× 21× 24× 6 6048

{{10, 34, 38, 42, 46, 50, 74}, {3, 19, 23, 31, 55, 63, 67, 83},
{12, 24, 28, 36, 44, 52, 60, 64, 76}, {5, 9, 13, 21, 33, 49, 61, 69, 73, 77}}

21 2× 21× 24× 6 6048

{{18, 26, 38, 42, 46, 58, 66}, {19, 23, 31, 35, 51, 55, 63, 67},
{12, 16, 32, 40, 44, 48, 56, 72, 76}, {1, 5, 17, 29, 37, 45, 53, 65, 77, 81}}

21 2× 21× 24× 6 6048

{{18, 26, 38, 42, 46, 58, 66}, {11, 23, 27, 35, 51, 59, 63, 75},
{12, 16, 32, 40, 44, 48, 56, 72, 76}, {1, 5, 9, 25, 37, 45, 57, 73, 77, 81}}

21 2× 21× 12× 6 3024

{{6, 30, 34, 38, 46, 50, 54, 78}, {7, 31, 35, 39, 47, 51, 55, 79},
{16, 20, 36, 52, 68, 72, 80}, {13, 17, 33, 41, 49, 65, 69, 77}}

21 2× 21× 24× 6 6048

{{18, 30, 34, 38, 46, 50, 54, 66}, {3, 7, 31, 39, 47, 55, 79, 83},
{8, 24, 32, 36, 52, 56, 64, 80}, {1, 17, 21, 29, 41, 53, 61, 65, 81}}

21 2× 21× 24× 2 2016

{{14, 18, 30, 38, 46, 54, 66, 70}, {7, 15, 27, 31, 55, 59, 71, 79},
{8, 12, 20, 24, 64, 68, 72, 80}, {13, 21, 25, 37, 41, 45, 57, 61, 69}}

23 2× 23× 24× 11 12144

{{22, 30, 38, 42, 50, 54, 62, 70}, {15, 19, 23, 35, 47, 59, 71, 75, 79},
{12, 20, 28, 40, 44, 52, 56, 68, 76, 84}, {9, 13, 25, 29, 33, 57, 61, 65, 77, 81}}

TABLE E. ZZt × ZZ
2
2-cocyclic Hadamard matrices [21-23]

(only for symmetric diagrams)
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t 4t = A2 +B2 +C2 +D2 ♯orbit(compl./rot./swapp./dilat.)

25 100 = 92 + 32 + 32 + 12 2× 25× 24× 10 = 12000

100 = 72 + 72 + 12 + 12 2× 25× 12× 5 = 3000

2× 25× 24× 5 = 6000

2× 25× 24× 5 = 6000

100 = 72 + 52 + 52 + 12 2× 25× 24× 10 = 12000

2× 25× 24× 10 = 12000

2× 25× 24× 5 = 6000

100 = 52 + 52 + 52 + 52 2× 25× 24× 5 = 6000

2× 25× 24× 5 = 6000

2× 25× 24× 5 = 6000

27 108 = 92 + 52 + 12 + 12 2× 27× 24× 9 = 11664

2× 27× 24× 9 = 11664

108 = 72 + 72 + 32 + 12 2× 27× 12× 9 = 5832

2× 27× 24× 9 = 11664

2× 27× 24× 9 = 11664

108 = 72 + 52 + 52 + 32 2× 27× 24× 9 = 11664

29 116 = 92 + 52 + 32 + 12 2× 29× 24× 14 = 19488

31 124 = 72 + 72 + 52 + 12 2× 31× 24× 15 = 22320

124 = 72 + 52 + 52 + 52 2× 31× 12× 15 = 11160

33 132 = 112 + 32 + 12 + 12 2× 33× 24× 10 = 15840

132 = 92 + 72 + 12 + 12 2× 33× 24× 10 = 15840

132 = 92 + 52 + 52 + 12 2× 33× 24× 10 = 15840

2× 33× 24× 10 = 15840

132 = 72 + 72 + 52 + 32 2× 33× 24× 10 = 15840

37 148 = 112 + 32 + 32 + 32 2× 37× 24× 3 = 5328

148 = 92 + 72 + 32 + 32 2× 37× 12× 18 = 15984

148 = 72 + 72 + 52 + 52 2× 37× 24× 9 = 15984

2× 37× 24× 9 = 15984

39 156 = 92 + 52 + 52 + 52 2× 39× 24× 4 = 7488

41 164 = 92 + 92 + 12 + 12 2× 41× 12× 5 = 4920

43 172 = 72 + 72 + 72 + 52 2× 43× 24× 7 = 14448

45 180 = 92 + 72 + 52 + 52 2× 45× 12× 12 = 12960

49 196 = 92 + 92 + 52 + 32 2× 49× 12× 21 = 24696

51 204 = 112 + 92 + 12 + 12 2× 51× 12× 16 = 19584

204 = 112 + 72 + 52 + 32 2× 51× 24× 16 = 39168

55 220 = 112 + 92 + 32 + 32 2× 55× 12× 20 = 26400

57 228 = 92 + 72 + 72 + 72 2× 57× 12× 18 = 24624

61 244 = 112 + 112 + 12 + 12 2× 61× 12× 15 = 21960

63 252 = 112 + 112 + 32 + 12 2× 63× 12× 6 = 9072

TABLE F. Full orbits from Williamson type matrices


