
Á

Searching for partial Hadamard matrices

Vı́ctor Álvarez · José Andrés Armario ·
Maŕıa Dolores Frau · Félix Gudiel ·
Maŕıa Belén Güemes · Elena Mart́ın ·
Amparo Osuna

In honour of Kathy Horadam.

In Memoriam: This paper is dedicated to the late Warwick Richard de Launey
(Oct. 1, 1958 to Nov. 8, 2010), for his outstanding contributions in Design
Theory and related topics.

Abstract Three algorithms looking for pretty large partial Hadamard ma-
trices are described. Here “large” means that hopefully about a third of a
Hadamard matrix (which is the best asymptotic result known so far, [8]) is
achieved. The first one performs some kind of local exhaustive search, and
consequently is expensive from the time consuming point of view. The second
one comes from the adaptation of the best genetic algorithm known so far
searching for cliques in a graph, due to Singh and Gupta [21]. The last one
consists in another heuristic search, which prioritizes the required processing
time better than the final size of the partial Hadamard matrix to be obtained. In
all cases, the key idea is characterizing the adjacency properties of vertices in a
particular subgraph Gt of Ito’s Hadamard Graph ∆(4t) [18], since cliques of
order m in Gt can be seen as (m + 3) × 4t partial Hadamard matrices.

Keywords Hadamard matrix · clique · Hadamard Graph

V. lvarez, J.A. Armario, M.D. Frau, F. Gudiel, E. Mart́ın, A. Osuna
Dept. Matemática Aplicada 1, ETSII, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
Tel.: +34-95455-2797, -4386, -4389, -6225, -2798, -2798
Fax: +34-954557878
E-mail: {valvarez,armario,mdfrau,gudiel,emartin,aosuna}@us.es

M.B. Güemes
Dept. Algebra, Fac. Matemáticas, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
Tel.: +34-954556969
Fax: +34-954556938
E-mail: bguemes@us.es

http://arxiv.org/abs/1201.4021v1

1 Introduction

Hadamard matrices consist in {1,−1}-square matrices whose rows are pairwise
orthogonal. This nice property makes Hadamard matrices being objects for
multiple applications (see [13] and [14] for instance).

It may be straightforwardly checked that such a matrix must be of size 1, 2
or a multiple of 4. The Hadamard Conjecture claims that a matrix of this type
exists for every size multiple of 4. Many attempts have been devoted to prove
this conjecture (both from a constructive way [14] and also from a theoretical
point of view in terms of asymptotic results of existence [9,11]), but it remains
unsolved so far.

From the practical point of view, taking into account possible applica-
tions, sometimes there is no need to consider a full Hadamard matrix. In fact,
it suffices to meet a large amount of pairwise orthogonal rows [2]. This has
originated the interest in constructing partial Hadamard matrices PH , that
is, m × n (1,−1)-matrices PH satisfying PH · PHT = nIm, for m ≤ n. We
call m the depth of PH .

From the orthogonality law, it is readily checked that the number n of
columns must be 1, 2 or a multiple of 4.

Notice that a partial Hadamard matrix does not need to be a submatrix of a
proper Hadamard matrix (for instance, cliques listed in Table 3 for 7 ≤ t ≤ 10
are maximal but not maximum; in the sense that although no larger cliques
exist containing them, there exist larger cliques, for example, those related to
full Hadamard matrices).

Although partial Hadamard matrices are as useful as Hadamard matrices
themselves with regards to practical purposes, unfortunately it seems that
their explicit construction is equally hard as well.

De Launey proved in [8] that partial Hadamard matrices of size about
a third of a 4t × 4t Hadamard matrix exist for large t. The proof gives a
polynomial time algorithm in t for constructing such a matrix. Furthermore,
De Launey and Gordon proved in [10] that about a half of a Hadamard matrix
4t× 4t exists for large t, assuming that the Riemann hypothesis is true. The
idea is decomposing 2t− i as the sum of i odd prime numbers pi, 2 ≤ i ≤ 3, so
that the juxtaposition of the corresponding Paley conference matrices provides
a partial Hadamard matrix of depth 2min{pi}+2. Unfortunately, none of these
methods can provide a partial Hadamard matrix of depth greater than half of
a full Hadamard matrix.

In this paper, we present three new algorithms for constructing partial
Hadamard matrices of size m × 4t. The first one performs some kind of local
exhaustive search, and consequently is expensive from the time consuming
point of view. The second one comes from the adaptation of the best genetic
algorithm known so far searching for cliques in a graph, due to Singh and
Gupta [21]. The third one consists in another heuristic search, which prioritizes
the required processing time better than the final size of the partial Hadamard
matrix obtained so far. The idea is looking for large cliques (i.e. subgraphs

whose vertices are pairwise adjacent) in a subgraph Gt of Ito’s Hadamard
Graph ∆(4t) [18].

Although the results showed in [8] and [10] are impressive and meaningfully
better than any obtained from the algorithms described in this paper, it is a
remarkable fact that our algorithms may provide partial Hadamard matrices of
depth greater than half of a full Hadamard matrix. Furthermore, it is possible
(and desirable) to run our algorithms taking as input data partial Hadamard
matrices obtained by the procedures in [8,10], so that deeper partial Hadamard
matrices are constructed (see Table 4.2).

The paper is organized as follows.
The graph Gt and its properties are described in Section 2. Section 3 is

devoted to the description of the local exhaustive algorithm looking for cliques
in Gt. In Section 4, the two heuristics searching for cliques in Gt are described.
Last section is devoted to conclusions.

2 The graph Gt

In what follows, for clarity in the exposition, we will simply use + and −
instead of 1 and −1.

Hadamard Graphs were introduced by Ito in [18]. Originally they referred
to the graph∆(4t) whose vertices are the (1,−1)-vectors of length 4t consisting
of an even number of 1s. The adjacency relation consists in orthogonality.

We call Hadamard graph to the subgraph Gt of ∆(4t) induced by the
(1,−1)-vectors simultaneously orthogonal to the three first rows of a normal-
ized Hadamard matrix,

+ . . . + + . . . + + . . . + + . . . +
+ . . . + + . . . + − . . . − − . . . −
+ . . . + − . . . − + . . . + − . . . −

.

These orthogonality conditions straightforwardly characterize the form of
the vertices in Gt.

Lemma 1 The vertices of Gt consist of (1,−1)-vectors of length 4t where the
2t negative entries are distributed following this pattern,

t

k

t

t-k

t t

kt-k

so that exactly k, t − k, t − k and k negative entries occur among every t

positions, for some 0 ≤ k ≤ t.

We may then classify the set of vertices in Gt attending to the number
k of negative entries which appear in positions 1 through t. In what follows,
a k-vertex in Gt refers to a vertex with precisely k negative entries among
positions 1 to t.

Lemma 2 In particular, the number of vertices in Gt is |Gt| =
t

∑

k=0

(

t

k

)4

.

The tables below give the number of k-vertices (n.v.) and their degree δ

(number of adjacent vertices), for 1 ≤ t ≤ 7 and 0 ≤ k ≤ t. The column total

refers to the number of vertices and edges in Gt (notice that the number of
edges is half the summation of the degree of every vertex). It is evident that
for a fixed value of k, every k-vertex has the same degree (since permuting
some columns does not affect to the orthogonality relation).

Table 1 Vertices and edges in Gt.

t 1

k 0 1 total

n.v. 1 1 2
δ 0 0 0

t 2

k 0 1 2 total

n.v. 1 16 1 18
δ 16 8 16 80

t 3

k 0 1 2 3 total

n.v. 1 81 81 1 164
δ 0 64 64 0 5184

t 4

k 0 1 2 3 4 total

n.v. 1 256 1296 256 1 1810
δ 1296 648 648 648 1296 587088

t 5

k 0 1 2 3 4 5 total

n.v. 1 625 10000 10000 625 1 21252
δ 0 6912 6912 6912 6912 0 73440000

t 6

k 0 1 2 3 4 5 6 total

n.v. 1 1296 50625 160000 50625 1296 1 263844
δ 160000 80000 79808 79712 79808 80000 160000 10521080000

t 7

k 0 1 2 3 4 5 6 7 total

n.v. 1 2401 194481 1500625 1500625 194481 2401 1 3395016
δ 0 960000 960000 960000 960000 960000 960000 0 1629606720000

It is readily checked that the size of Gt grows exponentially on t. Since
cliques of size m in Gt translate to partial Hadamard matrices (m+3)×4t, we
would like to search for large cliques in Gt. Since the largest clique in ∆(4t) is
at most of size 4t (see [17] for details), the largest clique in Gt is at most of size
4t− 3. Cliques meeting the upper bound would correspond to full Hadamard
matrices.

Example 1 For instance, consider the graph G2, obtained from t = 2. The
picture below shows a clique of size 5, so that adding the three normalized
rows we obtain a full Hadamard matrix of size 8× 8.

(−−++++−−) = 1
(−+−+−+−+) = 2
(−+−+−++−) = 3
(−+−++−−+) = 4
(−+−++−+−) = 5
(−++−−+−+) = 6
(−++−−++−) = 7
(−++−+−−+) = 8
(−++−+−+−) = 9
(+−−+−+−+) = 10
(+−−+−++−) = 11
(+−−++−−+) = 12
(+−−++−+−) = 13
(+−+−−+−+) = 14
(+−+−−++−) = 15
(+−+−+−−+) = 16
(+−+−+−+−) = 17
(+ +−−−−++) = 18

1

18

2

3

4

5

6

7

8

9 10

1112

13

14

15

16 17

�

A maximum clique is a clique with the maximum cardinality (which is
called the maximum clique number). This notion is different from that of
maximal clique, which refers to a clique which is not a proper subset of any
other clique. Thus maximal cliques need not be maximum ones (as we had
already noticed in the introduction), though the converse is always true.

Given a graph, the maximum clique problem (MCP) is to find a maximum
clique, and it is NP-complete [6]. Unfortunately, there is no polynomial-time
algorithm for approximating the maximum clique within a factor of n1−ǫ unless
P=NP [12], where n is the number of the vertices of the graph. Moreover, there
is no polynomial-time algorithm approximating the clique number within a

factor of
n

(log n)1−ǫ
unless NP=ZPP [19].

Anyway, our purpose here is to design an algorithm for constructing suf-
ficiently large cliques in Gt, at least of depth greater than a third of a full
Hadamard matrix. To this end, we need to study the properties of Gt in a
more detailed way.

In what follows, for brevity, we will adopt the additive notation for rep-
resenting Hadamard matrices, so that the 1s turn to 0s and the −1s turn to
1s.

This way, k-vectors in Gt are now described as (0, 1)-vectors of length 4t
consisting of precisely 2t ones (and hence 2t zeros), which are distributed in
the following way: there are exactly k ones in positions 1 through t, other t−k

ones in positions t+1 through 2t, another t−k ones in positions 2t+1 through
3t, the last k ones being located in positions 3t+ 1 through 4t.

Each of these k-vectors may be straightforwardly codified as an integer,
assuming that the k-vector is the binary representation of a decimal number.
Therefore cliques are codified as lists of integers, each of them being the deci-

mal representation of a binary number consisting of 2t ones and length less or
equal to 4t.

Lemma 3 Actually, it can be assumed that 0 ≤ k ≤ ⌊
t

2
⌋.

Proof This is a straightforward consequence of the fact that the negation of a
row does not affect to the set of its orthogonal vectors.

That being so, the full set of vertices adjacent to a given k-vertex v may
be obtained by calculating those s-vectors w orthogonal to v, for 0 ≤ s ≤ ⌊ t

2
⌋,

and then adding their complements. Notice that with the additive notation at
hand, a k-vector v and a s-vector w are orthogonal if and only if they share
exactly 2t bits.

We now describe a procedure for determining a set δv of generators for the
adjacency list related to a fixed k-vector v, that is, generating those s-vectors
w orthogonal to v.

In order to compute the total amount of coincidences between v and w,
one may split the vectors by quarters, and count the amount i of 1-bits (for
the first and last quarters) and 0-bits (for the second and third quarters) that
these vectors share in each of these basic quarters.

Lemma 4 At the first and fourth (resp., the second and third) quarters the
number i of coincidences in 1s (resp, in 0s) runs in the range [max(0, s+ k −
t),min(k, s)]. Actually, assuming the conditions in Lemma 3, i ∈ [0,min(k, s)].

Lemma 5 At each quarter, the number αi of total coincidences (both in 1s
and 0s) satisfies αi = t−s−k+2i, and runs in the range [|t−k−s|, t−|s−k|].
Actually, assuming the conditions in Lemma 3, αi ∈ [t− s− k, t− |s− k|].

Proof Assume that at a given quarter the vectors v and w share exactly i

1-bits. Then w has k − i 0-bits in those positions where the remaining 1-bits
of v are located. Analogously, v has s − i 0-bits in those positions where the
remaining 1-bits of w are located. Thus v and w share exactly t − i − (k −
i)− (s− i) = t− k− s+ i 0-bits. Since v and w share i 1-bits and t− k− s+ i

0-bits, the total number of coincidences is αi = t− k − s+ 2i.

Corollary 1 αi+1 = αi + 2.

Let denote n = min(k, s). In the conditions above, the set of total coin-
cidences is given by t − s − k = α0 < . . . < αn = t − |s − k|. We may now
describe the set of s-vectors adjacent to a given k-vector.

Proposition 1 The set of vectors orthogonal to a given k-vector corresponds
to the full set of distributions of vectors satisfying tuples of total coincidences
(αi1 , αi2 , αi3 , αi4) such that αi1 + αi2 + αi3 + αi4 = 2t.

Proposition 2 The set of tuples (αi1 , αi2 , αi3 , αi4) which give rise to orthog-
onal s-vectors are characterized as the solutions of the following system of
diophantine equations

x0α0 + . . . + xnαn = 2t
x0 + . . . + xn = 4
xi ∈ Z : 0 ≤ xi ≤ 4

(1)

Here, n = min(k, s) and xi indicates how many coincidences of the type αi

must occur among the four quarters.

We now give a constructive way to solve the system above.

Proposition 3 There exists a solution for the system (1) iff 4α0 ≤ 2t ≤ 4αn.

Proof From Corollary 1, we know that the difference between two consecutive
αij is 2.

Since 4α0, 2t and 4αn are even and taking into account Corollary 1, we
conclude that every even number in the range [4α0, 4αn] may be (not uniquely,
in general) written as a combination αi1 + αi2 + αi3 + αi4 for some values
α0 ≤ αi1 ≤ αi2 ≤ αi3 ≤ αi4 ≤ αn.

The condition above may be straightforwardly generalized for the case of
solutions related to tuples of the type (αi1 , αi2 , αi3 , αi4), αi1 ≤ αi2 ≤ αi3 ≤
αi4 .

Corollary 2 Fixed t and 0 ≤ k, s ≤ ⌊ t
2
⌋, the set sol of solutions to the system

(1) may be constructed in the following way:
sol ← ∅
α0 ← t− k − s

αn ← t− |k − s|
for i1 from max{α1, 2t− 3αn} to min{αn, ⌊

2t
4
⌋} with step 2 do

for i2 from max{i1, 2t− i1 − 2αn} to min{αn, ⌊
2t−i1

3
⌋} with step 2

do

for i3 from max{i2, 2t− i1 − i2 − αn} to min{αn, ⌊
2t−i1−i2

2
⌋} with

step 2 do

sol ← sol ∪ {{i1, i2, i3, 2t− i1 − i2 − i3}}
od

od

od

Given a tuple (αi1 , αi2 , αi3 , αi4) solution to (1), construct the four matrices
Nk whose rows are those vectors satisfying αik total coincidences with the
corresponding quarter of v. By construction, the juxtaposition of any of the
rows of these matrices gives a vector orthogonal to v.

Proposition 4 A set δv of generators for the adjacency list of v may be
straightforwardly constructed in terms of matrices of the type above.

In spite of the fact that the size (both in edges and vertices) of Gt grows
exponentially in t, the procedure described in Proposition 4 is a cheaper way
(in terms of both time and space) of saving this information.

We will illustrate now how the proposition above works by means of an
example. In order to simplify the reading, in what follows we will use a vertical
line | to separate the different quarters of a k-vector.

Example 2 Let us consider the case t = 5, k = 2 and v = 684646 (its binary
representation gives the 2-vector v = (10100|11100|10011|00110)). We are go-
ing to calculate the full set of s-vectors orthogonal to v, for 0 ≤ s ≤ 2 = ⌊ 5

2
⌋

(recall that the remaining orthogonal vectors are obtained by simply inter-
changing the 0-bits and 1-bits, since they are the negation of the vectors just
calculated).

1. Case s = 0.
From Lemma 4, we know that there is just one value for the number i of
coincidences in 1-bits, namely i = 0. Consequently, there is just one value
αi, namely α0 = 3.
Since 4α0 = 12 6= 10 = 2 · 5, the system (1) has no solutions, so there is no
0-vector orthogonal to v.
This was evident from the very beginning, since there is only one 0-vector,
w = 32736 (i.e. w = (00000|11111|11111|00000)), and it is not orthogonal
to v.

2. Case s = 1.
From Lemma 4, we know that i ∈ {0, 1}, and hence αi ∈ {2, 4}. The set
of different ways in which four αi may be orderless chosen to sum 10 is
described by the system (1),

{

2x0 + 4x1 = 10
x0 + x1 = 4

Since 4α0 = 8 ≤ 10 ≤ 4α1 = 16, there exist solutions for the system. In
fact, there is just one solution, (x0, x1) = (3, 1), which corresponds to the
following distribution of total coincidences (up to reordering): (2, 2, 2, 4).
In order to explicitly construct those 1-vectors w meeting the distribution
(2, 2, 2, 4), we have to find those 1-vectors with 0 coincidences with v in
1-bits in the first quarter, 0 coincidences in 0-bits in the second and third
quarters, and 1 coincidence in 1-bits in the fourth quarter.

Since v is a 2-vector, in the first quarter there are

(

5− 2
1

)

choices for plac-

ing the 1-bit of w among the 0-bits of v. Analogously, there are

(

5− 2
1

)

choices for placing the 0-bit of w among the 1-bits of v in the second and

third quarters. And there are

(

2
1

)

choices for placing the 1-bit ofw among

the 1-bits of v.

In conclusion, the set of 1-vectors meeting the distribution of total coin-
cidences (2, 2, 2, 4) is generated by the juxtaposition of any of the rows of
the following matrices

0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

×

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

×

0 1 1 1 1
1 1 1 0 1
1 1 1 1 0

×

(

0 0 1 0 0
0 0 0 1 0

)

Similar schemes are achieved with the remaining orderings of the valid
distribution of total coincidences, (2, 2, 4, 2), (2, 4, 2, 2) and (4, 2, 2, 2). In
fact, they may be obtained by simply permuting and/or negating some
suitable columns of the distribution above.

3. Case s = 2.
From Lemma 4, we know that i ∈ {0, 1, 2}, and hence αi ∈ {1, 3, 5}. The
set of different ways in which four αi may be orderless chosen to sum 10 is
described by the system (1),

{

x0 + 3x1 + 5x2 = 10
x0 + x1 + x2 = 4

Since 4α0 = 4 ≤ 10 ≤ 4α2 = 20, there exist solutions for the system. In
fact, there are just two solutions, (x0, x1, x2) ∈ {(2, 1, 1), (1, 3, 0)}, which
correspond to the following distribution of total coincidences (up to re-
ordering): (1, 1, 3, 5) and (1, 3, 3, 3).
In order to explicitly construct those 2-vectors w meeting the distribution
(1, 1, 3, 5), we have to find those 2-vectors with 0 coincidences with v in
1-bits in the first quarter, 0 coincidences in 0-bits in the second quarter, 1
coincidence in 0-bits in the third quarter, and 2 coincidences in 1-bits in
the fourth quarter.

Since v is a 2-vector, in the first quarter there are

(

5− 2
2

)

choices for plac-

ing the 1-bits of w among the 0-bits of v. Analogously, there are

(

5− 2
2

)

choices for placing the 0-bits of w among the 1-bits of v in the second

quarter. Analogously, in the third quarter, there are

(

2
1

)

choices for plac-

ing one 0-bit of w among the 0-bits of v, and for each of them, there are
(

5− 2
1

)

choices for placing the second 0-bit of w among the 1-bits of v.

Finally, there are

(

2
2

)

choices (just one!) for placing the 1-bits ofw among

the 1-bits of v.
In conclusion, the set of 2-vectors meeting the distribution of total coin-
cidences (1, 1, 3, 5) is generated by the juxtaposition of any of the rows of

the following matrices

0 0 0 1 1
0 1 0 0 1
0 1 0 1 0

×

1 0 0 1 1
0 1 0 1 1
0 0 1 1 1

×

1 0 1 1 0
1 0 1 0 1
0 0 1 1 1
1 1 0 1 0
1 1 0 0 1
0 1 0 1 1

×
(

0 0 1 1 0
)

Similar schemes are achieved from the remaining orderings of the distribu-
tion (1, 1, 3, 5).
Analogously, one may conclude that the set of 2−vectors meeting the distri-
bution of total coincidences (1, 3, 3, 3) (and in a similar way its reorderings
as well) is generated by the juxtaposition of any of the rows of the following
matrices

0 0 0 1 1
0 1 0 0 1
0 1 0 1 0

×

1 1 0 0 1
1 0 1 0 1
0 1 1 0 1
1 1 0 1 0
1 0 1 1 0
0 1 1 1 0

×

1 0 1 1 0
1 0 1 0 1
0 0 1 1 1
1 1 0 1 0
1 1 0 0 1
0 1 0 1 1

×

0 0 1 0 1
0 1 1 0 0
1 0 1 0 0
0 0 0 1 1
0 1 0 1 0
1 0 0 1 0

�

We have just described a procedure for determining a set δv of generators
for the adjacency list related to a fixed k-vector v, 0 ≤ k ≤ ⌊ t

2
⌋. In spite of

the fact that the size (both in edges and vertices) of Gt grows exponentially
in t, this is a cheaper way (in terms of both time and space) of saving this
information.

Once we know how the adjacency relation in Gt looks like, we are in con-
ditions to describe an algorithm looking for cliques in Gt.

3 Local exhaustive search

From the results described in the precedent Section, one may straightforwardly
design an algorithm searching for a maximal (probably not maximum) clique
in Gt. Starting from a clique C initially consisting of a random vertex v in
Gt, it suffices to repeatedly add a new vertex w to C, randomly chosen among
those vertices simultaneously orthogonal to the vertices already in C.

This is somehow a local exhaustive search. Exhaustive, in the sense that
repeatedly the full set of vertices simultaneously orthogonal to the nodes of a
given clique is constructed. Local, in the sense that just one vertex among the
full set of candidates is actually used.

We next include a pseudo-code for this algorithm.

Algorithm 1 Searching for cliques in Gt.

Input: an integer t
Output: a maximal clique in Gt

Select a k-vertex v in Gt

clique ← {v}
adj ← δv
while adj is not empty{

v← a random s-vertex in adj

clique← clique ∪ {v}
adj ← adj ∩ δv

}
clique

The complexity of the algorithm relays on the operations δv and adj ∩ δv.
From Proposition 3, δv may be constructed in polynomial-time. Unfortunately,
the size of adj increases exponentially, and so the algorithm is both time and
space consuming.

Improved versions of the algorithm might be implemented, depending on
a deeper knowledge of how orthogonality on k-vertices works.

We now include some execution tables.
All the calculations of this section have been worked out in Mathematica

4.0, running on a Pentium IV 2.400 Mhz DIMM DDR266 512 MB.
The table below shows, for every 2 ≤ t ≤ 10, the number of essays which

have been executed looking for cliques in Gt, the average time required in
these calculations, the average size of these cliques, the largest size found so
far, the time required in this calculation and one instance among the largest
cliques already found.

Table 2 Results obtained from Algorithm 1.

t Essays Av.Time Av.Size Lar.S. Time Clique

2 10 0.0232′′ 5 5 0.016′′ 166, 101, 106, 169, 60

3 10 0.039′′ 9 9 0.031′′
2396, 730, 881, 940, 1386, 2482, 1433,
2281, 1268

4 10 0.368′′ 13 13 0.327′′
22166, 22874, 11698, 34776, 13251,
19428, 49971, 13116, 39594, 43606,
38246, 7793, 26218

5 10 0.369′′ 11 17 0.468′′

615882, 81761, 124596, 682665,
315178, 323811, 183761, 808837,
405190, 572306, 350936, 677490,
193356, 813428, 219558, 406968,
564460

t Essays Av.Time Av.Size Lar.S. Time Clique

6 10 4.128′′ 13.8 21 3.198′′

1943217, 2913196, 4896610, 1866067,
13689735, 5584078, 10118748, 4943241,
3324617, 6759253, 5685752, 8874722,
14710001, 8830356, 6614554, 4840148,
8771401, 3272036, 3364754, 13712184,
11117018

7 10 12.19′′ 12.8 17 20.53′′

30121113, 153038560, 15673110,
73300362, 41266505, 117929485,
86698833, 43440080, 105500358,
176876844, 41595557, 156361628,
172841777, 119125298, 205299228,
79251369, 210612677

8 4 1′39′′ 13.75 15 59.37′′

1305024466, 1295442290, 2999574898,
3795589971, 3631000788, 3248355466,
364489541, 2896517604, 2629324346,
1255832164, 504314142, 3570677031,
965647459, 1387503024, 1483592489

9 4 13′46′′ 14.25 16 6′34′′

56453847575, 43074435680,
41936051018, 22138975396,
23156633420, 41987793978,
37225385892, 18981806746,
45452914326, 7371644105,
53995320335, 52910835425,
60376161688, 19823315036,
10578923147, 28478917930

10 2 4h50′6′′ 16 16 3h0′50′′

611551599738, 585720653408,
381375537029, 727566346115,
90629862411, 851419790210,
418284730924, 524680378162,
364580931042, 154503136551,
747357767564, 199828304181,
99982406086, 319408643342,
422206490833, 34030595756

As the table below shows, it is remarkable that the sizes of the largest
cliques found so far are greater than ⌊ 4t

3
⌋ − 3 (a third of a full Hadamard

matrix of size 4t) and even 2t − 3 (a half of a full Hadamard matrix of size
4t), which are the best asymptotic bounds on the depth of partial Hadamard
matrices known so far.

Table 3 Comparing sizes of cliques.

t 2 3 4 5 6 7 8 9 10

⌊ 4t
3
⌋ − 3 −1 1 2 3 5 6 7 9 10

2t − 3 1 3 5 7 9 11 13 15 17
Lar.S. 5 9 13 17 21 17 15 16 16

Although our procedure gives large partial Hadamard matrices (of depth
greater than half of a full Hadamard matrix), it is very expensive both in space
and time.

It would be desirable to find a way to design a procedure running signifi-
cantly faster and which nevertheless leads to large partial Hadamard matrices
as well. We describe such an algorithm in the following section.

4 Heuristic searches

In this section we describe two heuristics for searching for cliques in Gt.
The first of them is a straightforward adaptation of the best (as far as

we know) genetic algorithm for solving the maximum clique problem (MCP).
Since it is very expensive in time, we then describe a second heuristic, which
is much faster, in exchange of precision (in the sense that not sufficiently large
cliques are obtained).

Nevertheless, it is a remarkable fact that this last procedure admits as
input data a clique already constructed. Consequently, one could eventually
obtain a larger clique. Experimental results suggest that this actually happens
more times than one could initially think (see Table 4.2). In fact, it seems to
be a good idea to combine this fast search with other more precise procedures.

4.1 Classical GAs for MCP

As we commented before, finding the maximum clique of a graph is a NP-
Hard problem, and consequently all known exact algorithms for this problem
will run in time that grows exponentially with the number of vertices in the
graph. This makes these algorithms infeasible even in case of moderately large
problem instances. Therefore most of the efforts to solve the maximum clique
problem are based on heuristic approaches.

In [21] a heuristic based steady-state genetic algorithm for the maximum
clique problem is described. The steady-state genetic algorithm generates
cliques, which are then extended into maximal cliques by the heuristic. Af-
ter comparison with the three best evolutionary approaches for the maximum
clique problem, they find out that their algorithm outperforms all the three
evolutionary approaches in terms of best and average clique sizes found on
majority of DIMACS benchmark instances (which are the canonical family of
graphs used to test MCP-algorithms).

The main features of the genetic algorithm in [21] consist in:

– Chromosome representation. A n-length bit vector represent a chromosome
(i.e. a clique), so that a value of 1 at the ith position indicates that the
vertex i is in the clique.

– Crossover. They use fitness based crossover, so that a child is constructed
bit by bit, receiving each time the bit from one of its parents, with prob-
ability proportional to the fitness of the parents. The vector obtained so
far may not be a clique, so a repairing function is needed to transform the
child into a clique.

– Repair. First, all 1 bits corresponding to vertices with significantly low
degree (in comparison with the provisional fittest individual) are changed
to 0. Then, the repairing procedure introduced by Marchiori in [20] is used,
so that repeatedly a vertex of the child is selected at random, and either
it or all the vertices not adjacent to it are deleted (i.e. the corresponding
bits are fixed to 0), until the child becomes a clique.

– Mutation. Mutation consists in simple bit flip mutation, where each bit in
the chromosome is flipped with a pre-fixed probability pm. Once again, the
repairing function is needed to guarantee that a valid chromosome (i.e. a
clique) is obtained.

– Extension. Once a valid chromosome (i.e. a clique) is constructed, an ex-
tension function is applied, in order to extend the given clique to a maximal
clique. The idea is repeatedly adding a vertex with highest degree among
the set S of vertices simultaneously adjacent to the vertices already in the
clique. When the size of the set S is small enough, then the exhaustive
search of Carraghan and Pardalos [7] is performed.

– Fitness. The fitness of a chromosome is equal to the size of the clique that
it represents.

– Selection. They use binary tournament selection, where the candidate with
better fitness is selected with a pre-fixed probability pb.

– Replacement policy. No duplicate chromosomes are permitted in the pop-
ulation. When a new child is constructed, it always replaces the worst
member of the population, irrespective of its own fitness.

It seems natural trying to adapt this algorithm to our case. Unfortunately,
one cannot afford to explicitly construct the adjacency lists of Gt, for values
t > 5, since they grow exponentially in t, as we showed in the section before.

So the extension function described in [21] cannot be applied in the case
of the graph Gt. Nevertheless, we can use instead the algorithm proposed in
the previous section.

Algorithm 2 GA looking for cliques in Gt.
Substitute the extension function in [21] by Algorithm 1.

We show now some executions for 2 ≤ t ≤ 9, where the size of the popula-
tion is fixed to 5 and the maximum number of generations is fixed to 20.

Table 4 Results obtained from Algorithm 2.

t Time # generations #{C : |C| is maximal} |C| PH size

2 0, 171” 0 5 5 8
3 0, 359” 0 5 9 12
4 1, 872” 0 5 13 16
5 3, 931” 0 3 17 20
6 19, 36” 0 3 21 24
7 4′10” 20 3 17 20
8 24′37” 20 1 21 24

9 4h36” 20 1 18 21

We next include explicitly the cliques found so far. For brevity, we give
the decimal number representations of the binary 4t-vectors which form each
clique.

Table 5 Cliques obtained from Algorithm 2 listed explicitly.

t Clique

2 89, 169, 195, 149, 101
3 2396, 922, 3347, 3214, 2635, 2290, 2854, 2473, 1386
4 11633, 27850, 20148, 40089, 29719, 6098, 14940, 43414, 22981, 40038, 15011, 42693, 13740
5 355028, 694485, 626266, 436558, 57188, 250510, 647277, 308937, 189682,

809194, 832054, 113080, 211555, 381267, 603590, 684888, 584579
6 9162129, 15599647, 12071353, 7947574, 2834188, 10323501, 6722981, 7449237,

5936794, 3845219, 2986835, 13186247, 14739211, 5822797, 5711193, 13280116,
14785656, 11687509, 9747734, 11764174, 13835043

7 206229172, 136297864, 145421137, 239938137, 244421436, 78464909, 111023826,
96903644, 49849529, 150232156, 47868686, 213067927, 46619057, 237397306,
193760535, 174494351, 223891867

8 925672665, 545242888, 131329093, 1388111142, 3800772080, 2494264851, 2084807742,
3004829231, 432983728, 1265186469, 1437667228, 2976213301, 766141292, 455842134,
3399920157, 3380112474, 2022530125, 1674167067, 3521287529, 517486905, 1394045560

9 6263028814, 17380851458, 66723786135, 13185706648, 61523714894, 11518454374,
28777615826, 31813316858, 7484361626, 45216625720, 10357786275, 32845624107,
64532207782, 48511720424, 46756144798, 24818822896, 53243861654, 27484036889

A comparison with the results obtained in the section before, reveals that
the genetic algorithm is not as useful as desired.

On one hand, the only improvements are obtained for the values t = 8, 9,
and they are not significantly impressive. Moreover, it seems that quality (in
terms of the size of the cliques obtained) relays on the extension function
rather than in the genetic procedure itself.

On the other hand, each run of the extension function is very time-consu-
ming, so the required time for executing a full run of the genetic algorithm
grows drastically. And there is no a dramatic increase in the size of the obtained
cliques in return.

It would be desirable to look for a faster way of extending cliques, attending
to the particular properties of our graph Gt. We tackle with this question in
the next section.

4.2 A fast heuristic search

In order to get a faster heuristic search, we need to have a deeper look at the
adjacency relations between the vertices in Gt.

We first translate Proposition 1 (which characterizes the set of s-vectors
orthogonal to a given k-vector in terms of distributions of total coincidences

(αi1 , αi2 , αi3 , αi4)), in terms of distributions (i1, i2, i3, i4) of coincidences in 1s
(for the first and last quarters) and 0s (for the second and third quarters).

Proposition 5 The set of s-vectors orthogonal to a given k-vector corre-
sponds to the full set of distributions of s-vectors satisfying tuples of coin-
cidences in 1s (first and fourth quarters) and 0s (second and third quarters)
(i1, i2, i3, i4) such that i1 + i2 + i3 + i4 = 2s + 2k − t. Furthermore, this is
possible iff 2s+ 2k − t ≥ 0.

Proof From Proposition 1, we know that the set of s-vectors orthogonal to
a given k-vector is characterized by those distributions of total coincidences
(αi1 , αi2 , αi3 , αi4) such that αi1 + αi2 + αi3 + αi4 = 2t.

Since αi = t− s− k + 2i from Lemma 5, the relation above comes to be

4t− 4k − 4s+ 2i1 + 2i2 + 2i3 + 2i4 = 2t⇔ i1 + i2 + i3 + i4 = 2s+ 2k − t.

Now, on one hand, since 0 ≤ ij ≤ min(k, s), the value i1 + i2 + i3 + i4 runs
over the range 0 ≤ i1 + i2 + i3 + i4 ≤ 4min(k, s).

On the other hand, since 0 ≤ s, k ≤ ⌊ t
2
⌋, it is clear that 2s + 2k − t ≤

2min(k, s).
Thus, provided 2s + 2k − t ≥ 0, this value is in the range valid for i1 +

i2 + i3 + i4, and therefore there exists a distribution of coincidences in 1s (at
first and fourth quarters, i1 and i4 respectively) and 0s (at second and third
quarters, i2 and i3 respectively), such that i1 + i2 + i3 + i4 = 2s+ 2k − t.

Now it is apparent that not all possible values s in the range 0 ≤ s ≤ ⌊ t
2
⌋

do provide s-vectors orthogonal to a given k-vector.

Proposition 6 Fixed a k-vector v, there exist s-vectors orthogonal to v iff
s ∈ [⌈ t

2
⌉ − k, ⌊ t

2
⌋].

Proof The upper bound is given in Lemma 3.
On the other hand, from Proposition 5, there exist s-vectors orthogonal

to a given k-vector iff 0 ≤ 2s + 2k − t. Consequently, s ≥ t
2
− k, that is,

s ≥ ⌈
t

2
⌉ − k.

Furthermore, we may straightforwardly precise the number of s-vectors
orthogonal to a given k-vector, for some fixed s ∈ [⌈ t

2
⌉ − k, ⌊ t

2
⌋].

Lemma 6 Fixed a valid distribution (i1, i2, i3, i4), the number of s-vectors
orthogonal to a given k-vector is given by the expression:

(

k

i1

)(

t− k

s− i1

)(

k

i2

)(

t− k

s− i2

)(

k

i3

)(

t− k

s− i3

)(

k

i4

)(

t− k

s− i4

)

Table 6 Distribution of s-vectors orthogonal to a k-vector.

t = 3

k = 0 k = 1
s = 0 0 0
s = 1 0 32

t = 4 t = 5

k = 0 k = 1 k = 2 k = 0 k = 1 k = 2
s = 0 0 0 1 0 0 0
s = 1 0 81 96 0 0 216
s = 2 1296 486 454 0 3456 3240

t = 6 t = 7

k = 0 k = 1 k = 2 k = 3 k = 0 k = 1 k = 2 k = 3
s = 0 0 0 0 1 0 0 0 0
s = 1 0 0 256 486 0 0 0 768
s = 2 0 10000 14688 15795 0 0 40000 57024
s = 3 160000 60000 49920 47148 0 480000 440000 422208

t = 8

k = 0 k = 1 k = 2 k = 3 k = 4
s = 0 0 0 0 0 1
s = 1 0 0 0 625 1536
s = 2 0 0 50625 147000 183904
s = 3 0 1500625 2352000 2601000 2655744
s = 4 24010000 9003750 7183750 6483750 6297030

t = 9

k = 0 k = 1 k = 2 k = 3 k = 4
s = 0 0 0 0 0 0
s = 1 0 0 0 0 2000
s = 2 0 0 0 243000 464000
s = 3 0 0 7203000 11210000 12912000
s = 4 0 76832000 69629000 65367000 63430000

t = 10

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
s = 0 0 0 0 0 0 1
s = 1 0 0 0 0 1296 3750
s = 2 0 0 0 194481 858600 1200625
s = 3 0 0 9834496 32773650 48326400 53560000
s = 4 0 252047376 407209600 453248775 468312600 472003750
s = 5 4032758016 1512284256 1180754176 1041640236 978746976 960098756

The following tables show the number of s-vectors orthogonal to a given
k-vector, for 3 ≤ t ≤ 10, 0 ≤ k ≤ ⌊ t

2
⌋, and 0 ≤ s ≤ ⌊ t

2
⌋.

In particular, these results suggest that large cliques in Gt should consist
of k-vectors, for large values of k, close to ⌊ t

2
⌋.

This seems to be so, as the calculations below suggest.
For each 3 ≤ t ≤ 9, we choose at random a Hadamard matrix of or-

der 4t from Sloane’s online library [22], say had.12, had16.4, had20.hall.n,
had24.pal, had28.pal2, had32.pal, had36.pal2.

We now normalize these matrices, by means of the following algorithm.
Notice that since just negation and permutation of columns are used, the
Hadamard character of the matrix is preserved.

Algorithm 3 Hadamard normalization

– Negate those columns consisting of a first negative entry.
– Now, locate those columns i, 1 ≤ i ≤ 2t, consisting of a second negative

entry. Locate those columns j, 2t + 1 ≤ j ≤ 4t, consisting of a second
positive entry. Interchange them.

– Proceed as the step before, now by quarters. As a result, you will obtain a
normalized Hadamard matrix.

Now we randomly fix a ⌊ t
2
⌋-vector among the rows of these matrices (for

instance, the first such occurrence). The table below shows the distribution
of the values s, for the s-vectors of the remaining rows. In addition, we also
include the distribution of (not ordered!) total coincidences (αi1 , . . . , αi4).

Table 7 Rows in Hadamard matrices are k-rows, for k ∈ {⌊ t

2
⌋ − 1, ⌊ t

2
⌋}.

t row s = ⌊ t

2
⌋ s = ⌊ t

2
⌋ − 1 #{total coincidences}

3 4 8 0 (1, 1, 1, 3) → 8

4 6 8 4
(2, 2, 2, 2) → 4
(0, 2, 2, 4) → 4
(1, 1, 3, 3) → 4

5 5 15 1
(1, 3, 3, 3) → 12
(1, 1, 3, 5) → 3
(2, 2, 2, 4) → 1

6 4 11 9

(2, 2, 4, 4) → 9
(2, 2, 2, 6) → 1
(0, 4, 4, 4) → 1
(1, 3, 3, 5) → 6
(3, 3, 3, 3) → 3

7 5 21 3

(3, 3, 3, 5) → 16
(1, 3, 5, 5) → 3
(1, 3, 3, 7) → 2
(2, 2, 4, 6) → 2
(2, 4, 4, 4) → 1

8 4 12 16

(2, 4, 4, 6) → 12
(3, 3, 5, 5) → 12
(1, 5, 5, 5) → 2
(3, 3, 3, 7) → 2

9 4 26 6
(3, 5, 5, 5) → 20
(1, 5, 5, 7) → 6
(2, 4, 6, 6) → 6

The table above suggests that one should focus on k-vectors for k ∈ {⌊ t
2
⌋−

1, ⌊ t
2
⌋}. Furthermore, the vector of total coincidences per quarter uses to be

homogeneously distributed.

With these ideas at hand, we next design a fast heuristic searching for (or
eventually extending) cliques in Gt.

Algorithm 4 Fast heuristic for extending cliques in Gt.

Input: a clique C in Gt

Output: a clique C′ in Gt containing C

C′ = C

for k from ⌊ t
2
⌋ to ⌊ t

2
⌋ − 1 step −1 do

iter = 0
while iter < t do

{bool,v} =buildgrapas(C′, k)
If bool then iter = 0; C′ = C′ ∪ {v} else iter = iter + 1

od

od

C′

The function buildgrapas tries to construct an s-vector quarter by quarter
(in a random ordering), attending to the following aspects:

– Select a number of total coincidences for the quarter, according to the
range valid at this step (i.e. such that equation (1) can be satisfied), and
with probability proportional to the number of its appearances in the set
of solutions described in Corollary 2.

– Once the desired number of total coincidences has been fixed, a genetic
procedure is performed, for constructing a valid quarter (i.e. such that (1)
can be satisfied). This heuristic consists of populations of 4t individuals.
If no valid quarter is found after 4t generations, the search ends with a
failure. In this case, the last quarter constructed so far is deleted, and the
process goes on from this point. This situation is limited to occur at most
t times.

– This search is performed at most 10 times. If no valid vector is constructed
after these 10 attempts, the search stops and a False boolean is returned.

The table below shows, for every 2 ≤ t ≤ 10, the number of essays which
have been executed looking for cliques in Gt, the average time required in
these calculations, the average size of these cliques, the largest size found so
far, the time required in this calculation and one instance among the largest
cliques already found.

Table 8 Results obtained from Algorithm 4.

t Essays Av.Time Av.Size Lar.S. Time Clique

2 10 1.4′′ 5 5 1.4′′ 86, 101, 149, 89, 60

3 10 0.565′′ 9 9 0.5′′
1452, 2396, 1393, 874, 756, 2482, 921,
1242, 2281

4 10 19.603′′ 11 12 17.28′′
25542, 15462, 13769, 39626, 50538,
22099, 38294, 22188, 22876, 52421,
22947, 27802

t Essays Av.Time Av.Size Lar.S. Time Clique

5 10 27.369′′ 9 17 76.924′′

193425, 586090, 808611, 420073
350674, 408358, 222834, 109987,
315192, 341833, 604856, 662897,
171722, 308468, 121445, 218540,
552900

6 10 51.38′′ 7.6 10 56.87′′

13215089, 13015273, 10053835, 12875531,
12954262, 6768979, 3454163, 9730420,
3324617, 6759253, 5685752, 8874722,
999010, 906181

7 10 1′23′′ 8 9 1′46′′
159860692, 161016643, 73886147,
142481171, 173143250, 170760901,
21953176, 43986594, 203259148

8 10 2′11′′ 7.6 9 2′53′′
866473426, 1497876124, 1273533381,
1697995341, 1439971764, 3784746441,
2345981979, 2309832360, 242628440

9 10 3′02′′ 7.8 9 3′05′′

56095030680, 38163367817,
41103334725, 54854789721,
22744355553, 45279148512,
4785499937, 52133944916,
60209197830

Although the size of the cliques obtained so far are smaller than those
constructed by the precedent procedures, it is a remarkable fact that this
algorithm is substantially faster. In fact, this procedure should be considered as
an extension function for cliques better than a procedure itself for constructing
cliques starting from the empty graph.

This idea is supported by the calculations showed in the table below, where
cliques C of size |C| ≤ 2t in Gt constructed by the procedures described in [8,
10] (after normalization by Algorithm 3) are extended to larger cliques C′ (of
size |C′| ≥ 2t, more than a half of a full Hadamard matrix!) with Algorithm
4.

Table 9 Algorithm 4 applied to PHm×4t in [10] produces PH(m+n)×4t, with m+ n ≥ 2t.

t |C| |C′| time added vertices

4 5 12 17.97′′
21930, 50745, 25500, 13107,
37740, 42330, 51510

5 5 7 19.38′′ 118659, 341714

6 9 15 1′07′′
3099915, 9123660, 8841105,
10606050, 4844385, 4692870

7 9 9 1′03′′

8 13 17 2′51′′
1923517785, 3032697660,
1695521520, 2956808130

Notice that for t = 7, the input clique has not been extended to a larger
one. We suspect that the input clique is maximal, and therefore a larger clique
containing it could not exist.

5 Conclusions

In this paper we have described three algorithms looking for pretty large partial
Hadamard matrices (i.e. about a third of a full Hadamard matrix), in terms
of cliques of the Hadamard Graph Gt.

The first one (Algorithm 1) performed some kind of local exhaustive search,
and consequently is expensive from the time consuming point of view. So we
decided to design some heuristic for constructing partial Hadamard matrices.

Our first approach (Algorithm 2) consisted in an adaptation of Singh and
Gupta’s genetic algorithm for the Maximum Clique Problem. Unfortunately,
it did not work properly, since it used Algorithm 1 for extending cliques, and
consequently was very expensive in time as well.

Algorithm 4 prioritizes the required processing time better than the final
size of the partial Hadamard matrix to be obtained. Experimental results show
that this algorithm may output pretty large partial Hadamard matrices (larger
than half a full Hadamard matrix!), provided a suitable initial clique is given
as input data.

All the algorithms that we have presented here are based on the properties
of the Hadamard Graph Gt which have been described in Section 2.

It would be an interesting question whether different techniques and meth-
ods could be considered for designing alternative algorithms searching for large
partial Hadamard matrices. For instance, one could ask about the techniques
and methods which have been shown to be useful when manipulating full
Hadamard matrices.

Unfortunately, this will not be the case, in general. For instance, consider
the case of the cocyclic approach.

More concretely, the cocyclic framework has arised as a promising way to
construct (cocyclic) Hadamard matrices [14,1,3,4]. One could ask whether the
cocyclic framework is also a good place to look for partial Hadamard matrices.
Actually, this is not the case.

Proposition 7 The depth of any partial Hadamard matrix which is a subma-
trix of a cocyclic matrix Mf is at most a half of the size of Mf .

Proof Attending to the proof of the cocyclic Hadamard test in [16] (see Lemma
1.4 on p. 281), fixed a multiplicative group G = {g1 = 1, . . . , gn} and a cocyclic
matrix Mf = (f(gi, gj)) over G, rows gi 6= gk in Mf are orthogonal if and
only if the summation of the row gig

−1

k (6= g1) is zero (and consequently, the
summation of the row gkg

−1

i as well).

If a row gk 6= g1 in Mf fails to sum zero, then, for each 1 ≤ i ≤ n, the pair
of rows {gi, g

−1

k gi} (and also {gi, gkgi}) fails to be orthogonal. By partitioning
the rows of Mf into pairs of the type {gi, g

−1

k gi}, it turns out that such a pair
contributes at most one row to a partial Hadamard matrix included in Mf .
Consequently, the depth of any partial Hadamard matrix which is a submatrix
of Mf is at most n

2
, as claimed.

It would be interesting to think about the way in which k-vertices in Gt

could be combined in order to get larger cliques.
Nevertheless, it would be also interesting to investigate whether improved

versions of the algorithms described in this paper could be designed, attending
to other considerations.

Acknowledgements All authors are partially supported by the research projects FQM–
016 and P07-FQM-02980 from Junta de Andalućıa and MTM2008-06578 from Ministerio de
Ciencia e Innovación (Spain).

References

1. V. Álvarez, J.A. Armario, M.D. Frau, P. Real. A genetic algorithm for cocyclic Hadamard
matrices. AAECC16, LNCS 3857, 144–153. Springer, Heidelberg, (2006).

2. V. Álvarez, J.A. Armario, M.D. Frau, E. Mart́ın, A. Osuna. Error Correcting Codes from
Quasi-Hadamard Matrices. WAIFI07, LNCS 4547, 294–302. Springer, Heidelberg, (2007).

3. V. Álvarez, J.A. Armario, M.D. Frau, P. Real. A system of equations for describing
cocyclic Hadamard matrices. Journal of Comb. Des., 16 (4), 276–290, (2008).

4. V. Álvarez, J.A. Armario, M.D. Frau, P. Real. The homological reduction method for
computing cocyclic Hadamard matrices. J. Symb. Comput., 44, 558–570, (2009).

5. V. Álvarez, M.D. Frau, A. Osuna: A genetic algorithm with guided reproduction for
constructing cocyclic Hadamard matrices. ICANNGA09, LNCS 5495, 150–160. Springer,
Heidelberg, (2009).

6. I.M. Bomze, M. Budinich, P.M. Paradalos and M. Pelillo. The maximum clique problem.
Handbook of Combinatorial Optimization, D.Z. Du and P.M. Paradalos Eds. Norwell,
MA: Kluwer, vol. 4 (1999).

7. R. Carraghan, P.M. Pardalos. An exact algorithm for the maximum clique problem.
Oper. Res. Lett., 9, 375–382, (1990).

8. W. de Launey. On the assymptotic existence of partial complex Hadamard matrices and
related combinatorial objects. Discrete Applied Mathematics 102, 37–45, (2000).

9. W. de Launey. On the assymptotic existence of Hadamard matrices. Journal of Combi-

natorial Theory, Series A 116, 1002–1008, (2009).
10. W. de Launey and D.M. Gordon. A comment on the Hadamard conjecture. Journal of
Combinatorial Theory, Series A 95 (1), 180–184, (2001).

11. W. de Launey and H. Kharaghani. On the assymptotic existence of cocyclic Hadamard
matrices. Journal of Combinatorial Theory, Series A 116, 1140–1153, (2009).

12. J. Hastad. Clique is hard to approximate within n1−ǫ. Proc. 37th Annu. Symp. Found.

Comput. Sci., Burlington, 627-636, (1996).
13. A. Hedayat and W.D. Wallis. Hadamard Matrices and Their Applications. Ann. Stat.

6, 1184–1238, (1978).
14. K.J. Horadam. Hadamard matrices and their applications. Princeton University Press,
Princeton (2007).

15. K.J. Horadam and W. de Launey. Cocyclic development of designs. J. Algebraic Com-

bin., 2 (3), 267–290, (1993). Erratum: J. Algebraic Combin., (1), pp. 129, (1994).
16. K.J. Horadam and W. de Launey. Generation of cocyclic Hadamard matrices. Compu-

tational algebra and number theory (Sydney, 1992), volume 325 of Math. Appl., 279–290.
Kluwer Acad. Publ., Dordrecht, (1995).

17. N. Ito. On a family of conjugacy classes graphs. Mem. Konan Univ. 31, 105–112, (1984).
18. N. Ito. Hadamard Graphs I. Graphs Combin. 1 (1), 57–64, (1985).
19. S. Khot. Improved inapproximability results for maxclique, chromatic number and ap-
proximate graph coloring. Proceedings of 42nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 600-609 (2001).

20. E. Marchiori. Genetic, Iterated and Multistart Local Search for the Maximum Clique
Problem. EvoWorkshop 2002, LNCS 2279, 112–121. Springer-Verlag, Berlin Heidelberg,
(2002).

21. A. Singh and A.K. Gupta. A hybrid heuristic for the maximum clique problem. J.

Heuristics, 15, 5-22 (2006).
22. N.J.A. Sloane. http://www2.research.att.com/˜njas/hadamard

http://www2.research.att.com/~njas/hadamard

	1 Introduction
	2 The graph Gt
	3 Local exhaustive search
	4 Heuristic searches
	5 Conclusions

