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Abstract: In this paper, we give a characterization of quasi-Hadamard groups in terms of propelinear codes. We 
define a new class of codes that we call quasi-Hadamard full propelinear codes. Some structural properties of 
these codes are studied and examples are provided.
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1 Introduction

The Hadamard (maximal) determinant problem asks for the largest n ×n determinant with entries ±1. This is an 
old question which remains unanswered in general. Throughout this paper, for convenience, when we say 
determinant of a matrix we mean the absolute value of the determinant. Let M be a (−1, 1)-matrix of order n. We 
call M a D-optimal design if the determinant of M is the maximum determinant among all (−1, 1)-matrices of 
order n, (i.e., det(M) is a solution of the Hadamard determinant problem). Hadamard showed in [8] that nn/2 was 
an upper bound for the determinant of an n × n D-optimal design. This bound can be attained only if n = 1, 2 or n 
is a multiple of 4. A matrix that attains it is called a Hadamard matrix, and it is an outstanding conjecture that one 
exists for any multiple of 4. Hadamard’s inequality can be improved if we restrict to matrices whose orders are 
not divisible by
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4. Indeed, if n ≡ 2 mod 4 and n �= 2, Ehlich [5] and independently Wojtas [17] proved that

det(M) ≤ (2n − 2)(n − 2)
1
2 n−1, (1.1)

and, moreover, there exists a (−1, 1)-matrix achieving equality in (1.1) if and only if there exists a (−1, 1)-matrix
B of order n such that

BB� = B�B =
[
L 0
0 L

]
, (1.2)

where L = (n − 2)I + 2J . The symbols I and J will (respectively) always denote the identity matrix and the
all-ones matrix; the order of each matrix will be clear from the context in which it is used. A (−1, 1)-matrix of order
n is called an EW matrix if it satisfies (1.2) (or more generally, when its determinant reaches the bound in (1.1)).
Clearly Hadamard matrices and EW matrices are D-optimal designs. Note that it is known that EW matrices exist
only if 2(n − 1) is the sum of two squares, a condition which is believed to be sufficient (order 138 is the lowest for
which the question has not been settled yet, [7]). The interested reader is addressed to [12] and the website [13] for
further information on what is known about maximal determinants.

Example 1.1 The following matrix is a EW matrix of order 10.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1
1 1 −1 −1 −1 1 1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1 −1 −1
1 −1 −1 1 −1 1 −1 −1 1 −1
1 −1 −1 −1 1 1 −1 −1 −1 1
1 1 1 1 1 −1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 −1 1 1 1
1 −1 1 −1 −1 −1 1 −1 1 1
1 −1 −1 1 −1 −1 1 1 −1 1
1 −1 −1 −1 1 −1 1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.3)

In the early 1990s, de Launey and Horadam discovered cocyclic development of pairwise combinatorial designs.
This discovery opened up a new area in design theory, that emphasizes algebraic methods drawn mainly from
group theory and cohomology. Cocyclic construction has been successfully used for Hadamard matrices [9] and,
more recently, for EW matrices [1,2]. In this context, the notions of orthogonal (resp. quasi-orthogonal) cocycles
associated to cocyclic Hadamard (resp. EW) matrices arose naturally.

Let G and U be finite groups, with U abelian. A map ψ : G × G → U such that

ψ(g, h)ψ(gh, k) = ψ(g, hk)ψ(h, k) ∀ g, h, k ∈ G

is a cocycle (over G, with coefficients in U ). We may assume that ψ is normalized, i.e., ψ(1, 1) = 1. For any
(normalized) map φ : G → U , the cocycle ∂φ defined by ∂φ(g, h) = φ(g)−1φ(h)−1φ(gh) is a coboundary. The
set of all cocycles ψ : G × G → U forms an abelian group Z2(G,U ) under pointwise multiplication. Factoring
out the subgroup of coboundaries gives H2(G,U ), the second cohomology group of G with coefficients in U .

Example 1.2 [11, Chapter 2] Suppose that E is a finite group with normalized transversal T for a central subgroup
U = 〈−1〉 ∼= Z2 (i.e. |xT ∩ yU | = 1 for any x, y ∈ E). Put G = E/〈−1〉 and σ(t〈−1〉) = t for t ∈ T . The map
ψT : G × G → 〈−1〉 defined by

ψT (g, h) = σ(g)σ (h)σ (gh)−1 =
{
1 σ(g)σ (h) ∈ T,

−1 otherwise

is a cocycle.



Each cocycleψ ∈ Z2(G,U ) is displayed as a cocyclic matrix Mψ : under some indexing of the rows and columns
by G, Mψ has entry ψ(g, h) in position (g, h). Our principal focus in this paper is the case U = 〈−1〉 ∼= Z2. We
say that ψ is orthogonal if Mψ is a Hadamard matrix, i.e., MψM�

ψ = M�
ψ Mψ = nIn where n = |G|. Similarly,

for n ≡ 2 mod 4 we say that ψ is quasi-orthogonal if Mψ satisfies

abs(MψM�
ψ ) =

[
L 0
0 L

]
(1.4)

up to row permutation. Where abs(M) denotes the matrix [|mi, j |] for M = [mi, j ]. By (1.2) it follows that any
cocyclic EW matrix is quasi-orthogonal, but, the reciprocal does not hold (i.e., not every quasi-orthogonal cocyclic
matrix is an EW matrix). Moreover, [3, Remark 6] claims that if ψ is quasi-orthogonal then MψM�

ψ = M�
ψ Mψ .

When |G| = 4t + 2 and ψ ∈ Z2(G, 〈−1〉) is a coboundary then the identity (1.4) never holds [3, Prop 2.5.]. We
say that ψ is a quasi-orthogonal coboundary if Mψ satisfies

abs(MψM�
ψ ) = L . (1.5)

up to row permutation. As far as we are aware, quasi-orthogonal coboundaries are only known over abelian groups
and the dihedral group of six elements. In this case, MψM�

ψ = M�
ψ Mψ .

The paper [4] describes the link between orthogonal cocyles and other combinatorial objects. For example,
we can use an orthogonal cocycle to construct a relative difference set with forbidden subgroup Z2 in a central
extension of Z2 by G, and vice versa. Such extensions, known as Hadamard groups, were studied by Ito in a series
of papers beginning with [10]. Their equivalence with cocyclic Hadamard matrices was demonstrated in [6]. There
is a further equivalence with class regular group divisible designs on which the Hadamard group acts as a regular
group of automorphisms. Finally, in [15] a surprising characterization is given, now, in terms of a class of Hadamard
propelinear codes. Techniques and results have been translated fruitfully between the different contexts.

Recently, a study of the existence, classification and combinatorics of quasi-orthogonal cocycles has been started
in [3]. For instance, equivalences with quasi-Hadamard groups, relative quasi-difference sets, and certain partially
balanced incomplete block designs, afforded by the analogy with orthogonal cocycles, have been found.

Keeping with the analogy, in this paper we give a characterization of quasi-orthogonal cocyles in terms of
propelinear codes. Furthermore, some structural properties of these codes are studied.

2 Propelinear Codes

Let F be the binary field. TheHamming distance between two vectors v,w ∈ F
n , denoted by d(v,w), is the number

of the coordinates in which v and w differ. The Hamming weight of v is given by wt(v) = d(v, e), where e is the
all-zeros vector. A (n, M, d)-code is a subset, C , of Fn such that |C | = M and d(v,w) ≥ d for all v,w ∈ C with
v �= w. The elements of a code are called codewords and d is calledminimum distance. The parameter d determines
the error-correcting capability of C which is given by � d−1

2 �.
Two structural properties of binary codes are the rank and dimension of the kernel. The rank of a binary code C ,

r = rank(C), is the dimension of the linear span of C . The kernel of a binary code is the set of words which keeps
the code invariant by translation, K (C) := {v ∈ F

n : C + v = C}. Note that the kernel of a binary linear code C
is not the same that the dual code of C , which is the kernel of the generator matrix of C . Assuming the zero vector
is in C we have that K (C) is a linear subspace. We will denote the dimension of the kernel of C by k = ker(C).
These two parameters do not always give a full classification of codes, since two nonisomorphic codes could have
the same rank and dimension of the kernel. In spite of that, they can help in classification, since if two codes have
different rank or dimension of the kernel, they are nonisomorphic. When a code is linear, the rank and the dimension
of the kernel are equal to the dimension of the code. In some sense, these two parameters give information about
the linearity of a code.



LetSn be the symmetric groupof permutations of the set {1, . . . , n}. For anyπ ∈ Sn andv ∈ F
n ,v = (v1, . . . , vn),

we write π(v) to denote (vπ−1(1), . . . , vπ−1(n)).

Definition 2.1 ([14]) A binary code C of length n has a propelinear structure if for each codeword x ∈ C there
exists πx ∈ Sn satisfying the following conditions for all y ∈ C :

(i) x + πx (y) ∈ C .
(ii) πxπy = πx+πx (y).

For all x ∈ C and for all y ∈ F
n , denote by � the binary operation such that x � y = x + πx (y). Then, (C, �)

is a group, which is not abelian in general. The vector e is always a codeword and πe is the identity permutation.
Hence, e is the identity element in C and x−1 = π−1

x (x), for all x ∈ C . We call (C, �) a propelinear code. Let
G be the semi-direct product (Fn,+) � Sn (i.e. an n-dimensional F-vector space with the natural action of Sn on
coordinates.) A propelinear code is a subgroup of G which intersects the base group (Fn,+) in a subgroup of order
2 (but has larger projection onto the base group), and has a transitive projection onto the top group Sn .

Definition 2.2 ([15]) A full propelinear code is a propelinear code C such that for every a ∈ C , a �= e, a �= u, the
permutation πa has not any fixed coordinate, πe = I d, and if u ∈ C then πu = I d where u is the all-ones vector.

The code consisting of the rows of a binary Hadamard matrix and their complements is called a Hadamard code,
which has 8t codewords, length 4t and minimum distance 2t .

AHadamard code, which is also full propelinear, is calledHadamard full propelinear code. Theywere introduced
in [15] and the equivalence with Hadamard groups was proven.

3 The Main Result

In this section we introduce the notion of quasi-Hadamard full propelinear codes and their equivalence with quasi-
Hadamard groups is studied.

A (−1, 1)-matrix is said to be normalized if all entries in its first row and column are equal to 1.

Definition 3.1 Aquasi-Hadamardmatrix is a normalized square (−1, 1)-matrixM of order 4t+2 with the property
such that

abs(MM�) = abs(M�M) =
[

L 0

0 L

]
(3.1)

up to row and column permutation, where L = 4t I + 2J .

Clearly, EWmatrices are quasi-Hadamard matrices but not every quasi-Hadamard matrix is a D-optimal design.
In Definition 3.1, M is said to be an extremal quasi-Hadamard matrix when abs(MM�) = abs(M�M) = L , where
L = 4t I + 2J .

The matrix obtained from a quasi-Hadamard matrix, by replacing all 1’s by 0’s and all −1’s by 1s, is called
binary quasi-Hadamard matrix. The binary code consisting of the rows of a binary quasi-Hadamard matrix and
their complements is called a quasi-Hadamard code, which is of length 4t + 2 and with 8t + 4 codewords. Since
M is normalized e (the all-zeros vector) and u (the all-ones vector) are always codewords.

Proposition 3.2 The minimum distance of a quasi-Hadamard code C of length 4t + 2 is 2t .

Proof By (1.4), the inner product x · y is 0 or ±2, where x, y are different rows of M (a binary quasi-Hadamard
matrix associated to C). If x · y = 0 then d(x, y) = 2t + 1, if x · y = 2 then d(x, y) = 2t , and if x · y = −2 then
d(x, y) = 2t +2. As d(x, y) = 4t +2−d(x, y+u), then d(x, y) ∈ {2t, 2t +1, 2t +2, 4t +2} for any x �= y ∈ C .

��



The set of distances in a quasi-Hadamard code of length 4t+2 is the same as in a Hadamard code of length 4t+4
after puncturing two coordinates. The number of codewords in the above codes is 8t + 4 and 8t + 8, respectively.
Hence, from an error-correction point of view it is slightly better the 2-punctured Hadamard code. However, quasi-
Hadamard codes can be seen as a good alternative to 2-punctured Hadamard codes in that cases when we do not
know about the existence of a Hadamard code of length 4t + 4.

From a Hadamard code we can always obtain a quasi-Hadamard code by puncturing twice. Let say M is a
normalized Hadamard matrix of length n and fix any two different columns (also different from the first one). It is
well known the design structure of M and so, in this case, the projection of the row vectors of M over these two
fixed coordinates gives exactly n/4 times each one of the vectors (1, 1), (−1,−1), (−1, 1), (1,−1). Puncturing
these fixed two columns and removing any pair of rows such that its projection over the two punctured coordinates
give two orthogonal vectors, we obtain a quasi-Hadamard matrix. However, the reciprocal is not true. It is easy to
see that the quasi-Hadamard matrix in Eq. (1.3) could not be extended to a Hadamard matrix. Indeed, adding two
columns to that matrix the two coordinates added to the second row should be (1, 1) to have this row orthogonal to
the first one; also the two coordinates added to the third row should be (1, 1) to have this row orthogonal to the first
one; but now the new second and third rows are not orthogonal.

An interesting bound which Hadamard codes fit is the so called Grey-Rankin bound, applicable only to self-
complementary codes to check its optimality. The quasi-Hadamard codes do not attain this bound. For a (n, M, d)-
code the bound states that

M ≤ 8d(n − d)

n − (n − 2d)2

and in the case of the quasi-Hadamard code, we have a (4t + 2, 8t + 4, 2t)-code which is almost optimal taking
into account the Grey-Rankin bound as it is easy to see. The left part of the inequality is M = 8t + 4 and the right
part is 8t + 4 + (8 + 12

2t−1 ).
A quasi-Hadamard code, which is also full propelinear, is called quasi-Hadamard full propelinear code. Now

we present the analogous of a result which is proven for Hadamard codes in [16, Lemma 3.11]. We note that the
same proof is valid for quasi-Hadamard codes.

Lemma 3.3 Let C be a quasi-Hadamard code of length 4t + 2. The rank r of C fulfills r ≤ 8t+4
2k

+ k − 1, where k
is the dimension of the kernel.

Henceforth, we will assume that E is a finite (multiplicatively written) group of order 2n with identity e and
normalized transversal T for a central subgroup 〈u〉 ∼= Z2. We recall that this implies in particular that:

· T and uT are disjoints and T ∪ uT = E .
· aT and {b, bu} intersect exactly in one element, for any a, b ∈ E .

Now, we state a technical result that we will need later.

Lemma 3.4 Let a, b ∈ E and A = [T \(a(T ∪ bT ) ∩ T )] ∪ [a(T ∩ bT ) ∩ T ]. Then,
1. x ∈ T ∩ bT ⇒ either ax ∈ A or axu ∈ A.

2. x ∈ A ⇒ either a−1x ∈ T ∩ bT or a−1xu ∈ T ∩ bT .

As a consequence, we have |T ∩ bT | = |A|.
Proof 1. x ∈ T ∩ bT ⇒ ax ∈ a(T ∩ bT ). Now, we have to possibilities:

1.1. if ax ∈ T then ax ∈ a(T ∩ bT ) ∩ T . Thus, ax ∈ A.
1.2. if ax /∈ T then axu ∈ T . Taking into account that ax ∈ aT ∧ ax ∈ abT and T is a transversal

(the second property above), we have axu /∈ aT ∪ abT . Thus, axu ∈ T \(a(T ∪ bT ) ∩ T ). Hence,
axu ∈ A.

2. Follows by a similar argument.
��



For a fixed order in T = {t1 = e, t2, . . . , tn} and given an element a ∈ E , we can define a n-vector va ∈ F
n in

the following manner:

[va]k =
{
0 a−1tk ∈ T,

1 otherwise

where [va]k denotes the k-th coordinate of va and CE = {va ∈ F
n : a ∈ E}. Let us point out that ve is the all-zeros

vector and vu is the all-ones vector.
The next result follows immediately.

Lemma 3.5 Let b ∈ E, the set of positions where the vector vb has a 0 entry is given by T ∩bT (i.e., tk ∈ T ∩bT ⇔
[vb]k = 0).

In the sequel our main goal will be to endow CE with a propeline structure using the transversal T , the central
subgroup 〈u〉 and the law group of E . The first step consists of finding a suitable permutation πva ∈ Sn associated to
an element a ∈ E . For any b ∈ E define πva (vb) = va + vab where + is the componentwise addition in Fn . At this
moment, it is not obvious that πva (vb) has the same weight as vb and even if it did, this might not define a unique
permutation. Before trying to clarify this point, we will point out that if πva ∈ Sn for any a ∈ E then (CE , �) with
va � vb = va + πva (vb) is isomorphic to E as a group since va � vb = vab by the definition of πva . Furthermore,

Lemma 3.6 Let a, b ∈ E then πvaπvb = πva�vb .

Proof For any c ∈ E , we have

πva�vb(vc) = πvab (vc) = vab + v(ab)c = va + πva (vb) + va(bc)

= va + πva (vb) + va + πva (vbc) = πva (vb + vbc) = πvaπvb (c)

��
By abuse of notation, from now on we will use the same symbol a to denote va . Similarly, for the underlying set

of the group E and CE . The meaning of a (resp. E) will be clear from the context in which it is used.
In the sequel, for any a, b ∈ E some properties of the map πa(b) (defined above) are studied.

Lemma 3.7 Let a, b and A as in Lemma 3.4. Then, [πa(b)]k =
{
1 tk /∈ A,

0 tk ∈ A.

Proof To check the value of the k-th coordinate of πa(b), we have to compute [a]k + [ab]k mod 2. Therefore,
[πa(b)]k = 0 if and only if [a]k = [ab]k . Now, applying the definition of [a]k and Lemma 3.4, we conclude with
the desired result. ��
Taking into account |A| = |T ∩ bT | and Lemmas 3.5 and 3.7, it is proved that πa(b) has the same weight as b.
Moreover, the following result guarantees the πa is a permutation depending only on a.

Proposition 3.8 The map πa is an element of Sn. Specifically, for any b, πa moves the k-th coordinate of b to the
h-th coordinate where

th =
{
atk atk ∈ T,

atku otherwise.

Proof We have that [πa(b)]h = [a]h + [ab]h mod 2. It is straightforward to check that [πa(b)]h = [b]k . ��
Remark 3.9 Let us observe that atk = th if a = e and atku = th if a = u. Hence, the permutation πa does not fix
any coordinate for all a ∈ E\{e, u} and πe = πu = I d.

We can always assumewithout loss of generality that the elements of T are ordered in such away so,πtk (ek) = e1
where ek is the unitary vector with only one nonzero coordinate at the position k-th. A justification of the fact that
πa(ek) �= πb(ek) for all a, b ∈ T with a �= b is given in the proof of Theorem 3.13.

It is known [16] that if E is a Hadamard group then the permutations of Proposition 3.8 yields a full propeline
structure on the Hadamard code CE . From now on, we will deal with the case E being a quasi-Hadamard group
and we will obtain the analog result.



Definition 3.10 ([3]) Let E be a group of order 8t + 4 ≥ 12 with central subgroup Z = 〈u〉 ∼= Z2. We say that E
is a quasi-Hadamard group if there exists a transversal T for Z in E of size 4t + 2 containing a subset S ⊂ T \Z of
size 2t + 1 such that

|T ∩ xT | =
{

2t + 1 x ∈ S,

2t or 2t + 2 x ∈ T \(S ∪ Z).
(3.2)

The transversal T is called a quasi-Hadamard subset of E . It may be assumed that e ∈ T .

Armario and Flannery [3, Thm 3.2] shows that quasi-orthogonal cocycle and quasi-Hadamard group are essen-
tially the same concept.

Let Q8t+4 denote the dicyclic group with presentation

〈a, b | a2t+1 = b2, b4 = e, b−1ab = a−1〉
This family provides good candidates for quasi-Hadamard groups. For instance, T = {e, a, a2, b, ab, a2b} is a

quasi-Hadamard subset of Q12. Furthermore, in [3] it has been conjectured that Q8t+4 is always a quasi-Hadamard
group. It can be seen as the analog of Ito’s conjecture for Hadamard groups.

We say that a quasi-Hadamard group E is extremalwhen in Definition 3.10 S = ∅. Quasi-orthogonal coboundary
and extremal quasi-Hadamard group are also essentially the same concept.

Proposition 3.11 Let E be a quasi-Hadamard group and T = {t1 = e, t2, . . . , tn} be a quasi-Hadamard subset of
E. Then E is a quasi-Hadamard code with

[H(T )]i, j =
{
0 t−1

i t j ∈ T,

1 otherwise

as a binary quasi-Hadamard matrix (up to normalization).

Proof Let us point out that the codewords of E are the rows of the following (0, 1)-matrices H(T ) and H(T )where
H(T ) + H(T ) = J .

Let ψT ∈ Z2(E/〈u〉, 〈−1〉) be as in Example 1.2. By [3, Thm 3.2],

[MψT ]i, j =
{

1 ti t j ∈ T,

−1 otherwise

is a quasi-orthogonal cocyclic matrix. Hence, the matrices MψT and M�
ψT

satisfies (1.4).
Now, let us observe that the binary versionofMψT is equivalent to H(T ).Normalizing (i.e., taking the complement

of the rows starting by 1 in H(T )) we get the binary version of MψT up to rows permutation, due to the fact that if
a ∈ E then a ∈ T or au ∈ T and va is the complement of vau . Therefore, E is a quasi-Hadamard code with H(T )

as a binary quasi-Hadamard matrix up to normalization. ��
Now,we can define a propelinear structure on E by a�b = a+πa(b) = ab. Finally, as an immediate consequence

of the previous results above. We have,

Theorem 3.12 Let E be a quasi-Hadamard group and T = {t1 = e, t2, . . . , tn} be a quasi-Hadamard subset of E.
Then (E, �) is a quasi-Hadamard full propelinear code.

Proof From 3.11, we have that E is a quasi-Hadamard code. Now, let’s see that E has a propelinear structure. For
each x ∈ E , we define πx (y) = x + xy for any y ∈ E . From 3.8, πx ∈ Sn for every x ∈ E . For any x, y ∈ E ,
x + πx (y) = x + x + xy = xy ∈ E , and by 3.6 πxπy = πxy = πx+πx (y). Thus (C, �) is a propelinear code, which
is full by 3.9. ��

In the next result, we will show that the converse statement holds. An analogous version for Hadamard full
propelinear codes appears in [15].



Theorem 3.13 Let E be a quasi-Hadamard full propelinear code of length 4t + 2. Then E is a quasi-Hadamard
group of order 8t + 4.

Proof Define T1 to be the subset of E consisting of codewords with first coordinate equal to zero. It is easy to check
that

· T1 ∩ uT1 = ∅ and T1 ∪ uT1 = E .
· aT1 and {b, bu} intersect exactly in one element, for any a, b ∈ E .
· 〈u〉 ∼= Z2 is a central subgroup of E .

We associate to each codeword in x ∈ T1, the integer kx such that π−1
x (e1) = ekx . Let us point out that if x, y ∈ T1

and x �= y then kx �= ky . Indeed, if kx = ky then e1 = πxπ
−1
y (e1) = πxπy−1(e1) = πxy−1(e1). Now, taking into

account that E is full then xy−1 = e or xy−1 = u. Hence, x = y or {x, y} is not a subset of T1. As a consequence,
kx ranges over all the integers between 1 and 4t + 2 when x moves in T1.

Let H be the binary quasi-Hadamard matrix associate to E where the kx -th row of H corresponds with the
codeword x . It is straightforward to check that

[H ]kx ,ky = 0 if and only if y � x ∈ T1.

As a consequence,

|T1 ∩ T1 x | = number of zeros of the kx -th row of H .

|T1 ∩ x T1| = number of zeros of the kx -th colum of H .

Let S be the set of columns of H where their number of zeros is equal to 2t + 1.
Since the (−1, 1) version of H satisfies (1.4), then

· |T1 ∩ x T1| =
{

2t + 1 x ∈ S,

2t or 2t + 2 x ∈ T \(S ∪ 〈u〉).
· |S| = 2t + 1.

Obviously, S = ∅ when H is extremal. ��

Finally, we have studied the allowable values for the rank and for the dimension of the kernel of these codes.

Proposition 3.14 Let E be a quasi-Hadamard full propelinear code of length 4t + 2. Then

· dim(K (E)) = k ≤ 2.
· If k = 1, then K (E) = 〈u〉, and r ≤ 4t + 2.
· If k = 2, then K (E) = 〈u, s〉, with wt(s) = 2t + 1, s2 ∈ 〈u〉, and r ≤ 2t + 2.

Proof It is trivial that u ∈ K (E). Let s �= u be a codeword in K (E), then s + x ∈ E for any x ∈ E . Suppose that
wt(s) is equal to 2t or 2t + 2, then for each x ∈ E with wt(x) = 2t + 1, we have that wt(s + x) = 2t + 1.

Note that we have an odd amount of rows of H (the quasi-Hadamard matrix associated to E) with weight equal
to 2t + 1 because the (−1, 1) version of H satisfies (3.1). Thus we have 4t + 2 codewords with weight equal to
2t + 1. As u ∈ K (E), we need to distribute the codewords with weight equal to 2t + 1 in sets of four elements,
{x, x + s, x + u, x + s + u}, then there is a contradiction. Thus wt(s) = 2t + 1 for each codeword in K (E)\〈u〉.

Let s1, s2 be two different codewords in K (E) and s1 �= s2+u, as K (E) is a linear subspace, then s1+s2 ∈ K (E),
but wt(s1 + s2) is 2t or 2t + 2. Then K (E) is at most 〈u, s〉 where s is a codeword with wt(s) = 2t + 1. Also
s2 = s + πs(s) ∈ K (E), but the unique possibility is that s2 is u or e.

The bounds for the rank are immediately from 3.3. ��



4 Examples

In this section, we provide some examples of quasi-Hadamard full propelinear codes (briefly, QHFP-codes) coming
from quasi-Hadamard groups.

Example 4.1 Let Q12 = 〈a, b | a3 = b2, b4 = e, b3ab = a5〉 be a dicyclic group of order 12. We have that
Q12 = {e, a, a2, a3, a4, a5, b, ab, a2b, a3b, a4b, a5b}. Let T = {e, a, a2, b, ab, a2b} be a transversal, Z = 〈a3〉,
where a3 = b2 is an involution, and S = {b, ab, a2b}. Therefore, the quasi-Hadamard matrix associated to T is

H(T ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 1 0 0
1 1 0 1 1 0
1 0 0 0 1 1
1 1 0 0 0 1
1 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Thus, the generators of the QHFP-code are a = (1, 0, 0, 1, 0, 0), b = (1, 0, 0, 0, 1, 1), and the permutations
are πa = (1, 2, 3)(4, 5, 6) and πb = (1, 4)(2, 6)(3, 5). Note that a3 = b2 = u. With these values, the relation
b3ab = a5 is fulfilled. The rank of this code is 4 and the dimension of the kernel is 2, K (Q12) = 〈u, a2b〉.
Example 4.2 Let E = {a, b | a6 = b2 = e, ab = ba} � Z6 ×Z2. Let T = {e, a, a2, b, a4b, a5b} be a transversal,
Z = 〈a3〉 where a3 is an involution, and S = ∅. Therefore, the quasi-Hadamard matrix associated to T is

H(T ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 1 0
1 1 0 0 1 1
0 1 1 0 1 1
1 1 0 0 0 0
1 1 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Thus, the generators of the QHFP-code are a = (1, 0, 0, 0, 1, 0) and b = (0, 1, 1, 0, 1, 1), and the permutations are
πa = (1, 2, 3)(4, 5, 6) and πb = (1, 4)(2, 5)(3, 6). Note that a3 = u. The rank of this code is 5 and the dimension
of the kernel is 1, K (E) = 〈u〉.
Example 4.3 Let E = {a | a12 = e} � Z12. Let T = {e, a, a2, a9, a10, a5} be a transversal, Z = 〈a6〉 where a6 is
an involution and S = {a, a9, a5}. Therefore, the quasi-Hadamard matrix associated to T is

H(T ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 1 0 1
0 1 0 1 1 1
1 1 0 0 0 1
0 1 1 1 0 1
1 1 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Thus, the generator of the QHFP-code is a = (1, 0, 0, 1, 0, 1), and the permutation is πa = (1, 2, 3, 4, 5, 6). Note
that a6 = u. The rank of this code is 6 and the dimension of the kernel is 1, K (E) = 〈u〉.

We note that the values of the rank and the dimension of the kernel obtained in the above examples tell us that
the codes are nonlinear. In the case of Hadamard full propelinear codes with length 4 and 8 do not appear nonlinear
codes. When the length is 4 the HFP-codes have rank and dimension of the kernel equal to 3, and in the case of
length 8 the rank and the dimension of the kernel are 4.
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