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1 Introduction

Square matrices with entries in {1,−1} whose rows are pairwise orthogonal are termed binary Hadamard matrices,
and were introduced in the nineteenth century, related to the maximum determinant problem. They are conjectured
to exist for every order 1, 2 or multiple of 4, but nowadays the problem of their existence remains still open. Many
constructions of Hadamard matrices are known. Among them, we are particularly interested in cocyclic Hadamard
matrices, those Hadamard matrices Hadamard equivalent (by means of row/columns permutations/negations) to
matrices Mψ = (ψ(i, j)) related to some 2-cocycle ψ ∈ Z2(G;ZZ2), ψ : G × G → {±1}, i.e. satisfying that
ψ(i, j) ψ(i j, k) ψ(i, jk) ψ( j, k) = 1, i, j, k ∈ G,

for G a finite group with given order {1, . . . , 4t}, 1 being the identity element.
Precisely, these relations yield a fast cocyclic Hadamard test, consisting in checking whether the summation of

each row of Mψ (but the first) is zero,
∑

j∈G
ψ(i, j) = 0, i ∈ G\{1}, (1.1)

in which case ψ is said to be orthogonal.
Unfortunately, it is far from clear whether it is easier to construct cocyclic Hadamard matrices better than usual

binary Hadamard matrices. Some light on this purpose was thrown in [5], where cocyclic Hadamard equivalence
classes were identified up to order 40. The interested reader is referred to [6,10–12] for further explanations on
(cocyclic) Hadamard matrices and related structures.

The set of cocycles forms an abelian group Z2(G,ZZ2) under pointwise multiplication. The simplest cocycles are
the coboundaries ∂ f , defined for any function f : G → {±1} by ∂ f (g, h) = f (g)−1 f (h)−1 f (gh). The subgroup
of coboundaries, B2(G,ZZ2), is naturally generated by the set of elementary coboundaries ∂i := ∂δi , where δi is the
Kronecker delta function of the i th-element inG in the given ordering. Cocyclesmay be grouped into cohomological
classes, to form H2(G;ZZ2) = Z2(G,ZZ2)/B2(G,ZZ2), so that [ψ] = [ψ ′] ∈ H2(G,ZZ2) ⇔ ψ ′ = ψ

∏|G|
i=1 ∂

ri
i ,

for ri ∈ {0, 1}. This way, fixed a representative cocycle [ρ] ∈ H2(G;ZZ2), in order to look for cocyclic Hadamard
matrices Mψ over G, for [ψ] = [ρ] ∈ H2(G;ZZ2), it suffices to look for a subset of elementary coboundaries ∂i j

such that ψ = ρ
∏k

j=1 ∂i j is orthogonal.
From (1.1), a cocyclic matrix Mψ over G is Hadamard if and only if the summation of each row 2 ≤ i ≤ |G|

is zero. This fact leads straightforwardly to a naive fitness function f1 : Z2(G;ZZ2) → Z
+, which measures the

amount of rows of Mψ which fail to sum up zero. Searching for a global minimum for f1 would end providing a
cocyclic Hadamard matrix Mψ over G, if one exists, as soon as f1(ψ) = 0.

Several years ago, some of the authors developed some heuristic procedures searching for cocyclic Hadamard
matrices (see [3] and the references therein for details). Most of them used the notion of fitness defined above and
seemed to work fine. However, although the procedures converged to a truly cocyclic Hadamard matrix, as desired,
unexpectedly we have realized that there is not any apparent correlation between a matrix Mψ being close to be
Hadamard (say, differing just in one coboundary from being a cocyclic Hadamard matrix), and the fitness value
f1(ψ) as it is actually defined (i.e. the number of its rows which fail to sum up zero), which by no means has
necessarily to be close to zero as well.

Table 1 (distributed in several pages due to size limitations) shows some examples of cocyclic Hadamardmatrices
Mψ over D4t , for odd values of 3 ≤ t ≤ 17, so that modified by the action of just one coboundary ∂i (as indicated in
each case), give rise to cocyclicmatrices attaining fitness f1(ψ∂i )which almost fulfill the prospective range [1, t−1].
Here we assume D4t = 〈a, b : a2t = b2 = 1, ab = ba−1〉 and the ordering {1, a, . . . , a2t−1, b, ab, . . . , a2t−1b}
in D4t . The representative cocycle ρ is fixed to be

Mρ =
(
BN2t BN2t

BNs
2t −BNs

2t

)



Table 1 f1 does not depend on the Hamming distance from a full Hadamard matrix!

t i j : ψ = ρ
∏k

j=1 ∂i j is orthogonal i : ψ ′ = ψ · ∂i f1(ψ∂i )

3 5, 10 2 1

8 2

5 7, 8, 12, 16, 18 8 1

2 2

3 3

14 4

7 2, 6, 7, 17, 19, 22, 23, 25 5 1

4 2

2 3

7 4

12 5

7 6, 9, 17, 19, 21, 24, 25 19 6

9 2, 7, 8, 12, 21, 23, 25, 28, 29, 31, 32 32 1

21 2

3 3

2 4

7 5

10 6

23 7

11 2, 3, 6, 8, 9, 10, 11, 12, 13, 15, 18, 19, 21, 22, 25 2

24, 26, 30, 35, 36, 37, 42 13 3

4 4

3 5

15 6

2 7

36 8

11 2, 7, 9, 11, 15, 20, 22 1

23, 24, 25, 29, 30, 31, 34, 35, 37, 38, 40, 41 11 9

11 3, 5, 7, 10, 11, 13, 14, 15, 16, 20, 5 10

23, 24, 26, 29, 30, 31, 35, 36,38

13 3, 4, 6, 8, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 26, 4 2

28, 31,32, 35, 39, 40, 42, 43, 44, 45, 50 7 3

2 4

5 5

12 6

6 7

15 8

20 9

17 10

13 2, 5, 6, 7, 9, 10, 11, 16, 17, 19, 21, 22, 23, 25, 26, 28 1

27, 29, 32, 33, 34, 35, 36, 38, 39, 41, 43, 44, 46, 47, 48, 49, 50 41 11

13 3, 5, 7, 8, 9, 11, 12, 15, 19, 22, 24, 25, 29 12

27, 29, 31, 32, 33, 34, 35, 36, 40, 41, 42, 45, 46, 47



Table 1 continued

t i j : ψ = ρ
∏k

j=1 ∂i j is orthogonal i : ψ ′ = ψ · ∂i f1(ψ∂i )

15 4, 6, 7, 8, 9, 12, 13, 15, 16, 19, 21, 23, 24, 25, 26, 28, 29, 30, 13 2

34, 36, 40, 41, 44, 49, 50, 52, 54, 55 50 3

12 4

4 5

3 6

2 7

10 8

8 9

27 10

35 11

28 12

15 2, 4, 5, 7, 8, 10, 11, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 32 1

33, 36, 37, 38, 40, 41, 42, 43, 44, 46, 48, 50, 51, 52, 53, 56, 57, 58 47 13

17 6, 7, 9, 11, 12, 13, 15, 19, 24, 29, 7 2

38, 39, 40, 41, 43, 47, 50, 51,54, 55, 57, 59, 60, 62, 65 24 14

17 2, 6, 8, 9, 13, 16, 20, 22, 23, 24, 27, 29, 32,33,

39, 42, 45, 46,47, 50, 51, 52, 60, 62 44 3

17 4

43 5

25 6

3 7

2 8

4 9

8 10

51 11

34 12

61 13

for BN2t being the back negacyclic matrix of order 2t , and BNs
2t being thematrix obtained from BN2t by displaying

its rows from bottom to top.
Notice that the only cases which are missed in these tables are fitness 8 for t = 9, fitness 14 for t = 15 and fitness

1, 15 and 16 for t = 17. Anyway, we do not know whether some of them could actually exist, since we have not
performed any exhaustive search, that is out of interest for our purposes. What is worth stressing is that, attending
to the notion of fitness defined so far, cocyclic matrices Mψ ′ which fail to be Hadamard in just one coboudary might
have any possible value of fitness f1(ψ ′), whereas it would have been desirable that they had fitness close to zero.

Actually, this fact has motivated that we look for another way to define a new fitness function f2, which faithfully
reflects how close is a matrix Mψ to be Hadamard, in terms of a lower bound on the number of coboundaries which
have to be modified in the expression defining ψ so that a cocyclic Hadamard matrix might be obtained. This is the
main concern of the paper.

2 A New Fitness Function

As introduced in (1.1), we already know that a cocyclic matrix Mψ overG is Hadamard if and only if the summation
of each row 2 ≤ i ≤ |G| is zero.



In [2] a way to check these conditions was described, in terms of paths and intersections of coboundaries, which
we reproduce now.

Every 2-cocycle overG may be described as a pointwise productψ = ρ
∏k

j=1 ∂i j of a representative (non trivial)

cocycle ρ ∈ H2(G;Z2) and a subset of elementary coboundaries ∂i j , for ∂i j (h, k) = δ(i j , h)δ(i j , k)δ(i j , hk),
where δ is the Kronecker delta function. Notice that such a subset {∂i j } is not unique, in general, until a basis for
coboundaries is fixed.

There is empirical evidence (at least, for the groups more intensively studied, see [2,4,8,10] for instance), that
there always exists a choice ρ of representative cocycle that tends to be the most successful for providing Hadamard
matrices. For this reason, in the remainder of the paper, we will consider that such a ρ is fixed, and hence the
only variables to consider are the set of 4t elementary coboundaries arising from G. Therefore, when convenient
throughout the paper, any cocycle ψ = ρ

∏k
j=1 ∂i j (or indistinctly the cocyclic matrix Mψ beneath, as well) may

be naturally displayed as binary tuples vψ of length 4t , the i th entry being 1 if and only if i ∈ {i1, . . . , ik}, and 0
otherwise.

Since negating a row of any coboundary matrix M∂h has no effect in the validity of the cocyclic Hadamard test
(1.1) for ψ , in what follows we consider generalized coboundary matrices instead, obtained from the former by
just negating the hth row. Nevertheless, for simplicity and convenience of the reader, we will preserve the same
notation for both structures.

At any row 2 ≤ r ≤ 4t , every generalized coboundary matrix M∂h has exactly two negative entries, located
at positions (r, h) and (r, r−1h), termed head and tail, respectively. When the tail of a coboundary is the head of
another coboundary at a row r , these coboundaries are said to form a r-path. Analogously, when a coboundary
share a negative entry (no matter it is a head or a tail) at a row r with the cocycle ρ then they form a r-intersection.

Consequently, the cocyclic Hadamard test (1.1) may be reformulated in terms of paths and intersections, so that

cr − Ir = t − ρr

2
, 2 ≤ r ≤ 4t, (2.1)

where cr denotes the number of maximal r -paths in which the subset of coboundaries defining ψ splits into, Ir
denotes the number of r -intersections that they give rise to, and ρr denotes the amount of negative entries of Mρ at
row r .

Notice that the right-hand sides of the Eq. (2.1) are constant, and do not depend on the subset of coboundaries
definingψ . However, the change of just one coboundary in the expression definingψ , no matter either eliminated or
introduced, reflects in the left-hand sides of Eq. (2.1) as changes of at most 1 unit (either increasing or decreasing)
with respect to their former values, as we prove now.

Proposition 2.1 Given any coboundary ∂h, the left-hand sides of Eq. (2.1) corresponding to the cocycles ψ and
ψ · ∂h differ at most in 1, in absolute value.

Proof Consider a cocycle ψ = ρ
∏k

j=1 ∂i j and a coboundary ∂h . Fixed a row r , 2 ≤ r ≤ 4t , Table 2 shows the
range in which the number cr of r -paths and Ir of r -intersections vary from ψ to ψ∂h depending on whether none,
one or even both between the head and the tail of ∂h are (×) or not (◦) ends of a maximal path inψ as well. It is worth
noting that the states of such head and tail necessarily change from ψ to ψ∂h , as a straightforward consequence
that these are precisely the 2 negative entries that ∂h contributes with.

Therefore, the left-hand sides of Eq. (2.1) corresponding toψ andψ ·∂h can never differ more than 1, in absolute
value, as claimed. 
�

Table 2 Analyzing how �(cr − Ir ) varies from ψ to ψ∂h

ψ → ψ∂h �cr �Ir �(cr − Ir )

{◦, ◦} → {×,×} + 1 0,+ 1,+ 2 − 1, 0,+ 1

{◦,×} → {×, ◦} 0 − 1, 0,+ 1 − 1, 0,+ 1

{×,×} → {◦, ◦} − 1 − 2,− 1, 0 − 1, 0,+ 1



The following result, which is a straightforward consequence of Proposition 2.1, includes a natural formulation
for a fitness function f2 meeting the conditions we are expecting for.

Corollary 2.2 A lower bound on the number of coboundaries needed to transform ψ = ρ
∏k

j=1 ∂i j into an
orthogonal cocycle is

f2(ψ) = max
2≤r≤4t

∣∣∣(cr − Ir ) −
(
t − ρr

2

)∣∣∣ . (2.2)

Actually, as commented before, the space of 24t cocyclic matrices Mψ may be naturally displayed in terms of
the vectors vψ of their coordinates with regards to the set of elementary coboundaries {∂1, . . . , ∂4t }. Attending to
Corollary 2.2, vectors at Hamming distance 1 should have comparable fitness, as desired.

Even more, it is worth stressing that f2 helps to prune the search space in an impressive way, since it precisely
gives a lower bound on the number of coboundaries to modify in the expression defining ψ so that it can be moved
to a cocyclic Hadamard matrix. This way, givenψ , we know that no cocyclic Hadamard matrix exists in a Hamming
ratio of f2(ψ) − 1 from ψ . Conversely, a further application of this fact is to decide good zones for performing
some local searches.

We are now in conditions to design a new heuristic looking for cocyclic Hadamard matrices.

3 The Heuristic

By construction, a cocyclic Hadamard matrix over G corresponds to a global minimum for f2. This section is
devoted to design a heuristic trying to locate such a global minimum. As usual, the main problem to tackle is
dealing with local minima.

You can imagine the space of 24t cocyclic matrices Mψ organized by their fitness f2(ψ) as the surface of the
sea. No matter the sea is in calm, the number of valleys and hills that the waves originate on its surface tends to be
extremely huge. In these circumstances, it is quite easy to locate some local minima, but nevertheless it is extremely
difficult to locate points corresponding to minimum height. This is the image we can think of in our minds for the
search we are dealing with. Furthermore, the proportion of cocyclic Hadamard matrices with regards to the total
space of cocyclic matrices seems to be negligible, as calculations in [2,4,8,10] suggest.

A simple idea would be to perform a step by step search, moving from a given cocycle vψ to some of its 4t
neighbors vψ ′ at Hamming distance 1, so that f2(ψ ′) < f2(ψ).

Unfortunately, it occurs surprisingly often that such a cocycleψ ′ does not exist. In fact, from (2.2), a trivial upper
bound for f2 is 2t + max(0, ρr

2 − t) � 24t , the latter being the total amount of cocyclic matrices. Consequently,
there are many different cocyclic matrices meeting each of the possible values in the image of f2. And it is quite
easy that, for any cocyclic matrix Mψ randomly chosen, none of its neighbors ψ ′ improves the value f2(ψ) (in
which case, ψ is actually a local minimum for f2).

For instance, taking ρ and the dihedral group D4t as explained above, Table 3 shows the number #i of local
minima attaining fitness f2 = i .

A second approach would require to relax the condition considered so far for moving from one vertex to another,
in such a way that f2(ψ ′) = f2(ψ) might suffice to move from ψ to ψ ′. The question now is determining some
subsidiary criteria to break the tie when no neighbor ψ ′ exists satisfying f2(ψ ′) < f2(ψ), but some do exist such

Table 3 Number of local minima

t\i 0 1 2 3

3 72 66

5 1400 9240 6416 1600



Table 4 D4t -cocyclic Hadamard matrices

t Iter Time (s) i j : ψ = ρ
∏k

j=1 ∂i j is orthogonal

5 1 0.03 1, 3, 5, 8, 11, 18, 19

7 2 0.17 2, 4, 7, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 26, 27

9 4 0.65 2, 3, 4, 7, 9, 11, 12, 13, 14, 15, 16, 17, 20, 24, 25, 30, 31, 33, 36

11 116 31 4, 6, 8, 9, 12, 16, 18, 19, 21, 22, 23, 27, 32, 34, 35, 41, 42, 43

13 242 61 1, 9, 12, 13, 14, 16, 19, 20, 22, 23, 24, 25, 26, 29, 30, 33, 35, 40, 41, 42, 44

15 1374 852 3, 5, 7, 8, 9, 11, 13, 14, 17, 21, 22, 29, 31, 32, 34, 35, 37, 41, 42, 43, 44, 46,

47, 48, 50, 51, 57, 58

that equality holds. This would permit to avoid staying around a local minimum, and to facilitate moving to explore
some other promising zones of the search space.

As introduced in (2.2), f2(Mψ) gives the maximum from the differences
∣∣(cr − Ir ) − (t − ρr

2 )
∣∣ along the 4t − 1

rows in the range 2 ≤ r ≤ 4t . A way to fine tuning the search in order to break ties may be reached by associating
to every cocycle ψ a vector dψ of length 1+ f2(Mψ) which counts the number of times that every integer instance
in the range [0, f2(Mψ)] appears along these 4t − 1 differences. In these circumstances, given two cocycles
sharing the same fitness f2(Mψ) = f2(Mψ ′), one may assume that ψ ′ is better than ψ if dψ ′ is lesser than dψ in
colexicographical order. That is dψ ′ = (a1, . . . as) < (b1, . . . bt ) = dψ if and only if s < t or s = t and ai < bi
for the last i where ai and bi do differ.

When a stationary point (i.e. a local minimum) is reached, in the sense that no neighbor exists at Hamming
distance 1 which improves its fitness, then a random move is performed, to reach a new base point at certain
prefixed Hamming distance s. This distance s should simultaneously take us close enough to this “potentially” good
zone around this local minimum, but at the same time far enough so that we seldom could reach the same stationary
point more than once. Empirical results suggest that s = 6 seems to meet these requirements. This value have been
used in the calculations included in Table 4, which improve the results obtained by those heuristics [1,3] using the
older and naive fitness notion, f1, looking for cocyclic Hadamard matrices over D4t . Notice that D4t seems to be
the most prolific group for providing cocyclic matrices, see [10] and the references therein.

However, the heuristic fails to give Hadamard matrices for t ≥ 17 in reasonable time. Actually, the calculations
we attempted for t = 17 were aborted after 70.000 iterations and about 18 hours of computation each. Nevertheless,
our determination held on. We turned to think for a local search which helped to improve the heuristic, so that larger
matrices might be found.

Undoubtedly, a cocyclicHadamardmatrix ismore likely to be found aroundmultiple instances of coyclicmatrices
Mψ ′ satisfying f2(Mψ ′) = 1. As a matter of fact, notice that the 4t neighbors ψ ′ of a cocycle ψ defining a cocyclic
Hadamard matrix Mψ satisfy f2(ψ ′) ≤ 1.

Experimental results show that, as t increases, it is not as hard as one could expect to find a cocycle ψ satisfying
f2(ψ) = 1. Actually, after 10 runs in each case, Table 5 shows the average fitness f i t of the randomly generated
initial cocycle, the average number of iterations I ter as well as the average computing time T ime required for
reaching a cocycle ψ over D4t satisfying f2(ψ) = 1, for odd values of t ≤ 47.

For this reason, every time that a cocycle ψ ′ meeting f2(ψ ′) = 1 is found, it makes sense to perform a local
search, looking exhaustively for cocyclic matrices of fitness at most 1, in the ball B(ψ ′, s) determined by some
fixed Hamming distance s from ψ ′. Hopefully, this process might lead to a path of sufficiently close cocycles ψ ′
all of which meet fitness 1, until a cocyclic Hadamard matrix is finally found.

Nevertheless, the number of matrices in such a ball B(ψ ′, s) grows exponentially on s, as
∑s

w=0

(
4t
w

)
. Depend-

ing on t , the computation capabilities which are available naturally limit the largest parameter s one might consider.



Table 5 Analyzing the convergence to fitness 1

t 15 17 19 21 23 25 27 29 31

Fit 4.2 4.3 4.4 5.2 5.5 5.4 6.6 5.7 6.9

Iter 1.2 1.4 1.3 2 2.1 3.8 6.1 4.8 9.5

Time (s) 0.46 0.75 0.96 1.98 2.59 7.35 14.78 14.07 33.79

t 33 35 37 39 41 43 45 47

Fit 6.9 7.7 7.2 6.5 8.5 8 8.4 8.4

Iter 19.4 20.1 66 245 243.5 650.1 2072 3013.8

Time (s) 82 101 393 2094 2936 3905 20,703 34,621

Table 6 The size of B(ψ, s), for 1 ≤ s ≤ 5

s 1 2 3 4 5

|B(ψ, s)| 189 17,767 1,107,603 51,512,518 1,906,413,390

For instance, for t = 47, which is actually the first occurrence for which no cocyclic Hadamard matrix is known
yet, the sizes of these balls grows as 25s+10, as Table 6 shows.
So that it could hardly be supported to perform a search for s ≥ 5. Even the case s = 4, which requires managing
up to 5 · 107 instances, might be unacceptable for practical purposes. That was the case, until unexpectedly the
translation of the problem in terms of a Constraint Satisfaction Problem [7] (CSP in brief, hereafter), made it
possible.

Roughly speaking, the idea beyond the constraint satisfaction paradigm is characterizing a problem as a set of
constraints to be simultaneously satisfied, and then find the set of solutions by means of a constraint solver. No
matter the same solver is used, a given problem might possibly admit many different formulations as a CSP, each of
them requiring possibly different amount of resources (not only variables and/or constraints, but also CPUmemory)
and consequently different running computation times in turn.

An explicit formulation of a CSP looking for all cocycles ψ ′ ∈ B(ψ, 4) such that f2(ψ ′) ≤ 1 may be described
as follows. We look for binary vectors vψ ′ = (x0, . . . , x4t−1), which satisfy the conditions:

∣∣∣∣∣(t − j) − 1

2

4t−1∑

i=0

σi

∣∣∣xi − x2t� i
2t �+(i+ j mod 2t)

∣∣∣

∣∣∣∣∣ ≤ 1, (3.1)

for σi = 1 if 0 ≤ i ≤ 2t − j or 2t ≤ i ≤ 4t − j and −1 elsewhere, and 1 ≤ j ≤ t − 1.
Once the model is fixed, the following step consists in carrying it into a solver. We have used Minion [9], one

of the fastest and most scalable constraint solvers using the “model and run” methodology. It is a black box from
the user point of view, deliberately providing few options, but guaranteeing raw speed in return.

The vector vψ ′ = (x0, . . . , x4t−1) is naturally codified as a boolean vector ingred of 4t unknowns. The
t − 1 relations (3.1) may be translated by means of a boolean matrix camenosin of size (t − 1) × 4t , such that
camenosin[ j −1, i] = |xi − x2t� i

2t �+(i+ j mod 2t)| for 1 ≤ j ≤ t −1. In these circumstances, it suffices to impose
the constraints

weightedsumleq([
2t−( j−1)︷ ︸︸ ︷
1, . . . , 1,

j−1︷ ︸︸ ︷
−1, . . . ,−1,

2t−( j−1)︷ ︸︸ ︷
1, . . . , 1,

j−1︷ ︸︸ ︷
−1, . . . ,−1],camenosin[ j,_], 2(t − j))

weightedsumleq([
2t−( j−1)︷ ︸︸ ︷
1, . . . , 1,

j−1︷ ︸︸ ︷
−1, . . . ,−1,

2t−( j−1)︷ ︸︸ ︷
1, . . . , 1,

j−1︷ ︸︸ ︷
−1, . . . ,−1],camenosin[ j,_], 2(t − 2 − j))

for 0 ≤ j ≤ t − 2.



Table 7 Calculations for 19 ≤ t ≤ 23

t ψ0 k ψk Minion (s)

17 e1c966 f 450819e555 1, 12, 48, 68 61c966 f 4500616550 32

41, 46, 47, 49

12, 53, 66

19 114bd7765e598c2e7c8 16, 31, 34, 68 114ad77c0edb8e8e648 67

29, 47, 55, 57

36, 41, 59, 69

21 1627dc8eadec977dc78d8 29, 35, 47, 71 54a79d960 f eed77c458d8 122

2, 7, 8, 18

8, 25, 28, 33

25, 39, 50, 64

9, 24, 65

23 95ee3e2bbb65e f 2d f 84c f eb 19, 25, 28, 81 57e60ebbed643d2d f a667a8 219

2, 12, 13, 48

12, 17, 79, 92

17, 39,55, 75

7, 43, 49, 77

36, 40, 43, 83

7, 34, 52, 71

31, 38, 40, 83

7, 20, 86, 91

1, 31, 50

From these data a Minion file .min modeling our CSP may be then straightforwardly generated. Running over
dihedral groups D4t , for t = 47, the procedure takes barely 5 hours of computing time, on a standard Intel(R)
Core(TM) i7-5500U CPU, 2.40 GHz, 8 GB RAM.

In order to locate a cocyclic Hadamard matrix, both the heuristic and the local search just described may be
combined as follows. Firstly, the heuristic is used until a cocycle ψ0 is located such that f2(ψ0) = 1. Starting from
ψ0, a sequence of different cocycles {ψk} is constructed, such thatψk+1 ∈ B(ψk, 4) and f2(ψk+1) ≤ 1. The process
is repeated until either a no valid successor cocycle exists, or hopefully a truly orthogonal cocycle is found.

As an illustration of how the method performs, we now include in Table 7 some calculations which ultimately
succeed locating a cocyclic Hadamard matrix over D4t , for some t . We indicate the initial cocycle ψ0 provided by
the heuristic, the chain of subsets of (at most) 4 coboundaries which are changed to move from ψi to ψi+1, the
orthogonal cocycle ψk obtained as the tail of the chain, as well as the computational time required in every isolated
call to Minion. Due to space restrictions, the 4t-binary tuples representing cocycles have been translated to their
equivalent hexadecimal forms, in such a way that every possible nibble (group of 4 bits) from 0000 to 1111 is
encoded as its corresponding hexadecimal digit from 0 to f , as usual.

Further examples require an important amount of computational work and time, which is out of the scope of the
paper. This effort should be straightforward directed to the case t = 47.

Notice that there is not any specific criteria to choose a particular cocycle ψi+1 ∈ B(ψi , 4) among those meeting
fitness f2(ψ ′) = 1. Nevertheless, there is not any guarantee that the process will end providing an orthogonal
cocycle, either. Even more, there is not any certainty about the finiteness of such a sequence {ψi }. These questions
should require further investigation.



4 Conclusions and Further Work

We have introduced a new fitness function f2, which faithfully reflects how close is a matrix Mψ to be Hadamard,
in terms of a lower bound (2.2) on the number of coboundaries which have to be modified in the expression defining
ψ so that a cocyclic Hadamard matrix might be obtained.

Progressing on this notion, a heuristic has been described looking for cocyclic Hadamard matrices. In order to
improve the convergence, a local search has been incorporated to the procedure, in terms of a constraint satisfaction
problem, looking for dense zones of cocycles ψ meeting fitness f2(ψ) = 1.

As it has been shown, it is far beyond becoming real that this new heuristic finds out a global minimum in practise,
for large t . Some alternative ideas should be considered in order to characterize zones closed to cocyclic Hadamard
matrices more reliably, so that a finer tuning might be performed in turn.

Actually, from Proposition 2.1, it follows that | f2(ψ ′)− f2(ψ)| ≤ 1 for every 1-Hamming distance neighbor ψ ′
of ψ (that is, defining a vector vψ ′ differing from vψ in just one coordinate). Consequently, given any cocycle ψ ′ at
Hamming distance k from a cocyclic Hadamard matrixψ , there is a straightforward upper bound for the summation
of the fitness values of those cocycles at Hamming distance s from ψ ′, since they may be organized attending to
the number w of coordinates shared simultaneously with both ψ and ψ ′. Indeed, given w ≤ s, it follows that there

are

(
k

s − w

)
·
(
4t − k

w

)
cocycles simultaneously at Hamming distance k − s + 2w from ψ and s from ψ ′. Let

B(ψ, s) denote the set of cocycles at Hamming distance s from ψ .

Corollary 4.1 A necessary condition forψ having Hamming distance k from the closest cocyclic Hadamard matrix
is that f2(ψ) = k and

f2,s(ψ) =
∑

ψ ′∈B(ψ,s)

f2(ψ
′) ≤

s∑

w=0

(
k

s − w

)
·
(
4t − k

w

)
(k − s + 2w) (4.1)

for 0 ≤ s ≤ k.

In practise, one could take advantage of this result and use f2,s instead of colexicographical order as secondary
condition for moving from one cocycle ψ to a neighbor ψ ′, in case that f2(ψ ′) = f2(ψ). Unfortunately, though
we have attempted to perform some runs for s = 1 and t = 47, it takes too much computational time to proceed
from one iteration to another, so that we have limited ourselves to complete some few iterations, with no significant
improvements with regards to the calculations developed in the previous section.

In a near future, the effort should be concentrated in order to isolate a cocyclic Hadamard matrix of order
4t = 4 · 47.
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