
Towards Maude 2.0 �

M. Clavel a, F. Durán b, S. Eker c, P. Lincoln c, N. Mart́ı-Oliet d,
J. Meseguer c, and J. F. Quesada e

a Departamento de Filosof́ıa, Universidad de Navarra, Spain
b ETSII, Universidad de Málaga, Spain

c SRI International, Menlo Park, California, USA
d Facultad de Matemáticas, Universidad Complutense, Madrid, Spain

e Centro de Informática Cient́ıfica de Andalućıa, Sevilla, Spain

Abstract

Maude 2.0 is the new version of the Maude rewriting logic language currently under
development. Maude 2.0’s three main goals are: (i) greater generality and expres-
siveness; (ii) efficient support for a wider range of programming applications; and
(iii) usability as a key component for developing internet programming and mo-
bile computing systems. To meet these goals, a number of new features have been
added. The membership equational logic of functional modules and the rewriting
logic of system modules are now supported in their greatest possible generality, and
the operational semantics of object-oriented modules guarantees object and mes-
sage fairness. Module operations in Full Maude are also more general thanks to
parameterized theories and views. Efficient support for a wider range of program-
ming applications is provided both by the Maude compiler—which can reach up to
15 million rewrites per second on a 667MHz Xeon—and by a library of new built-in
modules. Besides new built-in functional modules, a key new feature is built-in
object-oriented modules that provide flexible interaction with external objects such
as file systems, window systems, and internet sockets. In particular, built-in in-
ternet sockets will provide excellent support for a new declarative style of internet
programming in Maude, and will be used as a key building block to implement the
Mobile Maude language.

� Supported by DARPA through Rome Laboratories Contract F30602-97-C-0312, by Office
of Naval Research Contract N00014-99-C-0198, and by National Science Foundation Grants
CCR-9505960 and CCR-9900334.

http://creativecommons.org/licenses/by-nc-nd/3.0/

1 Introduction

Maude 2.0 is the new version of Maude currently under development. This
paper presents our detailed design of the key features of Maude 2.0, some of
which have already been implemented. Maude 2.0’s three main thrusts are: (i)
greater generality and expressiveness; (ii) efficient support for a wider range of
programming applications; and (iii) usability of Maude 2.0 as a key component
for developing internet programming and mobile computing systems. The
paper explains the design decisions we have made in support of these three
main objectives.
Section 2 focuses on the new module syntax and semantics supporting

greater generality and expressiveness in specifications. Essentially, the un-
derlying logics—membership equational logic for functional modules, and the
version of rewriting logic extending it for system modules—will be supported
in their greatest possible generality. Similarly, parameterized modules, the-
ories and views will support a greater degree of modularity and reusability
through parameterized theories and parameterized views. The operational se-
mantics of all modules will likewise be extended. In particular, extra variables
will be allowed in conditions which, for conditional rules, may include rewrite
conditions; also, object-oriented modules will be executed in an object- and
message-fair way by the default interpreter for rules.
Efficient support of many programming applications requires an adequate

library of built-in modules and advanced compilation technology. These two
topics are addressed, respectively, in Sections 3 and 6. Besides a number of
new built-in functional modules, the most important of which is strings, a key
novelty is the addition of built-in object-oriented modules. Such modules will
be seamlessly integrated with ordinary object-oriented modules. In this way,
ordinary Maude objects will be able to communicate and interact by mes-
sage passing with built-in objects such as file systems, window systems, and
internet sockets. This will greatly extend the range of applications that can
be supported, and will provide greater flexibility for programming interactive
applications. Built-in internet sockets will be a key feature allowing the use of
Maude as an internet programming language, and will support the implemen-
tation of the Mobile Maude language [9] on top of Maude. Section 6 explains
the Maude compiler, which is already quite advanced and efficient, and that
will be integrated with the Maude 2.0 interpreter.
Any changes and advances to the language must be reflected in the module

META-LEVEL. Section 4 explains how this will be done, while at the same time
achieving a greater simplicity and economy in the metarepresentation of terms
and modules, and providing a richer set of metalevel operations. Two other
miscellaneous features are gathered in Section 5, namely, the new module
system, allowing a greater efficiency in specifications involving large module
hierarchies, and the latex attribute, that can be declared for any operator
in a module to output module declarations and evaluated expressions in the

2

desired LATEX mathematical notation. The paper ends with some conclusions
in Section 7. The appendices give some more details about some built-in
modules, and present a sample internet programming application based on
built-in internet sockets.
The paper assumes some familiarity with the basic concepts of Maude, such

as its logical basis in membership equational logic [2] and rewriting logic [17],
its functional, system, and object-oriented modules, and module operations,
and its reflective features, for which we refer the reader to [7,6].

2 New Module Syntax and Semantics

This section discusses the extensions to the current syntax and semantics of
functional, system and object-oriented modules, and of parameterized modules
and theories that will be supported in Maude 2.0.

2.1 Functional Modules

The new syntax for functional modules extends the previous syntax to allow
the greatest possible generality in the support of membership equational logic
specifications, and offers a more uniform syntax for variables. First of all,
to support specification of partial operations that do not restrict to a total
function on a product of sorts, we allow explicit declaration of such functions
at the kind level. In membership equational logic, terms that have a kind
but not a sort are understood as undefined or error terms. A kind k has a
family Sk of associated sorts, which are semantically understood as subsets.
In general, a total function at the kind level restricts only to a partial function
at the level of sorts.
In functional modules, kinds are not explicitly named. Instead, we identify

a kind k with the set Sk of its sorts, understood as an equivalence class modulo
the equivalence relation generated by the subsort ordering, that is, two sorts
are in this equivalence relation if and only if they belong to the same connected
component in the poset of sorts. Therefore, for any s ∈ Sk, [s] denotes the
kind k = Sk, understood as the connected component of the poset of sorts to
which s belongs. This provides a very robust way of referring to equivalence
classes when a module is imported into another module, which may increase
the number of sorts in a class and may even merge several classes. For example,
if a new supersort s′ of a previous sort s is introduced in a new module, then,
[s] and [s′] are two equivalent ways of referring to the same kind.
Consider for example the concatenation function for paths in a graph. It

is really a partial function. It could be made total on a user-defined supersort
Path? of Path, but it is simpler and more elegant to define it at the kind level
by a declaration

op _;_ : [Path] [Path] -> [Path] .

A second syntax extension regards the treatment of variables. A variable

3

is now an identifier composed of a name, followed by a colon, followed by a
sort or kind name. For example, P:Path is a variable of sort Path. In this way,
variables do not have to be declared in variable declarations: they can appear
directly in terms. Variable declarations are still allowed for convenience, but
a declaration

vars P Q R S : Path .

is now understood as an alias definition, allowing, for example, using the name
P as an abbreviation for the variable P:Path.

A third syntax extension regards the treatment of equational conditions in
conditional equations and conditional memberships. Such conditions are con-
junctions of equations and memberships, and they are made up of individual
equations t = t′ and memberships t : s by a binary conjunction connective /\
which is assumed associative. Furthermore, the concrete syntax of equations
in conditions has two variants, namely, ordinary equations t = t’, andmatch-
ing equations t := t’. Both have the same equational interpretation in the
mathematical semantics, but a different operational semantics, as explained
below. For example, assuming the above variable declaration, the associativity
of path concatenation can be expressed by the conditional equation

ceq (P ; Q); R = P ;(Q ; R) if t(P) = s(Q) /\ t(Q) = s(R) .

where s and t are respectively the source and target functions. Note that
there is no need to express the condition as a single Boolean condition, using
the Boolean-valued equality predicate ==. This is still possible, namely, by
declaring

ceq (P ; Q); R = P ;(Q ; R) if t(P) == s(Q) and t(Q) == s(R) .

but is not necessary. More generally, a Boolean expression b is allowed to
appear as a conjunct in an equational condition as a shorthand for the equation
b = true.

We can illustrate the above-mentioned extensions by means of the following
functional module PATH, for paths in a graph, that imports a module A-GRAPH
with sorts Node and Edge, operations s and t, giving the source and target
nodes of each edge, and specific edge and node constants that need not concern
us here (see an example in Appendix A.1). It then builds paths on such a graph
according to the following equations and memberships.

fmod PATH is protecting A-GRAPH .
sort Path .
subsorts Edge < Path .
op _;_ : [Path] [Path] -> [Path] .
ops s t : Path -> Node .
var E : Edge . vars P Q R S : Path .
cmb E ; P : Path if t(E) = s(P) .
ceq s(P) = s(E) if E ; S := P .
ceq t(P) = t(S) if E ; S := P .
ceq (P ; Q); R = P ;(Q ; R) if t(P) = s(Q) /\ t(Q) = s(R) .

endfm

4

Note the matching equation E ; S := P in the conditions of the two con-
ditional equations defining the source and target functions. As mentioned
before, matching equations are mathematically interpreted as ordinary equa-
tions; however, operationally they are treated in a special way and they must
satisfy special requirements. Note that the variables E and S in the above
matching equation do not appear in the lefthand sides of the corresponding
conditional equations. In the execution of these equations, these new vari-
ables become instantiated by matching the term E ; S against the subject
term bound to the variable P. In order for this match to decide the equality
with the ground term bound to P, the term E ; S must be a pattern. In
general, given a functional module M , we call a term t an M-pattern if for
any well-formed substitution σ such that for each variable x in its domain the
term σ(x) is in canonical form with respect to the equations in M , then σ(t)
is also in canonical form. A sufficient condition for t to be an M-pattern is
the absence of unifiers between its nonvariable subterms and lefthand sides
of equations in M . In the above example, the many-kinded unifier {E ← P
; Q, S ← R} obtained by unification with the lefthand side of the associativ-
ity equation is ruled out by the fact that the membership P ; Q : Edge is
unsatisfiable.

Ordinary equations t = t′ in conditions have instead the usual operational
interpretation, that is, for the given substitution σ, σ(t) and σ(t′) are both
reduced to canonical form and compared for equality, modulo the equational
axioms specified in the module’s operator declarations such as associativity,
commutativity, and identity.
All conditional equations

t = t′ if C1 ∧ . . . ∧ Cn

in a functional module M have to satisfy the following admissibility require-
ments 1 , ensuring that all the extra variables will become instantiated by
matching:

(i) vars(t′) ⊆ vars(t) ∪
n⋃

j=1

vars(Cj).

(ii) If Ci is an equation ui = u′
i or a membership ui : s, then

vars(Ci) ⊆ vars(t) ∪
i−1⋃

j=1

vars(Cj).

(iii) If Ci is a matching equation ui := u′
i, then ui is an M -pattern and

vars(u′
i) ⊆ vars(t) ∪

i−1⋃

j=1

vars(Cj).

1 These requirements include as a special case what are called properly oriented and right
stable 3-CTRSs in [21], when each equation si = ti in their conditions is expressed as a
matching equation ti := si.

5

The satisfaction of the conditions is attempted sequentially from left to
right. Since matching may in general take place modulo equational axioms,
as usual many different matches may have to be tried until a match of all the
variables satisfying the condition is found.
In spite of the added generality of allowing extra variables in the conditions,

we still expect functional modules to be Church-Rosser and terminating mem-
bership equational logic specifications in the sense of [2, Section 10.1]. The
above admissibility requirements and the Church-Rosser and termination as-
sumptions are dropped for functional theories (see Section 2.4) which support
the full generality of the logic.
For functional modules Maude does indeed support the operational seman-

tics by rewriting defined in [2], generalized to allow extra variables as sketched
in Section 10.1 of [2]. In particular, the previous strictness assumption that
the substitution instance of a left-hand side of an equation has a sort (see [6,
Section 6.1]) is dropped in Maude 2.0 to allow more general, nonstrict equa-
tions such as those used for error recovery. When strictness is desired, the
equations must have explicit conditions ensuring it.

2.2 System Modules

At the equational level, system modules support also all the extensions and
satisfy the same equational requirements already described for functional mod-
ules, including the requirement that the equations are Church-Rosser and ter-
minating modulo the given equational axioms. Furthermore, rewrite rules can
now take the most general possible form in the variant of rewriting logic built
on top of membership equational logic. That is, they can be of the form

t → t′ if (
∧

i

ui = vi) ∧ (
∧

j

wj : sj) ∧ (
∧

k

pk → qk)

with no restriction on which new variables may appear in the righthand side
or the condition. That is, conditions in rules are also formed by an associa-
tive conjunction connective /\, but they generalize conditions in equations
and memberships by allowing also rewrite expressions, for which the concrete
syntax t => t’ is used. Furthermore, equations, memberships, and rewrites
can be intermixed in any order, and, as for functional modules, some of the
equations in conditions can be matching equations. Finally, in spite of the
full generality allowed for conditional rewrite rules, we still expect the rewrite
rules to be coherent or weakly coherent [23] with respect to the equations in
the module, so that the equational and the rewriting parts of the deduction
can be efficiently modularized.

Of course, in that full generality the execution of a system module will
require strategies that control at the metalevel the instantiation of the extra
variables in the condition and in the righthand side [3,22]. However, a quite
general class of system modules, called admissible modules, will be executable
by Maude 2.0’s default interpreter. As already mentioned, the equational

6

part of a system module must always satisfy the same requirements given in
Section 2.1 for functional modules. A system module M is called admissible
if, in addition, each of its rewrite rules

t → t′ if C1 ∧ . . . ∧ Cn

satisfies the admissibility requirements (i)-(iii) in Section 2.1 plus the addi-
tional requirement

(iv) If Ci is a rewrite ui → u′
i, then

vars(ui) ⊆ vars(t) ∪
i−1⋃

j=1

vars(Cj),

and u′
i is an E(M)-pattern, for E(M) the equational theory underlying

the module M .

Operationally, we try to satisfy such a rewrite condition by reducing the
instance σ(ui) to canonical form vi with respect to the equations, and then
trying to find a rewrite proof vi → wi with wi in canonical form with respect
to the equations and such that wi is a substitution instance of u′

i.

As for functional modules, when executing a conditional rule in an ad-
missible system module, the satisfaction of all its conditions is attempted se-
quentially from left to right; but notice that now, besides the fact that many
matches for the equational conditions may be possible due to the presence of
equational axioms, we also have to deal with the fact that solving rewrite con-
ditions requires search, including searching for new solutions when previous
ones fail to satisfy subsequent conditions. Therefore, the default interpreter
will support search computations, and will allow controlling the search by
means of adequate parameters. In general, the goals solved by the default in-
terpreter may be conjunctions of rewrites, memberships, and equations, with
appropriate restrictions on the occurrence of new variables in the conjuncts.

We illustrate the new syntax for system modules by means of an admissible
module from [16] that defines the transition system semantics for Milner’s CCS
[20] in such a way that transitions correspond to rewrites. Full CCS is repre-
sented, including (possibly recursive) process definitions by means of contexts.
The reader can find the modules defining the syntax in Appendix A.2.

mod CCS-SEMANTICS-TRANS is protecting CCS-CONTEXT .
sort ActProcess .
subsort Process < ActProcess .
op {_}_ : Act ActProcess -> ActProcess .

*** {A}P means that process P has performed action A
vars L M : Label . var A : Act .
vars P P’ Q Q’ : Process . var X : ProcessId .

*** Prefix
rl [pref] : A . P => {A}P .

*** Summation
crl [sum] : P + Q => {A}P’ if P => {A}P’ .

7

*** Composition
crl [par] : P | Q => {A}(P’ | Q) if P => {A}P’ .
crl [par] : P | Q => {tau}(P’ | Q’)

if P => {L}P’ /\ Q => {~ L}Q’ .

*** Restriction
crl [res] : P \ L => {A}(P’ \ L) if P => {A}P’

/\ (A =/= L) = true /\ (A =/= ~ L) = true .

*** Relabelling
crl [rel] : P[M / L] => {M}(P’[M / L]) if P => {L}P’ .
crl [rel] : P[M / L] => {~ M}(P’[M / L]) if P => {~ L}P’ .
crl [rel] : P[M / L] => {A}(P’[M / L]) if P => {A}P’

/\ (A =/= L) = true /\ (A =/= ~ L) = true .

*** Definition
crl X => {A}P’ if (X definedIn context) = true

/\ def(X, context) => {A}P’ .
endm

This representation of CCS in Maude is semantically correct in the sense
that given a CCS process P , there are processes P1, . . . , Pk−1 such that

P
a1−→ P1

a2−→ · · · ak−1−→ Pk−1
ak−→ P ′

if and only if P can be rewritten into {a1}...{ak}P’ (see [16]).

2.3 Object-Oriented Modules

Many Maude applications make essential use of object-oriented modules (see
for example the survey papers [8,19]), that is, modules specifying distributed
object systems in which the top structure of the distributed state is an asso-
ciative and commutative multiset of objects and messages. Default execution
of object-oriented modules is the most common way of using such modules
for both specification and programming. That is, although it is very useful to
formally analyze object-oriented specifications using appropriate strategies, it
is also very important to support well their default execution.

The problem is that the general notion of fairness supported by the pre-
vious default interpreter is insufficient in the object-oriented case. This is
because, since each object has an individual identity, fairness should now
be localized to individual objects and messages, which should not be starved
even when other similar objects and messages are rewritten. Therefore, the
Maude 2.0 default interpreter will support a special strategy for execution of
object-oriented modules that ensures both object and message fairness.

The intuitive idea of such a fair execution strategy can be explained by
means of a metaphor in which we think of objects and messages as entities
that, like cars, need gas to run. The default strategy then refills such entities
with gas from time to time, and any rewrite decreases the amount of gas, but
no new refills are allowed until no more progress can be made. In this way, all

8

objects and messages in a configuration are repeatedly given a fair chance to
be rewritten.
This default strategy for objects has an important additional advantage,

namely, that using built-in objects such as internet sockets, file systems, or
window systems (see Section 3.2) it is then very easy to execute object-oriented
configurations consisting of both ordinary and built-in objects in a truly con-
current and fair way.

2.4 Parameterized Modules and Theories

The Full Maude 1.0 module algebra supports quite powerful module com-
position operations in the Clear/OBJ style. Such operations use categorical
constructions involving three key entities:
• modules, which are theories with an initial or—in the parameterized case—
free extension semantics;

• theories, with a loose semantics, that can be used to specify the parameters
of modules and to state formal assertions; and

• views, which are theory interpretations used to instantiate parameter theo-
ries, refine specifications, and assert formal properties.

It has long been understood that the full generality and power of a module
algebra based on these primitives requires parameterized theories and views,
not just parameterized modules. However, at present, neither OBJ3, nor
CafeOBJ, nor Maude 1.0 support parameterized theories and views. This
situation will be remedied in Maude 2.0 by means of the Full Maude 2.0 module
algebra, in which modules, theories, and views can all be parameterized.

By using parameterized theories and views we can instantiate parameter-
ized theories and modules in a more incremental way, gaining in flexibility and
being able to specify precisely the intended applications. The use of param-
eterized views will allow us, for example, to define a view Set[X :: TRIV]

from TRIV to SET[X :: TRIV] mapping the sort Elt to the sort Set[X]. With
this kind of views we keep the parameter part of the target module still as a
parameter. For example, given the view Nat from TRIV to NAT, we can have
the module LIST[Set[Nat]] of lists of sets of natural numbers, or stacks of
sets of booleans with STACK[Set[Bool]] given a module STACK[X :: TRIV]

of stacks and a view Bool from TRIV to the built-in module BOOL.

For more details we refer the reader to the companion paper [10], in which
the key design concepts and constructs of Full Maude 2.0 are explained and
illustrated with examples.

3 Built-in Modules

Maude includes some built-in modules providing convenient high-performance
functionality within the Maude system, as well as effective connections to other

9

systems of interest. In particular, Maude 2.0 will provide built-in machine
integers, natural and floating-point numbers, quoted identifiers, strings, and
internet sockets. We are also in the process of designing potential built-in
modules for rational numbers, file systems, and window systems.

3.1 Functional Built-in Modules

The functional built-in modules of machine-integers, natural and floating-
point numbers, quoted identifiers, and strings provide a minimal set of efficient
implementation constructs for Maude programmers.
Machine integers allow Maude programmers to deal with fixed-length bi-

nary representations of numbers between machine-specific minimum and max-
imum numbers. Operations on machine integers employ the constant-time ma-
chine operations on those binary representations. C-like performance for sim-
ple arithmetic operations on machine integers is achievable in Maude through
the use of such built-in module. Built-in natural numbers bridge the gap
between clean Peano-like axiomatizations of numbers with an explicit succes-
sor function, and rather more efficient binary representations of unbounded
natural number arithmetic. This built-in module will allow programmers to
manipulate numbers as if they were represented with explicit successor nota-
tion, and to reflect those numbers up to the meta-level (and meta-meta-level,
etc). The module of floating-point numbers allows Maude users access to the
IEEE-754 double precision floating-point arithmetic when this is supported
by the underlying hardware platform.
Quoted identifiers allow Maude users to create new names and manipulate

structures containing symbols in an efficient way. Built-in strings are the area
of most recent work. Built-in strings, in particular standard strings of 8-bit
characters, are essential to achieve the kinds of performance and expressiveness
required for internet programming, file handling, and certain input-output
procedures. In this current incarnation, Maude’s built-in strings utilize only
the 8-bit character variant. In the future, it may be desirable to extend this
coverage to other character set conventions such as Unicode. Maude’s built-
in strings are based on the SGI rope package [1] which has been optimized
for functional programming, where copying with modification is supported
efficiently, while arbitrary in-place updates are not.
A string identifier is a Maude identifier which contains exactly one pair of

matching "s which are its first and last characters. When a string identifier is
parsed as a string it is interpreted using a subset of ANSI C backslash escape
conventions [13, Section A2.5.2]. Strings of length one form a subsort Char of
String. The current implementation of built-in strings includes the functions
described briefly in Appendix B. The Maude string package is compatible with
the QID built-in module [5], and interoperates with the Maude 2.0 scheme for
meta-representing user constants.

10

3.2 Object-Oriented Built-in Modules

One important strength of the object-oriented viewpoint is that all kinds of
entities in the external world can be conceptualized as objects and can be in-
teracted with from a computation by message passing. In previous versions of
Maude, except for the textual interaction supported by the LOOP-MODE mod-
ule [5], all interactions with objects could be specified and simulated within
Maude, but could not be performed in the external world. In Maude 2.0,
built-in objects extend Maude with interfaces allowing interaction with exter-
nal entities such as internet sockets, file systems, window systems, and so on.
In this way, the computation can be connected with the external world and
with other Maude computations in different machines in a distributed way.
Interfaces to external entities can be defined in built-in object-oriented

modules that define built-in objects. Such built-in object-oriented modules
can be imported by ordinary object-oriented modules so that, in general, the
object-oriented state of a computation consists of two parts:
• a configuration of ordinary objects and messages that is represented in
Maude as a multiset of terms representing such objects and messages, and

• a set of built-in objects, together with messages to and from those objects.

Conceptually we can think of these two parts as a single bigger configuration of
objects and messages. However, built-in objects are not themselves visible in
the configuration of ordinary objects and messages, except indirectly, through
the messages that they send. In particular, the internal structure of built-in
objects is hidden, so that they can only be interacted with by asynchronous
message passing.

The part containing the built-in objects contains also a system object,
or proto-object [18, Section 4.4], which takes care of answering requests for
creation of new built-in objects and of sending the new object’s name to the
requesting object, and also of answering class-specific queries 2 . In general,
the two-way traffic of messages between the configuration of ordinary objects
and messages and the built-in objects consists of:

(i) requests for built-in object creation, and answers providing the new name
to the requester,

(ii) class-specific queries to the system object, and corresponding answers,
and

(iii) messages from ordinary objects to built-in objects, and reply messages in
the other direction.

We illustrate these ideas below with the class of built-in internet sockets
currently under implementation.

2 The system class is imported by all built-in classes, but it can be further specialized by
subclassing to provide answers to class-specific queries.

11

3.3 Built-in Internet Sockets

Perhaps the most interesting of the object-oriented built-in modules is the
internet socket interface, intended to support internet programming. Internet
computing poses different problems for the programmer and the language
implementor than traditional sequential computing. In particular, since there
is a thousand-fold difference between typical processing speed and typical
internet connections, issues such as nonblocking access to resources and native
notions of fairness are much more important than raw speed or other language
choice considerations.
Maude is exceptionally well suited to enable internet programming. The

native and semantically clean approach to concurrency in Maude provides a
clean foundation. The inherently fair non-blocking nature of rewriting logic
specifications, and of any compliant implementation, provides a welcome al-
ternative to clumsy threaded implementations in sequential languages in the
internet environment. Effectively, Maude’s design inherently provides multi-
plexing of network communications.
Internet programming is done via a suite of protocols known collectively

as TCP/IP. These include IP, the raw internet protocol (which runs on top
of hardware protocols), and two protocols built on top of IP, UDP, the user
datagram protocol, and TCP, the transmission control protocol.
Higher level protocols built in turn at higher levels of the network stack

include DNS, the domain name system (on top of UDP), HTTP, the hypertext
transfer protocol, FTP, the file transfer protocol, and SMTP, the simple mail
transfer protocol (all three on top of TCP).
We have designed a simplified Maude API to DNS and TCP such that

other application protocols that are built on top of TCP could be efficiently
implemented in Maude. This package makes heavy use of built-in strings,
which have been described in Section 3.1.
There are three basic ideas behind the implementation of built-in sock-

ets. First, we include a system object which can be sent messages and can
create other special objects and return handles (object identifiers) to them.
Second, most system calls (or sequences of system calls) will be wrapped as a
pair of messages, one to initiate the call (or sequence) and another to return
results. For many operations this provides the sequentialization that is neces-
sary and is inherent in system calls from a sequential language such as C. And
third, multiple APIs to TCP/IP exist but AF INET sockets are available on
almost every platform. Thus we provide the socket-level interface as the basic
common mechanism for internet programming in Maude.
Appendix C includes an example of how a user might use the built-in

Maude socket interface to build a very simple minded HTTP/1.0 client for
retrieving web pages from an arbitrary location on the internet.
We believe that Maude with built-in support for sockets will provide a pow-

erful platform for internet programming, offering substantial advantages over

12

the current generation of interpreted multithreaded languages such as Java [12]
and Python [24]. We are currently studying the merits of a Maude-specific
transfer protocol, built on top of TCP and called Mobile Object Transfer Pro-
tocol (MOTP), to be used in Mobile Maude, a mobile language extension of
Maude 2.0 [9].

4 The New META-LEVEL

Besides allowing the metarepresentation of the extended module syntax and
the new built-in modules, the two key new advantages of the new META-LEVEL
are: a simpler representation of terms, and a richer set of descent functions [4].

4.1 Sort and Kind Representation

Sorts and kinds are represented as specific subsorts of the sort Qid of quoted
identifiers. Since operator declarations can use both sorts and kinds, we denote
by Type the union of Sort and Kind.

subsorts Sort Kind < Type < Qid.
subsort Type < TypeList .

4.2 Term Representation

The simpler representation of terms is obtained by subsorts Constant and
Variable of the sort Qid. Constants are quoted identifiers that contain the
constant’s name and its type separated by a “.”, e.g., ’0.Nat. Similarly,
variables contain their name and type separated by a “:”, e.g., ’N:Nat. Ap-
propriate selectors then extract their names and types.

subsorts Constant Variable < Qid .
op getName : Constant -> Qid . op getName : Variable -> Qid .
op getType : Constant -> Type . op getType : Variable -> Type .

Then a term is constructed in the usual way, by applying an operator
symbol to a list of terms, with constants and variables being the basic cases
in the construction.

subsorts Constant Variable < Term .
op _[_] : Qid TermList -> Term .
subsort Term < TermList .
op _,_ : TermList TermList -> TermList [assoc] .

In this way, constants and variables are metarepresented by atomic entities,
namely, by special types of quoted identifiers; any further level of metarep-
resentation does not increase their size: it just adds one more quote. For
example, the term s(N:Nat) + 0 in a module NAT is now metarepresented by

’_+_[’s[’N:Nat],’0.Nat]

and meta-metarepresented by

’_‘[_‘][’’_+_,’_‘,_[’_‘[_‘][’’s,’’N:Nat],’’0.Nat]]

13

There are two special operations to construct (Boolean) terms, correspond-
ing to membership test and membership lazy test:

op _::_ : Term Sort -> Term .
op _:::_ : Term Sort -> Term .

4.3 Module Representation

Modules are essentially metarepresented as explained in [4], with the following
differences: we need syntax for the new conditions in conditional memberships,
equations and rules; there is no need for variable declarations; and terms use
now the new metarepresentation for terms.

op fmod_is_sorts_.____endfm : Qid ImportList SortSet SubsortDeclSet
OpDeclSet MembAxSet EquationSet -> FModule .

op mod_is_sorts_._____endm : Qid ImportList SortSet SubsortDeclSet
OpDeclSet MembAxSet EquationSet RuleSet -> Module .

subsort Sort < SortSet .
op (op_:_->_[_].) : Qid TypeList Type AttrSet -> OpDecl .

op _=_ : Term Term -> EqCondition [ctor] .
op _:_ : Term Sort -> EqCondition [ctor] .
op _:=_ : Term Term -> EqCondition [ctor] .
op _/_ : EqCondition EqCondition -> EqCondition [ctor assoc] .
subsort EqCondition < Condition .
op _=>_ : Term Term -> Condition [ctor] .
op _/_ : Condition Condition -> Condition [ctor assoc] .

op mb_:_. : Term Sort -> MembAx [ctor] .
op cmb_:_if_. : Term Sort EqCondition -> MembAx [ctor] .
op eq_=_. : Term Term -> Equation [ctor] .
op ceq_=_if_. : Term Term EqCondition -> Equation [ctor] .
op rl[_]:_=>_. : Qid Term Term -> Rule [ctor] .
op crl[_]_=>_if_. : Qid Term Term Condition -> Rule [ctor] .

As a very simple example, the metarepresentation of the module on the
left is the term displayed on the right, so that the reader can appreciate the
similarity between both notations:

fmod NAT is fmod ’NAT is
nil

sorts Zero Nat . sorts ’Zero ; ’Nat .
subsort Zero < Nat . subsort ’Zero < ’Nat .
op 0 : -> Zero [ctor] . op ’0 : nil -> ’Zero [ctor] .
op s : Nat -> Nat [ctor] . op ’s : ’Nat -> ’Nat [ctor] .
op _+_ : Nat Nat -> Nat [comm] . op ’_+_ : ’Nat ’Nat -> ’Nat [comm] .
vars N M : Nat .

none
eq 0 + N = N . eq ’_+_[’0.Nat, ’N:Nat] = ’N:Nat .
eq s(N) + M = s(N + M) . eq ’_+_[’s[’N:Nat], ’M:Nat] =

’s[’_+_[’N:Nat, ’M:Nat]] .
endfm endfm

14

4.4 Descent Functions

We have added to the previous descent functions metaApply, metaReduce, and
metaRewrite, a new function metaMatch, in order to achieve the metalevel
equivalent of matching a pattern to a subject term at the top, and general-
ized functions metaXapply and metaXmatch that, respectively, apply a rule or
attempt a match not only at the top of the subject term, but anywhere in it,
and furthermore with extension.
The function metaApply intuitively applies a rule (whose label is the third

argument) in a given module (first argument) to the top of a term (second
argument) instantiated with a given substitution (fourth argument). Since
there may be several possible matches due to the structural axioms of oper-
ators, the last argument is used to enumerate such matches. The result is a
term, with the corresponding sort or kind, and the matching substitution.
The function metaXapply does the same, but using extension (see [6, Sec-

tion 5.8]) and in any possible position, not only at the top. The last argument
indicates the depth in the flattened term (with respect to its associative or
associative-commutative operators) where the application of the rule can take
place. The result has an additional component, giving the context inside the
given term, where the rewriting has taken place.

op metaApply : Module Term Qid Substitution MachineInt
-> [ResultTriple] .

op metaXapply : Module Term Qid Substitution MachineInt MachineInt
-> [Result4Tuple] .

op {_,_,_} : Term Type Substitution -> ResultTriple [ctor] .
op {_,_,_,_} : Term Type Substitution Context -> Result4Tuple [ctor] .

The function metaMatch intuitively tries to match at the top two given
terms in a module. The last argument is used to enumerate possible matches.
It the matching attempt is successful, the result is the corresponding substi-
tution. The generalization to metaXmatch follows exactly the same ideas as
before.

op metaMatch : Module Term Term MachineInt -> [Substitution] .
op metaXmatch : Module Term Term MachineInt MachineInt -> [MatchPair] .
op {_,_} : Substitution Context -> MatchPair [ctor] .

The descent functions metaReduce and metaRewrite have not changed
from the previous version, but their result includes now the sort or kind of the
resulting term.

op metaReduce : Module Term -> [ResultPair] .
op metaRewrite : Module Term MachineInt -> [ResultPair] .
op {_,_} : Term Type -> ResultPair [ctor] .

We are also considering adding functions metaUnify for unification, and
metaSearch for built-in search.

15

5 Miscellaneous Features

5.1 Maude Module System

The Maude module system in Core Maude has been completely rewritten in
order to support lazy flattening and lazy reparsing, and is already available
in Maude 1.0.5. Lazy flattening means that when a user enters a heavily
structured Maude module, the signatures are flattened eagerly as usual, but
the memberships, equations, and rules are only flattened in the current module
when a rewriting command is entered. This saves a lot of memory and speeds
up module entry, but: (a) certain errors in memberships, equations, and rules
may not be caught until the flattening takes place; (b) there is a short pause
before the first execution of a rewriting command in a module takes place,
while flattening is done; and (c) the order of equations and rules occurring in
different modules has changed. A module’s own equations and rules are now
before rather than after the imported ones. Of course the user should not be
relying on this.
Lazy reparsing means that when a module with the same name as an

existing module is entered, it replaces the old module, and all modules that
depended on the old module are marked as outdated, and will be reparsed if
an attempt is made to use them. The old module’s memory is freed up.

5.2 LATEX Pretty Printing

Maude 2.0 supports direct pretty printing into LATEX. LATEX logging can be
turned on or off by the commands set print latex on . and set print
latex off .
By default, keywords are set in bold face, and terms are typeset in math

mode with various conventions for generating LATEX special symbols from their
multi-character ASCII versions, for example: x2 becomes x2, >= becomes ≥,
and =/= becomes �=. LATEX macros may be specified for each operator with
the latex attribute, for example:

op definiteIntegral : Exp Exp Exp Var -> Exp
[latex ({\int_{#1}^{#2} {#3} d{#4}})] .

Lexical analysis is done using LATEX conventions within delimiters; the
resulting expanded string is then defined by LATEX newcommand. In this way,
Maude 2.0 supports pretty printing into LATEX automatically.

6 The Maude Compiler

The Maude compiler is in prototype development, but is already able to sup-
port a large subset of the language accepted by the Maude interpreter. The
coverage of the compiler will increase as compilation technology is developed.
The Maude compiler is implemented by compiling Maude 2.0 programs to
C++, with one C++ function per Maude function, which is then compiled

16

with GNU g++ to obtain a native executable. The current compiler can reach
up to 15 million rewrites per second on a 667MHz Xeon on some examples, a
factor of 5 speedup over the 2.98 million rewrites per second reached by the
interpreter on the same hardware.
In the compiler, many optimizations have been made which dramatically

increase performance, including:
• Sort computations and tests are optimized based on sort structure; there is
almost zero cost for many-sorted modules.

• Many-to-one discrimination nets are used for outer free function symbol
skeleton. We adopt a “one variable, one use” policy: no variable is reused
or used in two different branches (unless it gets its value in a common parent
branch) of the discrimination net code. This is important because current
GNU g++ is not capable of splitting live variable ranges, which is important
on Intel x86-like architectures.

• Nodes representing term graphs are of variable size (compared with fixed
size dag nodes in the interpreter) because we do not need to be able to over-
write one dag node with another (in-place replacement) and we do not have
to worry about fragmentation, since the generational scavenging garbage
collector can move nodes to defragment memory.

• Noncanonical term representations are under consideration for various equa-
tional theories such as AC, ACU, A, and AU to avoid the linear factor
overheads incurred when matching and normalizing naive flattened repre-
sentation. This representation will incur a cost on term comparison, but
the benefits may outweigh the costs.

The Maude compiler is integrated into the interpreter; the creduce (cred)
command invokes the compiler to compile the current module (if it has not
already been compiled) and passes the term to be reduced to the resulting
binary executable.

7 Conclusions

We have presented the design and main new features of Maude 2.0. As already
mentioned, the main design goals are: (i) greater generality and expressive-
ness; (ii) efficient support for a wider range of programming applications; and
(iii) usability of Maude 2.0 as a key component for developing internet pro-
gramming and mobile computing systems.

We view our work as a further step in the collective effort of demonstrating
in practice that the rewriting logic paradigm is a very attractive candidate not
just for executable specification purposes, but also for application program-
ming, including parallel, distributed, and mobile programming. Therefore, our
work should be viewed in the context of earlier work on parallel computing
with rewriting languages [11,14,15].

17

References

[1] H.-J. Boehm, R. Atkinson, and M. Plass. Ropes: An alternative to strings.
Software Practice and Experience, 25(12):1315, 1995. http://www.sgi.com/
Technology/STL/Rope.html

[2] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in
membership equational logic. Theoretical Computer Science, 236:35–132, 2000.

[3] M. Clavel. Reflection in general logics and in rewriting logic, with applications
to the Maude language. Ph.D. Thesis, University of Navarre, 1998.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, and J. Meseguer.
Metalevel computation in Maude. In C. Kirchner and H. Kirchner, editors,
Proc. Second Int. Workshop on Rewriting Logic and its Applications, Pont-
à-Mousson, France, ENTCS 15. Elsevier, 1998. http://www.elsevier.nl/
locate/entcs/volume15.html

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
J. F. Quesada. Maude: Specification and programming in rewriting logic. SRI
International, January 1999. http://maude.csl.sri.com

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
J. F. Quesada. A tutorial on Maude. SRI International, March 2000. http:
//maude.csl.sri.com

[7] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proc. First Int. Workshop on Rewriting Logic and its
Applications, Asilomar, California, ENTCS 4. Elsevier, 1996. http://www.
elsevier.nl/locate/entcs/volume4.html

[8] G. Denker, J. Meseguer, and C. Talcott. Formal specification and analysis of
active networks and communication protocols: The Maude experience. In Proc.
DARPA Information Survivability Conference and Exposition DICEX 2000,
Vol. 1, Hilton Head, South Carolina, pages 251–265. IEEE, 2000.

[9] F. Durán, S. Eker, P. Lincoln, and J. Meseguer. Principles of Mobile Maude.
In Proc. Second Int. Symp. on Agent Systems and Applications/Fourth Int.
Symp. on Mobile Agents, Zurich, Switzerland, LNCS. Springer, 2000. http:
//maude.csl.sri.com

[10] F. Durán and J. Meseguer. On parameterized theories and views for Maude.
In K. Futatsugi, editor, Proc. Third Int. Workshop on Rewriting Logic and its
Applications, Kanazawa, Japan, ENTCS 36. Elsevier, 2000. This volume.

[11] J. Goguen, C. Kirchner, and J. Meseguer. Concurrent term rewriting as a model
of computation. In R. Keller and J. Fasel, editors, Proc. Workshop on Graph
Reduction, Santa Fe, New Mexico, LNCS 279, pages 53–93. Springer, 1987.

[12] E. Rusty Harold. Java Network Programming. O’Reilly, 1997. http://java.
sun.com

18

[13] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Second
Edition. Prentice Hall, 1988.

[14] C. Kirchner and P. Viry. Implementing Parallel Rewriting. In B. Fronhöfer and
G. Wrightson, editors, Parallelization in Inference Systems, LNAI 590, pages
123–138. Springer, 1992.

[15] P. Lincoln, N. Mart́ı-Oliet, and J. Meseguer. Specification, transformation, and
programming of concurrent systems in rewriting logic. In G.E. Blelloch et al.,
Specification of Parallel Algorithms, pages 309–339. AMS, 1994.

[16] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic
framework. In J. Meseguer, editor, Proc. First Int. Workshop on Rewriting
Logic and its Applications, Asilomar, California, ENTCS 4. Elsevier, 1996.
http://www.elsevier.nl/locate/entcs/volume4.html

[17] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[18] J. Meseguer. A logical theory of concurrent objects and its realization in the
Maude language. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research
Directions in Object-Based Concurrency, pages 314–390. The MIT Press, 1993.

[19] J. Meseguer. Rewriting logic and Maude: A wide-spectrum semantic framework
for object-based distributed systems. In Proc. FMOODS 2000, Kluwer, 2000.

[20] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[21] T. Suzuki, A. Middeldorp, and T. Ida. Level-confluence of conditional rewrite
systems with extra variables in right-hand sides. In Proc. 6th Int. Conf. on
Rewriting Techniques and Applications, Kaiserslautern, LNCS 914, pages 179–
193. Springer, 1995.

[22] A. Verdejo and N. Mart́ı-Oliet. Executing and verifying CCS in Maude.
Technical Report 99–00, Depto. de Sistemas Informáticos y Programación,
Universidad Complutense de Madrid, Spain, February 2000.

[23] P. Viry. Rewriting: An effective model of concurrency. In C. Halatsis et al.,
editors, PARLE’94, Proc. Sixth Int. Conf. on Parallel Architectures and
Languages Europe, Athens, Greece, LNCS 817, pages 648–660. Springer, 1994.

[24] A. Watters, G. van Rossum, and J. C. Ahlstrom. Internet Programming with
Python. MIS Press/Henry Holt, 1996. http://www.python.org

A More details of two examples

A.1 Graph Example

fmod A-GRAPH is
sorts Edge Node .
ops n1 n2 n3 n4 n5 : -> Node [ctor] .
ops a b c d e f : -> Edge [ctor] .

19

ops s t : Edge -> Node .
eq s(a) = n1 . eq t(a) = n2 .
eq s(b) = n1 . eq t(b) = n3 .
eq s(c) = n3 . eq t(c) = n4 .
eq s(d) = n4 . eq t(d) = n2 .
eq s(e) = n2 . eq t(e) = n5 .
eq s(f) = n2 . eq t(f) = n1 .

endfm

A.2 CCS Syntax

fmod ACTION is protecting QID .
sorts Label Act .
subsorts Qid < Label < Act .
op tau : -> Act . *** silent action
op ~_ : Label -> Label .
var N : Label .
eq ~ ~ N = N .

endfm

fmod PROCESS is protecting ACTION .
sorts ProcessId Process .
subsorts Qid < ProcessId < Process .
op 0 : -> Process . *** inaction
op _._ : Act Process -> Process [prec 25] . *** prefix
op _+_ : Process Process -> Process [assoc comm prec 35] .

*** summation
op _|_ : Process Process -> Process [assoc comm prec 30] .

*** composition
op __ : Process Label -> Process [prec 20] . *** restriction
op _[_/_] : Process Label Label -> Process [prec 20] .

*** relabelling: [b/a] relabels "a" to "b"
endfm

fmod CCS-CONTEXT is protecting PROCESS .
sorts BadProcess Context BadContext .
subsort Process < BadProcess .
subsort Context < BadContext .
op _=def_ : ProcessId Process -> Context [prec 40] .
op nil : -> Context .
op _&_ : BadContext BadContext -> BadContext

[assoc comm id: nil prec 42] .
op _definedIn_ : ProcessId Context -> Bool .
op def : ProcessId Context -> BadProcess .
op not-defined : -> BadProcess .
op context : -> Context .
vars X X’ : ProcessId . var P : Process .
vars C C’ : Context .

cmb (X =def P) & C : Context if not(X definedIn C) .
eq X definedIn nil = false .
ceq X definedIn (C) = (X == X’) or (X definedIn C’)

if (X’ =def P) & C’ := C .

20

eq def(X, nil) = not-defined .
ceq def(X, C) = P if (X =def P) & C’ := C .
ceq def(X, C) = def(X, C’) if (X’ =def P) & C’ := C

/\ X =/= X’ = true .
endfm

B Built-in String Functions

The following table briefly describes the built-in functionality provided for
strings, in particular standard strings of 8-bit characters. The current imple-
mentation of built-in strings includes the following functions:

ascii(C) returns the ASCII code of C

char(M) returns the character with code M if M in 0..255

length(S) is the length of S

S + T forms the concatenation of S and T

substr(S, P, L) is the substring of S, starting at P of length L

find(S, T, P) returns the position of the first occurrence of T in
S starting from position P or notFound

rfind(S, T, P) returns the position of the first occurrence of T in S
searching backwards from position P or notFound

S < T

S > T Lexicographic ordering on strings

S <= T

S => T

string(M, B) returns the string representation of M in base B if
B is in the range 2..36 (a..z are used as digits)

machineInt(S, B) returns the machine integer represented by S in
base B if in fact S does represent a machine in-
teger in base B where B is in the range 2..36 (a..z
and A..Z are recognized as digits)

C Internet Example: HTTP Client

The following example uses built-in string functions and built-in socket inter-
faces to build a very simple minded HTTP/1.0 client for retrieving web pages
from an arbitrary location on the internet.

omod HTTP/1.0-CLIENT is

*** Simple HTTP/1.0 client. Urls must be of form "hostname" or
*** "hostname/path" e.g. maude.csl.sri.com/new.html
*** Virtual hosts supported. No error handling.

inc TCP .

21

sort State .
ops idle dnsLookup connecting sending receiving : -> State [ctor] .
class HttpClient | state : State, requester : Oid, url : String .
sort HttpClientId .
subsort HttpClientId < Oid .
msg getPage : HttpClientId Oid String -> Msg .
msg gotPage : Oid HttpClientId String String -> Msg .

var H : HttpClientId . var R : Oid .
vars C S Url : String . var Aliases : StringList .
var Ad : Address . var Rest : AddressList .

op extractHostName : String -> String .
op extractPath : String -> String .
op extractHeader : String -> String .
op extractBody : String -> String .

eq extractHostName(S) = if find(S, "/", 0) == notFound then S
else substr(S, 0, find(S, "/", 0)) fi .

eq extractPath(S) = if find(S, "/", 0) == notFound then "/"
else substr(S, find(S, "/", 0), length(S)) fi .

eq extractHeader(S) = substr(S, 0, find(S, "\r\n\r\n", 0) + 2) .
eq extractBody(S) = substr(S, find(S, "\r\n\r\n", 0), length(S)) .

rl getPage(H, R, Url)
< H : HttpClient | state : idle >

=> < H : HttpClient | state : dnsLookup, requester : R, url : Url >
getHostByName(System, H, extractHostName(Url)) .

rl gotHostEntry(H, System, [C, Aliases, Ad Rest])
< H : HttpClient | state : dnsLookup >

=> < H : HttpClient | state : connecting >
createTcpClientSocket(System, H, Ad, 80) .

rl createdTcpClientSocket(H, System, TS)
< H : HttpClient | state : connecting, url : Url >

=> < H : HttpClient | state : sending, url : Url >
send(TS, H, "GET " + extractPath(Url) + " HTTP/1.0\r\nHost: " +

extractHostName(Url) + "\r\n\r\n") .

rl sent(H, TS)
< H : HttpClient | state : sending >

=> < H : HttpClient | state : receiving >
receive(TS, H, MAX-MACHINE-INT, MAX-MACHINE-INT) .

rl received(H, TS, S)
< H : HttpClient | state : receiving, requester : R, url : Url >

=> < H : HttpClient | state : idle >
gotPage(R, H, extractHeader(S), extractBody(S))
closeSocket(TS) .

endom

22

