
The Maude System?

M. Clavel1, F. Durán2, S. Eker2, P. Lincoln2, N. Mart́ı-Oliet3, J. Meseguer2 ,
and J. F. Quesada4

1 Department of Philosophy, University of Navarre, Spain
2 SRI International, Menlo Park, CA 94025, USA

3 Facultad de Ciencias Matemáticas, Universidad Complutense, Madrid, Spain
4 CICA (Centro de Informática Cient́ıfica de Andalućıa), Seville, Spain

1 Introduction

Maude is a high-performance language and system supporting both equational
and rewriting logic computation for a wide range of applications, including devel-
opment of theorem proving tools, language prototyping, executable specification
and analysis of concurrent and distributed systems, and logical framework ap-
plications in which other logics are represented, translated, and executed.

Maude’s functional modules are theories in membership equational logic [8,1],
a Horn logic whose atomic sentences are either equalities t = t′ or membership
assertions of the form t : s, stating that a term t has a certain sort s. Such a logic
extends OBJ3’s [4] order-sorted equational logic and supports sorts, subsorts,
subsort polymorphic overloading of operators, and definition of partial functions
with equationally defined domains. Maude’s functional modules are assumed
to be Church-Rosser; they are executed by the Maude engine according to the
rewriting techniques and operational semantics developed in [1].

Membership equational logic is a sublogic of rewriting logic [6]. A rewrite the-
ory is a pair (T, R) with T a membership equational theory, and R a collection
of labeled and possibly conditional rewrite rules involving terms in the signature
of T . Maude’s system modules are rewrite theories in exactly this sense. The
rewrite rules r : t −→ t′ in R are not equations. Computationally, they are inter-
preted as local transition rules in a possibly concurrent system. Logically, they
are interpreted as inference rules in a logical system. This makes rewriting logic
both a general semantic framework to specify concurrent systems and languages
[7], and a general logical framework to represent and execute different logics [5].

Rewriting in (T, R) happens modulo the equational axioms in T . Maude sup-
ports rewriting modulo different combinations of associativity, commutativity,
identity, and idempotency axioms. The rules in R need not be Church-Rosser
and need not be terminating. Many different rewriting paths are then possible;
therefore, the choice of appropriate strategies is crucial for executing rewrite the-
ories. In Maude, such strategies are not an extra-logical part of the language.
? Supported by DARPA through Rome Laboratories Contract F30602-97-C-0312, by

DARPA and NASA through Contract NAS2-98073, by Office of Naval Research Con-
tract N00014-96-C-0114, and by National Science Foundation Grant CCR-9633363.



They are instead internal strategies defined by rewrite theories at the metalevel.
This is because rewriting logic is reflective [2] in the precise sense of having a
universal theory U that can represent any finitely presented rewrite theory T
(including U itself) and any terms t, t′ in T as terms T and t, t′ in U , so that we
have the following equivalence

T ` t −→ t′ ⇔ U ` 〈T , t〉 −→ 〈T , t′〉.
Since U is representable in itself, we can then achieve a “reflective tower” with
an arbitrary number of levels of reflection. Maude efficiently supports this reflec-
tive tower through its META-LEVEL module, which makes possible not only the
declarative definition and execution of user-definable rewriting strategies, but
also many other applications, including an extensible module algebra of param-
eterized module operations that is defined and executed within the logic.

This extensibility by reflection is exploited in Maude’s design and imple-
mentation. Core Maude (Section 2) supports module hierarchies consisting of
(unparameterized) functional and system modules and provides the META-LEVEL
module. Full Maude (Section 3) is an extension of Core Maude written in Core
Maude itself that supports a module algebra of parameterized modules, views,
and module expressions in the OBJ style [4] as well as object-oriented modules
with convenient syntax for object-oriented applications. The paper ends with
a summary of different applications (Section 4). The Maude 1.0 system and its
documentation have been available for distribution (free of charge) since January
1999 through the Maude web page http://maude.csl.sri.com.

2 Core Maude

The Maude system is built around the Core Maude interpreter, which accepts
module hierarchies of (unparameterized) functional and system modules with
user-definable mixfix syntax. It is implemented in C++ and consists of two
parts: the rewrite engine, and the mixfix frontend.

The rewrite engine is highly modular and does not contain any Maude-
specific code. Two key components are the “core” module and the “interface”
module. The core module contains classes for objects which are not specific to
an equational theory, such as equations, rules, sorts, and connected sort com-
ponents. The “interface” module contains abstract base classes for objects that
may have a different representation in different equational theories, such as sym-
bols, term nodes, dag nodes, and matching automata. New equational theories
can be “plugged in” by deriving from the classes in the “interface” module. To
date, all combinations of associativity, commutativity, left and right identity and
idempotence have been implemented apart from those that contain both associa-
tivity and idempotence. New built in symbols with special rewriting (equation
or rule) semantics may be easily added.

The engine is designed to provide the look and feel of an interpreter with
hooks for source level tracing/debugging and user interrupt handling. These
goals prevent a number of optimizations that one would normally implement in

http://maude.csl.sri.com


a compiler, such as transforming the user’s term rewriting system, or keeping
pending evaluations on a stack and only building reduced terms. The actual im-
plementation is a semi-compiler where the term rewriting system is compiled to
a system of tables and automata, which is then interpreted. Typical performance
with the current version is 800K-840K free-theory rewrites per second and 27K-
111K associative-commutative (AC) rewrites per second on standard hardware
(300MHz Pentium II). The figure for AC rewriting is highly dependent on the
complexity of the AC patterns (AC matching is NP-complete) and the size of
the AC subjects. The above results were obtained using fairly simple linear and
non-linear patterns and large (hundreds of nested AC operators) subjects.

The mixfix frontend consists of a bison/flex-based parser for Maude’s sur-
face syntax, a grammar generator (which generates the context free grammar
for the user-definable mixfix syntax in a module together with some built-in
extensions), a context free parser generator, a mixfix pretty printer, a fully reen-
trant debugger, the built-in functions for quoted identifiers and the META-LEVEL
module, together with a considerable amount of “glue” code holding everything
together. Many of the C++ classes are derived from those in the rewrite en-
gine. The Maude parser generator (MSCP) is implemented using SCP as the
formal kernel [9]. The techniques used include β-extended GFGs (that is, CFGs
extended with “bubbles” (strings of tokens) and precedence/gather patterns).
MSCP provides efficient treatment of syntactic reflection, and a basis for flexible
syntax definition.

In Maude, key functionality of the universal theory U has been efficiently
implemented in the functional module META-LEVEL. In META-LEVELMaude terms
are reified as elements of a data type Term, and Maude modules are reified
as terms in a data type Module. The processes of reducing a term to normal
form in a functional module and of rewriting a term in a system module using
Maude’s default interpreter are respectively reified by functions meta-reduce
and meta-rewrite. Similarly, the process of applying a rule of a system module
to a subject term is reified by a function meta-apply. Furthermore, parsing and
pretty printing of a term in a signature, as well as key sort operations are also
reified by corresponding metalevel functions.

3 Full Maude

Using reflection Core Maude can be extended to a much richer language with
an extensible module algebra of module operations that can make Maude mod-
ules highly reusable. The basic idea is that the META-LEVEL module can be
extended with new data types—extending the Module sort of flat modules to
structured and parameterized modules—and with new functions corresponding
to new module operations—such as instantiation of parameterized modules by
views, flattening of module hierarchies into single modules, desugaring of object-
oriented modules into system modules, and so on. All such new types and oper-
ations can be defined in Core Maude. Using the meta-parsing and meta-pretty
printing functions in META-LEVEL and a simple LOOP-MODE module providing in-



put/output we have developed in Core Maude a user interface for Full Maude. At
present, Full Maude supports all of Core Maude plus object-oriented modules,
parameterized modules, theories with loose semantics to state formal require-
ments in parameters, views to bind parameter theories to their instances, and
module expressions instantiating and composing parameterized modules.

4 Applications

Maude is an attractive formal meta-tool for building many advanced applica-
tions and formal tools. The largest application so far is Full Maude (7,000 lines
of Maude code). Other substantial applications include: an inductive theorem
prover; a Church-Rosser checker (both part of a formal environment for Maude
and for the CafeOBJ language [3]); an HOL to Nuprl translator; and a transla-
tor from J. Millen’s CAPSL specification language to the CIL intermediate lan-
guage. In addition, several language interpreters and strategy languages, several
object-oriented specifications—including cryptographic protocols and network
applications—and a variety of executable translations mapping logics, architec-
tural description languages and models of computation into the rewriting logic
reflective framework have been developed by different authors.

References

1. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. To appear in Theoretical Computer Science.

2. M. Clavel. Reflection in general logics and in rewriting logic, with applications to
the Maude language. Ph.D. Thesis, University of Navarre, 1998.

3. M. Clavel, F. Durán, S. Eker, and J. Meseguer. Building equational logic tools by
reflection in rewriting logic. In Proc. of the CafeOBJ Symposium ’98, Numazu,
Japan. CafeOBJ Project, April 1998.

4. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing
OBJ. Technical Report SRI-CSL-92-03, SRI International, Computer Science Lab-
oratory, 1992. To appear in J.A. Goguen and G.R. Malcolm, editors, Applications
of Algebraic Specification Using OBJ, Academic Press, 1998.

5. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. In J. Meseguer, editor, Proc. First Intl. Workshop on Rewriting Logic and
its Applications, volume 4 of Electronic Notes in Theoretical Computer Science.
Elsevier, 1996. http://www1.elsevier.nl/mcs/tcs/pc/volume4.htm.

6. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

7. J. Meseguer. Rewriting logic as a semantic framework for concurrency: a progress
report. In Proc. CONCUR’96, Pisa, August 1996, pages 331–372. Springer LNCS
1119, 1996.

8. J. Meseguer. Membership algebra as a semantic framework for equational speci-
fication. In F. Parisi-Presicce, ed., Proc. WADT’97, 18–61, Springer LNCS 1376,
1998.

9. J. Quesada. The SCP parsing algorithm based on syntactic constraint propagation.
Ph.D. thesis, University of Seville, 1997.

http://www1.elsevier.nl/mcs/tcs/pc/volume4.htm

	Introduction
	Core Maude
	Full Maude
	Applications

