
Programa de Doctorado “Matemáticas”

PhD Dissertation

Quantum Algorithms for the
Combinatorial Invariants of

Numerical Semigroups

Author
Joaqúın
Ossorio Castillo

Supervisor
Prof. Dr. José Maŕıa

Tornero Sánchez

March 10, 2019

A mi abuela Maŕıa

2

Agradecimientos

Hay varias personas a las que me gustaŕıa agradecer su contribución, directa o
indirecta, a esta tesis doctoral.

En primer lugar, a José Maŕıa Tornero, por aceptarme como disćıpulo allá por
2013 y por abrirme las puertas no solo de la investigación sino también de su casa
(aunque solo fuese una vez, pero bueno algo es algo). Por todas las conversaciones
y discusiones interesantes que hemos tenido a lo largo de estos años (algunas de
ellas incluso sobre matemáticas), y por adaptarse siempre a mis caóticos ritmos de
trabajo y a quedar para tomar algo los domingos a las 9 de la mañana habiendo
avisado a las 8:55 tras tres meses sin dar señales de vida (es posible que esté siendo
un poco exagerado, aunque por ah́ı debe andar la cosa). Soy consciente de que esta
tesis doctoral nunca habŕıa sido posible con otro director. O śı, quién sabe, ya casi
nada me sorprende, aunque lo veo bastante improbable. Ah, por cierto, he encon-
trado una excusa perfecta para que sigamos trabajando juntos después de esto, no
te vas a librar de mı́ tan fácilmente. Pero primero vamos a lo que vamos... Ready
to save the world again?

A Julio González y a Fran Pena, de la Universidad de Santiago de Compostela,
por acogerme en su grupo de investigación durante mis primeros años en Galicia, y
por todo lo que he aprendido junto a ellos de optimización matemática y de com-
putación cuántica adiabática. Al principio de esta aventura ambas ramas me eran
completamente desconocidas, y al final terminaron siendo una parte fundamental
de esta tesis doctoral. A mis compañeros del ITMATI, y en especial a Diego y a
Gabriel, por su infinita paciencia a la hora de enseñarme a desarrollar de verdad
(vamos, a programar en linux y a usar git). También me gustaŕıa agradecer de
nuevo a Fran y al resto de miembros del tribunal, Jorge Ramı́rez Alfonśın, Jesús
Soto, Fernando Sancho e Ignacio Ojeda, por acceder a evaluar esta tesis y sobre todo
por darme la oportunidad de discutir personalmente con ellos los resultados de ésta.

Echando la vista atrás, las matemáticas no siempre me gustaron, e incluso llegué
a aborrecerlas en algún momento de mi vida. Me gustaŕıa agradecer a dos grandes
(y eternos) amigos, Rafa y Juan Pablo, las horas que dedicaron durante el instituto
a ayudarme a sacar esta materia adelante. Gracias a ellos descubŕı durante aquel-
los años tan importantes que las matemáticas no solo no son dif́ıciles, sino que son
hermosas. Una lástima que acabaran como ingenieros...

A lo largo de mi época universitaria y laboral me perd́ı tres veces, y tres veces me
volv́ı a encontrar. Gracias Rosa, debido a tu testimonio y a tus consejos fui capaz de
adentrarme a estudiar matemáticas cuando ya llevaba cuatro años en la universidad,

4

una decisión que en su d́ıa fue dif́ıcil pero de la que jamás me he arrepentido y de la
que jamás me arrepentiré. Gracias Maca, por compartir tu experiencia conmigo y
enseñarme lo bonita que es la investigación, y también por hacer de celestina entre
el Sr. Tornero y yo (aunque supongo que él tendrá una opinión diferente sobre si
agradecerte esto o no...). Y gracias Manu, por mostrarme el camino para llegar a
Santiago, y por acogerme como a un hermano durante aquellos primeros meses de
adaptación a la lluvia y a los churros fŕıos.

Al resto de amigos matemáticos que tengo repartidos por el mundo, pero en
especial a los que siguen siendo una parte importante de mi vida y que espero sigan
ah́ı siempre. Ale, Fran, Jara, Jesús, José Luis, Manolo, Pedro (y Maca y Manu, que
ya los mencioné antes pero que también merecen estar aqúı), gracias por enseñarme
durante aquellos maravillosos años el verdadero significado de la universidad.

A mis padres, Joaqúın y Ana, y a mi hermano, José Maŕıa, porque han estado
ah́ı en mis buenas y malas decisiones y me han enseñado a trabajar duro y a sac-
rificarme por mis objetivos. Equivocarse siempre ha sido mucho más fácil sabiendo
que ellos estaŕıan detrás para levantarme. A mi querida mujer, Leti, a quien conoćı
al poco de empezar esta tesis doctoral y que la ha vivido de cerca durante casi
su totalidad (pobrecita... seguro que estaréis pensando). Sin tu apoyo todo esto
habŕıa sido mucho más dif́ıcil; gracias por estar a mi lado, y por querer compartir
los buenos y malos momentos conmigo. Soy el que soy gracias a vosotros; siempre
habéis créıdo en mı́ y me habéis apoyado, incluso cuando yo no lo haćıa. Esta tesis
doctoral es tan vuestra como mı́a. Un agradecimiento especial para mi perro, Bebo,
por calentarme los pies mientras estaba trabajando en esto y por fingir tener que
bajar a mear cada vez que véıa que llevaba demasiadas horas sentado en la silla.

Gracias a todos. :)

Santiago de Compostela, 10 de marzo de 2019

ii

Contents

1 Introduction 3

2 Numerical Semigroups and the Frobenius problem 5
2.1 Numerical Semigroups . 5
2.2 Computational Complexity Theory 11
2.3 Computational Complexity of the Frobenius Problem and the NSMP 16

3 Quantum Computation 25
3.1 Introduction . 25
3.2 Quantum Turing Machines . 26
3.3 Quantum Bits and Quantum Entanglement 27
3.4 Quantum Circuits . 35
3.5 Adiabatic Quantum Computing . 38

4 Quantum Algorithms 43
4.1 Introduction . 43
4.2 Deutsch’s Algorithm . 44
4.3 Deutsch–Jozsa Algorithm . 47
4.4 Simon’s Algorithm . 51
4.5 Shor’s Factoring Algorithm . 56
4.6 Grover’s Search Algorithm . 67
4.7 Quantum Counting . 80

5 Quantum Algorithms for the Combinatorial Invariants of Numeri-
cal Semigroups 87
5.1 Introduction . 87
5.2 The numsem library . 88
5.3 Sylvester Denumerant and Numerical Semigroup Membership 90
5.4 Apéry Set and Frobenius Problem . 96

6 Conclusions and Future Work 109

7 Bibliography 111

1

2 CONTENTS

1

Introduction

“You have nothing to do but mention the quantum theory, and people
will take your voice for the voice of science, and believe anything.”

– George Bernard Shaw, Geneva, a Fancied Page of History in Three Acts

It was back in spring 2014 when the author of this doctoral dissertation was
finishing its master thesis, whose main objective was the understanding of Peter
W. Shor’s most praised result, a quantum algorithm capable of factoring integers in
polynomial time. During the development of this master thesis, me and my yet-to-
be doctoral advisor studied the main aspects of quantum computing from a purely
algebraic perspective. This research eventually evolved into a sufficiently thorough
canvas capable of explaining the main aspects and features of the mentioned algo-
rithm from within an undergraduate context.

Just after its conclusion, we seated down and elaborated a research plan for a
future Ph.D. thesis, which would expectantly involve quantum computing but also
a branch of algebra whose apparently innocent definitions hide some really hard
problems from a computational perspective: the theory of numerical semigroups.
As will be seen later, the definition of numerical semigroup does not involve so-
phisticated knowledge from any somewhat obscure and distant branch of the tree
of mathematics. Nonetheless, a number of combinatorial problems associated with
these numerical semigroups are extremely hard to solve, even when the size of the
input is relatively small. Some examples of these problems are the calculations of
the Frobenius number, the Apéry set, and the Sylvester denumerant, all of them
bearing the name of legendary mathematicians.

This thesis is the result of our multiple attempts to tackle those combinato-
rial problems with the help of a hypothetical quantum computer. First, Chapter
2 is devoted to numerical semigroups and computational complexity theory, and is
divided into three sections. In Section 2.1, we give the formal definition of a numer-
ical semigroup, along with a description of the main problems involved with them.
In Section 2.2, we sketch the fundamental concepts of complexity theory, in order
to understand the true significance within the inherent hardness concealed in the
resolution of those problems. Finally, in Section 2.3 we prove the computational
complexity of the problems we aim to solve.

3

4 1. INTRODUCTION

Chapter 3 is the result of our outline of the theory of quantum computing.
We give the basic definitions and concepts needed for understanding the particular
place that quantum computers occupy in the world of Turing machines, and also
the main elements that compose this particular model of computation: quantum
bits and quantum entanglement. We also explain the two most common models of
quantum computation, namely quantum circuits and adiabatic quantum comput-
ers. For all of them we give mathematical definitions, but always having in mind
the physical experiments from which they stemmed.

Chapter 4 is also about quantum computing, but from an algorithmical perspec-
tive. We present the most important quantum algorithms to date in a standardized
way, explaining their context, their impact and consequences, while giving a math-
ematical proof of their correctness and worked-out examples. We begin with the
early algorithms of Deutsch, Deutsch-Jozsa, and Simon, and then proceed to ex-
plain their importance in the dawn of quantum computation. Then, we describe the
major landmarks: Shor’s factoring, Grover’s search, and quantum counting.

Chapter 5 is the culmination of all previously explained concepts, as it includes
the description of various quantum algorithms capable of solving the main problems
inside the branch of numerical semigrops. We present quantum circuit algorithms
for the Sylvester denumerant and the numerical semigroup membership, and adia-
batic quantum algorithms for the Apéry Set and the Frobenius problem. We also
describe a C++ library called numsem, specially developed within the context of this
doctoral thesis and which helps us to study the computational hardness of all pre-
viously explained problems from a classical perspective.

This thesis is intended to be autoconclusive at least in the main branches of math-
ematics in which it is supported ; that is to say numerical semigroups, computational
complexity theory, and quantum computation. Nevertheless, for the majority of
concepts explained here we give references for the interested reader that wants to
delve more into them.

2

Numerical Semigroups and the
Frobenius problem

“One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind them
In the Land of Mordor where the Shadows lie.”

– J. R. R. Tolkien, The Lord of the Rings

2.1 Numerical Semigroups

The study of numerical semigroups has its origins at the end of the 19th Century,
when English mathematician James Joseph Sylvester (1814 – 1897) and German
mathematician Ferdinand Georg Frobenius (1849 – 1917) were both interested in
what is now known as the Frobenius problem, which we proceed to enunciate.

Definition 2.1.1. Let a1, a2, . . . , an ∈ Z≥0 with gcd(a1, a2, . . . , an) = 1, the Frobe-
nius problem, or FP, is the problem of finding the largest positive integer that cannot
be expressed as an integer conical combination of these numbers, i.e., as a sum

n∑
j=1

λiai with λi ∈ Z≥0.

This problem, so easy to state, can be extremely complicated to solve in the
majority of cases, as will be seen in Section 2.3. It can be found in a wide variety of
contexts, being the most famous the problem of finding the largest amount of money
which cannot be obtained with a certain set of coins: if, for example, we have an
unlimited amount of coins of 2 and 5 units, we can represent any quantity except 1
and 3.

In order to understand the relationship between this problem and numerical
semigroups, we shall first define the latter.

Definition 2.1.2. A semigroup is a pair (S,+), where S is a set and + is a binary
operation + : S × S → S that is associative.

Definition 2.1.3. A numerical semigroup S is a subset of the non-negative integers
Z≥0 which is closed under addition, contains the identity element 0, and has a finite
complement in Z≥0.

5

6 2. NUMERICAL SEMIGROUPS AND THE FROBENIUS PROBLEM

From now on, we shall denote numerical semigroups as S, taking for granted
that they are commutative and that their associated operation is the addition. As it
can be easily noted, a numerical semigroup is trivially a semigroup. In other words,
a numerical semigroup is a semigroup that, additionally, is a monoid (i.e., it also
has an identity element) and has finite complement in Z≥0. In order to work with
numerical semigroups, it will be necessary to characterize them somehow. For that,
let us set forth the following lemma.

Lemma 2.1.4. Let A = {a1, ..., an} be a nonempty subset of Z≥0. Then,

S = 〈A〉 = 〈a1, ..., an〉 = {λ1a1 + ...+ λnan | λi ∈ Z≥0}

is a numerical semigroup if and only if gcd(a1, ..., an) = 1.

Proof. Assume S to be a numerical semigroup with gcd(a1, . . . , an) = d and let
x = max(Z≥0\S) —as Z≥0\S is finite, it has a maximum—. If s ∈ S, then d|s.
As x+1 ∈ S and x+2 ∈ S, then d | (x+1) and d | (x+2), which implies that d = 1.

Let S = 〈A〉 = 〈a1, ..., an〉 with gcd(a1, . . . , an) = 1, then by Bézout’s identity
[23] there exist integers x1, x2, . . . , xn ∈ Z such that a1x1 + a2x2 + · · · + anxn = 1.
If a1x1 + · · ·+ anxn = p+ q, where p contains the positive terms and q the negative
ones, then p = 1− q. We can define r = −q and, as p ∈ S, r ∈ S and r+ 1 ∈ S. Let
s ≥ (r−1)r+(r−1), and let t and u such that s = tr+u with 0 ≤ u < r. It follows
that u ≤ r − 1 ≤ t and finally we have that s = u(r + 1) + (t − u)r ∈ S. Thus, S
has finite complement in Z≥0 and consequently is a numerical semigroup.

The previous lemma tells us that, drawing from a set A ⊆ Z≥0, it is possible
to generate a semigroup S = 〈A〉 as long as the elements of A satisfy a certain
condition. In this context, any set A such that S = 〈A〉 for a certain numerical
semigroup S is called a system of generators of S. Even more, it can be proved that
any numerical semigroup can be expressed that way, as will be shown next.

Theorem 2.1.5. Every numerical semigroup S admits a unique minimal system of
generators, which can be calculated as S∗ \ (S∗ + S∗) with S∗ = S \ {0}.

Proof. Let S∗ = S \ {0} and let s ∈ S∗. If s /∈ S∗ \ (S∗ + S∗), then s ∈ S∗ + S∗ and
there exist t, u ∈ S∗ such that s = t+u. As t, u < s, we can repeat this procedure a
finite number of steps until we find s1, . . . , sn ∈ S∗ \ (S∗+S∗) with s = s1 + · · ·+sn.
Thus, we can conclude that S∗ \ (S∗ + S∗) is a system of generators of S.

Besides, let A be a system of generators of S and let s ∈ S∗\(S∗+S∗), then there
exist t ∈ Z>0, λ1, . . . , λn ∈ Z≥0 and a1, . . . , an ∈ A such that s = λ1a1 + · · ·+ λnan.
As s /∈ S∗+S∗, we have that s = ai for a certain i ∈ {1, . . . , n} and thus S∗\(S∗+S∗)
is contained in any system of generators of S.

Corollary 2.1.6. Let S be a numerical semigroup generated by A = {a1, . . . , an}
with 0 6= a1 < a2 < ... < an. Then, A is a minimal system of generators of S if and
only if ai+1 /∈ 〈a1, a2, . . . , ai〉, for all i ∈ {1, . . . , n− 1}.

It will be proven later in this section that the minimal system of generators of
a numerical semigroup is in fact finite. Hereinafter, if we say that S = 〈A〉 with

2.1. NUMERICAL SEMIGROUPS 7

A = {a1, a2, . . . , an} is a numerical semigroup, then we shall assume without loss
of generality that a1 < a2 < · · · < an, gcd(a1, a2, . . . , an) = 1, and that A is the
minimal system of generators of S. Some examples of numerical semigroups, which
will be used for the rest of the section, are:

Sa = 〈3, 7〉 = {0, 3, 6, 7, 9, 10, 12,→}
Sb = 〈4, 9〉 = {0, 4, 8, 9, 12, 13, 16, 17, 18, 20, 21, 22, 24,→}
Sc = 〈5, 8, 11〉 = {0, 5, 8, 10, 11, 13, 15, 16, 18,→}
Sd = 〈5, 7, 9〉 = {0, 5, 7, 9, 10, 12, 14,→}

Where → means that all integers thenceforth are also included in the numerical
semigroup. Having thus defined and characterized what numerical semigroups are,
we proceed to describe some of their combinatorial invariants.

Definition 2.1.7. Let S = 〈a1, a2, . . . , an〉 be a numerical semigroup, then

m(S) = a1 and e(S) = n

are called respectively the multiplicity of S and the embedding dimension of S.

Lemma 2.1.8. Let S be a numerical semigroup, then

m(S) = minS∗

Definition 2.1.9. The set of gaps of a numerical semigroup S is defined as

G(S) = Z≥0\S.

Its cardinal,
g(S) = |G(S)|,

is called the genus of S; and its maximum,

f(S) = maxG(S),

is called the Frobenius number of S.

In other words, as by definition any numerical semigroup S has a finite comple-
ment in Z≥0, we can define the maximum of such complement as f(S), known as
the Frobenius number. In fact, the Frobenius problem described at the beginning of
this chapter in Definition 2.1.1 can be enunciated as the problem of finding f(S) for
a certain numerical semigroup S. We shall expand the concepts related to the diffi-
culties that surround the calculation of the Frobenius number in Section 2.3. Table
2.1 shows the combinatorial invariants associated for the previously given examples
of semigroups.

Greek-French mathematician Roger Apéry (1916 – 1994), better known for prov-
ing in 1979 the irrationality of ζ(3) [11], also laid the background in the context of
the resolution of singularities of curves [10] for an important set associated to a
numerical semigroup S and one of its elements.

8 2. NUMERICAL SEMIGROUPS AND THE FROBENIUS PROBLEM

S A m(S) e(S) G(S) g(S) f(S)
Sa 〈3, 7〉 3 2 {1, 2, 4, 5, 8, 11} 6 11
Sb 〈4, 9〉 4 2 {1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 19, 23} 12 23
Sc 〈5, 8, 11〉 5 3 {1, 2, 3, 4, 6, 7, 9, 12, 14, 17} 10 17
Sd 〈5, 7, 9〉 5 3 {1, 2, 3, 4, 6, 8, 11, 13} 8 13

Table 2.1: Combinatorial invariants for some examples of semigroups

Definition 2.1.10. The Apéry set of a numerical semigroup S with respect to a
certain s ∈ S∗ is defined as

Ap(S, s) = {x ∈ S | x− s /∈ S}.

A possible characterization of the elements of the Apéry set one by one, which
will come to special use in Chapter 5, is given by the following lemma.

Lemma 2.1.11. Let S be a numerical semigroup and let s ∈ S∗. Then, Ap(S, s) =
{ω0, ω1, ..., ωs−1} where ωi is the least element of S congruent with i modulo s, for
all i ∈ {0, ..., s− 1}. Consequently, |Ap(S, s)| = s.

Proof. Let x ∈ Ap(S, s). Then, by definition, x ∈ S and x − s /∈ S. As x ≡ i
mod s for a certain i ∈ {0, . . . , s − 1}, it follows that x = ωi. As a result,
Ap(S, s) ⊆ {ω0, . . . , ωs−1}.

Also, let ωi = min{x ∈ S | x ≡ i mod s}, it is clear that ωi ∈ S and ωi− s /∈ S.
Thus, {ω0, . . . , ωs−1} ⊆ Ap(S, s).

By means of an example on how to calculate the Apéry set of a semigroup with
respect to a certain element, let

Sc = 〈5, 8, 11〉 = {0, 5, 8, 10, 11, 13, 15, 16, 18,→}.

Then Ap(Sc, 5) = {ω0, . . . , ω4}, where

ω0 = min{x ∈ S | x ≡ 0 mod 5} = 0

ω1 = min{x ∈ S | x ≡ 1 mod 5} = 11

ω2 = min{x ∈ S | x ≡ 2 mod 5} = 22

ω3 = min{x ∈ S | x ≡ 3 mod 5} = 8

ω4 = min{x ∈ S | x ≡ 4 mod 5} = 19

We proceed to prove some results via the properties of the Apéry set.

Proposition 2.1.12. The minimal system of generators of a numerical semigroup
S is finite.

Proof. Let s ∈ S∗. Then, it is easy to see that for every t ∈ S there exists a
unique pair (u, v) ∈ Z≥0 × Ap(S, s) such that t = us + v. Thus, S is generated by
A = Ap(S, s) ∪ {s} and, as A is finite, the unique minimal system of generators
must be finite.

2.1. NUMERICAL SEMIGROUPS 9

Lemma 2.1.13. Let S be a numerical semigroup, then

e(S) ≤ m(S).

Proof. Let a = m(S) and let A = Ap(S, a) ∪ {a}. Thus, as S can be generated by
A \ {0} and |A \ {0}| = a, we can conclude that e(S) ≤ m(S).

The Apéry set is noteworthy in the context of the Frobenius problem as there
exists a relationship between its members (regardless of the element s ∈ S∗ we
choose) and the Frobenius number, which we proceed to enunciate and prove.

Theorem 2.1.14. (A. Brauer – J. E. Shockley, 1962) [31] Let S be a numerical
semigroup and let s ∈ S∗. Then

f(S) = maxAp(S, s)− s

g(S) =
1

s

 ∑
ω∈Ap(S,s)

ω

− s− 1

2

Proof. As Ap(S, s) = {x ∈ S | x−s /∈ S}, we have that max{Ap(S, s)}−s /∈ S. Let
y > max{Ap(S, s)} − s, then y + s > max{Ap(S, s)}. Let z ∈ Ap(S, s) such that
z ≡ y + s mod s, then as z < y + s we have that y = z + ks for some k ≥ 0, hence
y − s = z + (k − 1)s ∈ S. This proves the first identity.

As for the genus of S, for every w ∈ Ap(S, s), w ≡ i mod s with i ∈ {0, . . . , s−1}
implies that there exists ki ∈ Z≥0 such that w = kis+ i. This way, we can write the
elements of the Apéry Set as ωi = kis+ i for i ∈ {0, . . . , s− 1}.

Thus, as x ≡ ωi mod s implies that x ∈ S if and only if ωi ≤ x, then we can
conclude that

g(S) =
s−1∑
i=1

ki =
1

s

s−1∑
i=1

(kis+ i)− s− 1

2
=

1

s

s−1∑
i=1

ωi −
s− 1

2
.

Now we exemplify the relationship between numerical semigroups and combi-
natorial optimization, as one of the most important problems in the latter branch
of mathematics, known as the knapsack problem or rucksack problem, and more
concretely one of its variants [93] (p. 374), can be seen as the problem of deciding
if a given integer t belongs to a certain numerical semigroup S.

Definition 2.1.15. The numerical semigroup membership problem, or NSMP, is
the problem of determining if, given a certain integer t ∈ Z≥0 and a numerical
semigroup S = 〈a1, ..., an〉, the integer t is contained in S. That is to say, if there
exist non-negative integers λ1, . . . , λn ∈ Z≥0 such that

n∑
i=1

λiai = t.

10 2. NUMERICAL SEMIGROUPS AND THE FROBENIUS PROBLEM

Finally, we show another important problem in numerical semigroups related to
the previous one. In the mid-19th century, J. J. Sylvester studied the number of
partitions of an integer with respect to a certain subset of non-negative integers
[109, 110]. In the context of this chapter, this problem can be seen as an extension
of the NSMP, but rather than answering whether or not an integer is contained in
a numerical semigroup, we go farther and want to calculate the number of distinct
representations of that integer with respect to the minimal system of generators of
the semigroup.

Definition 2.1.16. The Sylvester denumerant of a non-negative integer t ∈ Z≥0

with respect to a numerical semigroup S = 〈a1, ..., an〉, denoted by d(t, S) or by
d(t; a1, . . . , an), is defined as the number of solutions of the Diophantine equation

n∑
i=1

λiai = t,

where λ1, . . . , λn ∈ Z≥0.

By means of an example, we recall the previously defined semigroup:

Sd = 〈5, 7, 9〉 = {0, 5, 7, 9, 10, 12, 14,→}

The Frobenius number of Sd is equal to f(Sd) = 13, which means that any
integer greater than 13 is contained in the semigroup. However, the number of
possible representations may differ between them. Number 15, for example, has a
unique representation with respect to 5, 7 and 9:

15 = 3× (5) + 0× (7) + 0× (9),

while on the other hand, number 14 has two possible representations:

14 = 1× (5) + 0× (7) + 1× (9)

and

14 = 0× (5) + 2× (7) + 0× (9).

This tells us that d(15; 5, 7, 9) = 1 and d(14; 5, 7, 9) = 2.

The study of the Sylvester denumerant is of great importance in many branches
of mathematics and, as can be easily deduced, is at least as hard to solve as the
numerical semigroup membership problem. This result will be formally explained
in Section 2.3.

A thorough study of numerical semigroups can be found in the book by J. C.
Rosales and P. A. Garćıa-Sánchez [101]. The majority of problems and definitions
surrounding the Frobenius number and the Sylvester denumerant can be found in
the book by J. L. Ramı́rez-Alfonśın [98].

2.2. COMPUTATIONAL COMPLEXITY THEORY 11

2.2 Computational Complexity Theory

The aim of this section is to provide a background on computational complex-
ity theory, a branch of mathematics and computer science which focuses on the
definition of classes of computational problems in accordance with their inherent
difficulty, and on the relationships between those classes.

This framework will become useful for two of the main objectives of this Ph.D.
thesis: first, for placing the Frobenius problem within the context of those prob-
lem classes —i.e., what does exactly mean that the Frobenius problem is hard to
solve—; and second, for contextualizing the quantum model of computation inside
the universal Turing machines used for standardizing the aforementioned classes
of problems. In order to achieve that, we begin by defining two basic ingredients
needed for this problem classification.

Definition 2.2.1. [62, 77] A decision problem or recognition problem Π is a function
with a one-bit output: YES or NO —i.e., a problem that can be posed as a yes-no
question of the input—. To specify a decision problem, one must define the set A of
possible inputs and the subset B ⊆ A of YES instances.

In the context of automata and abstract computers, it is necessary to define a
new concept that generalizes the notion of a machine capable of solving a certain de-
cision problem. We give from now on some essential notions of the so-called Turing
machines, named after English computer scientist and mathematician Alan Turing
(1912 – 1954) and its groundbreaking and dazzling work [111]. These machines
may appear to be simple or limited, but they are capable of simulating any com-
puter algorithm and of doing everything that a real computer can do [108]. More
information on the subject can be found in [77].

Definition 2.2.2. A deterministic Turing machine M, or DTM, is defined by a
triple M = (S,Σ, δ), where S is a finite set of states (with an initial state s0 ∈ S
and a set of final states F ⊆ S), Σ is an alphabet containing at least the blank symbol
#, and δ : S \ F × Σ → S × Σ × {L,R} is a partial function called the transition
function.

The definition of Turing machine is quite abstract, but it can be seen as a device
that manipulates symbols on a strip of tape according to a table of rules. This tape
is divided into cells, each of them containing a symbol from the alphabet Σ, and
the machine has a head that reads or writes on the tape and moves the tape left or
right. The machine follows a single and deterministic computation path starting in
the state s0 and ending in one of the final states. A representation of this path is
shown in Figure 2.1.

Now that we have defined what a deterministic Turing machine is, we can start
a classification of decision problems with respect to them.

Definition 2.2.3. The class P, or PTIME, contains all decision problems solvable
by a deterministic Turing machine using a polynomial amount of computation time
with respect to the size of the input.

12 2. NUMERICAL SEMIGROUPS AND THE FROBENIUS PROBLEM

S0

S1

S2

SF

Figure 2.1: Example of computation of a deterministic Turing machine

Figure 2.2: Example of computation of a non-deterministic Turing machine

The class P is known to contain many elemental problems in mathematics, like
addition and multiplication, and other not so elemental such as the problem of de-
ciding whether an integer is prime [7], or the resolution of a certain type of linear
optimization problem [12, 73].

Another concept that generalizes the notion of a Turing machine one step further
is the following:

Definition 2.2.4. A non-deterministic Turing machine M, or NTM, is defined by
a triple M = (S,Σ, δ), where S is a finite set of states (with an initial state s0 ∈ S
and a set of final states F ⊆ S), Σ is an alphabet containing at least the blank symbol
and δ ⊆ (Q \A×Σ)× (Q×Σ×{L,R}) is a relation on states and symbols called
the transition relation.

As can be seen, the only difference between a deterministic Turing machine and
a non-deterministic Turing machine is the substitution of the transition function
for a transition relation. This distinction can be interpreted as a change in the
computation path followed by the machine. While in the deterministic Turing ma-
chine the transition between a state and the next is deterministic and unique, in the
non-deterministic Turing machine there can be more than one state after a certain
step in the computation. The computation path may branch after a state, making
an indeterminate number of copies of the machine which will continue working in
parallel. Thus, instead of a computation path, the behavior of a non-deterministic

2.2. COMPUTATIONAL COMPLEXITY THEORY 13

Turing machine is better seen as a computation tree, represented in Figure 2.2.

Although the concept of a non-deterministic Turing machine is more philosophi-
cal than realistic and has not been implemented in practice, there have been recent
designs of a model for non-deterministic Turing machine that exploit the ability of
DNA to replicate itself [40].

In the same way as with deterministic Turing machines, we can also classify all
decision problems with respect to the non-deterministic Turing machines.

Definition 2.2.5. The class NP contains all decision problems that can be solved by
a non-deterministic Turing machine that runs in polynomial time with respect to the
size of the input. If the answer is YES, then at least one computation path accepts.
On the other hand, if the answer is NO, all computation paths must reject.

Another interpretation of the set of decision problems that are contained in NP
states that a problem is solvable by a non-deterministic Turing machine in polyno-
mial time if and only if the problem of veryfing if a certain polynomial-size proof of
this fact is correct is in P. In other words, the statements verifiable in polynomial
time by a deterministic Turing machine and solvable in polynomial time by a non-
deterministic Turing machine are totally equivalent, and a proof of this fact can
be found in [108]. For example, the problem of finding a prime factor of a certain
integer N , also called prime factorization, is not known to be in P. Nevertheless, as
the problem of determining if a certain prime p is a factor of N can be checked in
polynomial time, we know that prime factoring is in NP.

As a deterministic Turing machine is also trivially a non-deterministic Turing
machine, it is easy to conclude that P ⊆ NP. However, the question of whether
there exists a problem in NP that is not in P is one of the most important open
problems in theoretical computer science —and in mathematics in general—, and

is known as the P versus NP problem, or P
?
= NP. In other words, does the non-

determinism of a Turing machine make a difference? Intuitively, one might say it
should, but that remains to be proven. Interesting surveys about this subject can
be found in [107], [38] and [4].

Apart from all problems in P, a myriad of compelling problems in mathematics
are also known to be in NP, such as the previously mentioned prime factorization,
the Boolean satisfiability problem —also known as SAT— and many others. In fact,
the SAT problem was the first to be proven to be complete for the class NP [37], a
concept which we proceed to explain.

Definition 2.2.6. Let C be a complexity class and let Π be a decision problem.
Then, problem Π is said to be hard for the complexity class C under a given type of
reduction if there exists a reduction —of the given type— from any problem in C to
Π. The complexity class of all problems that are hard for C is called C-hard.

Definition 2.2.7. Let C be a complexity class and let Π be a decision problem.
Then, problem Π is said to be complete for the complexity class C under a given
type of reduction if Π is contained in C and Π is hard for C under that type of

14 2. NUMERICAL SEMIGROUPS AND THE FROBENIUS PROBLEM

reduction. The complexity class of all problems that are complete for C is called
C-complete.

Both concepts and an example of what a reduction is will be thoroughly ex-
plained in the next section of the present chapter. Note that a polynomial-time
deterministic algorithm for a NP-complete problem would violate the standard P (
NP conjecture. Moreover, as all NP-complete problems can be seen as equally hard
to solve, and they are the hardest problems inside NP, such a result would give us
a polynomial-time deterministic algorithm for every problem in NP.

Before proceeding to the next section, let us explain another variation of the
notion of Turing machine, which will be specially useful in Chapter 3 for explaining
the concept of universal quantum computer, with its corresponding complexity class.

Definition 2.2.8. A probabilistic Turing machineM, or PTM, is defined by a triple
M = (S,Σ, δ), where S is a finite set of states (with an initial state s0 ∈ S and
a set of final states F ⊆ S), where Σ is an alphabet containing at least the blank
symbol # and where δ is the transition function. In this case, however, the transition
function does not define deterministic transitions as in the case of a deterministic
Turing machine, but gives a probability distribution of possible transitions according
to δ : S × Σ× S × Σ× {L,R} → [0, 1].

The behavior of a probabilistic Turing machine can be seen as that of a non-
deterministic Turing machine where, instead of multiplying itself when more than
one path is possible from a certain state, it decides which path to follow according
to a probability distribution. Thus, we have a computation path that can be seen
as superimposed over the computation tree of a non-deterministic Turing machine,
as highlighted in red in Figure 2.3.

Definition 2.2.9. The class BPP, which stands for bounded-error probabilistic
polynomial-time, contains all decision problems that can be solved in polynomial
time by probabilistic Turing machines with error probability bounded by 1/3 for all
inputs.

The class BPP can also be seen as the class of decision problems solvable by a
non-deterministic Turing machine such that, if the answer is YES, then at least 2/3
of the computation paths accept the input, and if the answer is NO, then at most 1/3
of the computation paths accept. Nonetheless, although it is easy to prove that P
⊆ BPP, there is no known relation between BPP and NP. Note also that the choice
of 1/3 is arbitrary, as a swap between 1/3 and any x ∈ R such that 0 < x < 1/2 in
the definition will keep unchanged the contents of the class BPP. For more details
on BPP, we refer to [57], where it was first defined.

Finally, we define two complexity classes that will help us in the understanding
of the bigger picture where all of this is contained.

Definition 2.2.10. The class PP, which stands for probabilistic polynomial-time,
contains all decision problems solvable by a non-deterministic Turing machine in
polynomial time such that, if the answer is YES, then at least 1/2 of computation
paths accept and, if the answer is NO, then less than 1/2 of computation paths accept.

2.2. COMPUTATIONAL COMPLEXITY THEORY 15

Figure 2.3: Example of computation of probabilistic Turing machine

Figure 2.4: Diagram of complexity classes

Definition 2.2.11. The class PSPACE, which stands for polynomial space, contains
all decision problems solvable by a deterministic Turing machine using a polynomial
amount of space, regardless of the total time needed.

The complexity classes we have defined here form a hierarchical structure [4],
which can be seen in Figure 2.4. As can be noted, PSPACE contains all of them,
a quite surprising result. In fact, to date nobody has proven that P (PSPACE,
meaning that the full hierarchy may collapse in the future if P equals PSPACE. In
Figure 2.5 we also show the relationship between P, NP and the complexity classes
that surround them, depending on the answer to the P versus NP problem. In the
left diagram, NP is represented by the circle, not by the space between NP-complete
and P —that space corresponds to NP-intermediate, a class that will be explained
in Section 4.5—.

Now that we have formed the basis for the understanding of the main com-
putational complexity classes, let us show where does some of the main problems
introduced in the section dedicated to numerical semigroups fit into all this. For an
almost complete and updated list of complexity classes, we refer to the vast database
found in [5], result of the efforts of American theoretical computer scientist Scott

16 2. NUMERICAL SEMIGROUPS AND THE FROBENIUS PROBLEM

Figure 2.5: Diagram of P and NP-related complexity classes

Aaronson (b. 1981).

2.3 Computational Complexity of the Frobenius

Problem and the NSMP

In this section we are going to apply the background studied up to this point for
proving that the Frobenius problem is in NP-hard. For that, first we are going to
prove that the Boolean satisfiability problem is complete for the complexity class NP
—i.e., that it is in NP, and is also hard for NP—. Then, we show that the numerical
semigroup membership problem is also in NP-complete. Finally, we prove that the
Frobenius problem is hard for the class NP under Turing reductions to the NSMP.

Definition 2.3.1. The Boolean satisfiability problem, or SAT, is the problem of de-
termining if there exists an interpretation for the binary variables x1, x2, . . . , xn that
satisfies a given Boolean formula. In other words, given m clauses C1, C2, . . . , Cm,
is the propositional logic formula C1 ∧ C2 ∧ · · · ∧ Cm satisfiable?

Definition 2.3.2. Let Π and Π′ be two decision problems, a polynomial-time many-
one reduction from Π to Π′ is a polynomial-time algorithm for transforming inputs
to problem Π into inputs to problem Π′, such that the transformed problem has the
same output as the original problem.

Theorem 2.3.3. (S. Cook – L. Levin) [37, 83] The Boolean satisfiability problem
is in NP-complete.

Proof. In order to prove that the SAT problem is in NP-complete, we must de-
mostrate two statements: first, that the SAT problem is in NP; second, that it is in
NP-hard.

2.3. COMPUTATIONAL COMPLEXITY OF THE FP AND THE NSMP 17

It is easy to see that the first affirmation holds. Let C1, C2, . . . , Cm be a set
of logical clauses involving the binary variables x1, x2, . . . , xn, a certificate for the
veracity of all the clauses would be a vector in {0, 1}n representing a truth assigne-
ment. Naturally, a deterministic Turing machine that runs in polynomial time exists
for checking that our certificate makes every one of the clauses true.

The second part is customarily accomplished by showing that a well known NP-
complete problem can be polynomially transformed to our problem; in this case,
SAT. However, SAT was the first problem to be proven to be in NP-complete, how
was this accomplished? This result comes originally from the separated works of
American-Canadian computer scientist and mathematician Stephen Cook (b. 1939)
and Soviet-American computer scientist Leonid Levin (b. 1948), as both of them
proved that every problem in NP can be reduced in polynomial time to SAT [37, 83].
The proof we present here of Cook-Levin theorem is based on the ones found in [55]
and [93].

We should relate somehow all problems in NP by a common characteristic. As
defined previously, a decision problem is in NP if there exists a non-deterministic
Turing machineM that accepts or rejects an instance of the problem of size n in time
p(n), where p is a polynomial function. This NTM is represented as M = (S,Σ, δ),
where S is the set of states, s0 ∈ S is the initial state, F ⊆ S is the set of final
states, and δ is the transition relation.

The idea behind the proof is to transform any NTM that solves a problem in
NP in polynomial time to an instance of the SAT problem. First, let us define the
following Boolean variables:

1. Ti,j,k ∼ True if tape cell i of our NTM contains symbol j at step k of the
computation.

2. Hi,k ∼ True if the read/write head of our NTM is at tape cell i at the step k
of the computation.

3. Ss,k ∼ True if our NTM is in the state s ∈ S at the step k of the computation.

Note that there are O(p(n)) variables of type Ss,k and O(p(n)2) variables of type
Ti,j,k and Hi,k. Now we can define a set of Boolean clauses which will represent all
the conditions required for the NTM to be able to solve the problem in time less or
equal than p(n). We can assume then that we have −p(n) ≤ i ≤ p(n) tape cells, a
fixed number |Σ| of symbols, and that the computation ends in at most p(n) steps;
i.e., 0 ≤ k ≤ p(n).

1. Ti,j,0 ∼ True if tape cell i contains symbol j at step k = 0; i.e., at the initial
state of the computation.

2. ¬Ti,j,k ∨¬Ti,j′,k,∀j 6= j′ ∼ True if there is at most one symbol per tape cell at
any step k.

18 2. NUMERICAL SEMIGROUPS AND THE FROBENIUS PROBLEM

3.
∨
j∈Σ

Ti,j,k ∼ True if there is at least one symbol per tape cell at any step k.

4. Ss0,0 ∼ True if the initial state s0 ∈ S is the state of the computation at k = 0.

5. ¬Ss,k ∨ ¬Ss′,k,∀s 6= s′ ∼ True if our NTM is at only one state at any step k.

6. H0,0 ∼ True if the initial position of the read/write head of our NTM is in
tape cell i = 0.

7. ¬Hi,k ∨ ¬Hi′,k,∀i 6= i′ ∼ True if the read/write head of our NTM is at only
one tape cell at any step k.

8. Ti,j,k ∧ Ti,j′,k+1 → Hi,j,∀j 6= j′ ∼ True if tape cell i remains unchanged unless
it has been written.

9. (Hi,k ∧Ss,k ∧ Ti,σ,k)→
∨

((s,σ),(s′,σ′,d))∈δ

(Hi+d,k+1 ∧Ss′,k+1 ∧ Ti,σ′,k+1),∀k < p(n) ∼

True for all possible transitions at a computation step k ≤ p(n) when head is
at position i.

10.
∨

0≤k≤p(n)

∨
f∈F

Sf,k ∼ True if the machine ends in one of the final states f ∈ F in

a step k ≤ p(n).

It is easy to see that there are O(1) clauses of type 4, 6 and 10; O(p(n)) clauses
of type 1 and 5; O(p(n)2) clauses of type 2, 3, 8 and 9; and O(p(n)3) clauses of
type 7. This way, we can deduce that if there is an accepting computation for our
NTM on a certain input, then the conjunction of all previously defined clauses is
satistifiable just by asigning the variables their corresponding value during the com-
putation. Furthermore, if we solve the instance of SAT related to the conjunction
of those clauses, we can find a computation for M that follows the solution for the
Boolean variables.

As there are O(p(n)) variables and O(p(n)3) clauses, the size of our SAT problem
is O(log(p(n))p(n)3). Consequently, we have found a polynomial-time many-one
reduction from any problem in NP to SAT, thus proving that SAT is in fact complete
for the class NP.

Note that the previous theorem does not only show the existence of problems in
NP-complete, but also states that if we find a polynomial time classical algorithm for
the SAT problem, we can also find a polynomial time algorithm for every problem
in NP. However, this will unlikely happen, as it would imply that P = NP.

Now it is time to prove that the numerical semigroup membership problem is
in NP-complete. A possible way of achieving this is seeing that, as said in Section
2.2, NP-complete = NP ∩ NP-hard. In order to prove that a problem is in NP, it
suffices to show that a candidate solution is verifiable in polynomial time, which in
this case is trivial. For proving the NP-hardness of the NSMP, we must give first
the following definitions, which can also be found in [59] and [93].

2.3. COMPUTATIONAL COMPLEXITY OF THE FP AND THE NSMP 19

Definition 2.3.4. Let Π and Π′ be two decision problems, a polynomial time Turing
reduction from Π to Π′ is an algorithm ΛΠ which solves Π by using a hypothetical
subroutine ΛΠ′ for solving Π′, such that, if ΛΠ′ were a polynomial time algorithm
for Π′ then ΛΠ would be a polynomial time algorithm for Π. In this context, we say
that the decision problem Π can be Turing reduced to Π′.

Proposition 2.3.5. Let Π be a decision problem, then Π is NP-hard if there exists
an NP-complete decision problem Π′ such that Π′ can be Turing reduced to Π.

Definition 2.3.6. Let U , V and W be sets such that |U | = |V | = |W |, and T ⊆
U × V ×W . Then, the 3-dimensonal matching problem, or 3DM, is the problem of
determining if there exists M ⊆ T with |M | = |U | such that

(u, v, w) 6= (u′, v′, w′) ⇐⇒ u 6= u′, v 6= v′, w 6= w′

for all (u, v, w), (u′, v′, w′) ∈M .

Definition 2.3.7. Let F = {S1, . . . , Sn}, where Si ⊆ S = {u1, . . . , u3m} and |Si| = 3
for all i ∈ {1, . . . , n}. Then, the 3-exact cover problem, or 3EC, is the problem of
determining if there is a subfamily of m subsets that covers S.

Definition 2.3.8. Let c1, . . . , cn ∈ Z≥0 and k ∈ Z≥0. Then, the 0-1 knapsack
problem, or 0-1KP, is the problem of determining if there exists S ⊆ {1, . . . , n} such
that ∑

j∈S

cj = k.

Theorem 2.3.9. The numerical semigroup membership problem is in NP-complete.

Proof. [93] It is trivial to see that 3DM, 3EC and 0-1KP are in NP. What remains to
be seen is that all of them are in NP-complete, and also that the NSMP transforms
to one of them. First, we are going to prove that 3DM is in NP-complete, giving
a polynomial transformation of an instance of SAT to an instance of 3DM. Let
x1, . . . , xn be a set of binary variables and C1, . . . , Cm a set of Boolean clauses.
We shall define an instance (U, V,W, T) of 3DM such that M exists if and only if
F = C1 ∧ · · · ∧ Cm is satisfiable. Let

U = {xji , x
j
i : i = 1, . . . , n; j = 1, . . . ,m},

V = {aji : i = 1, . . . , n; j = 1, . . . ,m}
∪ {vj : j = 1, . . . ,m}
∪ {cji : j = 1, . . . ,m, i = 1, . . . , n− 1},

W = {bji : i = 1, . . . , n; j = 1, . . . ,m}
∪ {wj : j = 1, . . . ,m}
∪ {dji : j = 1, . . . ,m, i = 1, . . . , n− 1},

and

20 2. NUMERICAL SEMIGROUPS AND THE FROBENIUS PROBLEM

T = {(aji , b
j
i , x

j
i) : i = 1, . . . , n; j = 1, . . . ,m}

∪ {(aj+1
i , bji , x

j
i) : i = 1, . . . , n; j = 1, . . . ,m}

∪ {(vj, wj, λj) : j = 1, . . . ,m;λ a literal (i.e. an atomic formula) of Cj}
∪ {(cji , d

j
i , λ

k) : i = 1, . . . , n− 1; j = 1, . . . ,m; k = 1, . . . ,m;λ a literal},

In order words, U contains a copy of each literal xi for each clause Cj; and V and W
contain three kinds of nodes each. It follows that F is satisfiable if and only if there
exists a perfect matching M for (U, V,W, T) (see [93] Theorem 15.7 for more details).

Second, we have to polynomially transform 3DM to 3EC, which happens if we
define S = U ∪ V ∪W and F = {{a, b, c} : (a, b, c) ∈ T}. In fact, 3-dimensional
matching is a special case of 3-exact cover.

Third, we have to polynomially transform 3EC to 0-1KP. Let us define

cj =
∑
ui∈Sj

(n+ 1)i+1

and

K =
3m−1∑
j=0

(n+ 1)j.

Then, it is easy to see that a subfamily F that covers {u1, . . . , u3m} exists if and
only if the instance {c1, . . . , cn;K} of 0-1KP thus defined has a solution.

Last, we have to polynomially transform 0-1KP to NSMP. Let M = 2n(n+1)K,
if we define an instance {d1, . . . , d2n;L} of the NSMP, where

dj =

{
Mn+1 +M j + cj if j ≤ n

Mn+1 +M j−n otherwise

and

L = n ·Mn+1 +
n∑
j=1

M j +K,

then there exist integers y1, . . . , y2n ≥ 0 such that

2n∑
j=1

djyj = L

if and only if there exist integers c1, . . . , cn ≥ 0 such that

n∑
j=1

cjxj = K.

Although we have skipped some details of the validity of all previous transforma-
tions for the sake of simplicity, a more exhaustive explanation can be found at [93]
(Chapter 15). Thus, we have transformed an instance of the SAT problem into an
instance of the NSMP, proving that the NSMP is complete for the class NP.

2.3. COMPUTATIONAL COMPLEXITY OF THE FP AND THE NSMP 21

Now that we have proved that the numerical semigroup membership problem
is in NP-complete, it is time to finally prove that the Frobenius problem is in NP-
hard. For that, we are going to define a polynomial algorithm ΛNSMP for solving
the NSMP which uses as a subroutine an unknown algorithm ΛFP that solves the
Frobenius problem. Thus, we prove that the NSMP can be Turing reduced to the
FP. As the NSMP is in NP-complete, we shall conclude that the FP is in NP-hard.
The proof we present here is adapted from the original result published by Jorge
Ramı́rez-Alfonśın in 1996 [97].

Let t ∈ Z≥0 and {a1, . . . , an} with gcd(a1, . . . , an) = 1. Then, the numerical
semigroup membership problem is defined as the problem of determining if there
exists a combination of non-negative integers λ1, . . . , λn ∈ Z≥0 such that

n∑
i=1

λiai = t.

The algorithm ΛNSMP for the numerical semigroup membership problem will an-
swer YES if the aforementioned combination λ1, . . . , λn exists for a certain input
{t, a1, . . . , an} —in other words, if t ∈ S0 = 〈a1, . . . , an〉—, and NO otherwise.

In the first place, ΛNSMP makes use of ΛFP and calculates f0 = f(S0). Then,
three possible situations may appear: t > f0, t = f0 and t < f0. If t > f0, it is clear
that the answer is YES; if t = f0, then the answer is NO; if t < f0, then the answer is
YES if and only if f2 < f1, with f1 and f2 defined as follows.

Let bi = 2ai for i = 1, . . . , n and let bn+1 = 2f0 + 1, then we define

S1 = 〈b1, . . . bn, bn+1〉

and
f1 = f(S1).

Let bn+2 = f1 − 2t, we define

S2 = 〈b1, . . . bn, bn+1, bn+2〉

and
f2 = f(S2).

Note that ΛNSMP makes use again of ΛFP for calculating f1 and f2. It remains
to be proven that the algorithm ΛNSMP answers correctly the NSMP. In order to
achieve that, we need the following proposition.

Proposition 2.3.10. Let f0 and f1 be defined as in algorithm ΛNSMP, then f1 =
4f0 + 1.

Proof. As f1 = f(S1), the proof needs only to show two statements: first, that
p > 4f0 + 1 implies p ∈ S1; second, that 4f0 + 1 /∈ S1.

Let p ∈ Z≥0 such that p > 4f0 + 1, then we define q as follows:

22 2. NUMERICAL SEMIGROUPS AND THE FROBENIUS PROBLEM

q =

{
p if p ≡ 0 mod 2

p− bn+1 if p ≡ 1 mod 2

It is easy to see that q > 2f0 in any case: in the first case,

q > 4f0 + 1 > 2f0,

and in the second case,

q = p− bn+1 > 4f0 + 1− (2f0 + 1) = 2f0.

As bn+1 = 2f0 + 1, then bn+1 ≡ 1 mod 2 and so q ≡ 0 mod 2 in both cases, which
implies that q/2 > f0.

The last inequality implies that q/2 ∈ S0, which means that there exist some
integers α0, . . . , αn ∈ Z≥0 such that

q

2
=

n∑
i=1

αiai.

Following the definition of bi = 2ai we obtain that q ∈ S1, as

q =
n∑
i=1

αibi.

As S1 ⊂ S2, then q ∈ S2 and thus p ∈ S2, which proves the first statement.

The second statement can be proved by reductio ad absurdum. Let us suppose
that 4f0 + 1 ∈ S1. This implies that there exist β1, . . . , βn, βn+1 ∈ Z≥0 such that

4f0 + 1 =
n+1∑
i=1

βibi.

As 4f0 + 1 ≡ 1 mod 2 and bi ≡ 0 mod 2 for i = 1, . . . , n (by definition of
bi = 2ai), then forcefully βn+1 6= 0. Let us suppose that βn+1 ≥ 2: then,

βn+1bn+1 ≥ 2bn+1 = 4f0 + 2 > 4f0 + 1,

which leads to a contradiction. It remains to be seen what happens if βn+1 = 1: we
obtain

4f0 + 1 =
n∑
i=1

βibi + bn+1,

so

2f0 =
n∑
i=1

βibi,

and finally

f0 =
n∑
i=1

βiai,

which cannot be possible as f0 /∈ S0.

2.3. COMPUTATIONAL COMPLEXITY OF THE FP AND THE NSMP 23

Theorem 2.3.11. (J. L. Ramı́rez-Alfonśın) [97] The Frobenius problem is in
NP-hard.

Proof. In order to prove that the Frobenius problem is NP-hard, suffices to show
that the aforedescribed algorithm ΛNSMP for the numerical semigroup membership
problem is correct. The only statement that is not trivial is the following. Supposing
t < f0, then:

There exist λ1, . . . , λn ∈ Z≥0 such that t =
n∑
i=1

λiai ⇐⇒ f2 < f1.

The first implication can be easily proven. If

t =
n∑
i=1

λiai,

then

2t =
n∑
i=1

λibi

and, as bn+2 = f1 − 2t by definition, we obtain that

f1 =
n∑
i=1

λibi + bn+2,

which implies that f1 ∈ S2. We already know that f2 ≤ f1 (as S1 ⊆ S2), so we can
conclude that f2 < f1 (as f2 = f1 would imply that f1 /∈ S2, which we have already
proved not being the case).

The second implication makes use of Proposition 2.3.10. If f2 < f1 and f1 =
4f0 + 1, then 4f0 + 1 ∈ S2, which implies that there exists λ1, . . . , λn+2 such that

4f0 + 1 =
n+2∑
i=1

λibi.

As f1 /∈ S1, forcefully λn+2 ≥ 1. It follows that

λn+2bn+2 = λn+2(f1 − 2t) > λn+2

(
4f0 + 1− 1

2
(4f0 + 1)

)
=

1

2
λn+2(4f0 + 1).

If λn+2 ≥ 2, then
λn+2bn+2 > 4f0 + 1,

which leads to a contradiction. If λn+2 = 1, then

4f0 + 1 =
n+1∑
i=1

λibi + bn+2 =
n+1∑
i=1

λibi + f1 − 2t,

and so

2t =
n+1∑
i=1

λibi.

24 2. NUMERICAL SEMIGROUPS AND THE FROBENIUS PROBLEM

Even more, as bn+1 = 2f0 + 1 > 2t, then

2t =
n∑
i=1

λibi,

and finally

t =
n∑
i=1

λiai.

Please note that we have used an algorithm for solving the Frobenius problem in
order to prove that it is in NP-hard. However, the Frobenius problem was not stated
as a decision problem, as its answer is an integer rather than a YES or NO output.
These problems are known as function problems [62] and are usually redefined into
equivalent decision problems. In this case, the decision version of the Frobenius
problem should be stated as follows:

Definition 2.3.12. Let S be a numerical semigroup and let k ∈ Z≥0, the decision
version of the Frobenius problem answers YES if f(S) ≤ k and NO otherwise.

As explained in [62], an algorithm that solves a function problem can be polyno-
mially transformed into an algorithm that solves the decision version of that same
problem. In fact, function problems have its own complexity classes —for example,
FP and FNP, which are the counterparts of P and NP—. However, FP and FNP
are seldom used when a decision version for a function problem can be defined, as
in this case.

In addition, the numerical semigroup membership problem of a certain t ∈ Z≥0

with respect to a numerical semigroup S can be trivially Turing reduced to the
problem of finding the Sylvester denumerant d(t, S), as d(t, S) ≥ 1 ⇐⇒ t ∈ S.
Thus, we can obtain the following result:

Corollary 2.3.13. The Sylvester denumerant problem is in NP-hard.

3

Quantum Computation

“I make up the rules, I’m allowed to do that.”
– Richard P. Feynman, Simulating Physics with Computers

“Someday you will be old enough to start reading fairy tales again.”
– C. S. Lewis, The Chronicles of Narnia

3.1 Introduction

The origins of quantum computation date back to 1980, when American physicist
Paul Benioff (b. 1930) described a computing model defined by quantum mechanical
Hamiltonians [19]. Later that year, Russian mathematician Yuri Manin gave a first
idea on how to simulate a quantum system with a computer governed by quantum
mechanics [86]. Both of them laid the groundwork for two of the basic components
of quantum computing: quantum Turing machines and quantum computers [91].

Two years later, American theoretical physicist Richard Feynman (1918 – 1988)
talked in one of his most seminal papers about the problems of simulating physics
with a classical computer [52], and introduced independently a quantum model of
computation. He stated that, being the world quantum mechanical, the inherent
difficulty within the possibility of exactly replicating the behavior of nature is re-
lated to the problem of simulating quantum physics. This way, the most important
rule defined by Feynman deals with the computational complexity at the time of ef-
ficiently simulating a quantum system. If one doubles the dimensions of the system,
it would be ideal that the size of the computational resources needed for this task
also double in the worst case, instead of experimenting an exponential growth.

Feynman also stated the underlying limitations that appear when it comes to
simulate the probabilities of a physical system. Instead of calculating the proba-
bilities of such a system, which he proved to be impossible, he proposed that the
computer itself should have a probabilistic nature. To this new kind of machine he
gave the name of quantum computer, and stated that it had a distinct essence than
the well-known Turing machines. He also noted that with one of them it should
be possible to simulate correctly any quantum system, and the physical world it-
self. Feynman asked himself if it would be possible to define a universal quantum

25

26 3. QUANTUM COMPUTATION

computer, capable of modeling all possible quantum systems and detached from the
possible problems that originate from its physical implementation, in the same way
that a classical one is.

3.2 Quantum Turing Machines

Although the credit for introducing the concept of a universal quantum computer
goes to Richard Feynman, it was British physicist David Deutsch (b. 1953) the first
to properly describe, generalize and formalize it [41]. Supported in the works by
Feynman, Manin and Benioff, he also introduced the concept of quantum Turing
machine, which we proceed to define:

Definition 3.2.1. A quantum Turing machine M, or QTM, is defined by a triple
M = (S,Σ, δ), where the set of states S is replaced by the pure and mixed states of
a Hilbert space, the alphabet Σ is finite, and the transition function δ is substituted
for a set of unitary transformations which are automorphisms of S.

This definition is rather informal and leaves out many important details. In fact,
the study of quantum Turing machines is quite intricate, as many of its ingredients
—such as the head position— can exist in a superposition of classical states [15].
Fortunately, an equivalent and much more friendly paradigm of computation called
the quantum circuit model exists, and will be explained later on in this chapter along
with all its details. Nevertheless, the reader interested in the complete and original
definition of quantum Turing machines and all of their characteristics, can refer to
the seminal papers where they were first outlined and formalized: [41], [42] and
[22]. Besides, a quantum Turing machine can also be seen as a probabilistic Turing
machine that obeys the rules of quantum probability instead of classical probability
[106].

Definition 3.2.2. The complexity class BQP, which stands for bounded-error quan-
tum polynomial-time, contains all decision problems that can be solved in polynomial
time by a quantum Turing machine with error probability bounded by 1/3 for all in-
puts.

The latter class is usually taken as a reference for representing the power of quan-
tum computers. Thanks to [22] and [41], we already know that BQP ⊆ PSPACE
and that BPP ⊆ BQP. However, at the present time there is no known relationship
between NP and BQP, except that P is inside their intersection. There is a strong
belief that NP * BQP; consequently, a polynomial-time quantum algorithm for an
NP-complete problem would be surprising, as it would violate this conjecture. So
far, we can update our previous complexity class diagram with this new class, as
seen in Figure 3.2. A problem that is not known to be in BPP —or in P— is the
factoring problem, but we already know thanks to Peter W. Shor a polynomial-time
algorithm for this problem that runs on a quantum computer [105]. This algorithm,
among many others, will be thoroughly explained in the next chapter.

It can be deduced from the definition of the complexity class BQP that the inner
nature of quantum computation is probabilistic. In order to measure the perfor-
mance of a quantum algorithm that solves a certain problem, we do not usually

3.3. QUANTUM BITS AND QUANTUM ENTANGLEMENT 27

Figure 3.1: Diagram of complexity classes (incl. BQP)

take into account the time needed for obtaining the solution to that problem. What
we do is to study the relationship between the probability of obtaining a correct so-
lution and the computation time. In order for a quantum algorithm to be considered
efficient, it must return a correct solution in polynomial time with a probability of
at least 2/3 —although an additional complexity class, called EQP, includes all de-
cision problems that are solved by quantum Turing machines with probability 1—.
For a groundbreaking study on the algorithmic limitations of quantum computing,
we refer to [20].

3.3 Quantum Bits and Quantum Entanglement

In classical computation, the basic unit of information is the bit —a portmanteau
of binary digit—. A bit can only be in one of its two possible states, and may
therefore be physically implemented with a two-state device. This pair of values
is commonly represented with 0 and 1. On the other hand, we have an analogous
concept in quantum computation: the qubit —short for quantum bit— which is a
mathematical representation of a two-state quantum-mechanical system.

Definition 3.3.1. The basis states of a quantum bit are |0〉 and |1〉, whose vector
representations are:

|0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
However, there is a difference between bits and qubits, a qubit can also be in a

state other than |0〉 and |1〉. Its generic state is, in fact, a linear combination over
the complex numbers of both basis states.

Definition 3.3.2. A pure qubit state |ψ〉 is a linear combination of the basis states,

|ψ〉 = α |0〉+ β |1〉 =

[
α
β

]

28 3. QUANTUM COMPUTATION

where α, β ∈ C are called the amplitudes of the state and for which the constraint

|α|2 + |β|2 = 1

holds.

Remark: Note that we have introduced a new notation, |ψ〉, termed ket, for de-
scribing a quantum state. This notation is part of the bra-ket notation, also named
Dirac notation in honor of English theoretical physicist Paul Dirac (1902 – 1984),
who first introduced it in 1939 [45]. Alternatively, we will also use 〈ψ|, called bra,
to describe |ψ〉∗ (the Hermitian adjoint of |ψ〉).

Thus, we can say that |0〉 and |1〉 form an orthonormal C-basis of C2 and that
the state of a single-qubit system |ψ〉 is a unit vector of C2 (i.e., |ψ〉 ∈ C2 with
|| |ψ〉|| = 1). From now on, the basis formed by |0〉 and |1〉 will be called the
computational basis of a qubit. Nevertheless, there are other commonly used basis
for the states of a quantum bit. Another example that will come in handy later,
known as the Hadamard basis in honor of French mathematician Jacques Hadamard
(1865 – 1963), is defined by

|+〉 =
1√
2

(|0〉+ |1〉) =
1√
2

[
1
1

]
and

|−〉 =
1√
2

(|0〉 − |1〉) =
1√
2

[
1
−1

]
.

It is easy to see that |+〉 and |−〉 also form an orthonormal C-basis of C2, and that
our generic qubit |ψ〉 = α |0〉+ β |1〉 can be seen as

|ψ〉 =
α + β√

2
|+〉+

α− β√
2
|−〉 .

We know that qubits exist in nature thanks to the Stern-Gerlacht experiment,
first conducted by German physicists Otto Stern (1888 – 1969) and Walther Gerlach
(1889 – 1979) in 1922 [56]. A possible geometrical representation of the states of
a single-qubit system, known as the Bloch sphere [24, 91] —see Figure 3.2—, leans
on the fact that a generic qubit α |0〉 + β |1〉 with |α|2 + |β|2 = 1 can be repre-
sented uniquely as a point (θ, φ) of the unit 2-sphere, with the north and south
poles typically chosen to correspond to the standard basis vectors |0〉 and |1〉, and
where α = cos(θ/2) and β = eiφ sin(θ/2). Thus, we can see a qubit system as
a unitary vector, and any transformation we would want to apply to it must pre-
serve its norm. We shall explain these transformations in Section 3.4, but for now let
us focus on what happens when we try to measure the state of a single-qubit system.

One of the key features that makes a quantum computer differ dramatically
from its classical counterpart is the process of measuring the state of a quantum
bit. A measurement, also called observation, of a generic single-qubit state |ψ〉 =
α |0〉 + β |1〉 yields a result from the orthonormal basis, depending on the values
of α and β. However, the measurement process inevitably disturbs |ψ〉, forcing it
to collapse to either |0〉 or |1〉 and thus generally making impossible the task of

3.3. QUANTUM BITS AND QUANTUM ENTANGLEMENT 29

Figure 3.2: Bloch sphere1

finding out the actual values of α and β. This collapse to either |0〉 or |1〉 is non-
deterministic and is ruled by the given probabilities |α|2 and |β|2 respectively. It
will be shown in Section 3.4 how to change these probabilities without violating the
unitarity constraint. But first, let us explain some concepts needed to understand
how multiple-qubit systems behave.

Definition 3.3.3. Let V and W be vector spaces of dimensions n and m respectively.
The tensor product of V and W , denoted by V ⊗W , is an nm-dimensional vector
space whose elements are linear combinations of tensor products v⊗w satisfying the
subsequent properties:

• z(v ⊗ w) = (zv)⊗ w = v ⊗ (zw)

• (v1 + v2)⊗ w = (v1 ⊗ w) + (v2 ⊗ w)

• v ⊗ (w1 + w2) = (v ⊗ w1) + (v ⊗ w2)

where z ∈ C, v, v1, v2 ∈ V and w,w1, w2 ∈ W .

A related definition that will come to use in Section 3.4 is the concept of tensor
product between linear operators.

Definition 3.3.4. Let A and B be linear operators defined on V and W respectively,
then the linear operator A⊗B operating on V ⊗W is defined as

(A⊗B)(v ⊗ w) = Av ⊗Bw

with v ∈ V and w ∈ W , and has the following matrix representation with respect to
the canonical base:

A⊗B =

a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

an1B an2B · · · annB

1Credit: Glosser.ca (CC BY-SA 3.0)

https://upload.wikimedia.org/wikipedia/commons/f/f4/Bloch_Sphere.svg
https://creativecommons.org/licenses/by-sa/3.0/

30 3. QUANTUM COMPUTATION

where A and B are n × n and m ×m matrices respectively that correspond to the
matrix representations of the linear operators A and B with respect to the canon-
ical base. Note that we can conclude that the matrix representation of A ⊗ B has
dimension nm× nm.

By means of an example on how the matrix representations of the tensor products
of linear operators are calculated, let

A =

[
1 −1
−2 0

]
and B =

1 0 0
0 2 0
0 0 3

be two linear operations defined on R2 and R3 respectively. Then, their tensor
product is calculated as follows:

A⊗B =

[
1 −1
−2 0

]
⊗

1 0 0
0 2 0
0 0 3

 =

1 0 0 −1 0 0
0 2 0 0 −2 0
0 0 3 0 0 −3
−2 0 0 0 0 0

0 −4 0 0 0 0
0 0 −6 0 0 0

where A⊗B is a linear operator defined on R6.

The tensor product we have thus defined can also be extended to vectors and
non-square matrices, and will be useful at the time of calculating the basis states
of a quantum system with more than one qubit. For instance, if |0〉 and |1〉 are the
basis states of a quantum bit, the tensor product |1〉 ⊗ |0〉 will be given by:

|1〉 ⊗ |0〉 =

[
0
1

]
⊗
[

1
0

]
=

0
0
1
0

Before continuing with the possible states of a multiple qubit system, let us

introduce some notation. In a classical computer, we represent an integer a ∈ Z≥0

such that a < 2n —i.e., such that it can be described with n bits— with the base-2
numeral system:

a =
n−1∑
l=0

al2
l

where al ∈ {0, 1} are the binary digits of a. In a quantum computer, we can also
represent an integer a < 2n with n qubits as follows:

|a〉n = |an−1 · · · a1a0〉 =
n−1⊗
l=0

|al〉

Thus, for example, number 29 can be represented with 5 qubits (as 29 < 25) like
this:

|29〉5 = |11101〉 = |1〉 ⊗ |1〉 ⊗ |1〉 ⊗ |0〉 ⊗ |1〉 .

3.3. QUANTUM BITS AND QUANTUM ENTANGLEMENT 31

From now on, the notation |ψ〉n will imply that we are describing a n-qubit
system —where n ≥ 2— instead of a single-qubit one, which will remain to be
indicated with the absence of a subindex. We will also make use sometimes of
the notation |uv〉 to describe the tensor product |u〉 ⊗ |v〉 of two basis states, with
u, v ∈ {0, 1}. Now that we know what |ψ〉n and |a〉n really mean, we are finally in
the position to begin studying the possible states of a multiple qubit system.

Definition 3.3.5. The basis states of a two-qubit system are the tensor products of
the basis states of a single-qubit system:

|0〉2 = |00〉 = |0〉 ⊗ |0〉 =

[
1
0

]
⊗
[

1
0

]
=

1
0
0
0

|1〉2 = |01〉 = |0〉 ⊗ |1〉 =

[
1
0

]
⊗
[

0
1

]
=

0
1
0
0

|2〉2 = |10〉 = |1〉 ⊗ |0〉 =

[
0
1

]
⊗
[

1
0

]
=

0
0
1
0

|3〉2 = |11〉 = |1〉 ⊗ |1〉 =

[
0
1

]
⊗
[

0
1

]
=

0
0
0
1

We shall see what happens when two qubits interact. The generic state of two

different single-qubit systems, described independently, can be represented as

|ψ0〉 = α |0〉+ β |1〉 = α

[
1
0

]
+ β

[
0
1

]
=

[
α
β

]
and

|ψ1〉 = γ |0〉+ δ |1〉 = γ

[
1
0

]
+ δ

[
0
1

]
=

[
γ
δ

]
,

where |α|2 + |β|2 = 1 and |γ|2 + |δ|2 = 1. This means that the state of this 2-qubit
system should be described as the tensor product of both of them:

|ψ0〉 ⊗ |ψ1〉 =

[
α
β

]
⊗
[
γ
δ

]
=

αγ
αδ
βγ
βδ

 .
On the other hand, if we want to describe a generic 2-qubit system |ψ〉2 with the

basis states defined in 3.3.5, we would have

|ψ〉2 = α0

1
0
0
0

+ α1

0
1
0
0

+ α2

0
0
1
0

+ α3

0
0
0
1

 =

α0

α1

α2

α3

 ,

32 3. QUANTUM COMPUTATION

where

|α0|2 + |α1|2 + |α2|2 + |α3|2 = 1

must hold —remember that any quantum state must be described as a unitary vec-
tor—.

Note that a new constraint has arisen. If our generic two-qubit system described
by |ψ〉2 is to be decomposed in two single-qubit states (i.e., |ψ〉2 = |ψ0〉⊗|ψ1〉), then
α0 = αγ, α1 = αδ, α2 = βγ and α3 = βδ. It is easy to see that the equality α0α3 =
α1α2 is imposed; however, there exists a physical phenomenon called quantum
entanglement which implies that the quantum state of each one of the particles of
a two-qubit system may not be described independently. In other words, it is not
mandatory that the constraint α0α3 = α1α2 holds in a generic two-qubit system,
which leads us to the subsequent definitions:

Definition 3.3.6. A two-qubit general state is a linear combination of the basis
states of a two-qubit system:

|ψ〉 = α0 |0〉2 + α1 |1〉2 + α2 |2〉2 + α3 |3〉2
holding the following constraint:

|α0|2 + |α1|2 + |α2|2 + |α3|2 = 1

Definition 3.3.7. A two-qubit general state |ψ〉2 is called mixed or entangled if there
does not exist two one-qubit states |ψ0〉 and |ψ1〉 such that |ψ〉2 = |ψ0〉 ⊗ |ψ1〉 (i.e.,
if it cannot be tensor-factorized).

Quantum entanglement was first observed in nature in 1935, and in early days it
was known as the EPR or Einstein–Podolsky–Rosen paradox. It was first studied by
German-born theoretical physicist Albert Einstein (1879 – 1955) and his colleagues
Boris Podolsky (1896 – 1966) and Nathan Rosen (1909 – 1995) [47], and later by
Austrian physicist Erwin Schrödinger (1887 – 1961) [104]. The role and importance
of quantum entanglement in quantum algorithms operating on pure states and in
quantum computational speed-up was extensively discussed by Richard Jozsa and
Noah Linden in [70].

Foreseeably, quantum entanglement occurs not only in two-qubit systems, but
also in n-qubit systems, and fundamentally changes the way we see the information
stored inside an n-qubit register.

Definition 3.3.8. The state |ψ〉n of a generic n-qubit system is a superposition of
the 2n states of the computational basis |0〉n , |1〉n , . . . , |2n − 1〉n. In particular,

|ψ〉n =
2n−1∑
j=0

αj |j〉n ,

with amplitudes αj ∈ C constrained to

2n−1∑
j=0

|αj|2 = 1.

3.3. QUANTUM BITS AND QUANTUM ENTANGLEMENT 33

This can be seen as an obvious advantage with respect to classical computation.
In a conventional computer we can store one but only one integer between 0 and
2n − 1 inside a n-bit register, which can be seen as a probability distribution be-
tween all possible integers where the integer we have stored has probability 1 and
the rest have 0. In a quantum register, the probability can be distributed between
all those integers instead of having just one possibility when it comes to read the
register. Even more, if we are to simulate this quantum behavior with a classical
computer, we would need 2n registers of n bits, instead of a single n-qubit register
as in the quantum case. This is precisely one of the benefits of quantum computing
that Richard Feynman foretold in his paper [52].

Analogously to the single-qubit case, observing an n-qubit system unavoidably
interferes with |ψ〉n and impels it to collapse in one of the vectors of the computa-
tional basis (i.e., in |j〉n with 0 ≤ j < 2n). This collapse is again non-deterministic
and is governed by the probability distribution given by |αj|2. Thus, all the infor-
mation that may have been stored in the amplitudes αj is inevitably lost after the
measurement process.

By way of illustration, let us suppose that we have the following 3-qubit quantum
system:

|ψ〉3 =
1

2
|1〉3 +

1

2
|3〉3 +

1

2
|5〉3 +

1

2
|7〉3 .

Then, if we measure this system, we will obtain with identical probability one of these
possible outcomes: 1, 3, 5 or 7. Additionally, it is interesting to see the behavior of
a quantum system if, rather than measuring all qubits at once, we measure them
one by one. Our previous quantum system can be seen as

|ψ〉3 =
1

2
|001〉+

1

2
|011〉+

1

2
|101〉+

1

2
|111〉 .

But also as

|ψ〉3 =
1√
2
|0〉 ⊗

(1√
2
|01〉+

1√
2
|11〉

)
+

1√
2
|1〉 ⊗

(1√
2
|01〉+

1√
2
|11〉

)
or as

|ψ〉3 =
(1√

2
|0〉+

1√
2
|1〉
)
⊗
(1√

2
|01〉+

1√
2
|11〉

)
.

If we measure the first qubit, we have the same probability of obtaining 0 or 1.
However, as the measurement collapses the state of the qubit, the two remaining
qubits will be forced to be in a state that is somewhat linked to the one we have
obtained for the first qubit —i.e., the part that is tensored with the result we obtain
for the first qubit—. Let us suppose that by measuring the first qubit, we have
obtained a 1. Then, our 3-qubit system has collapsed to

|ψ〉3 = |1〉 ⊗
(1√

2
|01〉+

1√
2
|11〉

)
,

which can also be seen as

|ψ〉3 = |1〉 ⊗
(1√

2
|0〉+

1√
2
|1〉
)
⊗ |1〉 .

34 3. QUANTUM COMPUTATION

Note that the third qubit is already in one of the states of the computational
basis, which means that, if we measure it right now, we will certainly obtain the
value 1. The only remaining qubit that is not in the computational basis is the
second one. Looking at the current state of our system, it is easy to see that we
have the same probability of obtaining 0 or 1 by measuring it, which means that we
will obtain 5 or 7.

It is of interest to see if the result we obtain from one of the qubits will condition
the possible values for the remaining qubits. Let

|ψ〉2 =
1√
2

(|0〉 ⊗ |0〉) +
1√
2

(|1〉 ⊗ |1〉)

be one of the four possible Bell states [18, 91], named after Northern Irish physicist
John Stewart Bell (1928 – 1990). This state is composed of two entangled qubits
—they cannot be described as two single-qubit states—. If we measure the second
qubit, we have the same probability of obtaining 0 or 1. However, if we first measure
the first qubit, and obtain 1, then the state of the second qubit will collapse —with-
out having observed it— to 1, as the value 1 for the second qubit is only tensored
with the value 1 of the first qubit. Thus, the result we obtain from a qubit or a
set of qubits can be conditioned by the order in which we proceed to measure the
rest of qubits. As will be seen in Chapters 4 and 5, the order in which we choose to
read the members of a quantum register is one of the most important aspects of a
quantum algorithm.

Another set of operations between qubits that are of great value are the inner
and outer products, which we proceed to define.

Definition 3.3.9. Let |ψ0〉n and |ψ1〉n be two n-qubit systems, the inner product of
|ψ0〉n and |ψ1〉n is defined as usual by

〈ψ0|ψ1〉n = |ψ0〉∗n |ψ1〉n

The inner product has the following properties:

• 〈ψ0|ψ1〉n = 〈ψ1|ψ0〉∗n

• 〈ψ0|(a |ψ1〉+ b |ψ2〉)〉n = a 〈ψ0|ψ1〉n + b 〈ψ0|ψ2〉n

• 〈ψ|ψ〉n = || |ψ〉n ||2

Definition 3.3.10. Let |ψ0〉n and |ψ1〉n be two n-qubit systems, the outer product
of |ψ0〉n and |ψ1〉n is defined by

|ψ0〉 〈ψ1|n = |ψ0〉n |ψ1〉∗n

For example, let

|ψ0〉 = α |0〉+ β |1〉 =

[
α
β

]

3.4. QUANTUM CIRCUITS 35

and

|ψ1〉 = γ |0〉+ δ |1〉 =

[
γ
δ

]
be two generic single-qubit systems, then the matrix representations of the inner
and outer product between |ψ0〉 and |ψ1〉 are calculated as follows:

〈ψ0|ψ1〉 =
[
α∗ β∗

] [γ
δ

]
= α∗γ + β∗δ,

|ψ0〉 〈ψ1| =
[
α
β

] [
γ∗ δ∗

]
=

[
αγ∗ αδ∗

βγ∗ βδ∗

]
.

Note that 〈ψ|ψ〉 = 1 for any quantum state |ψ〉.

3.4 Quantum Circuits

The language of quantum circuits is a model of computation which is equivalent
to quantum Turing machines and to universal quantum computers [115]. Currently,
it is the more extensively used when it comes to describe an algorithm that runs
on a quantum machine, and draws upon a sequence of register measurements —as
described in Section 3.3— and discrete transformations —which will be explained
in this section, as promised—. This is mainly due because all its elements can be
treated as classical, with the sole exception of the information that is going through
the wires.

First, we shall see what kind of transformations can be applied to the state of
an n-qubit system. As a quantum state is always represented by a unit vector, we
need the most general operator that preserves this property and the dimension of
the vector.

Definition 3.4.1. A matrix A ∈MC(n) is unitary if

A∗A = AA∗ = I

where I is the identity matrix and A∗ is the Hermitian adjoint of A.

Definition 3.4.2. The unitary group of degree n, denoted by UC(n), is the group of
n× n unitary matrices, with matrix multiplication as the group operation.

Proposition 3.4.3. Let A ∈ UC(n) be a unitary matrix and let x ∈ Cn be a unit
vector, then Ax ∈ Cn is also a unit vector.

In this context, a unitary transformation acting on n-qubits is called an n-qubit
quantum gate, and can be represented by a unitary matrix. Let us expand this
concept and its physical implications.

Definition 3.4.4. A quantum gate that operates on a space of one qubit is repre-
sented by a unitary matrix A ∈ UC(2). More generally, a quantum gate acting on
an n-qubit system is represented by a unitary matrix A ∈ UC(2n).

36 3. QUANTUM COMPUTATION

Please note that quantum gates necessarily have the same number of inputs and
outputs, as opposed to classical logic gates. From now on, all quantum gates will be
represented with a bold symbol, in order to differenciate them from mere matrices.
We will show the most frequently used quantum gates as examples, and various
results that simplify in a dramatic way the difficulty of implementing physically any
quantum gate.

Definition 3.4.5. The Hadamard gate is a single-qubit gate with the following ma-
trix representation:

H =
1√
2

[
1 1
1 −1

]
which is unitary.

The circuit representation of the Hadamard gate is

|ψ0〉 H |ψ1〉

and, applied to each of the basis states, it has the following effect:

H : |j〉 → 1√
2

(
|0〉+ (−1)j |1〉

)
.

As will be seen in Chapter 4, the Hadamard transformation is one of the most
important quantum gates, since it is the basis of the majority of quantum algorithms
developed to date. Its importance settles in the role it has at the time of generating
all possible basis states, all of them with the same amplitude, inside a quantum
register. Let us suppose that we have a qubit whose quantum state is |ψ0〉 =
α |0〉+ β |1〉, where |α|2 + |β|2 = 1. Then, the state of this single-qubit system after
applying the Hadamard gate to it is:

H |ψ0〉 =
1√
2

[
1 1
1 −1

] [
α
β

]
=

1√
2

[
α + β
α− β

]
=
α + β√

2
|0〉+

α− β√
2
|1〉

Let us suppose now that, rather than having a generic state, we have the basis
state |ψ0〉 = |0〉 in our one-qubit system. In that case, the result of applying the
Hadamard gate will be as follows:

H |0〉 =
1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
=

1√
2
|0〉+

1√
2
|1〉

As can be appreciated, we have transformed a basis state, |0〉, into a linear
combination of the two basis states, |0〉 y |1〉, with identical amplitudes. If we
measure the qubit at this moment, we will obtain with equal probability one of the
two possible basis states. That said, what will happen if, rather than having a single
quantum state, we have a n-qubit quantum system, all of them also in their basis
state |0〉?

H⊗n |0〉n =
1√
2n

[
1 1
1 −1

]⊗n [
1
0

]⊗n
=

1√
2n

[
1
1

]⊗n
=

1√
2n

2n−1∑
j=0

|j〉n

3.4. QUANTUM CIRCUITS 37

What we have obtained is a superposition of all basis states of the system with
identical probability. In other words, if we measure our n-qubit register right now,
we will obtain a certain integer j ∈ {0, . . . , 2n − 1} with probability 1/2n.

Definition 3.4.6. The Pauli gates are single-qubit gates with the following matrices:

X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
which are unitary, but also Hermitian.

The Pauli matrices have the following effect on the basis states:

X : |j〉 → |1⊕ j〉

Y : |j〉 → (−i)j |1⊕ j〉

Z : |j〉 → (−1)j |j〉
The three previous quantum gates are named after Austrian-born Swiss and

American theoretical physicist Wolfgang Pauli (1900 — 1958). The three of them,
along with the identity matrix I, form a basis for the vector space of 2 × 2 Hermitian
matrices multiplied by real coefficients. However, all previously defined quantum
gates have their limitations. In fact, quantum gates that are the direct product of
single-qubit gates cannot produce entanglement.

Definition 3.4.7. The CNOT gate, which stands for controlled-not, is a two-qubit
quantum gate with the following matrix representation:

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Applied to a two-qubit basis state, the CNOT gate has the next effect:

CNOT : |i〉 ⊗ |j〉 → |i〉 ⊗ |i⊕ j〉 .

TheCNOT gate is another one of the key quantum gates, as it can be used to entangle
and disentangle Bell states. In fact, it is the most simple gate that produces quantum
entanglement. For example, let

|ψ〉2 =
1√
2

(|0〉2 + |2〉2)

be a separable quantum state (as |ψ〉2 = |+〉 ⊗ |0〉). If we apply the CNOT gate to
it, we obtain

38 3. QUANTUM COMPUTATION

|ψ′〉2 = CNOT (|ψ〉2)

=
1√
2

(
CNOT (|0〉 ⊗ |0〉) +CNOT (|1〉 ⊗ |0〉)

)
=

1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) ,

which is one of the entangled Bell states.

Theorem 3.4.8. [46, 15] Let A ∈MC(2n) be a n-qubit gate, then it can be expressed
as a finite number of tensor products of single-bit gates Mi ∈ MC(2) and the two-
qubit CNOT gate.

The previous result imply that every unitary transformation on an n-qubit sys-
tem can be implemented physically using only single-qubit gates and theCNOT gate.
In other words, single-qubit gates and the CNOT gates form a set of universal gates.
In fact, the most interesting result that links quantum entanglement and quantum
computing performance over classical computation is the following:

Theorem 3.4.9. (Gottesman–Knill) A quantum algorithm that starts in a com-
putational basis state and does not feature quantum entanglement can be simulated
in polynomial time by a probabilistic classical computer [60].

Thus, we have explained the main notions needed for the correct comprehension
of the rest of this doctoral thesis: a quantum circuit algorithm will consist in a set
of transformations of two different types, observations and unitary transformations,
to a n-qubit register. But before proceeding with the explanation of some of the
most important quantum algorithms to date, let us describe a different model of
quantum computing to that of quantum circuits.

3.5 Adiabatic Quantum Computing

Adiabatic quantum computing, or AQC, is an alternative model of quantum
computing which apparently does not have much in common with quantum circuits.
Nevertheless, both models are equivalent, as will be mentioned later, and thus adi-
abatic quantum computers are also tantamount to quantum Turing machines.

As hinted in the previous section —it will be fully explained in Chapter 4— a
quantum circuit obtains an answer for a certain problem as a result of a succesion
of quantum gates and register observations, in a process that has a discrete nature.
On the other hand, the behavior of an adiabatic quantum computer is essentialy
continuous —in fact, quantum circuits and adiabatic quantum computers are often
respectively labelled as digital and analogic quantum computers— and is governed
by the adiabatic theorem, a concept in quantum mechanics developed by German
physicist and mathematician Max Born (1882 – 1970) and Soviet physicist Vladimir
Fock (1898 – 1974), and first stated in 1928 [27]. Although the original paper is in
German, extensive English-written studies on the adiabatic theorem can be found in
[72, 88, 99]. Before proceeding with the adiabatic theorem, we need a few definitions.

3.5. ADIABATIC QUANTUM COMPUTING 39

Definition 3.5.1. A Hamiltonian, denoted by H, is an operator corresponding to
the total energy of a quantum system. Its spectrum —the set of its eigenvalues— is
the set of all possible outcomes that one could obtain when measuring the energy of
such a system.

Definition 3.5.2. The ground state of a quantum system defined by a Hamiltonian
H is the eigenvector of the smallest eigenvalue of H. In the same way, its first
excited state is the eigenvector of the second smallest eigenvalue of H.

We are now in position to understand the Schrödinger equation [103, 104], a
mathematical equation result of the research of Erwin Schrödinger, which tells us
how a quantum system evolves over time:

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 .

Where |ψ(t)〉 is the time-dependent quantum state of the system.

Thus, the adiabatic theorem can be informally stated as:

“A physical system remains in its ground state if a given perturbation is acting
on it slowly enough and if there is a gap between the associated eigenvalue and the
rest of the Hamiltonian’s spectrum.”

Although the original formulation of the adiabatic theorem is due to Born and
Fock, the first proper proof of this result [9] was made by Japanese mathematician
Tosio Kato (1917 – 1999), and can be found in [72].

The main idea behind adiabatic quantum computation is to define a Hamiltonian
with respect to time in such a way that its initial ground state would be easy to
calculate, and its final ground state would be the solution to a certain problem. This
process, called quantum adiabatic evolution, can be seen as the following equation:

H(t) = Γ(t)HI + Λ(t)HF

where HI —the initial Hamiltonian— has a known ground state and HF —the final
Hamiltonian— has an unknown one that encodes the solution to our problem; t goes
from 0 to T ; Γ(t) decreases from 1 to 0; and Λ(t) increases from 0 to 1 monotonically
with time. A typical case is when Γ(t) = s(t) and Λ(t) = 1−s(t) with s(t) = 1−t/T ,
which gives us:

H(t) = s(t)HI + (1− s(t))HF

Early works on the subject tried to replicate the performance of simulated an-
nealing, a probabilistic technique for approximating the global minimum of a certain
objective function —see [74] for more details—, in a quantum manner —i.e., taking
advantage of tunneling and quantum fluctuations instead of thermal fluctuations in
order to escape from local minima—. In these works, however, where it was called
quantum annealing —see, for example, the seminal paper by Tadashi Kadowaki and
Hidetoshi Nishimori [71]—, the main idea was to simulate this quantum behavior
classically. The first experimental approach to quantum annealing came in 1999

40 3. QUANTUM COMPUTATION

usign a disordered quantum ferromagnet [32, 33], a result that hinted a possible
quantum model of computation based on the adiabatic theorem.

The first quantum adiabatic algorithm, which solves certain instances of a combi-
natorial optimization problem —more concretely, the Boolean satisfiability problem,
which we have already proven to be complete for NP—, was given by Edward Farhi,
Jeffrey Goldstone, Sam Gutmann and Michael Sipser in 2000 [50, 49]. Afterwards,
Wim van Dam, Michele Mosca and Umesh Vazirani studied in [112] the complexity
of this algorithm, while also giving an adiabatic version of Grover’s database search
that also offers a quadratic speedup over the classical search algorithm.

Up to this point, the Hamiltonians involved in this kind of optimization prob-
lems share a common factor: they are stoquastic —meaning that all its off-diagonal
matrix elements in the standard basis are real and non-positive—. However, the
generalization of the model of adiabatic quantum computing that depends also on
non-stoquastic Hamiltonians was proven to be equivalent to the quantum circuit
model [8, 89] and thus to quantum Turing machines. This larger model is capable
of solving any Turing-computable problem, instead of just the typically NP-hard
combinatorial optimization problems associated with quantum annealing (see [87],
which in turn cites [102]). In fact, it can polynomially simulate any quantum algo-
rithm based on the quantum circuit model [8].

A problem associated with adiabatic quantum computing is the set of difficulties
that arise at the time of measuring the performance of an adiabatic quantum algo-
rithm. The most important deals with the computational time needed for evolving
the system from H(0) to H(T) —i.e., from HI to HF— and obtaining a solution,
with respect to the probability that the solution is correct. In order to explain that,
we give a formal enunciation of the adiabatic theorem.

Theorem 3.5.3. (Adiabatic Theorem) Let H(t) be the Hamiltonian of a quan-
tum system that evolves in time from t = 0 to t = T and where H(t) describes an
adiabatic quantum algorithm as in

H(t) = s(t)HI + (1− s(t))HF ,

where s(t) decreases from 1 to 0 as t increases from 0 to T . Let H̃(s) be the equivalent
Hamiltonian in the time scale s. Thus, by the Schrödinger equation, we have

i
d

ds
|ψ(s)〉 = τ(s)H̃(s) |ψ(s)〉 ,

where τ(s) is the rate at which H̃(s) changes as a function of s. If:

• H̃(s) has a non-degenerate ground state for all s ∈ [0, T].

• The quantum system is in its ground state at s = 0.

• The process evolves slowly enough such that

τ(s)� 1

(δmin)2

∣∣∣∣∣∣∣∣ d

ds
H̃(s)

∣∣∣∣∣∣∣∣

3.5. ADIABATIC QUANTUM COMPUTING 41

where δmin is the minimum spectral gap of the Hamiltonian —i.e. the minimum
difference between the energy of the ground state and the first excited state of
the system—.

• δmin > 0 during the whole process.

Then, the process will finish in the ground state of the final Hamiltonian HF .

A proof of this result can be found in [99] and [112]. The formulation here
presented is based on the one appearing in [87]. Thus, the problem has to evolve
slowly enough in order for the ground state and the first excited state do not interfere
with each other, and it can be deduced from the adiabatic theorem that the time T
needed for obtaining this feature must be such that

T ∼ O
(

1

δ2
min

)
.

However, δmin turns out to be a very difficult parameter to control and calculate in
practice [39].

Naturally, it was stated in the description of the original quantum adiabatic al-
gorithm [50] that we must determine how big has T to be in order to have a fairly
good probability of success. Although various instances of NP-complete problems
are shown in [50] such that T grows polynomially with respect to the size of the
problem, it was later demonstrated in [112] and [99] that we would need a exponen-
tial time T in order to solve those NP-complete problems in the worst case.

As previously stated, a form of adiabatic quantum computation [87] is quan-
tum annealing, where a known initial configuration of a quantum system evolves
towards the ground state of a Hamiltonian that encodes the solution of an NP-
hard optimization problem. The Canadian company D-Wave Systems announced
in 2011 the first commercially available quantum annealer, composed of arrays of
eight superconducting flux quantum bits with programmable spin–spin couplings,
and published their results [68]. Subsequently in 2013, S. Boixo et al. [25] published
their experimental results on the 108-qubit D-Wave One device. Their last chip,
released in 2017 and called D-Wave 2000Q, has 2,048 qubits in a Chimera graph
architecture [2], and can be seen as a computer that solves the Ising spin problem,
which we proceed to describe.

The Ising spin model, originally formulated by physicist Wilhelm Lenz and first
solved by his student, Ernst Ising [67], consists of a model of ferromagnetism in
statistical mechanics in which we have to find the ground state of a system of n
interacting spins. If we represent the spins of these particles as binary variables
si ∈ {−1, 1} with i ∈ {1, . . . , n}, then the Ising Spin problem can be expressed as
an integer optimization problem whose objective is to find the spin configuration of
the system that minimizes the function

H(s1, . . . , sn) =
n∑
i=1

hisi +
n−1∑
i=1

n∑
j=i+1

Jijsisj,

42 3. QUANTUM COMPUTATION

where hi ∈ R is the energy bias acting on particle i —i.e. the external forces applied
to each of the individual particles— and Jij ∈ R is the coupling energy between the
spins i and j —i.e. the interaction forces between adjacent spins—.

This problem can also be seen as the one of finding the lowest energy configura-
tion —i.e. the ground state— of the following Hamiltonian:

HIsing =
∑
i∈V

hiσ
z
i −

∑
(i,j)∈E

Jijσ
z
i σ

z
j

where the notation σzi indicates that the Pauli-Z operator

Z =

[
1 0
0 −1

]
is applied to qubit i, i.e.

σzi = I
1
⊗ · · · ⊗ I

i−1
⊗Z

i
⊗ I

i+1
⊗ · · · ⊗ I

n
,

and where (V,E) is the graph corresponding to the arrangement of qubits. Recall
that the Pauli-Z operator has the following effect on the computational basis:

Z : |k〉 → (−1)k |k〉 .

Thus, if we apply HIsing to an n-qubit computational basis state, we obtain:

HIsing(|k〉n) =

∑
i∈V

hiσ
z
i −

∑
(i,j)∈E

Jijσ
z
i σ

z
j

 (|k〉n)

=

∑
i∈V

hiσ
z
i −

∑
(i,j)∈E

Jijσ
z
i σ

z
j

(n⊗
l=1

|kl〉

)
=
∑
i∈V

hi(−1)ki +
∑

(i,j)∈E

Jij(−1)ki(−1)kj

=
n∑
i=1

hisi +
n−1∑
i=1

n∑
j=i+1

Jijsisj

In the last steps, we have assumed that V has n vertices and that Jij = 0 if
(i, j) /∈ E. This problem was proved to be in NP-hard by Francisco Barahona [14],
and can be effectively solved with the hardware implemented by D-Wave, whose
chip permits to program independently the values of hi and Jij [68, 25]. It will
be shown in Section 5.4 how to embed a certain optimization problem inside the
D-Wave machine.

4

Quantum Algorithms

“For nothing is truly complete until the day it is finally destroyed.”
– Brandon Sanderson, Mistborn: The Hero of Ages

“ ‘The Wheel weaves as the Wheel wills,’ Moiraine mumbled.
‘No eye can see the Pattern until it is woven.’ ”

– Robert Jordan, Wheel of Time: The Eye of the World

4.1 Introduction

In this section, we present a chronological summary of the first quantum algo-
rithms that were shown to be more efficient than their best known classical coun-
terparts. Our objective is to define them in the context of the previous chapter,
while showcasing their main properties and proving their correctness. We also give
worked-out examples for some of them, thus paving the way for the correct compre-
hension of the contributions of this doctoral thesis, described in Chapter 5.

But first, let us explain two concepts that will be common to many of the al-
gorithms here presented. The first one is the hidden subgroup problem, which we
proceed to define:

Definition 4.1.1. Let G be a finitely generated group, let X be a finite set, and let
f : G→ X be a function that is constant on the orbits of a certain subgroup K ⊆ G
and distinct for each one of the orbits. The hidden subgroup problem, or HSP, is
the problem of determining a generating set for K, using f as a black box.

As will be shown, the superior performance of those algorithms relies on the abil-
ity of quantum computers to solve the hidden subgroup problem for finite Abelian
groups. All those HSP-related algorithms were developed independently by different
people, but the first to notice a common factor between them and to find a gener-
alization was Australian mathematician Richard Jozsa (b. 1953) [69].

The other common factor, closely related to the HSP, is the possibility of building
a quantum gate that can code a certain function f that is given as a black box —i.e.,
as a digital circuit—. A proof of this fact that uses the properties of reversible
computation can be found in [91], and gives us another important quantum gate.

43

44 4. QUANTUM ALGORITHMS

Definition 4.1.2. Let f : {0, 1}n → {0, 1}m be a function, the oracle gate Of is the
unitary transformation that has the following effect on the basis states of a quantum
system:

Of : |j〉n ⊗ |k〉m → |j〉n ⊗ |k ⊕ f(j)〉m ,

where ⊕ is the bitwise exclusive disjunction operation.

The first algorithms that shared those elements eventually evolved into Shor’s
factoring algorithm, probably the most celebrated of all quantum algorithms and
the one that gave birth to another of the greatest achievements in quantum compu-
tation: the quantum Fourier transform. All those algorithms are capable of solving
their respective problems in polynomial time; however, for some of them the inexis-
tence of polynomial-time classical algorithms for those same problems has yet to be
proven.

Another class of algorithms, which will be shown at the end of the chapter and
that also uses the oracle gate, are based on Grover’s quantum search, whose objec-
tive is to speed up the finding of a solution for a problem whose candidate solutions
can be verified in polynomial time —i.e., all decision problems in NP—.

Finally, we explain the algorithm of quantum counting, which makes use of both
worlds.

4.2 Deutsch’s Algorithm

Let f : {0, 1} → {0, 1} be a function, it is clear that either f(0) = f(1) or
f(0) 6= f(1). Let us suppose that we are given f as a black box, and that we want
to know if f is constant. From a classical perspective, it is completely neccesary to
evaluate the function both in f(0) and f(1) if we are to know this property with
accuracy. Deutsch’s algorithm [41] shows us that, with the help of a quantum com-
puter, it is possible to achieve this with only a single evaluation of f .

We can see the previous question as an instance of the hidden subgroup problem,
where G = ({0, 1},⊕), X = {0, 1}, and K is either {0} or {0, 1} depending on the
nature of f . Note that in this case the cosets of {0} are {0} and {1} and that the
only coset of {0, 1} is precisely {0, 1}.

SETUP

|ψ0〉1,1 ← |0〉 ⊗ |1〉

Deutsch’s algorithm needs only two one-qubit registers. The first one is initialized
at |0〉, and the second one at |1〉. As will be seen, this is due to the properties of
the Hadamard gate when applied to the canonical basis states, and it is a frequent
way of initializing a quantum algorithm.

4.2. DEUTSCH’S ALGORITHM 45

STEP 1

|ψ1〉1,1 ←H⊗2
(
|ψ0〉1,1

)
On the first step of Deutsch’s algorithm we apply the Hadamard gate to both

quantum registers, thus transforming the values of the canonical basis into the re-
spective ones of the Hadamard basis.

|ψ1〉1,1 = H⊗2
(
|ψ0〉1,1

)
= H⊗2 (|0〉 ⊗ |1〉)

=
(
H |0〉

)
⊗
(
H |1〉

)
=
(|0〉+ |1〉√

2

)
⊗
(|0〉 − |1〉√

2

)
= |+〉 ⊗ |−〉

STEP 2

|ψ2〉1,1 ← Of

(
|ψ1〉1,1

)
The second step needs the oracle gate, defined at the beginning of this chapter

for a generic function and for n and m qubits. Note that, in this case, the function
f associated to the oracle gate as a black box is the one given for this instance of
the hidden subgroup problem: f : {0, 1} → {0, 1}. In fact, the oracle gate is not
a constant transformation as are the Hadamard or the Pauli gates, but it rather
depends on the problem. It is thus constructed ad hoc subject to the question we
want to answer, provided that we have a logic circuit that implements f . The effect
the oracle gate has on our quantum register can be seen as follows:

|ψ2〉1,1 = Of

(
|ψ1〉1,1

)
= Of (|+〉 ⊗ |−〉)

= Of

[(|0〉+ |1〉√
2

)
⊗ |−〉

]
=
Of (|0〉 ⊗ |−〉) +Of (|1〉 ⊗ |−〉)√

2

=
(−1)f(0) |0〉 ⊗ |−〉+ (−1)f(1) |1〉 ⊗ |−〉√

2

=

(
(−1)f(0) |0〉+ (−1)f(1) |1〉√

2

)
⊗ |−〉

46 4. QUANTUM ALGORITHMS

Please notice that all operations are just algebraic manipulations which allow us
to see more clearly the information we have inside our quantum computer. We are
not modifying anything, we are just reshaping the equation in order to have a better
picture of what is happening.

STEP 3

|ψ3〉1,1 ← (H ⊗ I)
(
|ψ2〉1,1

)
The third and final step before measuring our quantum register involves again

the Hadamard gate H , but this time it is only applied to the first register. The
second register is left alone, which is represented with an identity gate I. In fact,
the information inside the second register is no longer relevant, as it was only used
as the auxiliary register needed for the oracle gate.

|ψ3〉1,1 = (H ⊗ I)
(
|ψ2〉1,1

)
= (H ⊗ I)

[(
(−1)f(0) |0〉+ (−1)f(1) |1〉√

2

)
⊗ |−〉

]
=

(
(−1)f(0)H |0〉+ (−1)f(1)H |1〉√

2

)
⊗ |−〉

=

(
(−1)f(0) |+〉+ (−1)f(1) |−〉√

2

)
⊗ |−〉

=

(
(−1)f(0) |0〉+ (−1)f(0) |1〉+ (−1)f(1) |0〉 − (−1)f(1) |1〉

2

)
⊗ |−〉

=

(
[(−1)f(0) + (−1)f(1)] |0〉+ [(−1)f(0) − (−1)f(1)] |1〉

2

)
⊗ |−〉

= (−1)f(0) |f(0)⊕ f(1)〉 ⊗ |−〉

In order to understand the last part of the equation, one must take into account
that, if f(0) = f(1), then (−1)f(0) − (−1)f(1) = 0 and f(0) ⊕ f(1) = 0. A similar
reasoning goes for f(0) 6= f(1), which leads us to the last expression for |ψ3〉1,1.
Note also that f(0)⊕ f(1) = 0 if and only if f(0) = f(1), and that f(0)⊕ f(1) = 1
if and only if f(0) 6= f(1).

STEP 4

δ̃ ← measure the first register of |ψ3〉1,1

As the reader has surely noted, the information we wanted to obtain from the
function f is already in the first register. We measure it now, thus destroying all
the information related to the amplitudes of the basis states, and obtain a certain
δ̃ ∈ {0, 1}. If δ̃ = 0, then K = {0, 1} and f(0) = f(1). If δ̃ = 1, then K = {0} and
f(0) 6= f(1). A circuit representation of Deutsch’s algorithm can be found in Figure

4.3. DEUTSCH–JOZSA ALGORITHM 47

Figure 4.1: Circuit representation of Deutsch’s algorithm

|0〉 H

Of

H δ̃

|1〉 H

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

2.1.

At this moment, the inherent capabilities of quantum computing begin to surface.
A problem which needs two evaluations of a function f in its classical version, can
be reduced to just one evaluation of the same function in its quantum counterpart
thanks to quantum paralelism. One may wonder if this property could be scaled
to a function acting on {0, 1}n rather than just {0, 1}. That is the objective of the
next algorithm.

4.3 Deutsch–Jozsa Algorithm

The following algorithm is a generalization of the previous one. Its original
version appeared in [43], and is due again to David Deutsch and also to Richard
Jozsa. Let f : {0, 1}n → {0, 1} be a function that is either constant for all values in
{0, 1}n, or is else balanced —i.e., equal to 0 for exactly half of all possible values in
{0, 1}n, and to 1 for the other half—. The problem of determining if the function f
is constant or balanced, using it as a black box, is called Deutsch’s problem. In the
classical version, a solution for this problem requires 2n−1 +1 evaluations of f in the
worst case. Let us see if we can improve that bound with the help of a quantum
computer.

SETUP

|ψ0〉n,1 ← |0〉n ⊗ |1〉

We need a quantum computer with n + 1 qubits, where the first n qubits will
be initialized at |0〉 and the remaining one at |1〉. Again, the single-qubit register is
only used as the auxiliary qubit required for the oracle gate.

STEP 1

|ψ1〉n,1 ←H⊗n+1
(
|ψ0〉n,1

)
The first transformation we apply to our system is again the Hadamard gate. As

explained in 3.4, when applied to the basis state |0〉n the Hadamard transformation

48 4. QUANTUM ALGORITHMS

gives us a superposition of all basis states with identical probability, thus obtaining
the following quantum state:

|ψ1〉n,1 = H⊗n+1
(
|ψ0〉n,1

)
= H⊗n+1 (|0〉n ⊗ |1〉)

=
(
H⊗n |0〉n

)
⊗
(
H |1〉

)
=
(
H |0〉

)⊗n
⊗
(
H |1〉

)
=
(|0〉+ |1〉√

2

)⊗n
⊗
(|0〉 − |1〉√

2

)
=
(1√

2n

2n−1∑
i=0

|i〉n
)
⊗ |−〉

STEP 2

|ψ2〉n,1 ← Of

(
|ψ1〉n,1

)
Now, we apply the oracle gate, which in this case is constructed for n+ 1 qubits

and for the specific function f that we want to know if it is constant or balanced.

|ψ2〉n,1 = Of

(
|ψ1〉n,1

)
= Of

[(1√
2n

2n−1∑
i=0

|i〉n
)
⊗ |−〉

]
=

1√
2n

2n−1∑
j=0

Of (|j〉n ⊗ |−〉)

=
1√
2n

2n−1∑
j=0

(−1)f(j) |j〉n ⊗ |−〉

The last step is better understood if we apply it separately to a generic basis
state |j〉n with j ∈ {0, . . . , 2n − 1}, tensored with the Hadamard basis state |−〉.

Of

(
|j〉n ⊗ |−〉

)
= Of

(
|j〉n ⊗

|0〉 − |1〉√
2

)
=
Of (|j〉n ⊗ |0〉)−Of (|j〉n ⊗ |1〉)√

2

=
|j〉n ⊗ |f(j)〉 − |j〉n ⊗ |1⊕ f(j)〉√

2

= (−1)f(j) |j〉n ⊗
(|0〉 − |1〉√

2

)
= (−1)f(j) |j〉n ⊗ |−〉

4.3. DEUTSCH–JOZSA ALGORITHM 49

Thus, we end up again with a superposition of all basis states in the first register,
all of them with identical probability. The only difference with the previous state is
that the amplitude of the states |j〉n remains identical if f(j) = 0, and is negated
when f(j) = 1. Taking into account that either f is constant or balanced —i.e.,
all amplitudes are the same now, or half the amplitudes are positive and the other
ones negative—, is there any way to obtain this information from our quantum
register? Note that, until now, although we have applied f to every possible j ∈
{0, . . . , 2n − 1}, we have used the gate that implements it only once.

STEP 3

|ψ3〉n,1 ← (H⊗n ⊗ I)
(
|ψ2〉n,1

)
The last step involves again the Hadamard transform. We apply it to the first n

qubits of our quantum system, and obtain the following:

|ψ3〉n,1 = (H⊗n ⊗ I)
(
|ψ2〉n,1

)
= (H⊗n ⊗ I)

(
1√
2n

2n−1∑
j=0

(−1)f(j) |j〉n ⊗ |−〉

)

=

(
1√
2n

2n−1∑
j=0

(−1)f(j)H⊗n |j〉n

)
⊗ |−〉

=

[
1

2n

2n−1∑
k=0

(
2n−1∑
j=0

(−1)f(j)+j·k

)
|k〉n

]
⊗ |−〉

In order to understand the last equation, we must first fathom the effects of the
Hadamard gate on a n-qubit basis state. Let j ∈ {0, . . . , 2n− 1}, a closer inspection
leads us to the following identity:

H⊗n(|j〉n) =
1√
2n

2n−1∑
k=0

(−1)j·k |k〉n ,

where j · k is the bitwise inner product of j and k, modulo 2, i.e.,

j · k =
n∑
l=1

jlkl mod 2,

with jl and kl being the binary digits of j and k respectively. Likewise, the last
identity is a generalization of the effect of the one-qubit Hadamard gate, which can
be seen as:

50 4. QUANTUM ALGORITHMS

H(|j〉) =
1√
2

(
|0〉+ (−1)j |1〉

)
=

1√
2

1∑
k=0

(−1)jk |k〉

STEP 4

k̃ ← measure the first register of |ψ3〉n,1

Finally, we are able to measure the qubits, thus destroying the information inside
the register and obtaining a number k̃ ∈ {0, . . . , 2n−1} according to the probability
distribution given by the amplitudes

αk =
2n−1∑
j=0

(−1)f(j)+j·k.

Let us have a closer look to the probability of obtaining k̃ = 0. As explained
in Chapter 3, in accordance with the laws of quantum mechanics the probability
of obtaining a certain basis state |k〉n is equal to the square of the modulus of its
amplitude αk. In this case:

|α0|2 =

∣∣∣∣∣ 1√
2n

2n−1∑
j=0

(−1)f(j)

∣∣∣∣∣
2

It is easy to see that |α0|2 = 1 if and only if the function f is constant for all
j ∈ {0, . . . , 2n−1}, and that |α0|2 = 0 if and only if the function f is balanced (recall
that we are promised that f is of one of those two natures). Having said that, if we
measure now the first register and obtain some k̃, we can conclude that f is constant
if k̃ = 0, and that f is balanced otherwise. With just a single evaluation of f we
have answered the question, as opposed to the 2n−1 + 1 evaluations needed in the
classical version. A circuit representation of Deutsch-Jozsa algorithm is displayed
in Figure 4.2.

The previous algorithm has much more profound implications than the posibil-
ity of solving Deutsch’s problem exponentially faster with the help of a quantum

Figure 4.2: Circuit representation of Deutsch-Jozsa algorithm

|0〉n H⊗n

Of

H⊗n k̃

|1〉 H

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

4.4. SIMON’S ALGORITHM 51

computer. It also tells us that, relative to an oracle —i.e., a black box that solves a
certain problem or function, namely f— we can establish a difference between the
classes P and EQP. Note that this does not imply that P 6= EQP, it just tells us
that there exists an oracle separation between P and EQP.

4.4 Simon’s Algorithm

4.4.1 Definition

Let f : {0, 1}n → {0, 1}n be a function such that, for some s ∈ {0, 1}n with
s 6= (0, 0, . . . , 0), f(j) = f(k) if and only if either j = k or j ⊕ k = s for all
j, k ∈ {0, 1}n —where ⊕ is again the bitwise exclusive disjunction operation, also
called bitwise xor—. Simon’s problem is defined as: given such an f as a black
box, figure out the value of s, which is usually called the xor-mask of f . Both the
problem and the quantum algorithm we proceed to explain were both first presented
in [106] by Daniel R. Simon, hence their names.

Simon’s problem can also be seen as an instance of the hidden subgroup problem,
where G = ({0, 1}n,⊕), X ⊆ {0, 1}n is any finite set, and K = {0, s} for some
s ∈ {0, 1}n. In the classical version, a solution for this problem requires that we
find a pair of values x, y ∈ {0, 1}n such that f(x) = f(y), and then compute x⊕ y.
This solution requires O(2n/2) evaluations of f in the worst case whereas, as will be
proved later, Simon’s algorithm only needs O(n) evaluations of f .

SETUP

|ψ0〉n,n ← |0〉n ⊗ |0〉n

In this algorithm, we need 2n qubits, all of them initialized at |0〉.

STEP 1

|ψ1〉n,n ← (H⊗n ⊗ I⊗n)
(
|ψ0〉n,n

)
We first apply the Hadamard transformation to the first half of our qubit set,

thus obtaining the following quantum state.

|ψ1〉n,n = (H⊗n ⊗ I⊗n)
(
|ψ0〉n,n

)
= (H⊗n ⊗ I⊗n)(|0〉n ⊗ |0〉n)

= (H⊗n |0〉n)⊗ (|0〉n)

=
1√
2n

2n−1∑
j=0

|j〉n ⊗ |0〉n

52 4. QUANTUM ALGORITHMS

STEP 2

|ψ2〉n,n ← Of

(
|ψ1〉n,n

)
Next, we use the oracle gate, built particularly for the function f . Note that,

thanks to quantum paralelism, we apply here the function f to all possible values
in {0, 1}n with just a single iteration of Of . Thus, all possible values of f are now
present in the second register.

|ψ2〉n,n = Of

(
|ψ1〉n,n

)
= Of

(
1√
2n

2n−1∑
j=0

|j〉n ⊗ |0〉n

)

=
1√
2n

2n−1∑
j=0

Of (|j〉n ⊗ |0〉n)

=
1√
2n

2n−1∑
j=0

|j〉n ⊗ |f(j)〉n

STEP 3

δ̃ ← measure the second register of |ψ2〉n,n

|ψ3〉n ← |ψ2〉n,n after measuring the second register

In this step we see for the first time the true effects of measuring part of our
quantum system before completing the execution of an algorithm. If we measure now
the second register, we shall end up with a value δ̃ = f(j̃) for a certain j̃ ∈ {0, 1}n.
Thus, only the values in f−1(δ̃) will remain in the first register —before measuring,
they were the only ones tensored with |δ̃〉—. In any case, as f−1(δ̃) = {j̃, j̃ ⊕ s}
—we remark that j⊕ k = s if and only if j⊕ s = k—, we end up with the following
quantum state:

|ψ3〉n =
1√
2

(
|j̃〉n + |j̃ ⊕ s〉n

)
STEP 4

|ψ4〉n ←H⊗n (|ψ3〉n)

The last transformation we apply to our quantum system is, again, the Hadamard
gate.1 Before that, we could have measured the first register and obtain a certain

1Did we mention that it is one of the important ones?

4.4. SIMON’S ALGORITHM 53

value in f−1(δ̃) = {j̃, j̃ ⊕ s}. However, in that case we would have ended with the
same information as if we had just made a single classical evaluation of f . The
Hadamard gate, on the other hand, will let us obtain much more information than
from a single evaluation of f : it will give us some precious information about s.
Following a similar reasoning as with Deutsch-Jozsa algorithm, we end up with:

|ψ4〉n = H⊗n (|ψ3〉n)

= H⊗n
[

1√
2

(
|j̃〉n + |j̃ ⊕ s〉n

)]
=

1√
2

(
H⊗n |j̃〉n +H⊗n |j̃ ⊕ s〉n

)
=

1√
2

[
1√
2n

2n−1∑
k=0

(−1)j̃·k |k〉n +
1√
2n

2n−1∑
k=0

(−1)(j̃⊕s)·k |k〉n

]

=
1√
2n+1

2n−1∑
k=0

(−1)j̃·k+(j̃⊕s)·k |k〉n

=
1√
2n+1

2n−1∑
k=0

(−1)j̃·k
[
1 + (−1)s·k

]
|k〉n

STEP 5

ω̃ ← measure |ψ4〉n

Let us suppose that we measure our quantum system right now. It is clear that
the current amplitudes of the basis states are

αk =

∣∣∣∣ 1√
2n+1

[
1 + (−1)s·k

]∣∣∣∣2
for k ∈ {0, 1}n.

However, it can be noted that αk 6= 0 if and only if s · k ≡ 0 mod 2, which
happens for half the values of k necessarily. Even more, in those cases the amplitude
is equal to 1/2n−1. Analyzing the outcome, we have ended up with some ω̃ such
that ω̃ · s ≡ 0 mod 2. If we are able to find n − 1 linearly independent values of
ω̃, namely ω̃1, . . . , ω̃n−1, we will arrive at a system of equations whose solutions are
0 and s. Before proving this, let us explain the performance of Simon’s algorithm
with a worked-out example.

4.4.2 Example with n = 4

Let us suppose that we are given as a black box a function that fulfills the
requirements of Simon’s problem. This function, namely f : {0, 1}4 → {0, 1}4, has
the following outcome:

54 4. QUANTUM ALGORITHMS

Figure 4.3: Circuit representation of Simon’s algorithm (one iteration)

|0〉n H⊗n

Of

H⊗n ω̃

|0〉n δ̃

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉 |ψ5〉

f(0) = f(5) = 0
f(1) = f(4) = 1
f(2) = f(7) = 2
f(3) = f(6) = 3
f(8) = f(13) = 4
f(9) = f(12) = 5
f(10) = f(15) = 6
f(11) = f(14) = 7

Of course, as the function is given as a black box, this information is only avail-
able to us if we evaluate f(j) for all j ∈ {0, . . . , 15}. A closer inspection of these
values tells us that this function has in fact a xor-mask and that its value is s = 5.
Our objective is to arrive at this knowledge without evaluating f classically for all
values in {0, 1}4.

Now, let us suppose that we do not know this information yet. As a start,
Simon’s algorithm would need the quantum state

|ψ0〉4,4 = |0〉4 ⊗ |0〉4 .

After applying the Hadamard gate, we would obtain

|ψ1〉4,4 =
1

16

15∑
j=0

|j〉4 ⊗ |0〉4

and, after the oracle gate, our system is in the state

|ψ2〉4,4 =
1

16

15∑
j=0

|j〉4 ⊗ |f(j)〉4 .

If we make use of the information we know (but we should not!) about f , we
could see the previous equation as:

|ψ2〉4,4 =
1

8

[(
|0〉4 + |5〉4

)
⊗ |0〉4 +

(
|1〉4 + |4〉4

)
⊗ |1〉4 +

(
|2〉4 + |7〉4

)
⊗ |2〉4 +(

|3〉4 + |6〉4
)
⊗ |3〉4 +

(
|8〉4 + |13〉4

)
⊗ |4〉4 +

(
|9〉4 + |12〉4

)
⊗ |5〉4 +(

|10〉4 + |15〉4
)
⊗ |6〉4 +

(
|11〉4 + |14〉4

)
⊗ |7〉4

]

4.4. SIMON’S ALGORITHM 55

Please note again that the previous state is actually happening inside our quan-
tum computer whether or not we know the values for f(j). As we have constructed
our oracle gate using f as a black box, it necessarily has the previous effect on the
Hadamard state.

Up until now all steps were deterministic. However, the next step, the measure-
ment of the second register, will have a non-deterministic outcome. Let us suppose
that we measure it and obtain, for example, the value δ̃ = 6. Necessarily, our
quantum system is now in the state

|ψ3〉4 =
1√
2

(|10〉4 + |15〉4)

and, if we apply now the Hadamard transform, we end up with

|ψ4〉4 =
1√
25

15∑
k=0

(−1)j̃·k
[
1 + (−1)s·k

]
|k〉n ,

where j̃ ∈ f−1(6) = {10, 15} and s is the (yet unknown!) xor-mask of f .

As can be seen, the values we get of j̃ and δ̃ are unimportant. What we need
is the outcome of the measurement of our quantum system at this moment. As
previously said, we will end up with a number ω̃ such that s · ω̃ = 0 mod 2. In this
case, ω̃ ∈ {0, 2, 5, 7, 8, 10, 13} for s = 5, where all of them have the same probability
of coming up.

Let us suppose that we have run three complete iterations of Simon’s algorithm,
and obtain ω̃1 = 2, ω̃2 = 7 and ω̃3 = 10. Thus, draining from the fact that ω̃i · s = 0
mod 2 for all of them, if we define s = s3s2s1s0 as the bitwise representation of s
(with si ∈ {0, 1}), we can consider the system of equations

s1 = 0 mod 2
s2 + s1 + s0 = 0 mod 2

s3 + s2 + s0 = 0 mod 2,

with each one of the equations giving us respectively the following set of solutions:

Ω1 = {0, 1, 4, 5, 8, 9, 12, 13},
Ω2 = {0, 3, 5, 6, 8, 11, 13, 14},
Ω3 = {0, 1, 4, 5, 10, 11, 14, 15}.

Clearly, as our xor-mask s must satisfy all previous equations, we can deduce
that s ∈ Ω1 ∩ Ω2 ∩ Ω3 = {0, 5} and, as s 6= 0 by definition, we can conclude that
our xor-mask is, in fact, s = 5. Note that as the process of obtaining the different
values for ω̃ is non-deterministic, the remaining question is this: how many times do
we have to execute Simon’s algorithm in order to obtain such a system with enough
probability?

56 4. QUANTUM ALGORITHMS

4.4.3 Proof of correctness

Theorem 4.4.1. Simon’s algorithm finds the correct solution for Simon’s problem
in O(n) steps with probability greater than 1/3.

Proof. Let us suppose that we have obtained m linearly independent equations,
namely with ω̃1, . . . , ω̃m. Then, the probability of obtaining another linearly inde-
pendent equation in the next interation of Simon’s algorithm is

2n − 2m

2n
.

Thus, assuming n ≥ 3, the probability of obtaining n − 1 linearly independent
equations after n− 1 iterations of Simon’s algorithm is

P =

(
1− 1

2n

)(
1− 2

2n

)
· · ·
(

1− 2n−2

2n

)
≥

(
1−

n∑
k=2

1

2k

)
≥ 2n−1 − 1

2n
>

1

3

Even though Simon’s algorithm is of little practical use in precisely the same
way as Deutsch’s and Deutsch-Jozsa’s are, it shows once more that there exist prob-
lems such that a quantum computer is capable of solving them efficiently while a
classical one is not. In fact, Simon’s algorithm shows that there exist problems such
that a quantum Turing machine is exponentially faster than a probabilistic Turing
machine [91]. The difference between Simon’s and Deutsch-Jozsa is that the latter
can be solved by a PTM with an arbitrarily small error, while the former would
take an exponential time to solve with such a machine. Finally, although Simon’s
algorithm stablishes an oracle separation between BPP and BQP, we still do not
know if BPP 6= BQP, as Simon’s problem depends on a black box. An adiabatic
version of Simon’s algorithm can be found in [66].

4.5 Shor’s Factoring Algorithm

4.5.1 Introduction

Let us begin with a problem in number theory that stems from one of the most
well known theorems of all time:

Definition 4.5.1. Let N ∈ Z≥0, the fundamental theorem of arithmetic tells us that
there exists a unique factorization of N as a product of prime powers:

N = pα1
1 p

α2
2 · · · p

αk
k =

k∏
i=1

pαii .

The prime factorization problem, or PFP, is the problem of finding such a factor-
ization for a given number N ∈ Z≥0.

4.5. SHOR’S FACTORING ALGORITHM 57

Many mathematicians have worked on algorithms that calculate the prime fac-
torization of an integer. To understand the ideas behind the most recent so-
lutions to this problem, we must go back to the 17th Century, when a French
lawyer called Pierre de Fermat (1607 – 1665) invented an elegant factorization
method that today bears his name. Fermat’s method consists in representing an
odd number N as a difference of squares, which is easily proven to exist. Then, as
N = n2 −m2 = (n + m)(n −m), we have that gcd(n + m,N) and gcd(n −m,N)
are non-trivial factors of N .

But it was not until the beginning of the 20th Century that some improvements
were made, as mathematicians like Maurice Kraitchik in 1922 [78], Derrick Henry
Lehmer and Ralph Ernest Powers in 1931 [81], Michael A. Morrison and John Brill-
hart in 1975 [90] and Richard Schroeppel at the end of the 1970s (unpublished,
but described in [94]) developed factorization methods whose ideas were around the
original Fermat’s method. These upgrades eventually arrived at its maximum ex-
pression with the Quadratic Sieve developed by Carl Pomerance in 1984 [95] and
the General Number Field Sieve due to John Pollard in 1989 [82, 21]. For more
information about the story behind the evolution of Fermat’s idea, see [96].

The two previous methods are currently the most efficient classical algorithms
for factoring an integer. However, they still have a problem: their computational
complexity is super-polynomial in the number logN of digits in N . In fact, the
GNFS, which has proven to be the most efficient known classical algorithm for
factoring integers larger than 10100, has the following computational order:

O
(
e(logN)

1
3 (log logN)

2
3

)
Unfortunately, Pollard’s method has the constraints of any super-polynomial

algorithm and, at the present time, no known ponynomial-time classical algorithm
exists for the factoring problem —i.e., PFP is not known to be in P—. Nevertheless,
verifying that a candidate solution for this problem is in fact the actual solution is
computationally easy; thus, PFP is in NP.

There is a very well known result in computational complexity theory, due to
American computer scientist Richard E. Ladner (b. 1943) [79], that tells us the fol-
lowing: if P 6= NP, then there exists a non-empty class, called NP-intermediate, that
contains all problems in NP which are neither in the class P nor in NP-complete. It
is widely believed that the prime factorization problem is inside this class.

What we surely know, thanks to American mathematician Peter W. Shor (b.
1959) and its acclaimed polynomial-time quantum algorithm for prime factorization
[105], is that the PFP is in BQP. The objective of this subsection is to describe such
result. For that, we shall first define Shor’s algorithm as a classical one that relies on
a black box that finds the multiplicative order of a modulo n. Next, we will provide
a quantum algorithm that substitutes that black box. Finally, we will describe its
performance via a worked-out example.

58 4. QUANTUM ALGORITHMS

4.5.2 Definition: Classical part

Let N ∈ Z≥0, we proceed to define Shor’s algorithm for factoring N .

STEP 1

x← random integer such that 1 < x < N
d← gcd(x,N)

It is clear that, if d > 1, we have already found a factor of N . However, the
probability of such an unlikely event is small, and in this case we proceed to next
step. Note that the computational complexity of this step —i.e., of calculating the
greatest common divisor of x and N— has order O(log2N) [76].

STEP 2

r ← ON(x)

This is the step that we shall resolve with the aid of a quantum computer, as will
be explained later. For now, let us recall that the multiplicative order of x modulo
N , provided that gcd(x,N) = 1, is defined as

ON(x) = min{r ∈ Z>0 : xr ≡ 1 mod N}.

Calculating the multiplicative order is a hard problem in the general case, and the
best known classical algorithm that solves it has a super-polynomial computational
complexity [36].

Right now, we have obtained a certain r such that r = ON(x). However, not
any value of r serves our purposes. At the end of this step, we shall check if r is an
even number and, if that holds, we have to also check if xr/2 + 1 6≡ 0 mod N . If
any of those two conditions fail, we shall go back to the beginning of the algorithm,
and repeat it again with a different random value for x. The unavoidable question
is: what is the probability of not making it?

Theorem 4.5.2. Let N ∈ Z≥0 such that 2 - N and whose prime factorization is

N = pα1
1 p

α2
2 · · · p

αk
k .

Suppose x is chosen at random, with 1 < x < N and gcd(x,N) = 1, and let
r = ON(x). Then:

Prob
[
(2 | r) ∧ (xr/2 + 1 6≡ 0 mod N)

]
≥ 1− 1

2k−1

Proof. [48] Appendix B.

In other words, the probability of obtaining a number x that fulfills all the
conditions of the algorithm is greater than 1/2 in the worst case (i.e., when N has
only two different prime factors).

4.5. SHOR’S FACTORING ALGORITHM 59

STEP 5

d1 ← gcd(xr/2 + 1, N)
d2 ← gcd(xr/2 − 1, N)

As 2 | r and xr/2 + 1 6≡ 0 mod N , it is easy to see that

xr − 1 ≡ (xr/2 − 1)(xr/2 + 1) ≡ 0 mod N.

We can conclude that d1 and d2 are non-trivial factors of N , thus accomplishing the
main purpose of the algorithm. As promised, what remains to be seen is the calculus
of the multiplicative order of x modulo N with the help of a quantum computer.
We proceed to describe this process.

4.5.3 Definition: Quantum part (order finding)

SETUP

|ψ0〉t,n ← |0〉t ⊗ |0〉n

First, we need a quantum computer with two registers of sizes t and n respec-
tively, where n = dlog2Ne and t = 2n —the reason behind this will be clear later—.
All qubits are initialized at 0.

STEP 2.1

|ψ1〉t,n ← (H⊗t ⊗ I⊗n)
(
|ψ0〉t,n

)
This transformation is now a common factor of our quantum algorithms and

there is no need of explaining it furthermore. The crucial point is that after its
application the first register is in a superposition of all states of the computational
basis with equal amplitudes given by 1/

√
2t. More precisely:

|ψ1〉t,n =
1√
2t

2t−1∑
j=0

|j〉t ⊗ |0〉n

STEP 2.2

|ψ2〉t,n ←Mx,N

(
|ψ1〉t,n

)
Let n, t, x and N defined as in the context of this algorithm, the modular ex-

ponentiation gate is the unitary operator that has the following effect on the basis
states of a quantum system:

Mx,N : |j〉t ⊗ |k〉n → |j〉 ⊗ |k + xj mod N〉 .

60 4. QUANTUM ALGORITHMS

This transformation is unitary, and its construction takes O(log3N) steps [105].
Thus, as will be clear at the end of this subsection, it represents the bottleneck of
Shor’s algorithm.

|ψ2〉t,n = Mx,N

(
|ψ1〉t,n

)
=

1√
2t

2t−1∑
j=0

Mx,N (|j〉t ⊗ |0〉n)

=
1√
2t

2t−1∑
j=0

|j〉t ⊗
∣∣xj mod N

〉
n

Thanks again to quantum parallelism, we have now generated all powers of x
modulo N simultaneously. From now on, in order to make the tracking of the
algorithm cleaner, we shall suppose that r is a power of 2. In this case, our current
quantum state can be expressed as follows:

|ψ2〉t,n =
1√
2t

r−1∑
b=0

 2t

r
−1∑

a=0

|ar + b〉t

⊗ |xb mod N〉n

The general case where r may not be a power of 2 is more difficult to express,

and is better to explain it in the part devoted to the example.

STEP 2.3

δ̃ ← measure the second register

|ψ3〉t ← |ψ2〉t,n after measuring the second register

Let us suppose that, for a certain b0 ∈ {0, . . . , r−1}, we obtain the value δ̃ = xb0

mod N . Thus, the computer is now in the following quantum state:

|ψ3〉t =

√
r

2t

2t

r
−1∑

a=0

|ar + b0〉t .

Note that now we only have 2t/r terms in the sum, instead of the previous 2t ones,
and that the value we are looking for (i.e., r) is beginning to surface inside our
quantum system in the form of a period. The next step will provide us with a tool
capable of extracting this period from a quantum state.

STEP 2.4

|ψ4〉t ← F n (|ψ3〉t)

4.5. SHOR’S FACTORING ALGORITHM 61

This step requires that we define a new quantum gate: the quantum discrete
Fourier transform, or QFT, whose effect on the quantum basis states is:

F n : |j〉n →
1√
2n

2n−1∑
k=0

e−2πijk/2n |k〉n

After applying the QFT to the first register, we can express the obtained state
as follows:

|ψ4〉t = F t (|ψ3〉t)

=

√
r

2t

2t

r
−1∑

a=0

F t(|ar + b0〉t)

=

√
r

2t

2t

r
−1∑

a=0

(
1√
2t

2t−1∑
j=0

e−2πij(ar+b0)/2t | j〉t

)

=
1√
r

2t−1∑
j=0

 r
2t

2t

r
−1∑

a=0

e
−2πija

2t/r

 e−2πijb0/2t | j〉t

=

1√
r

(
r−1∑
k=0

e−2πi k
r
b0

∣∣∣∣k2t

r

〉
t

)
Please note that, in order to arrive at the last version of the state, we have

just rearranged the summation order while also using the following property of the
exponential sums:

1

N

N−1∑
j=0

e2πijk/N =

{
1 if N | k
0 otherwise,

then we can rewrite the state as:

|ψ4〉 =
1√
r

(
r−1∑
k=0

e−2πi k
r
b0

∣∣∣∣k2t

r

〉
t

)
|xb0〉n

Now, at last, it is time to measure the first register.

STEP 2.5

ω̃ ← measure |ψ4〉t

We obtain, for some unknown k0 ∈ {0, . . . , r − 1} (the probability of obtaining
each of them is the same, but this changes in the general case where r may not be
a power of 2):

ω̃ =
k02t

r
If ω̃ = 0, we obtain no information and we must come back to the beginning.

If, otherwise, ω̃ 6= 0, we can obtain some information about r (or the actual value

62 4. QUANTUM ALGORITHMS

of r indeed), just by putting ω̃/2t as a fraction in lowest terms and taking the
denominator. If we call c that denominator and xc 6≡ 1 mod N , then c is a factor
of r. If, on the other hand xc ≡ 1 mod N , then r = c and we have obtained
the multiplicative order of x modulo N . In the former case, we should rerun the
quantum part of Shor’s algorithm with xc instead of with x, and by repeating this
process a finite number of times we shall end up with the correct value of r. Now
let us show with an example how Shor’s Algorithm works for a particular input.

4.5.4 Example: Factoring 217

We want to find the prime factors of 217 using Shor’s Factoring Algorithm. First,
the algorithm chooses a random integer x such that 1 < x < 217. Let us suppose
that we obtain x = 5, which fulfills the first condition: gcd(5, 217) = 1. Now is the
time of finding the multiplicative order of 5 modulo 217, which is achieved with the
help of a quantum computer.

We calculate t and n and initialize the quantum system. In this case, n =
dlog2 217e = 8 and consequently t = 2n = 16. Thus, our quantum registers have the
following initial states:

|ψ0〉16,8 ← |0〉16 ⊗ |0〉8

Next, we apply the Hadamard transformation, hence obtaining a superposition
of all basis states in the first register, all with identical amplitudes. This way, all
integers between 0 and 216 − 1 are now somewhere in the first register.

|ψ1〉16,8 ← (H⊗16 ⊗ I⊗8)
(
|ψ0〉16,8

)

|ψ1〉16,8 =
1√
216

216−1∑
j=0

|j〉16 ⊗ |0〉8

Afterwards, we apply the quantum gate that calculates the powers of 5 modulo
217, which has the following effect.

|ψ2〉16,8 ←M 5,217

(
|ψ1〉16,8

)

|ψ2〉16,8 = M 5,217

(
|ψ1〉16,8

)
=

1√
216

216−1∑
j=0

M 5,217 (|j〉16 ⊗ |0〉8)

=
1√
216

216−1∑
j=0

|j〉16 ⊗
∣∣5j mod 217

〉
8

4.5. SHOR’S FACTORING ALGORITHM 63

If we expand the sum, we can alternatively express the result as follows (please
note that, for the sake of simplicity, we have omitted the subindices and the tensor
product operators):

|ψ2〉 =
1√
216

(|0〉 |1〉+ |1〉 |5〉+ |2〉 |25〉+ |3〉 |125〉+ |4〉 |191〉+ |5〉 |87〉+

|6〉 |1〉+ |7〉 |5〉+ |8〉 |25〉+ |9〉 |125〉+ |10〉 |191〉+ |11〉 |87〉+
|12〉 |1〉+ |13〉 |5〉+ |14〉 |25〉+ |15〉 |125〉+ |16〉 |191〉+ |17〉 |87〉+
|18〉 |1〉+ |19〉 |5〉+ |20〉 |25〉+ |21〉 |125〉+ |22〉 |191〉+ |23〉 |87〉+
|24〉 |1〉+ |25〉 |5〉+ |26〉 |25〉+ |27〉 |125〉+ |28〉 |191〉+ |29〉 |87〉+
|30〉 |1〉+ ...)

After a close inspection, we can observe that the values on the second register
are periodic. If we make common factor, we end up with the state:

|ψ2〉 =
1√
216

(
(|0〉+ |6〉+ |12〉+ |18〉+...+ |65526〉+ |65532〉) |1〉+

(|1〉+ |7〉+ |13〉+ |19〉+...+ |65527〉+ |65533〉) |5〉+
(|2〉+ |8〉+ |14〉+ |20〉+...+ |65528〉+ |65534〉) |25〉+
(|3〉+ |9〉+ |15〉+ |21〉+...+ |65529〉+ |65535〉) |125〉+
(|4〉+ |10〉+ |16〉+ |22〉+...+ |65530〉) |191〉+
(|5〉+ |11〉+ |17〉+ |23〉+...+ |65531〉) |87〉

)
Thanks to this representation, it is easier to understand what will happen if we

measure the second register.

δ̃ ← measure the second register

|ψ3〉16 ← |ψ2〉16,8 after measuring the second register

It is clear that we shall obtain a value δ̃ such that δ̃ = 5 j̃ mod 217 for a certain
j̃ ∈ {0, . . . , 216 − 1}. Thus, δ̃ ∈ {1, 5, 25, 125, 191, 87} (which are the powers of 5
modulo 217). Let us suppose that we get δ̃ = 25. The register will collapse into
|25〉 and all other possible values will be destroyed and gone forever, the information
about the rest of possible powers of 5 modulo 217 lost. However, the first register
will also collapse into the values that were tensored with |25〉, thus discarding the
remaining ones. What interests us is that all the basis states tensored with |25〉
correspond with the exponents j̃ such that δ̃ = 5j̃ mod 217. More specifically:

|ψ3〉16 =
1√

10923
(|2〉16 + |8〉16 + |14〉16 + |20〉16 + ...+ |65528〉16 + |65534〉16)

=
1√

10923

(
10922∑
a=0

|6a+ 2〉16

)
A pattern has arisen, as the basis states on the first register display some peri-

odic behavior. This period naturally corresponds with the multiplicative order of
5 modulo 217, which happens to be equal to 6. Of course, this information is yet

64 4. QUANTUM ALGORITHMS

hidden to us, we are just using some knowledge of the problem for providing a math-
ematical explanation of the performance of the algorithm in this particular case. On
the other hand, the constant 10923 is just a normalization of the amplitudes after
the collapse of the register, corresponding to the total number of exponents that
return 25 modulo 217 between 0 and 216 − 1.

As explained previously, if we want to obtain the period from within the bowels
of our quantum system, we should use the quantum Fourier transform:

|ψ4〉16 ← F 16 (|ψ3〉16)

|ψ4〉16 = F 16 (|ψ3〉16)

= F 16

(
1√

10923

10922∑
a=0

|6a+ 2〉16

)

=
1√

10923

10922∑
a=0

F 16

(
|6a+ 2〉16

)
=

1√
10923

10922∑
a=0

(
1√
216

216−1∑
k=0

e−2πi
(6a+2)k

216 |k〉16

)

=
1√
216

216−1∑
k=0

([
1√

10923

10922∑
a=0

e−2πi 6ak
216

]
e−2πi 2k

216 |k〉16

)

Thus, we end up again with a distribution of the amplitudes defined by

αk =
1√

216 · 10923

(
10922∑
a=0

e−2πi 6ak
216

)
e−2πi 2k

216 ,

which gives us the following probability distribution:

|αk|2 =
1

216 · 10923

∣∣∣∣∣
10922∑
a=0

e−2πi 6ja
216

∣∣∣∣∣
2

with k = 0, . . . , 216 − 1. If we represent this distribution in a graph, it is easier to
understand the final steps of the algorithm.

4.5. SHOR’S FACTORING ALGORITHM 65

0 10 000 20 000 30 000 40 000 50 000 60 000 70 000
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

ω̃ ← measure |ψ4〉16)

We then measure the first register, and obtain non-deterministically a value from
one of the seven peaks. The first peak yields a 0, thus forcing us to start again the
quantum part of the algorithm. If, otherwise, we obtain a value from the other six
peaks, we can retrieve (using continued fractions) the order r or a factor of r from it.

Let us explain this last step more formally (we took details for this from [84]).
We recall that a continued fraction is represented as

[a0; a1, . . . , aK] = a0 +
1

a1 +
1

a2 +
1

a3 +
1

· · ·+
1

aK

where a0 ∈ Z≥0 and a1, . . . , aK ∈ Z>0. Let [a0; a1, . . . , aK], then there exists a
unique q ∈ Q>0 such that q = [a0; a1, . . . , aK]. We define the k-th convergent of
[a0; a1, . . . , aK], where 0 ≤ k < K, as

qk = [a0; a1 . . . , ak].

Provided a certain q ∈ Q>0, we can compute the members of its corresponding
continued fraction as follows:

66 4. QUANTUM ALGORITHMS

a0 ← bqc
q0 ← q − a0

ak+1 ← b1/qkc
qk+1 ← 1/qk − ak+1

Even more, each of the convergents qk can be expressed as qk = bk/ck, where
gcd(bk, ck) = 1 and

b0 ← a0

c0 ← 1

b1 ← a0a1 + 1

c1 ← a1

bk+2 ← ak+2bk+1 + bk

ck+2 ← ak+2ck+1 + ck

It can be proven [84] that we can obtain the period r (or a non trivial factor of
it) from w̃ with the following algorithm: starting at k = 1, we compute bk and ck as
previously explained from the continued fraction of q = w̃/2n. Then, we check if

xck ≡ 1 mod N.

If the answer is affirmative, we have obtained the order r or a factor of it; if not, we
do it again for k + 1.

For example, a possible value from the second peak is 10915, and if we divide it
by 216 we obtain the continued fraction

10915

65536
= [0; 6, 237, 3, 1, 1, 6],

whose first convergent is 1
6
. Thus, as 56 ≡ 1 mod 217 we have that the order (or a

factor of it) is 6.

Another possible example is 32763, a value from the middle peak. Doing the
same operation:

32763

65536
= [0; 2, 3276, 3, 3]

from where we obtain a first convergent of 1
2
. In both cases, we have to verify if 6

and 2 are, respectively, the order of 5. The first case returns a positive answer, but
the second forces us to restart the algorithm to get the order of 52. In any case,
after a finite number of iterations we finally obtain r = 6.

Remains to be seen if x = 5 and r = 6 fulfill the final conditions of the algorithm.
As 6 is an even number, and 56/2 + 1 = 126 6= 0 mod 217, we can finally proceed to
the last step. As explained, we can calculate now two non-trivial factors of 217:

d1 = gcd(126, 217) = 7

4.6. GROVER’S SEARCH ALGORITHM 67

and

d2 = gcd(124, 217) = 31,

which in fact are the only prime factors of 217. Thus ends Shor’s algorithm for this
particular case.

217 = 7× 31

The first experimental demonstration of Shor’s factoring algorithm came in 2001,
[113] when a group at IBM factored 15 into 3 and 5 using a nuclear magnetic
resonance (NMR) quantum computer with seven spin-1/2 nuclei in a molecule as
qubits. In 2007, Shor’s algorithm was implemented with photonic qubits by two
different groups [80, 85], with both of them observing quantum entanglement in the
process. In 2012, number 143 was factored with the help of an adiabatic quantum
computer [114].

4.6 Grover’s Search Algorithm

4.6.1 Definition

Grover’s search algorithm was first described by Indian-American computer sci-
entist Lov K. Grover (b. 1961) in [63, 64, 65], hence its name. The original aim
of Grover’s algorithm is the following: we have an unstructured and disorganized
database with 2n elements, identified from now on with the indices 0, . . . , 2n − 1,
and we want to find one that satisfies a certain property. The algorithm leans on
two hypotheses: first, that such an element exists inside the database; and second,
that this element is unique.

If we are to search for this mentioned element with a classical computer, in the
worst case we will have to check all members of the database, which tells us that
this problem has a classical computational complexity of O(2n). As will be shown,
Grover’s quantum search algorithm will make only O(

√
2n) queries to the database,

thus strictly improving the performance of its classical counterpart.

SETUP

|ψ0〉n,1 ← |0〉n ⊗ |1〉

We need a quantum computer with n+ 1 qubits, where the first n qubits will be
initialized at |0〉 and the remaining one at |1〉.

STEP 1

|ψ1〉n,1 ←H⊗n+1
(
|ψ0〉n,1

)

68 4. QUANTUM ALGORITHMS

In the first proper step of the algorithm, we apply the Hadamard quantum gate
to all the qubits in our system. This way, the obtained result is a combination of all
basis states inside our first n qubits, and the |−〉 state in the remaining one.

|ψ1〉n,1 = H⊗n+1
(
|ψ0〉n,1

)
= H⊗n+1 (|0〉n ⊗ |1〉)

=
(
H⊗n |0〉n

)
⊗
(
H |1〉

)
=
(
H |0〉

)⊗n
⊗
(
H |1〉

)
=
(|0〉+ |1〉√

2

)⊗n
⊗
(|0〉 − |1〉√

2

)
=
(1√

2n

2n−1∑
j=0

|j〉n
)
⊗ |−〉

For the sake of simplicity, we reintroduce a useful quantum state that will appear
many times throughout the rest of the algorithm. It will also be needed in order to
define one of the key quantum gates of Grover’s Search method, as will be shown in
the next step.

|γ〉n =
1√
2n

2n−1∑
j=0

|j〉n

This definition helps us to express our quantum state as follows:

|ψ1〉n,1 = |γ〉n ⊗ |−〉

STEP 2.1

|ψ2〉n,1 ← Of

(
|ψ1〉n,1

)
The next step of the algorithm leans on the following assumption: we can build

a quantum gate, called Of , that makes use of a function capable of recognizing
the element of the database we are searching for. This function f can be defined
as follows (note that the desired element is identified by the unknown index j0 ∈
{0, . . . , 2n − 1}).

f(j) =

{
1 if j = j0

0 otherwise

The Of quantum gate is in fact the oracle gate described in previous algorithms,
which has the following effect on the basis states of a n+ 1-qubit system

Of : |j〉n ⊗ |k〉 → |j〉n ⊗ |k ⊕ f(j)〉 .

4.6. GROVER’S SEARCH ALGORITHM 69

We recall from Deutsch-Jozsa algorithm that the oracle gate has the following
effect on the state |j〉n ⊗ |−〉:

Of

(
|j〉n ⊗ |−〉

)
= (−1)f(j) |j〉n ⊗ |−〉

It can be seen that, in those cases, Of inverts the sign of the amplitude corre-
sponding to the basis state that codifies the searched element in the first n qubits,
while keeping intact the rest of the amplitudes.

In order to make the explanation and understanding of the algorithm easier and
simpler, we introduce another n-qubit quantum state,

|ρ〉n =
1√

2n − 1

2n−1∑
j=0
j 6=j0

|j〉n ,

whose relationship with the aforedescribed state |γ〉n is

|γ〉n =

√
2n − 1√

2n
|ρ〉n +

1√
2n
|j0〉n .

Please note that |ρ〉 depends on the value of j0, but we shall write |ρ〉 instead of
|ρ (j0)〉 for the sake of simplicity. It can be observed that the introduction of |ρ〉n
helps in the separation of the searched elemenet |j0〉 from the rest of the quantum
basis states.

Thus, after applying Of to our quantum system it will look like this:

|ψ2〉n,1 = Of

(
|ψ1〉n,1

)
= Of

(
|γ〉n ⊗ |−〉

)
= Of

((√
2n − 1√

2n
|ρ〉n +

1√
2n
|j0〉n

)
⊗ |−〉

)
=
(√2n − 1√

2n
|ρ〉n −

1√
2n
|j0〉n

)
⊗ |−〉

=
(
|γ〉n −

2√
2n
|j0〉n

)
⊗ |−〉

The motivation behind the last interpretation of |ψ2〉n,1 will become clear in the
next step.

70 4. QUANTUM ALGORITHMS

STEP 2.2

|ψ3〉n,1 ← (Γ n ⊗ I)
(
|ψ2〉n,1

)
For this step, we must construct a new quantum gate, denoted by Γ n, that

will affect only the first n qubits. The remaining qubit will remain intact —this is
represented with the single-qubit identity gate I—. The definition of Γ n is:

Γ n = 2 |γ〉n 〈γ|n − I
⊗n

Let us see what happens when we apply this new quantum gate to the first n
qubits of our quantum state |ψ2〉n,1 defined in the previous step.

Γ n (|ψ2〉n) =
(
2 |γ〉n 〈γ|n − I

⊗n)(|γ〉n − 2√
2n
|j0〉n

)
= 2 |γ〉n 〈γ|γ〉n −

4√
2n
|γ〉n 〈γ|j0〉n − |γ〉n +

2√
2n
|j0〉n

= 2 |γ〉n −
4

2n
|γ〉n − |γ〉n +

2√
2n
|j0〉n

=
2n−2 − 1

2n−2
|γ〉n +

2√
2n
|j0〉n

For this, we have used the definition of the inner product seen in Section 3.3 to
calculate

〈γ|γ〉n = 1

and

〈γ|i0〉n =
1√
2n
.

The Γ n gate is also called Grover diffusion operator, and can also be seen as

Γ n = (H⊗n)(2 |0〉n 〈0|n − I
⊗n)(H⊗n),

which is a much more painless way of implementing it in practice. Steps 2.1 and 2.2
are usually treated as a single step, represented by the Grover gate

G = (Γ n ⊗ I)(Of).

STEP 3

In order to achieve the objective of Grover’s algorithm, one must apply theG gate
repeatedly until the probability of obtaining the index j0 is maximal —a general
overview of the algorithm can be seen in Figure 4.4—. After the desired probability
has been reached, we measure the first n-qubit register, and obtain the index j0.
The optimal number of times G is applied has order O(

√
2n), which will be proved

later. But first, let us explain the behavior of the algorithm with an example.

4.6. GROVER’S SEARCH ALGORITHM 71

|0〉 /n H⊗n
Of

Γ n · · ·

|1〉 H · · ·

Repeat O(
√

2n) times

︸ ︷︷ ︸
Figure 4.4: Circuit representation of Grover’s Search Algorithm

4.6.2 Example with n = 4 qubits

Let us illustrate how Grover’s Search works with this exemplifying case: suppose
we have an unstructured database with its elements listed as 0, 1, . . . , 15 indexed via
4 qubits, and that we want to find a certain item that is indexed with the number
7 —note that we do not know this yet, but it can be supposed in order to explain
the algorithm straightforwardly—.

As previously explained, we need a quantum computer with n+1 qubits, where n
is the number of bits needed for codifying the indices of the members of the database
—in this case, n = 4—. In order to correctly setup our quantum system, the first
4 qubits must be in the state |0〉 and the remaining one must be in the state |1〉.
Thus, our quantum system begins as follows:

|ψ0〉4,1 = |0〉4 ⊗ |1〉

The first transformation we apply to the quantum system is the Hadamard gate,
or H , which converts it to the following state:

|ψ1〉4,1 = (H⊗4 |0〉4)⊗ (H |1〉)

=
(1

4

15∑
j=0

|j〉4
)
⊗ |−〉

We remind the reader that from now on we will make use of the states |γ〉4 and
|ρ〉4 in the interest of simplifying the writing of the whole process.

|γ〉4 =
1

4

15∑
j=0

|j〉4

|ρ〉4 =
1√
15

15∑
j=0
j 6=7

|j〉4

|γ〉4 =

√
15

4
|ρ〉4 +

1

4
|7〉4

72 4. QUANTUM ALGORITHMS

The introduction of these states allows us to write |ψ1〉4,1 as:

|ψ1〉4,1 =

(√
15

4
|ρ〉4 +

1

4
|7〉4

)
⊗ |−〉

On STEP 2.1 we make use of the transformation Of , which applies to all possible
states inside the first 4 qubits an oracle f that identifies 7 as the correct index for
the element we are looking for.

|ψ2〉4,1 = Of (|ψ1〉4,1)

= Of

[(√
15

4
|ρ〉4 +

1

4
|7〉4

)
⊗ |−〉

]

=

(√
15

4
|ρ〉4 −

1

4
|7〉4

)
⊗ |−〉

=

(
|γ〉4 −

1

2
|7〉4
)
⊗ |−〉

On STEP 2.2, we apply the quantum gate Γ 4 to the first 4 qubits of the computer.
We use |ρ〉4 to make more clear which part of the state has the index 7 in it and
which one does not have it.

Γ 4

(
|γ〉4 −

1

2
|7〉4

)
= (2 |γ〉4 〈γ|4 − I)

(
|γ〉4 −

1

2
|7〉4
)

= 2 |γ〉4 〈γ|γ〉4 − |γ〉4 − |γ〉4 〈γ|7〉4 +
1

2
|7〉4

= 2 |γ〉4 − |γ〉4 −
1

4
|γ〉4 +

1

2
|7〉4

=
3

4
|γ〉4 +

1

2
|7〉4

=
3
√

15

16
|ρ〉4 +

11

16
|7〉4

|ψ3〉4,1 =
(3
√

15

16
|ρ〉4 +

11

16
|7〉4

)
⊗ |−〉

Thus, we have completed the first iteration of G, and if we are to measure our
quantum state now, we have a probability

p =
(11

16

)2

=
121

256
≈ 0.4726

of obtaining the index 7, and a probability

p̄ =
(3
√

15

16

)2

=
135

256
≈ 0.5274

4.6. GROVER’S SEARCH ALGORITHM 73

of obtaining any other index. As can be seen, the probability of finding the searched
element is greater than of finding any other element, but is still not big enough,
which tells us that at least another round of the algorithm is needed.

We repeat again the application of G. First, we apply Of and end up with the
following quantum state, defined again as a combination of |γ〉4 and |7〉4.

|ψ4〉4,1 = Of,4(|ψ3〉4,1)

=

(
3
√

15

16
|ρ〉4 −

11

16
|7〉4

)
⊗ |−〉

=

(
3

4
|γ〉4 −

14

16
|7〉4
)
⊗ |−〉

And then we apply Γ 4.

|ψ5〉4 = (2 |γ〉4 〈γ|4 − I)

(
3

4
|γ〉4 −

14

16
|7〉4
)

=
3

2
|γ〉4 〈γ|γ〉4 −

7

4
|γ〉4 〈γ|7〉4 −

3

4
|γ〉4 +

7

8
|7〉4

=
5

16
|γ〉4 +

7

8
|7〉4

=
5
√

15

64
|ρ〉4 +

61

64
|7〉4

Thus, after two iterations of G we end up with a state whose possibility of
returning the index i0 is

p =
(61

64

)2

=
3721

4096
≈ 0.9084,

which gives us a fairly enough chance of completing the execution of Grover’s Search
Algorithm successfully. However, how can we be sure that we have obtained the max-
imum probability of retrieving the desired element from the database if we cannot
measure the amplitudes inside our quantum register? Even more, whence comes the
required order of O(

√
2n) needed in the number of iterations of G?

Both questions are pivotal in the correct performance of the algorithm. Let us
show their significance with a simple example: what happens if we continue applying
the G gate to our quantum system?

If we apply G once more, we will have the following two states, the first after
Of and the second after Γ 4.

|ψ6〉 =
5

16
|γ〉4 −

33

32
|7〉4

74 4. QUANTUM ALGORITHMS

|ψ7〉 = −13
√

15

256
|ρ〉4 −

251

256
|7〉4

As can be seen, the probability of obtaining index 7 now is

p =
(251

256

)2

≈ 0.9613.

Yet, if we are still not satisfied with a 96% chance of success, we can run over G
once again, and obtain first

|ψ8〉 = −13

64
|γ〉4 −

238

256
|7〉4

and finally

|ψ9〉 = −342
√

15

2048
|ρ〉4 +

1562

2048
|7〉4 ,

which gives us a probability

p =
(1562

2048

)2

≈ 0.5817

of obtaining |7〉4. Yes, it seems that to unabatedly perform numberless iterations of
G does not guarantee a continuous increment in the probability of success.2 Even
more, it can waste all previously done work. We shall see why this has happened in
the next section.

4.6.3 Proof of correctness

In this section we sketch a proof of the correctness of Grover’s algorithm. The
main ideas behind this proof are taken from [28], and will come in handy in the
next subsection, where different and more general versions of the database search
algorithm are discussed.

Theorem 4.6.1. Grover’s Search Algorithm for a unique solution needs m ∼ O(
√

2n)
iterations of G for maximizing the probability of obtaining the desired element with
unknown index j0.

Proof. First, we are interested in redefining all the possible states that occur during
the execution of the algorithm as a function of the different amplitudes involved.
As was shown earlier, the only amplitude that will differ from the rest after ev-
ery Grover’s iteration is the one associated with the basis state that identifies the
searched element. Thus, suffices to define the generic state in the following way:

|ψ(α, β)〉n = α |j0〉n + β

2n−1∑
j=0
j 6=j0

|j〉n .

2“There is thy gold, worse poison to men’s souls.” (Romeo and Juliet, Act 5, Scene 1)

4.6. GROVER’S SEARCH ALGORITHM 75

With amplitudes α and β constrained to

|α|2 + (2n − 1)|β|2 = 1.

Note that we are only having into account the first register, the one with n
qubits. The remaining qubit will behave as explained before, starting at |1〉 and
remaining as |−〉 throughout the rest of the algorithm, but for the sake of simplicity
will be omitted during the proof.

Let us see what happens when we apply all quantum gates that make up the
Grover transform Gn to a generic state |ψ(α, β)〉n. First, we employ Of , which
recognizes the searched element and flips its amplitude. Thus, after Of we obtain

|ψ′(α, β)〉n = −α |j0〉n + β

2n−1∑
j=0
j 6=j0

|j〉n

In order to apply the Γn quantum gate, it is interesting to previously see our
current state as a function of |γ〉n, as was done before:

|ψ′(α, β)〉n = −(α + β) |j0〉n +
√

2nβ |γ〉n .
We are finally in condition of applying Γ n:

|ψ′′(α, β)〉n = Γ n

(
|ψ′(α, β)〉n

)
= Γ n

(
− (α + β) |j0〉n +

√
2nβ |γ〉n

)
=
(

2 |γ〉n 〈γ|n − I
⊗n
)(
− (α + β) |j0〉n +

√
2nβ |γ〉n

)
= (α + β) |j0〉n +

(
2
√

2nβ − 2√
2n

(α + β)−
√

2nβ
)
|γ〉n

=
(2n−1 − 1

2n−1
α +

2n − 1

2n−1
β
)
|j0〉n +

(
− 1

2n−1
α +

2n−1 − 1

2n−1
β
)
|γ〉n

Now that we know the effect Gn makes to a generic state, we are in condition of
predicting in which iteration of the algorithm we have more possibilities of obtaining
the desired element i0. If we define

|ψk+1(αk+1, βk+1)〉n = Gn(|ψk(αk, βk)〉n)

where

α1 = β1 =
1√
2n

and

αk+1 =
2n−1 − 1

2n−1
αk +

2n − 1

2n−1
βk

βk+1 = − 1

2n−1
αk +

2n−1 − 1

2n−1
βk

76 4. QUANTUM ALGORITHMS

for j ≥ 1, then we can try to find a more tractable closed-form formula for the
amplitude of i0. Note that, for j = 0, it is not possible to define |ψ0〉 as a function
of α0 and β0, thus only the cases where j ≥ 1 will be defined as such.

If we designate θ such that

sin2 θ =
1

2n
,

we can easily prove by induction that

αj = sin((2j − 1)θ)

and that

βj =
1√

2n − 1
cos((2j − 1)θ).

Let us suppose now that, for an unknown step j = m + 1 (note that m is
equivalent to the number of times we have applied Gn), we want to assure that
αm = 1. This occurs when

(2m+ 1)θ =
π

2
,

and expressly, when

m =
π − 2θ

4θ
.

Obviously, we can not perform a non-integer number of iterations of Gn. If we
take

m =
⌊ π

4θ

⌋
,

we can conclude that the number of iterations of Gn needed for achieving the max-

imum probability of success is close
π

4

√
2n (note that

θ ≈ sin θ =
1√
2n

when 2n is large enough). Thus, we can conclude that the number m of iterations
of Gn has order

m ∼ O(
√

2n).

4.6.4 Mutiple solutions

The main limitation of Grover’s Search Algorithm deals with the number of so-
lutions: it assumes that there is one and only one element in the database that
matches our search. As will be seen in Chapter 5, there are many cases in which
Grover’s Search may prove useful, but in which the number of solutions is unknown,
or maybe we do not even know if there is indeed a solution. In this subsection we
proceed to explain an alternate version of Grover’s Algorithm that originally ap-
peared in [28] which takes care of this drawback.

Let us suppose that we have an unstructured database, indexed by 0, 1, . . . , 2n−1.
We are interested in finding an element inside the database that fulfills a certain

4.6. GROVER’S SEARCH ALGORITHM 77

property, but we do not know if such an element exists, or if there are more than
one. We name A ⊆ {0, 1, . . . , 2n − 1} the set of possible solutions, with |A| = t
and t ∈ {0, 1, . . . , 2n − 1}. At first sight, one can only hope to just obtain the same
performance results as in the original Grover’s Algorithm just by applying G the
same number of steps. However, it is easy to find a counterexample showing that
the probability of success after π

4

√
2n iterations changes dramatically when t 6= 1.

In order to show how this variation of the algorithm works, we define B = A,
with |B| = 2n− t. Following a similar approach, we can assume that every quantum
state of our system after first applying globally the Hadamard transform can be
expressed as

|ψ(α, β)〉n = α
∑
i∈A

|i〉n + β
∑
i∈B

|i〉n ,

where
tα2 + (2n − t)β2 = 1.

We only take into account the first n qubits, as previously done. We would like to
clarify that the algorithm is essentially the same, so there is no need for explaining
it again. The only substantial change is the expected number of iterations of G
needed for maximizing the probability of success. Thus, if we apply Of to a certain
state, we end up with the following configuration:

|ψ′(α, β)〉n = −α
∑
i∈A

|i〉n + β
∑
i∈B

|i〉n

Just like before, after a complete iteration of G the quantum system is in the
state:

Γn

(
|ψ′(α, β)〉n

)
=
(2n−1 − t

2n−1
α+

2n − t
2n−1

β
)∑
i∈A

|i〉n+
(
− t

2n−1
αj+

2n−1 − t
2n−1

βj

)∑
i∈B

|i〉n

As done previously, if we define

Gn(|ψj(αj, βj)〉n) = |ψj+1(αj+1, βj+1)〉n ,

we can induce a recursive formula for the general state of the system, where

α1 = β1 =
1√
2n

and

αj+1 =
2n−1 − t

2n−1
αj +

2n − t
2n−1

βj

βj+1 = − t

2n−1
αj +

2n−1 − t
2n−1

βj

If we define θ such that

sin2 θ =
t

2n
,

78 4. QUANTUM ALGORITHMS

then we can arrive at the following closed-up formula, just by using induction and
some trigonometric identities:

αj =
1√
t

sin((2j − 1)θ)

βj =
1√

2n − t
cos((2j − 1)θ)

.

Theorem 4.6.2. Let t be the unknown number of solutions, and θ be as previously
defined. Let m be an arbitrary positive integer and j be an integer chosen at random
following the discrete uniform distribution U{1,m}. Then, if j − 1 corresponds to
the number of times we have applied G to the state |γ〉n and we observe the state,
the probability of obtaining one of the t solutions in A is

Pm =
1

2
− sin(4mθ)

4m sin(2θ)
.

Proof. After j − 1 iterations of G, the probability of obtaining one of the possible
solutions is

tα2
j = sin2((2j − 1)θ).

If 1 ≤ j ≤ m is chosen randomly, then the average probability of success is given
by

Pm =
m∑
j=1

1

m
sin2((2j − 1)α)

=
1

2m

m∑
j=1

(
1− cos((2j − 1)θ)

)
=

1

2
− sin(4mθ)

4m sin(2θ)
.

In the last step, we have used the following trigonometric identity:

m∑
j=1

cos((2j − 1)α) =
sin(2mα)

2 sinα

Thus, Grover’s Search Algorithm for multiple solutions follows the next scheme:

4.6. GROVER’S SEARCH ALGORITHM 79

m← 1
λ← λ ∈ (1, 4

3
)

j ← U{1,m}
|ψ〉 ← (Gj−1)(|γ〉n)
Apply the G quantum gate j − 1 times to |γ〉n
i← Value of the first register
if i ∈ A then

return i
else

m← min(λm,
√

2n)
go to 3

end if

The average number of iterations of Grover’s algorithm is given via the following
result:

Theorem 4.6.3. Let t ≤ 3× 2n−2, the expected time for finding a solution with the
previous algorithm has order O(

√
2n/t).

Proof. [28] Let

m0 =
1

sin(2θ)
=

2n−1√
(2n − t)t

<

√
2n

t
,

then the expected total number of Grover iterations that we need to reach the critical
point is at most

1

2

dlogλm0e∑
s=1

λs−1 <
1

2

λ

λ− 1
m0 = 3m0

and the expected number of Grover iterations needed to succeed once the critical
point has been reached is

1

2

∞∑
u=0

3u

4u+1
λu+dlogλm0e <

λ

8− 6λ
m0 =

3

2
m0.

Thus, the expected number of Grover iterations is upper bounded by

9

2
m0 ∼ O

(√
2n

t

)

Grover’s algorithm, which is also known as quantum amplitude amplification, is
specially useful in problems where the best known classical solution is to iterate over
all possible candidates in the worst case. Although the acceleration is not exponen-
tial, but quadratic, we do know that it is a strict improvement with respect to the
classical approach, provided that we are able to identify a solution in polynomial
time. The superiority of Shor’s algorithm, on the other hand, relies on the unproven
conjecture that factoring is not in P. An adiabatic version of Grover’s algorithm can
be found in [50] and [100].

80 4. QUANTUM ALGORITHMS

4.7 Quantum Counting

4.7.1 Definition

Product of the work of Gilles Brassard, Peter Høyer and Alain Tapp, the Quan-
tum Counting algorithm is a variation of Grover’s search in which we use the quan-
tum Fourier transform for counting the solutions to the database search problem, in
case that this number is unknown to us. It was first sketched in [28] and thoroughly
described in [29]. Additionaly, some details of the proof of its correctness that we
present here are taken from [44].

The counting problem can be seen as the following: let us suppose that we
have an unstructured database, whose elements are indexed by {0, 1, . . . , 2n − 1},
and that we want to know how many elements fulfill a certain property. Note
that we are interested in the number of solutions, not in returning any of them.
If A ⊆ {0, . . . , 2n − 1} is the set of indices that fulfill our query, the quantum
counting problem can be seen as the problem of calculating t = |A|. We shall also
define B = {0, . . . , 2n − 1} \ A as the set of indices that do not fulfill the property.
Therefore, |B| = 2n − t.

SETUP

|ψ0〉p,n ← |0〉p ⊗ |0〉n

The quantum counting algorithm starts with p+n qubits initialized at 0, where
p depends on n as will be shown later.

STEP 1

|ψ1〉p,n ←H⊗p+n
(
|ψ0〉p,n

)
As usual, the first step of the algorithm involves the Hadamard gate, which gives

us the state

|ψ1〉p,n = H⊗p+n
(
|ψ0〉p,n

)
= |γ〉p ⊗ |γ〉n ,

where we recall that

|γ〉n =
1√
2n

2n−1∑
k=0

|k〉n .

If we use the notations

|a〉n =
1√
t

∑
k∈A

|k〉n ,

4.7. QUANTUM COUNTING 81

|b〉n =
1√

2n − t
∑
k∈B

|k〉n ,

|µ+〉n =
1√
2

(|b〉n − i |a〉n)

and

|µ−〉n =
1√
2

(|b〉n + i |a〉n)

and define ω such that sin2(πω) = t/2n, we can express |γ〉n as:

|γ〉n =
1√
2n

2n−1∑
k=0

|k〉n

=
1√
2n

(∑
k∈A

|k〉n +
∑
k∈B

|k〉n

)

= sin(πω)

(
1√
t

∑
k∈A

|k〉n

)
+ cos(πω)

(
1√

2n − t
∑
k∈B

|k〉n

)
= sin(πω) |a〉n + cos(πω) |b〉n

=
i sin(πω)√

2

(
|µ+〉n − |µ

−〉n
)

+
cos(πω)√

2

(
|µ+〉n + |µ−〉n

)
=
eiπω√

2
|µ+〉n +

e−iπω√
2
|µ−〉n

STEP 2

|ψ2〉p,n ← Cp,n(|ψ1〉p,n)

For the next step, we need a new unitary transformation called the counting
gate, which is represented by Cp,n. This quantum gate has the following effect on
a quantum state of the form |m〉p ⊗ |ψ〉n, where |m〉p is a basis state on p qubits,
|ψ〉n is any quantum state on n qubits and Gn is the Grover gate described in the
previous algorithm.

Cp,n : |m〉p ⊗ |ψ〉n → |m〉p ⊗ (Gn)m |ψ〉n

Let us see what happens when we apply this new quantum gate to our previous
quantum system.

82 4. QUANTUM ALGORITHMS

|ψ2〉p,n = Cp,n(|ψ1〉p,n)

= Cp,n

(
|γ〉p ⊗ |γ〉n

)
=

1√
2p

2p−1∑
j=0

[
|j〉p ⊗G

j
n (|γ〉n)

]
=

1√
2p

2p−1∑
j=0

[
|j〉p ⊗G

j
n

(
eiπω√

2
|µ+〉n +

e−iπω√
2
|µ−〉n

)]

=
1√
2p+1

2p−1∑
j=0

[
|j〉p ⊗

(
eiπωGj

n

(
|µ+〉n

)
+ e−iπωGj

n

(
|µ−〉n

))]

=
1√
2p+1

2p−1∑
j=0

[
|j〉p ⊗

(
eiπω(2j+1) |µ+〉n + e−iπω(2j+1) |µ−〉n

)]

=
eiπω√
2p+1

2p−1∑
j=0

e2πiωj |j〉p ⊗ |µ
+〉n +

e−iπω√
2p+1

2p−1∑
j=0

e2πi(1−ω)j |j〉p ⊗ |µ
−〉n

In order to understand what happened in the last identities of the equation, we
should see the effect that Gj

n has on the states |µ+〉n and |µ−〉n. First:

Gn (|a〉n) = (2 |γ〉 〈γ|n)− I)
(
− |a〉n

)
= −2 |γ〉 〈γ|a〉n + |a〉n
= −2 sin(πω) |γ〉n + |a〉n
= −2 sin(πω)

(
cos(πω) |b〉n + sin(πω) |a〉n

)
+ |a〉n

= −2 sin(πω) cos(πω) |b〉n + (1− 2 sin2(πω)) |a〉n
= − sin(2πω) |b〉n + cos(2πω) |a〉n

Gn (|b〉n) = (2 |γ〉 〈γ|n)− I)
(
|b〉n

)
= 2 |γ〉 〈γ|b〉n − |b〉n
= 2 cos(πω) |γ〉n − |b〉n
= 2 cos(πω)

(
cos(πω) |b〉n + sin(πω) |a〉n

)
− |b〉n

= (2 cos2(πω)− 1) |b〉n + 2 sin(πω) cos(πω) |a〉n
= cos(2πω) |b〉n + sin(2πω) |a〉n

Which leads us to

4.7. QUANTUM COUNTING 83

Gn

(
|µ+〉n

)
=

1√
2

(
Gn(|b〉n)− iGn(|a〉n)

)
=

1√
2

(
cos(2πω) |b〉n + sin(2πω) |a〉n + i sin(2πω) |b〉n − i cos(2πω) |a〉n

)
=
e2iπω

√
2

(|b〉n − i |a〉n)

= e2iπω |µ+〉n

and

Gn

(
|µ−〉n

)
=

1√
2

(
Gn(|b〉n) + iGn(|a〉n)

)
=

1√
2

(
cos(2πω) |b〉n + sin(2πω) |a〉n − i sin(2πω) |b〉n + i cos(2πω) |a〉n

)
=
e2iπω

√
2

(|b〉n + i |a〉n)

= e−2iπω |µ−〉n

STEP 3

|ψ3〉p,n ← (F−1
p ⊗ I⊗n)(|ψ2〉p,n)

The next step involves the inverse quantum Fourier transform F−1
n already ex-

plained in Section 4.5, which has the following effect on an n-qubit basis state.

F−1
n : |j〉n →

1√
2n

2n−1∑
k=0

e−2πi j
2n
k |k〉n

We recall that, applied to a certain type of quantum state, the inverse quan-
tum Fourier transform can give us certain information about the distribution of its
amplitudes.

F−1
n

(
1√
2n

2n−1∑
j=0

e2πi k
2n
j |j〉n

)
= F−1

n

(
F n |k〉n

)
= |k〉n

Let us see what happens when we apply it to our current quantum state:

84 4. QUANTUM ALGORITHMS

|ψ3〉p,n = (F−1
p ⊗ I⊗n)(|ψ3〉p,n)

= (F−1
p ⊗ I⊗n)

=
eiπω√
2p+1

2p−1∑
j=0

e2πiωjF−1
p |j〉p ⊗ |µ

+〉n +
e−iπω√

2p+1

2p−1∑
j=0

e2πi(1−ω)jF−1
p |j〉p ⊗ |µ

+〉n

=
eiπω√
2p+1

2p−1∑
l=0

2p−1∑
j=0

e2πi(ω− l
2p

)j |l〉p ⊗ |µ
+〉n +

−eiπω√
2p+1

2p−1∑
l=0

2p−1∑
j=0

e2πi((1−ω)− l
2p

)j |l〉p ⊗ |µ
+〉n

STEP 4

l̃← measure the first register of |ψ3〉p,n
if l̃ > 2p−1 then

l̃← 2p − l̃
end if

t̃← 2n sin2

(
πl̃

2p

)
return t̃

As can be concluded from the previous step, we could have obtained the value
2pω or 2p(1 − ω) if ω were an integer. However, as that is not the case, we end up
with l̃ = 2pω̃ or l̃ = 2p(1− ω̃), where ω̃ is an estimator of ω, and from which we can
get an estimator t̃ for t. Thus ends the quantum counting algorithm, remains to be
proven how good is that estimator, and the probability of obtaining it.

4.7.2 Proof of correctness

Theorem 4.7.1. Let f : {0, 1, . . . , 2n − 1} → {0, 1} be the indicator function of a
certain set A ⊆ {0, 1, . . . , 2n − 1} with t = |A| = |f−1(1)|, let p ≥ 2 and let t̃ be the
return value of the previously described algorithm. Then, with probability of at least
8/π2, it follows that

|t− t̃| ≤ 2π

2p

√
t(2n − t) +

π2

22p
|2n − 2t|.

Proof. Let us suppose that we have a quantum state of the form

1

2p

2p−1∑
l=0

2p−1∑
k=0

e2πi(ω− l
2p

)k |l〉p .

4.7. QUANTUM COUNTING 85

As the amplitudes of such a state can be expressed as

αl =
1

2p

2p−1∑
k=0

e2πi(ω− l
2p

)k =
1− e2πi2p(ω− l

2p
)

2p(1− e2πi(ω− l
2p

))
,

its probability distribution can be seen as

|αl|2 =
sin2(2pπ(ω − l

2p
))

22p sin2(π(ω − l
2p

))
.

As l1 = b2pωc and l2 = d2pωe are the closest values of l to 2pω, we can deduce
that

P

(∣∣∣∣∣ l̃2p − ω
∣∣∣∣∣ ≤ 1

2p

)
= P (|l̃ − 2pω| ≤ 1)

= P (l̃ = l1) + P (l̃ = l2)

= |αl1|2 + |αl2|2

=
sin2(2pπ(ω − l1

2p
))

22p sin2(π(ω − l1
2p

))
+

sin2(2pπ(ω − l2
2p

))

22p sin2(π(ω − l2
2p

))

=
sin2(2pπ∆)

22p sin2(π∆)
+

sin2(2pπ(1
2p
−∆))

22p sin2(π(1
2p
−∆))

≥ 1

22p

(
1

sin2(π
2p+1)

+
1

sin2(π
2p+1)

)
=

2

22p sin2(π
2p+1)

>
2

22p(π
2p+1)2

=
8

π2

Where ∆ = (2pω− l1)/2p and whose minimum is attained at ∆ = 1/2p+1. Thus,
we have at least a probability of 8/π2 of obtaining l1 or l2 with an error less than 1/2p.

It follows that, with Λ = |l̃/2p−ω| ≤ 1/2p and with probability of at least 8/π2,

|t− t̃| = 2n| sin2(πω)− sin2(π
l̃

2p
)|

= 2n| sin2(πω)− sin2(πω ± πΛ)|
= 2n| sin2(πω)− (sin(πω) cos(πΛ)± sin(πΛ) cos(πω))2|
≤ 2n| sin(2πΛ) sin(πω) cos(πω)|+ 2n sin2(πΛ)|1− sin2(πω)|

≤ 2n+1πΛ

√
t

2n
(1− t

2n
) + 2n(πΛ)2|1− t

2n−1
|

≤ π

2p−1

(√
t(2n − t) +

π

2p
|2n−1 − t|

)

86 4. QUANTUM ALGORITHMS

5

Quantum Algorithms for the
Combinatorial Invariants of
Numerical Semigroups

“Do you guys just put the word quantum in front of everything?”
– Ant-Man and the Wasp

“There were stone cups along the rim of the pool. Arya filled one and
brought it to him, so he could drink. The young man stared at her for a
long moment when she offered it to him. ‘Valar morghulis,’ he said. ‘Valar
dohaeris,’ she replied.”

– George R. R. Martin, A Song of Ice and Fire: A Feast for Crows

5.1 Introduction

What we present here in this chapter are the principal contributions of this doc-
toral thesis. As explained in the Introduction, our main scope was to study a certain
group of computationally hard problems, and more concretely those connected with
the theory of numerical semigroups, from the perspective of quantum computation.
The algorithms we have thus developed are capable of obtaining the solution for the
Sylvester denumerant, the numerical semigroup membership, the Apéry set and the
Frobenius number of any numerical semigroup with the help of a hypothetical (or
not so hypothetical, as will be seen later) quantum computer.

The first two algorithms lean on the quantum circuit model and are based respec-
tively on Grover’s database search and on quantum counting, which were previously
explained in detail in Chapter 4. Both of them rely on a generation of all elements
of the numerical semigroup up to a certain bound inside the quantum computer
thanks to quantum parallelism. This way, we can ask a certain type of questions via
an oracle to the distribution of the elements of the numerical semigroup, and then
infer the solution to these combinatorial problems.

The last two algorithms follow a completely different approach, as both are based
in the quantum adiabatic model, and are specifically adapted so that they would

87

88 5. QUANTUM ALGORITHMS FOR NUMERICAL SEMIGROUPS

run in the quantum computing hardware developed by the Canadian company D-
Wave Systems. What we propose is to solve these two problems from the point
of view of mathematical optimization, while at the same time deconstructing the
structure of the problem in order to embed it inside the currently available hardware.

Along with a description of the algorithms, we present some tables of numerical
results and hypothetical performance over the classical version, simulated with a C++

library specially developed for this Ph.D. thesis. This library is called numsem and
can be found at a public GitHub repository [92] along with all the documentation
needed for the correct replication of the results here presented.

5.2 The numsem library

In this section we give a brief description of the numsem library [92], specifically
implemented for numerical semigroups and which helps us to classically compute
the combinatorial invariants described in this doctoral thesis and also replicate the
numerical analyses presented in this chapter. The numsem library has been pro-
grammed in C++ and has been tested in Ubuntu 14.04.2. In order to install it, we
have just to clone the repository by using the git command (provided that we have
previously installed git inside our computer):

git clone https://github.com/jqnoc/numsem.git

After we have downloaded the contents from the repository, we have to type the
following installation commands:

make

cd bin

numsem

Thus, we end up in the directory where the actual executable file is. Let us
suppose that we want to test the numerical semigroup S = 〈7, 11, 17, 23〉 or obtain
its combinatorial invariants. We have first to create a file with the generators (we can
also just put random integers inside, and let numsem decide whether they generate
a numerical semigroup or not). In this case, the contents of the file should be like
this (the order does not matter):

7

11

17

23

Then, if the file with the generators is called generators.txt, we just have to
write the following command:

5.2. The numsem library 89

numsem generators.txt

and obtain the output:

===

NumSem v0.1.0

Copyright (C) Joaquin Ossorio-Castillo. All rights reserved.

This software is free for non-commercial purposes.

Full license information can be found in the LICENSE.txt file.

https://github.com/jqnoc/numsem/

===

Numerical semigroup: S = <7, 11, 17, 23>

Total number of generators: 4

The correct use of the library is triggered with the option --help, and also when
the options are not written correctly. To date, the available options are:

Use:

numsem *file* [options]

file: the file with the generators of the numerical semigroup S

Available options:

--help: print the help

-f: calculate Frobenius number of S

-ga: calculate set of gaps of S

-gn: calculate genus of S

-ap *s*: calculate the Apery set of s with respect to S (only

with AMPL)

-d *t*: calculate Sylvester denumerant for t and S

-ds *t*: calculate Sylvester denumerant for t and S and print

all solutions

-dg *b*: calculate Sylvester function from 0 to b

-m *t*: calculate if t is in S

-ampl: use AMPL and Gurobi for Frobenius, genus or Apery set

-json: write results to a .json file

We now proceed to explain some of them, the rest will be described throughout
the rest of the chapter. The calculation of the Frobenius number, for example, has
been implemented in two ways. The default one is quite straightforward and hardly
efficient, as it just simply finds the maximum of the set of gaps. The second one is
only applied if the option -ampl is also activated, and will use one of the algorithms
proposed in Section 5.4. This second option is more efficient, as will be explained
later. Same goes for the Apéry set and the genus of S, they have a default method
and an alternative method with the option -ampl.

Depending on the options used, the program returns a .json file with all the

90 5. QUANTUM ALGORITHMS FOR NUMERICAL SEMIGROUPS

computed information. This file has the following format:

{

"generators": [7, 11, 17, 23],

"frobenius": 27,

"genus": 17,

"multiplicity": 7,

"embedding_dimension": 4,

"gaps": [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 16, 19, 20, 26,

27]

}

5.3 Sylvester Denumerant and Numerical Semi-

group Membership

Let S = 〈a1, ..., an〉 be a numerical semigroup. As explained in Chapter 2, the
Sylvester denumerant problem resides in determining if an integer t ∈ Z≥0 is in
S and, if the answer is positive, calculate the number of solutions of the linear
Diophantine equation

n∑
i=1

λiai = t,

where λi ∈ Z≥0. As previously stated, we will assume that i < j implies ai < aj and
that t ≥ an without loss of generality. We recall that this problem is in NP-hard,
and that we do not know a polynomial time algorithm for deciding if a candidate
solution is in fact a solution. Therefore, the Sylvester denumerant problem is not
known to be in NP, and thus finding a polynomial time algorithm (quantum or not)
that solves it would be surprising.

In this subsection we present an algorithm for the calculation of the Sylvester
denumerant in the general case. It is a variation of the well-known brute-force ap-
proach, with the difference that it gets help from a hypothetical quantum computer.
The main idea behind the algorithm is to generate all possible elements of the nu-
merical semigroup up to a certain set of bounds, with the bounds depending on each
generator respectively. This generation, which would require an exponential num-
ber of calculations in the classical version of the algorithm, can be done in one step
inside a quantum computer thanks to the Hadamard gate and quantum paralellism.

First, we shall give an upper bound to all possible solutions for the λi variables.
In order to achieve that, we define

bi = 1 +

⌊
log2

(
t

ai

)⌋
,

which tells us the number of binary digits needed for representing all possible values

5.3. SYLVESTER DENUMERANT AND NUMERICAL SEMIGROUP MEMBERSHIP91

of λi respectively. Thus, we can calculate

b =
n∑
i=1

bi

as the total number of qubits needed. As

b =
n∑
i=1

bi

=
n∑
i=1

(
1 +

⌊
log2

(
t

ai

)⌋)
= n+

n∑
i=1

(⌊
log2

(
t

ai

)⌋)
≤ n+

n∑
i=1

(
log2(t)− log2(ai)

)
= n

(
1 + log2(t)

)
−

n∑
i=1

log2(ai),

we can deduce that, in this algorithm, the size of our quantum register grows ex-
ponentially with respect to the size of the number of generators of the numerical
semigroup, and polynomially with respect of the size of t. Thus, fixing the numerical
semigroup and just increasing the value of t is not an issue in terms of the computa-
tional memory needed, what is really challenging in terms of qubit requirements is
adding generators to a numerical semigroup and trying to find the Sylvester denu-
merant for a fixed t. This is not surprising, as the simple task of storing a solution
for the aforementioned equation will always take an exponential memory in terms of
n (an algorithm that calculates the Sylvester denumerant without finding the actual
solutions may exist, though, but it is not this case).

SETUP

|ψ0〉p,b ← |0〉p ⊗ |0〉b

Our system will have the same setup as in the quantum counting algorithm,
where b is the size previously calculated and where p depends on b in such a way
that the desired probability of obtaining the correct result is big enough.

STEP 1

|ψ1〉p,b ←H⊗p+n(|ψ0〉p,b)

|ψ1〉p,b = |γ〉p ⊗ |γ〉b

92 5. QUANTUM ALGORITHMS FOR NUMERICAL SEMIGROUPS

As has been already said, thanks to the Hadamard transformation we can obtain
all computational basis states of our quantum system inside our register. As the
dimension b is calculated with respect to the generators of the numerical semigroup
and the integer t, these basis states correspond each one uniquely to a combination
for all possible values of the variables λi. A representation of this feature is shown
in Figure 5.1, where q1, q2, . . . , qb1 are the b1 binary digits of λi, and so on.

STEP 2

|ψ2〉p,b ← Cp,b(|ψ1〉p,b)

For the next step, we need the counting gate Cp,n, previously defined as

Cp,n : |m〉p ⊗ |ψ〉n → |m〉p ⊗ (Gn)m |ψ〉n ,

where Gn is again the Grover gate. This Grover gate depends in turn on the Oracle
gate Of used in the algorithms described in Chapter 4, and yields the following
result when applied to a basis state:

Of : |j〉n ⊗ |k〉m → |j〉n ⊗ |k ⊕ f(j)〉m .

We recall that the oracle gate is problem specific, and depends on a certain
function f capable of recognising a solution for our problem. What we are going
to do is to define f in such a way that it identifies if a certain combination of
the variables λi encoded into our quantum register are a solution for the numerical
semigroup membership problem. In other words:

f(j) =

1 if
n∑
i=1

λiai = t

0 otherwise

The rest of the algorithm continues as previously explained, but what interests
us now is the size of the first register, p, which depends on b but also on the prob-
ability of obtaining the correct solution for the Sylvester denumerant. Thanks to
[28] and [29], we know that in order to have a reasonable probability of succeeding,

p ∼
√

2b. Thus, the computational order of the algorithm remains the same in both
memory size and time.

Concerning the performance of the algorithm, let us compare the iterations
required for the brute force approach to calculate the Sylvester denumerant for
a fixed semigroup and an increasing value of t, against the hypothetical perfor-
mance of the quantum variant. Let S = 〈376, 381, 393, 399〉 be a numerical semi-
group and let t = 10000, we can calculate d(10000; 376, 381, 393, 399) with the

λ1 λ2 · · · λn

q1 q2 · · · · · · qbqb1 qb1+1 qb1+b2· · · qbn−1+1

Figure 5.1: Representation of the values of λi with respect to the b qubits

5.3. SYLVESTER DENUMERANT AND NUMERICAL SEMIGROUP MEMBERSHIP93

d(10000; 376, 381, 393, 399) = 9

10*(376) + 4*(381) + 12*(393) + 0*(399)

4*(376) + 13*(381) + 8*(393) + 1*(399)

10*(376) + 5*(381) + 9*(393) + 2*(399)

4*(376) + 14*(381) + 5*(393) + 3*(399)

10*(376) + 6*(381) + 6*(393) + 4*(399)

4*(376) + 15*(381) + 2*(393) + 5*(399)

10*(376) + 7*(381) + 3*(393) + 6*(399)

10*(376) + 8*(381) + 0*(393) + 8*(399)

16*(376) + 0*(381) + 1*(393) + 9*(399)

Figure 5.2: numsem output for d(10000; 376, 381, 393, 399)

numsem library, which will give us the output seen in Figure 5.2. Thus, we ob-
tain d(10000; 376, 381, 393, 399) = 9 and the values of λi for all nine solutions.

What we are going to do know is to calculate d(t; 376, 381, 393, 399) for all values
of t up to a certain bound, in order to test the time performance of the brute-force
approach and compare it to a hypothetical performance of the quantum approach.
First, we can see in Figures 5.3, 5.4 and 5.5 the Sylvester denumerant function for
the numerical semigroup S = 〈376, 381, 393, 399〉 in the interval (1,20000), com-
puted with numsem and plotted using Jupyter Notebooks [75]. This function has
been proven to be a quasi-polynomial function in the variable t of degree n − 1
in the general case; however, computing all the coefficients of the polynomial is a
computationally hard problem (see [98, 16, 17, 13]).

Additionally, in Figure 5.6 we show the operations needed (i.e., the number of
possible solutions we have to check) for the computation of d(t; 376, 381, 393, 399)
with numsem, along with the theoretical iterations needed for the quantum version
which has been calculated taking into account the asymptotical behavior of the
quantum counting algorithm. Please note that both are exponential with respect
to t, but in the quantum algorithm the exponent would be divided by 2 (as was
proven in Chapter 4). For example, for t = 10000 we would need more than 492,000
classical iterations, and just 702 quantum iterations. However, in the classical case
we would obtain the actual solutions for the linear Diophantine equation of the nu-
merical semigroup, while in the quantum case we would just obtain the value of the
Sylvester denumerant (or one of the possible solutions, if there are any, as will be
seen now).

Regarding the membership problem of a semigroup S, we already know that if
t > f(S), then t ∈ S, but the computation of f(S) is extremely hard. Moreover, if
t < f(S), the membership problem remains unsolved even if we already know the
value of f(S) (although, as proven by Jorge Ramı́rez-Alfonśın [97], it is possible to
solve the NSMP in polynomial time if we already have an oracle for the Frobenius
problem).

94 5. QUANTUM ALGORITHMS FOR NUMERICAL SEMIGROUPS

Figure 5.3: Sylvester quasi-polynomial

Figure 5.4: Sylvester quasi-polynomial (detail)

5.3. SYLVESTER DENUMERANT AND NUMERICAL SEMIGROUP MEMBERSHIP95

Figure 5.5: Sylvester quasi-polynomial (detail)

Figure 5.6: Sylvester denumerant iteration comparison

The previous quantum algorithm is capable of solving the numerical semigroup

96 5. QUANTUM ALGORITHMS FOR NUMERICAL SEMIGROUPS

membership problem for a certain t ∈ Z≤0. We have to just calculate the Sylvester
Denumerant for t and, if d(S; t) > 0 return YES and otherwise return NO. This is
quite straightforward but, how about solving the NSMP constructively, not only
answering YES or NO to the question of whether there exist those λi, . . . , λn, but also
giving one of its possible combinations if the answer is YES. For that purpose, we
will make use of Grover’s Quantum Search algorithm, already explained in Section
4.6.

Using Grover’s Algorithm, we can provide a solution for the NSMP linear Dio-
phantine equation in the same

√
2b steps as for the Sylvester denumerant. The

actual order of both algorithms with respect to t, the number of generators n of the
numerical semigroup, and the generators a1, . . . , an is:√

2n
(

1+log2(t)
)
−
∑n
i=1 log2(ai)

We can also go further and obtain all solutions to the Diophantine equation.
First, we run the quantum algorithm for the Sylvester denumerant. Then, we apply
the quantum algorithm for the NSMP iteratively until we have obtained as much
different solutions as the value of the denumerant. This is a well-known problem in
probability theory [51] known as the coupon collector’s problem; if the denumerant
is d, then the expected number of trials k ≥ d for obtaining all d solutions grows as

Θ(d log(d)).

For example, if d = 10, the expected number of runs of the quantum algorithm for
the NSMP before obtaining all different solutions is 33.

5.4 Apéry Set and Frobenius Problem

The next algorithm shows the possibilities of calculating the Apéry set and the
Frobenius number of a numerical semigroup with an actual adiabatic quantum com-
puter. As described in Section 3.5, current D-Wave quantum annealers solve a
certain kind of mathematical optimization problems known as Ising spin problems,
namely

H(s1, . . . , sn) =
n∑
i=1

hisi +
n−1∑
i=1

n∑
j=i+1

Jijsisj

with si ∈ {−1, 1}, where the objective is to find the minimum of H(s1, . . . , sn).

On the other hand, we recall that the Apéry set with respect to s ∈ S \ {0},
where S = 〈a1, . . . , an〉 is a numerical semigroup, is defined as

Ap(S, s) = {x ∈ S | x− s /∈ S}.

The question is, how could we be able to translate this problem to the Ising spin
model solved by the D-Wave machine? We have already proved in Lemma 2.1.11
that Ap(S, s) = {ω0, . . . , ωn−1}, where

ωi = min{x ∈ S : x ≡ i mod s}.

5.4. APÉRY SET AND FROBENIUS PROBLEM 97

How about transforming the definition of ωi into the answer of a mathematical op-
timization problem?

Definition 5.4.1. [93] An integer linear program, or ILP, is defined in its canonical
form as the optimization problem:

min cTx
subject to: Ax = b

where x ∈ Zn≥0, A ∈ Zn × Zm, b ∈ Zm and c ∈ Zn.

Thus, it is straightforward to see that the calculation of each of the ωi can be
redefined as the following ILP:

min
n∑
j=1

ajxj

subject to:
n∑
j=1

ajxj = i+ sk,

with xj ∈ Z≥0 for all j = 1, ..., n and k ∈ Z≥0.

This mathematical optimization problem represents a way of calculating the
Apéry set in its own right and, although integer linear programming is in NP-hard
and its recognition version (deciding whether Ax = b has a feasible solution or not
regardless of its optimality) is in NP-complete [93], this computational complexity
arises in the general case. In our context, it may prove to be an easier problem; how-
ever, details on this remain to be worked out. This approach for the calculation of
the Apéry set first appeared in [61], although Greenberg’s work dealt with the direct
calculation of the Frobenius number by means of Ap(S, a1), as will be discussed later.

We have tested this algorithm using state-of-the-art optimization software for
integer optimization. In our case, the optimization problem for ωi was modeled
using AMPL [53, 54], an algebraic modeling language for solving mathematical
optimization problems. AMPL has a clear advantage, as our problem is entirely
parameterized and AMPL allows us to describe the generic problem in a .mod file
while defining the actual values for the parameters in a separate .dat file. This
way, we have just to change the parameters inside the .dat file in order to solve
a new instance of the Apéry set. The .mod file we propose is shown in Figure 5.7
(the names of the parameters and variables of the problem are maintained so that
no further explanation is required).

Let us suppose that we are interested in the numerical semigroup S = 〈11, 19, 23〉,
and that we want to calculate the Apéry set of s = 30 (i.e., Ap(S, 30)). The cal-
culation of, for example, ω5 ∈ Ap(S, 30), will have the associated .dat file depicted
in Figure 5.8. In order to compute ω5, we also need a .run file that will load the
model and the data of the problem, and which will also call the solver for solving
the problem. In our case, the solver we have chosen is Gurobi [3] which, among

98 5. QUANTUM ALGORITHMS FOR NUMERICAL SEMIGROUPS

other things, solves integer linear problems up to a global optimum. The .run file
we have used is shown in Figure 5.9, and the corresponding output we obtain can be
seen in Figure 5.10. This output tells us that ω5 = 65 and also that a representation
of 65 with respect to the generators of the semigroup is

65 = 0× (11) + 1× (19) + 2× (23).

We can also write an alternative .run file that will directly calculate and display

param n;

set N := 1..n;

param a {N};

param s;

param i;

var X {N} integer, >= 0;

var K integer;

minimize T:

sum {j in N} a[j]*X[j];

subject to C:

sum {j in N} a[j]*X[j] = i + s*K;

Figure 5.7: File apery_set_member.mod

param n := 3;

param a :=

1 11

2 19

3 23;

Figure 5.8: File numerical_semigroup.dat

model apery_set_member.mod;

data numerical_semigroup.dat;

let s := 30;

let i := 5;

option solver gurobi;

solve;

display X;

display K;

Figure 5.9: File apery_set_member.run

5.4. APÉRY SET AND FROBENIUS PROBLEM 99

the whole content of the Apéry set for a certain s ∈ S. First, we have to drop
the param i := 5; line from the .run file, as it will be changed in each iteration
of the main loop, and modify the .run so that it will look like the one in Figure
5.11. Thus, we obtain Ap(S, 30) = {0, 11, 19, 22, 23, 33, 34, 38, 42, 44, 45, 46, 55, 56,
57, 61, 65, 66, 67, 69, 77, 78, 80, 84, 88, 89, 92, 100, 103, 111} (see Figure 5.12 for the ac-
tual output).

This algorithm also provides a way for calculating the Frobenius number of a

Gurobi 8.0.0: optimal solution; objective 65

3 simplex iterations

1 branch-and-cut nodes

X [*] :=

1 0

2 1

3 2

;

K = 2

Figure 5.10: Output for apery_set_member.run

model apery_set_member.mod;

data numerical_semigroup.dat;

let s := 30;

option solver gurobi;

param apery_set {0..s-1};

for {l in 0..s-1} {

let i := l;

solve;

let apery_set[l] := T;

}

display apery_set;

Figure 5.11: File apery_set.run

apery_set [*] :=

0 0 4 34 8 38 12 42 16 46 20 80 24 84 28 88

1 61 5 65 9 69 13 103 17 77 21 111 25 55 29 89

2 92 6 66 10 100 14 44 18 78 22 22 26 56

3 33 7 67 11 11 15 45 19 19 23 23 27 57

;

Figure 5.12: Output for apery_set.run

100 5. QUANTUM ALGORITHMS FOR NUMERICAL SEMIGROUPS

numerical semigroup. We recall that, for any numerical semigroup S and any integer
s ∈ S \ {0}, then

f(S) = max{Ap(S, s)} − s.

Thus, as the difficulty of obtaining f(S) this way increments with respect to the
number s we choose (we have to solve s ILPs), the smartest way of proceeding is
by solving it in the case where s = min(S \ {0}) (i.e., s = a1, as done by [61]).
The AMPL file that represents this approach is shown in Figure 5.13. In our case,
the output (Figure 5.14) tells us that f(S) = 81. All these files can be found in
the public GitHub repository [92]; however, a license for both AMPL and Gurobi is
needed in order to run them and obtain the same results (or any result at all).

What we have shown is a classical algorithm for obtaining the Apéry set and the
Frobenius number in a general manner that depends on a black box that solves an
ILP with global optimality. From now on we will explain the steps we have followed
in order to solve this ILP with an adiabatic quantum computer and, specifically,
with a D-Wave 2X machine (and also the obstacles we have encountered in that
path). In order to transform this ILP problem into the Ising model solved by the
D-Wave hardware, one step further involves changing its integer variables into a new
set of binary variables with at most a polynomial cost.

Definition 5.4.2. [93] A binary linear program, or 0-1LP, is defined in its canonical
form as:

min cTx
subject to: Ax = b

model apery_set_member.mod;

data numerical_semigroup.dat;

let s := a[1];

option solver gurobi;

param m default 0;

for {l in 0..s-1} {

let i := l;

solve;

if T > m then let m := T;

}

param f := m - s;

display f;

Figure 5.13: File frobenius_number.run

f = 81

Figure 5.14: Output for frobenius_number.run

5.4. APÉRY SET AND FROBENIUS PROBLEM 101

where x ∈ {0, 1}n, A ∈ Zn × Zm, b ∈ Zm and c ∈ Zn.

Both problems are polynomially equivalent, as shown in [93] (Theorem 13.6),
where an upper bound for the number of binary variables representing each inte-
ger variable from the original ILP problem is given. However, we can tight this
number of binary variables by using our knowledge of the problem and one of the
lower bounds of the Frobenius number given in [98] (ideally, we could use f(S)). In
1935, Russian mathematician Issai Schur proved in a lecture in Berlin [30, 98] the
following result:

Theorem 5.4.3. (I. Schur, 1935) Let S = 〈a1, ..., an〉 be a numerical semigroup.
Then,

f(S) ≤ (a1 − 1)(an − 1)− 1.

Thus, if we define

tj = 1 +

⌊
log2

(
(a1 − 1)(an − 1) + s− 1

aj

)⌋
for every j ∈ {1, . . . , n}, and

u = 1 +

⌊
log2

(
(a1 − 1)(an − 1) + s− i− 1

s

)⌋
we have given an upper bound for the number of bits needed to describe every
variable xj in the worst case (we can also run every known bound for the Frobenius
number, and stick to the minimum of them, but for now let us just use Schur’s
result). It follows that the transformation of our problem from ILP form to 0-1LP
delivers the minimization problem shown below:

min
n∑
j=1

aj

tj∑
l=0

2lxjl

subject to:
n∑
j=1

aj

tj∑
l=0

2lxjl = i+ s
u∑

m=0

2mkm

with xjl ∈ {0, 1} and km ∈ {0, 1} for all j, l and m contained in the summation
indices.

Let us come back to the definition of the Ising model. In it, we have binary
variables which can have the values -1 or 1. On the other hand, in our 0-1LP for
calculating the elements of the Apéry set the variables can be in 0 or 1. It is usually
more advantageous to redefine the Ising spin problem as a quadratic unconstrained
binary optimizacion problem, or QUBO, which consists of the minimization of the
objective function

Q(x1, . . . , xn) = c0 +
n∑
i=1

cixi +
∑

1≤i<j≤n

qijxixj,

with xi ∈ {0, 1}, thus changing the possible states of its variables from 1 and −1 to
1 and 0. The transformation follows from si = 1−2xi, and can be easily checked. In

102 5. QUANTUM ALGORITHMS FOR NUMERICAL SEMIGROUPS

fact, the documentation from D-Wave allows to program our problem directly into
a QUBO formulation [1], besides the Ising model formulation. One detail remains
to be figured out: QUBO problems have no constraints, but ours have one. How to
proceed?

The most common way to transform a constrained optimization problem into an
unconstrained one is by penalizing the constraints, putting them in the objective
function. In this manner, we can force the fulfillment of the constraints of the
problem by punishing the error committed in them. In our example, as we have a
single equality constraint, namely

n∑
j=1

ajxj = i+ sk,

we can force it to the objective function this way:

min
n∑
j=1

ajxj + λ(ν)

(
n∑
j=1

ajxj − i− sk

)2

where λ(ν) is updated after every iteration in the following way, until no change in
λ is obtained:

λ(ν+1) = λ(ν) + α ·

∣∣∣∣∣
n∑
j=1

ajxj − i− sk

∣∣∣∣∣
with α > 0.

In 0-1LP form, we obtain the following QUBO problem:

min
n∑
j=1

aj

tj∑
l=0

2lxjl + λ(ν)

(
n∑
j=1

aj

tj∑
l=0

2lxjl − i− s
u∑

m=0

2mkm

)2

,

with its corresponding penalty updating formula:

λ(ν+1) = λ(ν) + α ·

∣∣∣∣∣
n∑
j=1

aj

tj∑
l=0

2lxjl − i− s
u∑

m=0

2mkm

∣∣∣∣∣
with α > 0.

Now, we are going to test the performance of this new procedure for obtain-
ing the Apéry set (and the Frobenius number) via a classical solver. For that, we
have just to modify the original apery_set_member.mod file into a new one with
an unconstrained ILP, with the constraint penalized in the objective function as
previously exaplained. This new AMPL file can be found in Figure 5.15, along with
its corresponding .run file in Figure 5.16. Additionaly, we are going to keep track of
the number of iterations of the algorithm (i.e., ν), and on the values of λ(ν) needed
for the algorithm to stop. This way, if we start with λ(0) = 0, the output for this
algorithm is found in Figure 5.17. On the other hand, if we start with λ(0) = 100,

5.4. APÉRY SET AND FROBENIUS PROBLEM 103

param n;

set N := 1..n;

param a {N};

param s; #

param i; #

param lambda;

param rest;

var X {N} integer, >= 0;

var K integer;

minimize T:

sum {j in N} a[j]*X[j]

+ lambda*((sum {j in N} a[j]*X[j] - i - s*K)^2);

Figure 5.15: File apery_set_member_lagr.mod

the output is shown in Figure 5.18.

Foreseeably, the Apéry set we obtain for S and s = 30 is correct, but that should
not be a surprise as both optimization problems are equivalent to the original one.
What is of interest here is that a low starting point for λ implies a relatively large
number of iterations, which translates in more calls to our integer linear program-
ming solver than in the original constrained version. However, if we start with a
large enough value of λ, we can obtain the same results without additional calls to
the solver and just one iterarion for each of the elements of the Apéry set. On the
other hand, if we exceed in the value for λ, we would also need just one iteration
per ωi, but the solver would need more time in order to find the global optimum.
The latter behavior can be observed when taking into account the number of sim-
plex iterarions and branch-and-cut nodes that Gurobi needs for each of the problems.

Nevertheless, this unconstrained reformulation of the problem is not meant to be
solved by Gurobi or any other integer linear programming solver, but rather by an
ideal adiabatic quantum computer, and more concretely by one of the few D-Wave
machines that currently exist worldwide. Our unconstrained problem, in QUBO
form, is shown below (please note that, if x ∈ {0, 1}, then x = x2):

c0 +
u∑

m=0

cmkm +
n∑
j=1

(
tj∑
l=0

cjlxjl

)
+

∑
1≤j<j′≤n

 ∑
0≤l<l′≤min(tj ,tj′)

iqjl,j′l′xjlxj′l′

+
n∑
j=1

[
tj∑
l=0

(
u∑

m=0

qjl,mxjlkm

)]
+

∑
0≤m<m′≤u

qm,m′ ,

where

104 5. QUANTUM ALGORITHMS FOR NUMERICAL SEMIGROUPS

c0 = λ(ν)i2

cm = λ(ν) (22ms2 + 2m+1is)
cjl = 2laj + λ(ν)

(
22la2

j − 2l+1aji
)

qm,m′ = 2m+m′+1λ(ν)s2

qjl,m = 2l+m+1λ(ν)ajs
qjl,j′l′ = 2l+l

′+1λ(ν)ajaj′ .

Right now, an ideal quantum annealer should be able to solve our QUBO prob-
lem for finding the members of the Apéry set, provided that such a computer has
a sufficiently large enough amount of qubits, and also that the graph connecting
the qubits is complete. However, to date there are no quantum annealers that ful-
fill those requirements (they may be available in the future, though). The latest
quantum annealers commercially available are the D-Wave 2X, with 1152 and 3360
couplers (connections between adjacent qubits), and the D-Wave 2000Q, which has
2048 qubits and 6016 couplers. Their graphs are far from being complete, as every

model apery_set_member_lagr.mod;

data numerical_semigroup.dat;

let s := 30;

param apery_set {0..s-1};

param lambdas {0..s-1};

param iterations {0..s-1};

param it default 0;

option solver gurobi;

for {l in 0..s-1} {

let i := l;

let lambda := 0;

let it := 0;

let rest := 1;

repeat {

solve;

let rest := abs(sum {j in N} a[j]*X[j] - i - s*K);

let lambda := lambda + rest;

let it := it + 1;

} while rest != 0;

let apery_set[l] := T;

let lambdas[l] := lambda;

let iterations[l] := it;

}

display apery_set;

display iterations;

display lambdas;

Figure 5.16: File apery_set_lagr.run

5.4. APÉRY SET AND FROBENIUS PROBLEM 105

qubit in their grids are at most connected with six other qubits, as shown in Figure

apery_set [*] :=

0 0 4 34 8 38 12 42 16 46 20 80 24 84 28 88

1 61 5 65 9 69 13 103 17 77 21 111 25 55 29 89

2 92 6 66 10 100 14 44 18 78 22 22 26 56

3 33 7 67 11 11 15 45 19 19 23 23 27 57

;

iterations [*] :=

0 1 3 2 6 2 9 2 12 22 15 2 18 2 21 11 24 40 27 2

1 63 4 2 7 2 10 22 13 21 16 2 19 2 22 2 25 2 28 2

2 2 5 2 8 2 11 2 14 2 17 2 20 44 23 2 26 2 29 3

;

lambdas [*] :=

0 0 4 34 8 68 12 32 16 46 20 62 24 62 28 58

1 62 5 35 9 39 13 62 17 47 21 90 25 85 29 90

2 62 6 66 10 90 14 104 18 78 22 112 26 56

3 93 7 67 11 101 15 45 19 79 23 23 27 57

;

Figure 5.17: Output for apery_set_lagr.run and λ(0) = 0

apery_set [*] :=

0 0 4 34 8 38 12 42 16 46 20 80 24 84 28 88

1 61 5 65 9 69 13 103 17 77 21 111 25 55 29 89

2 92 6 66 10 100 14 44 18 78 22 22 26 56

3 33 7 67 11 11 15 45 19 19 23 23 27 57

;

iterations [*] :=

0 1 3 1 6 1 9 1 12 1 15 1 18 1 21 1 24 1 27 1

1 1 4 1 7 1 10 1 13 1 16 1 19 1 22 1 25 1 28 1

2 1 5 1 8 1 11 1 14 1 17 1 20 1 23 1 26 1 29 1

;

lambdas [*] :=

0 100 4 100 8 100 12 100 16 100 20 100 24 100 28 100

1 100 5 100 9 100 13 100 17 100 21 100 25 100 29 100

2 100 6 100 10 100 14 100 18 100 22 100 26 100

3 100 7 100 11 100 15 100 19 100 23 100 27 100

;

Figure 5.18: Output for apery_set_lagr.run and λ(0) = 100

106 5. QUANTUM ALGORITHMS FOR NUMERICAL SEMIGROUPS

5.21 (it may be less than that, as some qubits may be off after the last recalibration
of the machine).

The importance of the completeness of the graph is problem dependant. Our
QUBO instance, for example, has a complete connectivity graph between its vari-
ables. With an ideal quantum annealer we would have no problem, but with the
D-Wave machine it is mandatory to transform our problem graph into an alternative
graph that could be embedded into the Chimera graph. In other words, we have
to solve an instance of the subgraph isomorphism problem, which happens to be in
NP-complete. Even more, our problem may not be embeddable inside the D-Wave
(for example, for the 1152 qubit Chimera grid of the D-Wave 2X, the largest com-
plete graph that can be embedded into it is believed to be the K33). Research on
the subject of embedding a problem graph into D-Wave’s Chimera graph can be
found in [34] and [35], where the concepts of embedding and parameter setting are
explained.

There is a way to skip these limitations, by solving subinstances of our graph
instead of the complete graph. For that, D-Wave released a graph partitioning open
source library called qbsolv [26]. Its corresponding executable needs a certain kind
of file format (called .qubo), to work. For example, if our QUBO instance is defined
by

2.6x0 + 4.5x1 − 1.8x2 + 3.5x0x1 + 2x1x2,

where x0, x1, x2 ∈ {0, 1}, its corresponding .qubo file is the one shown in Figure
5.19. The format is quite: the first line always starts with p qubo 0, followed
by the number of variables, the number of nonzero diagonals, and the number of
nonzero couplings. The output obtained by qbsolv for this file can be seen in Figure
5.20.

p qubo 0 3 3 2

0 0 2.6

1 1 4.5

2 2 -1.8

0 1 3.5

1 2 2.0

Figure 5.19: Example of .qubo file

3 bits, find Min, SubMatrix= 47, -a o, timeout=2592000.0 sec

001

-1.80000 Energy of solution

0 Number of Partitioned calls, 1 output sample

0.03002 seconds of classic cpu time

Figure 5.20: Output for the example .qubo file

5.4. APÉRY SET AND FROBENIUS PROBLEM 107

Figure 5.21: Introducing a problem inside the D-Wave 2X

Please note that, in the previous paragraph, we have shown the solution that
qbsolv obtains for a certain instance of the problem. This is because qbsolv has
an auxiliary internal optimization solver based on the tabu search [58], which gives
a solution for the subproblems and then unifies all the solutions into the complete
one for all the variables. However, this classical method does not guarantee a global
solution, and is of no help to us in the general case. We can decide if qbsolv tries
to solve the problem with its tabu search, of if we prefer to connect to a D-Wave
machine.

Finally, our QUBO subproblem is solved with the D-Wave 2X via one of the
possible inputs allowed. The first one is shown in Figure 5.21, while the second one
is again a .qubo file obtained internally with qbsolv. As part of the project Joint
Research Unit Repsol-ITMATI (code file: IN853A 2014/03), we had the opportu-
nity to try the D-Wave 2X machine based on the University of Southern California.
However, due to the amount of subproblems needed to solve a proper instance of
the Frobenius problem or the Apéry set, it was impractical to do so with the scarce
amount of time given and the current size of the graph of the D-Wave 2X machine.
In the last chapter we discuss the conclusions at which we arrived during the process.

108 5. QUANTUM ALGORITHMS FOR NUMERICAL SEMIGROUPS

6

Conclusions and Future Work

What we have presented in this doctoral dissertation is a preliminary study of the
capabilities of quantum computation when it comes to solve numerical semigroup-
related problems. In order to do that, we have first defined what numerical semi-
groups are, and then, drawing upon the principles of computational complexity
theory, we prove that the problems we want to answer with hypothetical quantum
computers are in fact hard to solve. Thus, this work is a first attempt at solving
one of the most computationally demanding problems in basic algebra with this
emerging and somewhat promising computing paradigm. As have been explained,
calculating the Sylvester denumerant and the Frobenius number of a numerical semi-
group are not even known to be in the computational class NP (i.e., just deciding if
a certain integer is the Frobenius number or the Sylvester denumerant is a challeging
problem).

With that in mind, it is important to clarify that we did not expect in any mo-
ment to find polynomial-time quantum algorithms for those problems. As with the
Sankara stones, doing so would have triggered a series of actions that would have
eventually led us to never-ending fortune and glory. It is also important to take into
account that quantum computing is not a panacea for computationally hard prob-
lems. In fact, there are not many problems that have quantum algorithms faster
than their classical counterparts (without the involvement of oracles). Even more,
in those few special cases it remains to be proven yet that a classical algorithm com-
parable to the quantum one in terms of efficiency does not exist. The best example
is Shor’s algorithm: right now, it is the only known polynomial time algorithm for
the factoring problem; however, even though the general number field sieve (i.e.,
the most efficient classical factoring algorithm) is super-polynomial, it has not been
proven that there are no classical polynomial factoring algorithms. Proving so will
answer the question of whether there are NP problems not in P.

During these years we have also followed a lead (unrelated to quantum comput-
ing) that, if finally proven true, would strengthen the hard nature of the Frobenius
problem. There exist the possibility that the Frobenius number is not just one of
the problems in the class NP-hard, but also a problem in the class PSPACE-hard
(please note that NP ⊆ PSPACE and that the equality, although not properly dis-
carded yet, would be startling). Details of this remain, however, to be worked out
yet; due to time limitations we did not arrive to any definite —and, of course, math-

109

110 6. CONCLUSIONS AND FUTURE WORK

ematically proven— conclusion during the span of this doctoral dissertation.

As with quantum computing, to date the only algorithm that is proven to be
strictly more efficient that its classical counterpart is Grover’s Search. However, in
order to use this algorithm, one must have a way of identifying in a reasonable time
(i.e., polynomial with respect to the size of the input) whether a possible solution
is in fact a solution. This, of course, limits its usage to problems in the class NP,
and is the reason why we have solved the Sylvester denumerant problem with the
help of an oracle for the NSMP. There exists, however, the possibility that power-
ful quantum gate algorithms exist in their own right for the Sylvester denumerant
(without having to find the actual solutions for the NSMP) and also for the Frobe-
nius problem, but the search must continue from this point. The lack of results since
Shor and Grover gave birth to their clever ideas is, nonetheless, discouraging, and
may be an indicative that the only advantage of quantum computers with respect
to classical ones would and ever would be a quadratic speedup in database searches.
Furthermore, there are other problems that arise when trying to construct a quan-
tum computer in practice; we have not covered them here, but we refere to [6] for a
brief and clever introduction.

Regarding the algorithms for the Apéry set and the Frobenius number, there are
two aspects that need to be improved prior to completing a study of its feasibil-
ity and performance. First, the current graph (i.e., Chimera graph) architecture of
the available adiabatic quantum computers (i.e., the D-Wave machines) extremely
obstruct the resolution of problems that have an almost full connectivity index be-
tween its variables, as in this case (the use of qbsolv is just a temporary workaround,
or it should be as so). And second, current adiabatic quantum computers do not
guarantee global optimality, as opposed to the theoretical result deducted from
the adiabatic theorem; in reality, the D-Wave just make a few runs of the process
(instead of just one, as would be in the theoretical case) and, following a certain
probability distribution, try to guarantee that the best of the solutions obtained by
those runs is in fact the global solution to the problem. This solution, however,
cannot be proven to be the global optimum (as global optimality is not known to be
in the class NP), which makes useless our attempt to find those two combinatorial
invariants via current adiabatic quantum computers. In the future, with more reli-
able quantum annealers, however, this solution may prove to be effective and faster,
but for now it is just a theoretical method.

7

Bibliography

[1] D-Wave: Programming with QUBOs. Release 1.5.1-beta4, 09-1002A-B., tech.
rep., D-Wave Systems, Inc., 2016.

[2] D-Wave: Programming with QUBOs. Release 2.3, 09-1002A-B., tech. rep.,
D-Wave Systems, Inc., 2016.

[3] Gurobi Optimizer Reference Manual. http://www.gurobi.com, 2018. Ac-
cessed: 2019-02-23.

[4] S. Aaronson, P
?
= NP , in Open Problems in Mathematics, Springer, 2016,

pp. 1–122.

[5] S. Aaronson, G. Kuperberg, and C. Granade, The Complexity Zoo.
https://complexityzoo.uwaterloo.ca/Complexity_Zoo, 2005. Accessed:
2017-04-25.

[6] S. Aaronson and Z. Weinersmith, The Talk. http://www.smbc-comics.
com/comic/the-talk-3, 2016. Accessed: 2019-03-03.

[7] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Annals of
Mathematics, 160 (2004), pp. 781–793.

[8] D. Aharonov, W. Van Dam, J. Kempe, Z. Landau, S. Lloyd, and
O. Regev, Adiabatic quantum computation is equivalent to standard quantum
computation, SIAM Review, 50 (2008), pp. 755–787.

[9] T. Albash and D. A. Lidar, Adiabatic quantum computation, Reviews of
Modern Physics, 90 (2018), p. 015002.

[10] R. Apéry, Géométrie algébrique - sur les branches superlineaires des courbes
algebriques, Comptes Rendus Hebdomadaires des Séances de l’Académie des
Sciences, 222 (1946), pp. 1198–1200.

[11] , Irrationalité de ζ (2) et ζ (3), Astérisque, 61 (1979), p. 1.

[12] B. Aspvall and R. E. Stone, Khachiyan’s linear programming algorithm,
Journal of Algorithms, 1 (1980), pp. 1–13.

111

http://www.gurobi.com
https://complexityzoo.uwaterloo.ca/Complexity_Zoo
http://www.smbc-comics.com/comic/the-talk-3
http://www.smbc-comics.com/comic/the-talk-3

112 7. BIBLIOGRAPHY

[13] V. Baldoni, N. Berline, J. De Loera, B. Dutra, M. Koeppe,
and M. Vergne, Coefficients of Sylvester’s denumerant, arXiv preprint
arXiv:1312.7147, (2013).

[14] F. Barahona, On the computational complexity of Ising spin glass models,
Journal of Physics A: Mathematical and General, 15 (1982), p. 3241.

[15] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Mar-
golus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter,
Elementary gates for quantum computation, Physical Review A, 52 (1995),
p. 3457.

[16] M. Beck, I. M. Gessel, and T. Komatsu, The polynomial part of a
restricted partition function related to the Frobenius problem, The Electronic
Journal of Combinatorics, 8 (2001), p. 7.

[17] E. Bell, Interpolated denumerants and Lambert series, American Journal of
Mathematics, 65 (1943), pp. 382–386.

[18] J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics, 1 (1964),
pp. 195–200.

[19] P. Benioff, The computer as a physical system: a microscopic quantum me-
chanical Hamiltonian model of computers as represented by Turing machines,
Journal of Statistical Physics, 22 (1980), pp. 563–591.

[20] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani,
Strengths and weaknesses of quantum computing, SIAM Journal on Comput-
ing, 26 (1997), pp. 1510–1523.

[21] D. J. Bernstein and A. K. Lenstra, A general number field sieve imple-
mentation, in The Development of the Number Field Sieve, Springer, 1993,
pp. 103–126.

[22] E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM Journal
on Computing, 26 (1997), pp. 1411–1473.

[23] E. Bézout, Théorie générale des équations algébriques; par m. Bézout..., de
l’imprimerie de Ph.-D. Pierres, rue S. Jacques, 1779.

[24] F. Bloch, Nuclear induction, Physical Review, 70 (1946), p. 460.

[25] S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker, D. A.
Lidar, J. M. Martinis, and M. Troyer, Quantum annealing with more
than one hundred qubits, arXiv preprint arXiv:1304.4595, (2013).

[26] M. Booth, S. Reinhardt, and A. Roy, Partitioning optimization prob-
lems for hybrid classical/quantum execution, tech. rep., D-Wave Technical Re-
port, 2017.

[27] M. Born and V. Fock, Beweis des Adiabatensatzes, Zeitschrift für Physik,
51 (1928), pp. 165–180.

113

[28] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, Tight bounds on
quantum searching, arXiv preprint quant-ph/9605034, (1996).

[29] G. Brassard, P. Høyer, and A. Tapp, Quantum counting, in Proceedings
of the 25th International Colloquium on Automata, Languages and Program-
ming (ICALP), Springer, 1998, pp. 820–831.

[30] A. Brauer, On a problem of partitions, American Journal of Mathematics,
64 (1942), pp. 299–312.

[31] A. Brauer and J. E. Shockley, On a problem of Frobenius, Journal für
die Reine und Angewandte Mathematik, 211 (1962), pp. 215–220.

[32] J. Brooke, D. Bitko, G. Aeppli, et al., Quantum annealing of a disor-
dered magnet, Science, 284 (1999), pp. 779–781.

[33] J. Brooke, T. Rosenbaum, and G. Aeppli, Tunable quantum tunnelling
of magnetic domain walls, Nature, 413 (2001), p. 610.

[34] V. Choi, Minor-embedding in adiabatic quantum computation: I. The param-
eter setting problem, Quantum Information Processing, 7 (2008), pp. 193–209.

[35] , Minor-embedding in adiabatic quantum computation: II. Minor-
universal graph design, Quantum Information Processing, 10 (2011), pp. 343–
353.

[36] H. Cohen, A course in computational algebraic number theory, vol. 138,
Springer Science & Business Media, 2013.

[37] S. Cook, The complexity of theorem-proving procedures, in Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, ACM, 1971, pp. 151–
158.

[38] , The P versus NP problem, in The Millennium Prize Problems, American
Mathematical Society, 2006, pp. 87–104.

[39] T. S. Cubitt, D. Perez-Garcia, and M. M. Wolf, Undecidability of
the spectral gap, Nature, 528 (2015), p. 207.

[40] A. Currin, K. Korovin, M. Ababi, K. Roper, D. B. Kell, P. J.
Day, and R. D. King, Computing exponentially faster: implementing a
non-deterministic universal Turing machine using DNA, Journal of the Royal
Society Interface, 14 (2017), p. 20160990.

[41] D. Deutsch, Quantum theory, the Church-Turing principle and the universal
quantum computer, Proceedings of the Royal Society of London A: Mathemat-
ical, Physical and Engineering Sciences, 400 (1985), pp. 97–117.

[42] , Quantum computational networks, Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, 425 (1989),
pp. 73–90.

114 7. BIBLIOGRAPHY

[43] D. Deutsch and R. Jozsa, Rapid solution of problems by quantum compu-
tation, Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 439 (1992), pp. 553–558.

[44] Z. Diao, C. Huang, and K. Wang, Quantum counting: algorithm and
error distribution, Acta Applicandae Mathematicae, 118 (2012), pp. 147–159.

[45] P. A. M. Dirac, A new notation for quantum mechanics, Mathematical
Proceedings of the Cambridge Philosophical Society, 35 (1939), pp. 416–418.

[46] D. P. DiVincenzo, Two-bit gates are universal for quantum computation,
Physical Review A, 51 (1995), p. 1015.

[47] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical
description of physical reality be considered complete?, Physical Review, 47
(1935), p. 777.

[48] A. Ekert and R. Jozsa, Quantum computation and Shor’s factoring algo-
rithm, Reviews of Modern Physics, 68 (1996), p. 733.

[49] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and
D. Preda, A quantum adiabatic evolution algorithm applied to random in-
stances of an NP-complete problem, Science, 292 (2001), pp. 472–475.

[50] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum com-
putation by adiabatic evolution, arXiv preprint quant-ph/0001106, (2000).

[51] W. Feller, An Introduction to Probability Theory and its Applications, 1957.

[52] R. P. Feynman, Simulating physics with computers, International Journal
of Theoretical Physics, 21 (1982), pp. 467–488.

[53] R. Fourer, D. M. Gay, and B. W. Kernighan, A modeling language
for mathematical programming, Management Science, 36 (1990), pp. 519–554.

[54] , AMPL: A Modeling Language for Mathematical Programming, Duxbury
Press, 2002.

[55] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman, New York, 1979.

[56] W. Gerlach and O. Stern, Der experimentelle Nachweis der Rich-
tungsquantelung im Magnetfeld, Zeitschrift für Physik, 9 (1922), pp. 349–352.

[57] J. Gill, Computational complexity of probabilistic Turing machines, SIAM
Journal on Computing, 6 (1977), pp. 675–695.

[58] F. Glover, Future paths for integer programming and links to artificial in-
telligence, Computers & Operations Research, 13 (1986), pp. 533–549.

[59] O. Goldreich, Computational complexity: a conceptual perspective, ACM
SIGACT News, 39 (2008), pp. 35–39.

115

[60] D. Gottesman, The Heisenberg representation of quantum computers, arXiv
preprint quant-ph/9807006, (1998).

[61] H. Greenberg, An algorithm for a linear Diophantine equation and a prob-
lem of frobenius, Numerische Mathematik, 34 (1980), pp. 349–352.

[62] R. Greenlaw and H. J. Hoover, Fundamentals of the theory of compu-
tation: principles and practice, Morgan Kaufmann, 1998.

[63] L. K. Grover, A fast quantum mechanical algorithm for database search, in
Proceedings of the 28th Annual ACM Symposium on Theory of Computing,
ACM, 1996, pp. 212–219.

[64] , Quantum mechanics helps in searching for a needle in a haystack, Phys-
ical Review Letters, 79 (1997), p. 325.

[65] , From Schrödinger’s equation to the quantum search algorithm, American
Journal of Physics, 69 (2001), pp. 769–777.

[66] I. Hen, Period finding with adiabatic quantum computation, EPL (Europhysics
Letters), 105 (2014), p. 50005.

[67] E. Ising, Report on the theory of ferromagnetism, Zeitschrift für Physik, 31
(1925), pp. 253–258.

[68] M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze,
N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk,
et al., Quantum annealing with manufactured spins, Nature, 473 (2011),
p. 194.

[69] R. Jozsa, Quantum factoring, discrete logarithms, and the hidden subgroup
problem, Computing in Science & Engineering, 3 (2001), pp. 34–43.

[70] R. Jozsa and N. Linden, On the role of entanglement in quantum-
computational speed-up, Proceedings of the Royal Society of London A: Math-
ematical, Physical and Engineering Sciences, 459 (2003), pp. 2011–2032.

[71] T. Kadowaki and H. Nishimori, Quantum annealing in the transverse
Ising model, Physical Review E, 58 (1998), p. 5355.

[72] T. Kato, On the adiabatic theorem of quantum mechanics, Journal of the
Physical Society of Japan, 5 (1950), pp. 435–439.

[73] L. G. Khachian, A polynomial algorithm in linear programming, Doklady
Akademii Nauks SSR, 244 (1979), pp. 1093–1096.

[74] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by
simulated annealing, Science, 220 (1983), pp. 671–680.

[75] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bus-
sonnier, J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Cor-
lay, et al., Jupyter Notebooks: a publishing format for reproducible compu-
tational workflows, in 20th International Conference on Electronic Publishing,
2016, pp. 87–90.

116 7. BIBLIOGRAPHY

[76] D. E. Knuth, The Art of Computer Programming, vol. 1: Fundamental
Algorithms, Addison-Wesley, 1968.

[77] D. C. Kozen, Automata and Computability, Springer Science & Business
Media, 2012.

[78] M. Kraitchik, Recherches sur la théorie des nombres, vol. 1, Gauthier-
Villars, 1924.

[79] R. E. Ladner, On the structure of polynomial time reducibility, Journal of
the ACM, 22 (1975), pp. 155–171.

[80] B. Lanyon, T. Weinhold, N. K. Langford, M. Barbieri, D. James,
A. Gilchrist, and A. White, Experimental demonstration of a compiled
version of Shor’s algorithm with quantum entanglement, Physical Review Let-
ters, 99 (2007), p. 250505.

[81] D. H. Lehmer and R. E. Powers, On factoring large numbers, Bulletin
of the American Mathematical Society, 37 (1931), pp. 770–776.

[82] A. K. Lenstra, H. W. Lenstra, M. S. Manasse, and J. M. Pol-
lard, The number field sieve, in The Development of the Number Field Sieve,
Springer, 1993, pp. 11–42.

[83] L. A. Levin, Universal sequential search problems, Problemy Peredachi In-
formatsii, 9 (1973), pp. 115–116.

[84] S. Lomonaco, Shor’s quantum factoring algorithm, Proceedings of Symposia
in Applied Mathematics, 58 (2002), pp. 161–180.

[85] C.-Y. Lu, D. E. Browne, T. Yang, and J.-W. Pan, Demonstration of a
compiled version of Shor’s quantum factoring algorithm using photonic qubits,
Physical Review Letters, 99 (2007), p. 250504.

[86] Y. Manin, The computable and not computable (in Russian), 1980.

[87] C. C. McGeoch, Adiabatic quantum computation and quantum annealing:
Theory and practice, Synthesis Lectures on Quantum Computing, 5 (2014),
pp. 1–93.

[88] A. Messiah, Quantum Mechanics, vol. 1, John Wiley & Sons, New York,
1958.

[89] A. Mizel, D. A. Lidar, and M. Mitchell, Simple proof of equivalence
between adiabatic quantum computation and the circuit model, Physical Review
Letters, 99 (2007), p. 070502.

[90] M. A. Morrison and J. Brillhart, A method of factoring and the fac-
torization of F7, Mathematics of Computation, 29 (1975), pp. 183–205.

[91] M. A. Nielsen and I. Chuang, Quantum computation and quantum infor-
mation, Cambridge University Press, 2002.

117

[92] J. Ossorio-Castillo, jqnoc/numsem: numsem console. https://doi.org/
10.5281/zenodo.1257967, 2018.

[93] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: al-
gorithms and complexity, Courier Corporation, 1998.

[94] C. Pomerance, Analysis and comparison of some integer factoring algo-
rithms, Computational Methods in Number Theory, Part I, (1982), pp. 89–
139.

[95] , The quadratic sieve factoring algorithm, in Workshop on the Theory and
Application of of Cryptographic Techniques, Springer, 1984, pp. 169–182.

[96] , A tale of two sieves, Notices of the American Mathematical Society, 43
(1996), pp. 1473–1485.

[97] J. L. Raḿırez-Alfonśın, Complexity of the Frobenius problem, Combina-
torica, 16 (1996), pp. 143–147.

[98] , The Diophantine Frobenius problem, vol. 30, Oxford University Press on
Demand, 2005.

[99] B. W. Reichardt, The quantum adiabatic optimization algorithm and local
minima, in Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, ACM, 2004, pp. 502–510.

[100] J. Roland and N. J. Cerf, Quantum search by local adiabatic evolution,
Physical Review A, 65 (2002), p. 042308.

[101] J. C. Rosales and P. A. Garćıa-Sánchez, Numerical semigroups, vol. 20,
Springer Science & Business Media, 2009.

[102] G. Rose and W. Macready, An introduction to quantum annealing, D-
Wave Systems, (2007).

[103] E. Schrödinger, An undulatory theory of the mechanics of atoms and
molecules, Physical Review, 28 (1926), p. 1049.

[104] , Discussion of probability relations between separated systems, Mathemat-
ical Proceedings of the Cambridge Philosophical Society, 31 (1935), pp. 555–
563.

[105] P. W. Shor, Algorithms for quantum computation: discrete logarithms and
factoring, in Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, IEEE, 1994, pp. 124–134.

[106] D. R. Simon, On the power of quantum computation, SIAM Journal on Com-
puting, 26 (1997), pp. 1474–1483.

[107] M. Sipser, The history and status of the P versus NP question, in Proceedings
of the 24th Annual ACM Symposium on Theory of Computing, ACM, 1992,
pp. 603–618.

https://doi.org/10.5281/zenodo.1257967
https://doi.org/10.5281/zenodo.1257967

118 7. BIBLIOGRAPHY

[108] , Introduction to the theory of computation, vol. 2, Thomson Course Tech-
nology Boston, 2006.

[109] J. J. Sylvester, On the partition of numbers, Quarterly Journal of Pure and
Applied Mathematics, 1 (1857), pp. 141–152.

[110] , Outlines of seven lectures on the partitions of numbers, Proceedings of
the London Mathematical Society, 1 (1896), pp. 33–96.

[111] A. M. Turing, On computable numbers, with an application to the Entschei-
dungsproblem, Proceedings of the London Mathematical Society, 2 (1937),
pp. 230–265.

[112] W. Van Dam, M. Mosca, and U. Vazirani, How powerful is adiabatic
quantum computation?, in Foundations of Computer Science, 2001. Proceed-
ings. 42nd IEEE Symposium on, IEEE, 2001, pp. 279–287.

[113] L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H.
Sherwood, and I. L. Chuang, Experimental realization of Shor’s quantum
factoring algorithm using nuclear magnetic resonance, Nature, 414 (2001),
p. 883.

[114] N. Xu, J. Zhu, D. Lu, X. Zhou, X. Peng, and J. Du, Quantum fac-
torization of 143 on a dipolar-coupling nuclear magnetic resonance system,
Physical Review Letters, 108 (2012), p. 130501.

[115] A. C.-C. Yao, Quantum circuit complexity, in Proceedings of 1993 IEEE
34th Annual Foundations of Computer Science, IEEE, 1993, pp. 352–361.

	Introduction
	Numerical Semigroups and the Frobenius problem
	Numerical Semigroups
	Computational Complexity Theory
	Computational Complexity of the Frobenius Problem and the NSMP

	Quantum Computation
	Introduction
	Quantum Turing Machines
	Quantum Bits and Quantum Entanglement
	Quantum Circuits
	Adiabatic Quantum Computing

	Quantum Algorithms
	Introduction
	Deutsch's Algorithm
	Deutsch–Jozsa Algorithm
	Simon's Algorithm
	Shor's Factoring Algorithm
	Grover's Search Algorithm
	Quantum Counting

	Quantum Algorithms for the Combinatorial Invariants of Numerical Semigroups
	Introduction
	thesis-1.cpt
	Sylvester Denumerant and Numerical Semigroup Membership
	Apéry Set and Frobenius Problem

	Conclusions and Future Work
	Bibliography

