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Abstract

One of the key goals of rewriting logic from its beginning has been to provide a se-
mantic and logical framework in which many models of computation and languages
can be naturally represented. There is by now very extensive evidence support-
ing the claim that rewriting logic is indeed a very flexible and simple logical and
semantic framework. From a language design point of view the obvious question
to ask is: how can a rewriting logic language best support logical and semantic
framework applications, so that it becomes a metalanguage in which a very wide
variety of logics and languages can be both semantically defined, and implemented?
Our answer is: by being reflective. This paper discusses our latest language design
and implementation work on Maude as a reflective metalanguage in which entire
environments—including syntax definition, parsing, pretty printing, execution, and
input/output—can be defined for a language or logic L of choice.

1 Introduction

This paper is an overview of our latest language design and implementation
work on Maude. The goals of language design and implementation are at the
service of the uses that we envision for Maude, and in turn, these should help
furthering the overall goals of the rewriting logic research program.

We are particularly interested in supporting uses of rewriting logic as a
logical and semantic framework, in which many different logics, models of
computation, and languages can be represented, can be given a precise se-
mantics, and can be executed. Since rewriting logic is used as what we might
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call a metalogic, it seems very natural to conceive a rewriting logic language
as a metalanguage, in which we can create executable environments for many
other languages and logics. Such metalanguage capabilities are among our
highest priorities in designing Maude.

Rewriting logic is itself reflective [12,7]. By efficiently supporting this re-
flection in Maude through its predefined module META-LEVEL, we in fact obtain
a very useful gateway to the metatheory of rewriting logic, enabling Maude
to be used as a metalanguage. The essential reason for the appropriateness
of this solution is that the desired representation maps and environments ma-
nipulate metalevel entities such as program or specification modules in the
object language of interest and in Maude. Reflection then gives us the de-
sired disciplined access to such a metalevel within the logic, and underlies
very generic techniques for syntax definition, parsing, pretty printing, and
input/output that allow us to build language environments in Maude. We ex-
plain all this in more detail—and how it is supported by the Maude language
and implementation—in the rest of the paper.

It is useful to distinguish a CoreMaude sublanguage of flat functional
and system modules—corresponding, respectively, to equational and rewriting
logic specifications that do not have any submodules. This core language is
efficiently supported by Maude’s rewriting engine, as it is discussed—along
with other aspects of the Maude system—in Section 2. The reflective capabil-
ities are then supported by the module META-LEVEL. Section 3 explains how
this module provides the cornerstone for making Maude highly extensible and
flexible. For extending Maude, and, more generally, for creating an environ-
ment for any other language £ using Maude, we need generic syntax defini-
tion, meta-parsing, and meta-pretty printing capabilities that can deal with
expressions in any language, including languages like Maude whose modules
have user-definable syntax. And we need a general facility for input/output
that can be customized for each language of interest. Section 4 explains how
all this can be done in Maude thanks to its reflective design. We conclude the
paper with some remarks about related work and future plans.

2 The CoreMaude Interpreter

The Maude system is built around the CoreMaude interpreter, which is im-
plemented in C4++ and consists of two parts, each of which is made up of a
number of components.

2.1 The Rewrite Engine

The rewrite engine is an improved version of that described in [11]. The
overall design is highly modular and does not contain any Maude-specific code.
Two key components are the “core” module and the “interface” module. The
“core” module contains classes for objects which are not specific to a particular
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theory, such as equations, rules, sorts, and connected components of sorts. The
“interface” module contains abstract base classes for objects that may have
a different representation in different equational theories, such as symbols,
term nodes, dag nodes, and matching automata. New equational theories can
be “plugged in” by deriving from the classes in the “interface” module. To
date, all combinations of associativity, commutativity, left and right identity,
and idempotence have been implemented apart from those that contain both
associativity and idempotence. New built-in symbols with special rewriting
(equation or rule) semantics may be easily added.

The engine is designed to provide the look and feel of an interpreter with
source level tracing and the possibility of adding user interrupts and debugging
facilities. These goals prevent a number of optimizations that one would nor-
mally implement in a compiler, such as transforming the user’s term rewriting
system, or keeping pending evaluations on a stack and only building reduced
terms. The actual implementation is a semi-compiler where the term rewrit-
ing system is compiled to a system of tables and automata which is then
interpreted.

2.2  The Mizfiz Frontend

The mixfix frontend consists of a bison/flex based parser for Maude’s surface
syntax, a grammar generator (which generates the context free grammar for
the mixfix parts of Maude over the user’s signature), a context free parser,
the built-in functions for the metalevel, together with a considerable amount
of “glue” code which holds everything together. Many of the C++ classes in
this part of the system are derived from those in the rewrite engine.

2.3 The SCP Parsing Algorithm

The current version of Maude implements a parser based on the SCP parsing
algorithm [31]. Basically, SCP is a bidirectional, bottom-up and event-driven
parser for unrestricted context-free grammars. From a mathematical point of
view, we have proved that SCP is sound and complete for the set of CFGs.
From a computational perspective, SCP avoids overparsing [30], a common
problem of CF parsers like Earley, chart or GLR. The use of multi-virtual
trees [29] at the level of representation and the relations of coverage, partial
derivability and adjacency as top-down predictions over the basic bottom-up
strategy, obtain a high level of efficiency without diminishing the generality
of the algorithm.

2.4 Other Aspects of the System

The current Maude system exhibits many other important properties. It sup-
ports a metalevel with efficient rewriting and representation-shifting opera-
tions. Heavy use is made of the rewrite engine’s extensible design in the
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implementation of many aspects of the metalevel. The current mixfix fron-
tend supports flat functional and system modules, i.e., there is little or no
support for importation, renaming, parameterization or object-oriented mod-
ules. Typical performance with the current version is 800K-840K free-theory
rewrites per second and 27K-111K AC-theory rewrites per second on standard
hardware (300MHz P6). The figure for AC rewriting is highly dependent on
the complexity of the AC patterns (AC matching is NP-complete) and the
size of the AC subjects. The above results were obtained using fairly simple
linear and non-linear patterns and large (hundreds of nested AC operators)
subjects.

3 The Module META-LEVEL

Informally, a reflective logic is a logic in which important aspects of its metathe-
ory can be represented at the object level in a consistent way, so that the
object-level representation correctly simulates the relevant metatheoretic as-
pects. In other words, a logic which can be faithfully interpreted in itself.
Rewriting logic is a reflective logic [12,7] in the precise sense that there is
a finitely presented wuniversal rewrite theory U that can simulate all other
finitely presented theories, including itself. Maude’s language design and im-
plementation make systematic use of this fact to give the user a gateway to the
metatheory of rewriting logic in a clear and principled way. This gateway is
the predefined functional module META-LEVEL, that provides the user with key
functionality in the universal theory for rewriting logic. In other words, the
module META-LEVEL can be seen as a (partial) specification of the metatheory
of rewriting logic. In particular, in the module META-LEVEL.:

e Maude terms can be reified as elements of a data type Term of terms;
* Maude modules can be reified as terms in a data type Module of modules;

e the processes of reducing a term to normal form in a functional module
and of finding whether such a normal form has a given sort are reified by a
function meta-reduce;

* the process of applying a rule of a system module to a subject term is reified
by a function meta-apply;

e the process of rewriting a term in a system module using Maude’s default
interpreter is reified by a function meta-rewrite; and

e parsing and pretty printing of a term in a signature, as well as key sort
operations such as comparing sorts in the subsort ordering of a signature
are also reified by corresponding metalevel functions.

The operations meta-reduce, meta-apply, and meta-rewrite, the pars-
ing and pretty printing operations, and the sort operations, are all functions
equationally definable in the module META-LEVEL. However, for efficiency and
convenience, they are built-in functions in Maude. The Maude implementa-
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tion produces the exact same behavior as if META-LEVEL had been defined
as a normal functional Maude module, that could itself be represented as a
term of sort Module in META-LEVEL. In this way, a “reflective tower” with an
arbitrary number of levels of reflection is supported. A detailed explanation
of the signature and operations of the current version of META-LEVEL is given
in [8].

Notice that, since the Maude system is essentially a particular implemen-
tation of the metatheory of rewriting logic, the module META-LEVEL can also
be used as a gateway to the Maude system itself, so that the user can ef-
fectively re-design Maude (in Maude) to fit his/her particular computational
needs. Following this line of thought:

¢ Clavel and Meseguer [13,7] have shown how user-definable internal strategy
languages, that typically extend the module META-LEVEL, can be used to
change the (default) operational semantics of Maude for system modules;

e Durdn and Meseguer [15] have explained how Maude’s parameterized pro-
gramming style in the Clear and OBJ tradition [5,17] can be internalized
in Maude in an extension of META-LEVEL and enriched with new modes of
parameterization, new methods of program composition, and new ways of
defining views of other program modules; and

» Maude’s (default) syntax for programs can be re-defined in an extension of
META-LEVEL, so that programs written in a new user-defined syntax will be
understood by Maude’s parser (see Sections 4.1 and 4.2).

This potentiality of the module META-LEVEL as a building block that users
can employ to build customized versions of Maude has inspired us to make
it the cornerstone of the Maude system design. The part of the Maude sys-
tem implemented in C++ (the CoreMaude interpreter presented in Section 2)
basically consists of the rewrite engine and a parser for flat modules. The
rest of the system is fully specified in Maude as an extension of the module
META-LEVEL. We plan to further optimize the module META-LEVEL in order to
make metalevel computations even more efficient, and to extend it with new
built-in functions to increase its usability and range of applications.

4 Maude as a Metalanguage

One of the key goals of rewriting logic from its beginning has been to provide a
semantic framework in which many models of computation—particularly con-
current and distributed ones—and languages can be naturally represented.
Because of the intrinsic duality between logic and computation that rewriting
logic supports, the very same reasons making rewriting logic a suitable seman-
tic framework, make it also an attractive logical framework [20] to represent
many different logics. Thanks to the sustained efforts of many researchers,
particularly in the ELAN, Pisa, Stanford, and Maude teams, there is by now
very extensive evidence supporting the claim that rewriting logic is indeed a
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very flexible and simple semantic framework [21,23,24,4], and logical frame-
work [20,18,34,19,3,32,6,14,7,10]. Moreover, object-oriented design languages,
architectural description languages, and languages for distributed components
also have a natural semantics in rewriting logic [35,25,33,27,28].

What is common to all these applications is that the models of computa-
tion, logics, or languages are represented in rewriting logic by mappings of the
form

® : L — RWlLogic.

From a language design point of view the obvious question to ask is: how
can a rewriting logic language best support such representation maps, so that
it becomes a metalanguage in which a very wide variety of programming,
specification, and design languages, and of computational and logical systems
can be both semantically defined, and implemented in it?

Our answer is: by being reflective. Specifically, we can define an abstract
data type Module, representing modules in the logic or language £, and in-
ternalize a representation map ® as an equationally defined function

® : Module, — Module,

where Module is the data type representing finitely presentable rewrite theories
in the language—in Maude this data type is part of the META-LEVEL module
(see Section 3). In fact, thanks to the general metaresult of Bergstra and
Tucker [2], any computable representation map ® can be specified in this way
by a finite number of Church-Rosser and terminating equations. Using this
metalevel gateway, we can then execute in Maude the rewrite theory ®(M)
associated to a module M in L. This has been done, for example, for linear
logic in [7], for structured Maude modules in [15], and could be done for a
very wide range of other languages and logics using the same method.

In practice, however, we would like to be able not only to represent and
transform the modules of a language £ as terms of a data type Module,
within Maude. We would like to use Maude to generate a whole environment
for £, including a facility for defining and modifying the language’s syntax, an
input/output facility, a parser, a pretty printer, and an execution environment
for it. Furthermore, we would like to be able to do this for languages that—Ilike
Maude itself, and many other formal specification languages—have modules
with user-definable syntax, so that expressions in those modules cannot be
parsed with a fixed syntax for the language, but need to be parsed with the
particular syntax introduced in the module.

4.1 Syntax Definition

In order to generate in Maude a whole environment for a language L, the first
thing we need to do is to define the syntax for £L-modules. This can be done by
extending the module META-LEVEL with a data type Module, for £-modules,
and with other auxiliary data types for commands and other constructs. This
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can be easily and naturally done using the mixfix frontend, and the built-in
data types Token (any identifier) and Bubble (any string of identifiers). The
intuition behind these types is that they correspond to pieces of a module
in a language that can only be parsed once the grammar introduced by the
signature of the module is available.

The idea is that for a language that allows modules with user-definable
syntax—as it is the case of Maude—it is natural to see its syntax as a combined
syntax, at two different levels: what we may call the top level syntax of the
language, and the user-definable syntax introduced in each module. The data
types Token and Bubble allow us to reflect this duality of levels in the syntax
definition.

To illustrate these concepts, suppose that we want to define the syntax of
Maude in Maude. Consider the following Maude module:

fmod NAT3 is

sort Nat3 .

op 0 : -> Nat3 .

op s. : Nat3 -> Nat3 .

eq|sss0|=|0
endfm

Notice that the strings of characters inside the boxes are not part of the
top level syntax of Maude. In fact, they can only be parsed with the grammar
associated to the signature of the module NAT3. A correct and useful (in terms
of defining afterwards a meaningful parser) definition of the syntax of Maude
in Maude must reflect this duality of syntax levels. We show below parts of
the module MAUDE that defines the syntax for functional modules in Maude:

fmod MAUDE is
sort PreModule PreCommand .
subsort Decl < DecllList
op eq_=_. : Bubble Bubble -> Decl .
op fmod_is_endfm : Token DeclList -> PreModule
op red in_: : Token Bubble -> PreCommand .

Notice how we explicitly declare operators that correspond to the top level
syntax of Maude, and represent as terms of sort Bubble those pieces of the
module that can only be parsed with the user-defined syntax; for example,
the left and righthand sides of an equation.

Then, the functional module NAT3 above can be parsed as a term of sort
PreModule in MAUDE. The name of this sort reflects the fact that not all terms
of PreModule actually represent Maude modules. In particular, for a term of
sort PreModule to represent a Maude module all the Bubbles must be correctly
parsed in the user-defined syntax. We will come back to this important point
in the next section. Finally, notice that we have also defined the syntax for
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commands like reduce in Maude. We will see in Section 4.4 how the user can
define the semantics of these commands.

4.2 Parsing and Pretty Printing

A built-in function meta-parse is declared in META-LEVEL with syntax
op meta-parse : Module Bubble -> Term .

The function meta-parse(M, i;...i,) checks whether the string of iden-
tifiers iy .. .1, is a well-formed term in the module represented by M; if this is
the case, meta-parse returns the representation of 7; ..., as a term of sort
Term in META-LEVEL; otherwise, it returns error.

This built-in function can be very useful to specify in Maude an efficient
parser for a language £ that allows modules with user-definable syntax. For
example, a parser for Premodules in Maude essentially consists of a function
parse-premodule with syntax

op parse-premodule : PreModule -> Module?

Given a PreModule M, parse-premodule generates, first, a Module M’ that
represents a module in Maude with the exact same signature as M but without
equations; then, parse-premodule attempts to transform the PreModule M
into a Module M" by reducing each Bubble b in M to a Term ¢, where ¢ is the
successful result of meta-parse(M’,b). In case of failure, an error term in the
supersort Module? of Module is returned.

The inverse function to meta-parse is also included as a built-in function
in the module META-LEVEL, with syntax

op meta-pretty-print : Module Term -> Bubble

It takes as arguments the representation of a module M and the representation
of a term ¢. It returns a string of identifiers produced by pretty printing ¢ in
the syntax given by M.

4.8  Module Algebra and Execution

We are interested in using Maude to build environments for languages £ such
as formal specification languages and modular programming languages whose
modules can have user-definable syntax. In addition, such modules can be
highly structured and parameterized. That is, there can be a rich collection
of module composition operations endowing £ with a module algebra. In such
cases we typically have two data types of modules, a data type Module, of
flat or unstructured modules, and a more general data type StrModule, of
structured modules.

The point is that both data types and all the module algebra operations
for £ can be defined within Maude as an extension of the module META-LEVEL.
In this way, the environment that we can build for £ using Maude can also
support all the module composition operations of £. Among those module
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operations a common and important one is flattening, that is, the process of
passing from a structured module to its unstructured flat form. This can be

understood as a function

b
StrModule, i> Module,.

Since modularity constructs can change from language to language, it may
be simpler to represent £ in rewriting logic by representing only its flat mod-
ules, that is, by a function ® : Module; — Module which makes the language
L executable on top of Maude. But using the function (_)” we can also make
structured modules in £ executable by means of the function composition

b _
StrModule, = Module, — Module.

The first most obvious language £ to which we can apply these ideas
is Maude itself. The CoreMaude sublanguage has flat modules represented
by the data type Module. But general Maude modules can be structured
and parameterized, and can contain very complex module expressions that
instantiate and rename several, possibly parameterized, modules; and all this
can also happen for object-oriented modules. A module algebra for Maude
written in Maude is presented in [15]. In particular, such an algebra contains
as well a flattening function making structured Maude modules executable in
the Maude engine.

4.4 Input/Output

Using object-oriented concepts, we can specify in Maude a general input /output
facility provided by a module LOOP that extends the module META-LEVEL into

a generic read-eval-print loop. This facility can then be specialized for each

language £. There is a class I/0 of input/output objects acting on behalf of
users, with two attributes: an input and an output buffer storing Bubbles.

There is also a class System with an input buffer of sort Input, which is de-

fined as a supersort of PreModule and PreCommand, an output buffer of sort

Bubble, and an attribute of sort Database. The sort Database is left com-

pletely unspecified, so that, depending on the language L of interest it can

be specialized accordingly. For example, for Maude it will contain the current

database of modules already entered in the system.

subsorts PreCommand PreModule < Input .
class I/0 | input : Bubble, output : Bubble .
class System | db : Database, input : Input, output : Bubble .

The module LOOP provides a persistent pair of objects: one of class I/0 called
user, and one of class System called system that interact with each other by
exchanging data in and out between their buffers.

For each particular language both the sort Database for the system object
and the additional rewrite rules defining the system behavior are specified
according to the specific details of the language in question. We illustrate
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below the case of Maude. Processing of a PreModule once it has been entered
into the system is done by the rule

var DB : Database . var PM: PreModule .
var I : Identifier . var B : Bubble .

rl [premodule]
< system : System | db : DB, input : PM >
=> < system : System | db : processPreModule(PM, DB),
input : empty > .

The function processPreModule attempts to parse the PreModule using
the function parse-premodule, and, if it succeeds, it introduces the resulting
Module into the database.

Then, for user-defined commands as red in _:_, we can define rules of the
form

rl [reduce]
< system : System | db : DB, input : red in I : B . >
=> < system : System | input : empty,
output : meta-pretty-print(getModule(I, DB),
meta-reduce (getModule (I, DB),
meta-parse (getModule(I, DB), B))) > .

where getModule is a function that extracts from the database the flat module
whose name is given in its first argument.

5 Concluding Remarks

We have explained our current design and implementation work to support
logical and semantic framework applications of Maude as a rewriting logic
metalanguage. This work should be seen as a further step in the context of
previous efforts to use algebraic languages to give executable semantic defi-
nitions of other languages, including OBJ [16], ASF+SDF [1], action seman-
tics [26], and ELAN [18]. What seems to be new is the systematic use of
reflection to achieve more powerful metalanguage functionalities, as well as
the capacity to deal with languages that can be extended by user-definable
syntax. In particular, when these capabilities are applied to Maude itself,
they allow new very flexible ways of extending the language and its module
operations, and of changing its syntax.

Much more work remains ahead. The first, most immediate goal is the
upcoming release of Maude in the next few months, that will include the
metalanguage capabilities described here. This will enable many new logi-
cal and semantic framework applications to be developed, such as execution
environments for logics, theorem provers, architecture description languages,
specification languages, and natural language processing systems. After the
release of Maude we will probably concentrate on further extensions of the lan-
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guage such as built-in unification modulo different equational theories—that
will permit narrowing computations—, built-in objects and foreign interface
modules, and Mobile Maude, a distributed and mobile extension. We will also
work on further developing Maude’s theorem proving environment [9].
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