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Resumen

Los problemas de optimización combinatorios han sido ampliamente estudiados en la

literatura especializada desde mediados del siglo pasado. No obstante, en las últimas

décadas ha habido un cambio de paradigma en el tratamiento de problemas cada vez

más realistas, en los que se incluyen fuentes de aleatoriedad e incertidumbre en los

datos, múltiples criterios de optimización y múltiples niveles de decisión. Esta tesis

se desarrolla en este contexto. El objetivo principal de la misma es el de construir

modelos de optimización que incorporen aspectos inciertos en los parámetros que

de�nen el problema así como el desarrollo de modelos que incluyan múltiples niveles

de decisión. Para dar respuesta a problemas con incertidumbre usaremos los modelos

Minmax Regret de Optimización Robusta, mientras que las situaciones con múltiples

decisiones secuenciales serán analizadas usando Optimización Binivel.

En los Capítulos 2, 3 y 4 se estudian diferentes problemas de decisión bajo incer-

tidumbre a los que se dará una solución robusta que proteja al decisor minimizando

el máximo regret en el que puede incurrir. El criterio minmax regret analiza el com-

portamiento del modelo bajo distintos escenarios posibles, comparando su e�ciencia

con la e�ciencia óptima bajo cada escenario factible. El resultado es una solución con

una e�ciencia lo más próxima posible a la óptima en el conjunto de las posibles real-

izaciones de los parámetros desconocidos. En el Capítulo 2 se estudia un problema de

diseño de redes en el que los costes, los pares proveedor-cliente y las demandas pueden

ser inciertos, y además se utilizan poliedros para modelar la incertidumbre, permi-

tiendo de este modo relaciones de dependencia entre los parámetros. En el Capítulo

3 se proponen, en el contexto de la secuenciación de tareas o la computación grid,

versiones del problema del camino más corto y del problema del viajante de comercio

en el que el coste de recorrer un arco depende de la posición que este ocupa en el

camino, y además algunos de los parámetros que de�nen esta función de costes son

inciertos. La combinación de la dependencia en los costes y la incertidumbre en los

parámetros da lugar a dependencias entre los parámetros desconocidos, que obliga a

modelar los posibles escenarios usando conjuntos más generales que los hipercubos,

habitualmente utilizados en este contexto. En este capítulo, usaremos poliedros gen-

erales para este cometido. Para �nalizar este primer bloque de aplicaciones, en el
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Capítulo 4, se analiza un modelo de optimización en el que el conjunto de posibles

escenarios puede ser alterado mediante la realización de inversiones en el sistema.

En los problemas estudiados en este primer bloque, cada decisión factible es eval-

uada en base a la reacción más desfavorable que pueda darse en el sistema. En los

Capítulos 5 y 6 seguiremos usando esta idea pero ahora se supondrá que esa reacción

a la decisión factible inicial está en manos de un adversario o follower. Estos dos

capítulos se centran en el estudio de diferentes modelos binivel. La Optimización

Binivel aborda problemas en los que existen dos niveles de decisión, con diferentes

decisores en cada uno ellos y la decisión se toma de manera jerárquica. En concreto,

en el Capítulo 5 se estudian distintos modelos de �jación de precios en el contexto

de selección de carteras de valores, en los que el intermediario �nanciero, que se

convierte en decisor, debe �jar los costes de invertir en determinados activos y el

inversor debe seleccionar su cartera de acuerdo a distintos criterios. Finalmente, en

el Capítulo 6 se estudia un problema de localización en el que hay distintos decisores,

con intereses contrapuestos, que deben determinar secuencialmente la ubicación de

distintas localizaciones. Este modelo de localización binivel se puede aplicar en con-

textos como la localización de servicios no deseados o peligrosos (plantas de reciclaje,

centrales térmicas, etcétera) o en problemas de ataque-defensa.

Todos estos modelos se abordan mediante el uso de técnicas de Programación

Matemática. De cada uno de ellos se analizan algunas de sus propiedades y se de-

sarrollan formulaciones y algoritmos, que son examinados también desde el punto de

vista computacional. Además, se justi�ca la validez de los modelos desde un enfoque

de las aplicaciones prácticas. Los modelos presentados en esta tesis comparten la

peculiaridad de requerir resolver distintos problemas de optimización encajados.



Abstract

Combinatorial optimization problems have been extensively studied in the special-

ized literature since the mid-twentieth century. However, in recent decades, there

has been a paradigm shift to the treatment of ever more realistic problems, which

include sources of randomness and uncertainty in the data, multiple optimization

criteria and multiple levels of decision. This thesis concerns the development of such

concepts. Our objective is to study optimization models that incorporate uncer-

tainty elements in the parameters de�ning the model, as well as the development of

optimization models integrating multiple decision levels. In order to consider prob-

lems under uncertainty, we use Minmax Regret models from Robust Optimization;

whereas the multiplicity and hierarchy in the decision levels is addressed using Bilevel

Optimization.

In Chapters 2, 3 and 4, we study di�erent decision problems under uncertainty

to which we give a robust solution that protects the decision-maker minimizing the

maximum regret that may occur. This robust criterion analyzes the performance

of the system under multiple possible scenarios, comparing its e�ciency with the

optimum one under each feasible scenario. We obtain, as a result, a solution whose

e�ciency is as close as possible to the optimal one in the set of feasible realizations

of the uncertain parameters. In Chapter 2, we study a network design problem in

which the costs, the pairs supplier-customer, and the demands can take uncertain

values. Furthermore, the uncertainty in the parameters is modeled via polyhedral

sets, thereby allowing relationships among the uncertain parameters. In Chapter

3, we propose time-dependent versions of the shortest path and traveling salesman

problems in which the costs of traversing an arc depends on the relative position

that the arc occupies in the path. Moreover, we assume that some of the parameters

de�ning these costs can be uncertain. These models can be applied in the context of

task sequencing or grid computing. The incorporation of time-dependencies together

with uncertainties in the parameters gives rise to dependencies among the uncertain

parameters, which require modeling the possible scenarios using more general sets

than hypercubes, normally used in this context. In this chapter, we use general

polyhedral sets with this purpose. To �nalize this �rst block of applications, in
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Chapter 4, we analyze an optimization model in which the set of possible scenarios

can be modi�ed by making some investments in the system.

In the problems studied in this �rst block, each feasible decision is evaluated

based on the most unfavorable possible reaction of the system. In Chapters 5 and

6, we will still follow this idea, but assuming that the reaction to the initial feasible

decision will be held by a follower or an adversary, instead of assuming the most

unfavorable one. These two chapters are focused on the study of some bilevel mod-

els. Bilevel Optimization addresses optimization problems with multiple decision

levels, di�erent decision-makers in each level and a hierarchical decision order. In

particular, in Chapter 5, we study some price setting problems in the context of

portfolio selection. In these problems, the �nancial intermediary becomes a decision-

maker and sets the transaction costs for investing in some securities, and the investor

chooses her portfolio according to di�erent criteria. Finally, in Chapter 6, we study

a location problem with several decision-makers and opposite interests, that must

set, sequentially, some location points. This bilevel location model can be applied

in practical applications such as the location of semi-obnoxious facilities (power or

electricity plants, waste dumps, etc.) or interdiction problems.

All these models are stated from a Mathematical Programming perspective, an-

alyzing their properties and developing formulations and algorithms, that are tested

from a computational point of view. Furthermore, we pay special attention to jus-

tifying the validity of the models from the practical applications point of view. The

models presented in this thesis share the characteristic of involving the resolution of

nested optimization problems.
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4 Chapter 1. Introduction

Life is a matter of choices. Every day we face decision-making. Most of the deci-

sions that we make routinely are insigni�cant but some others can be more relevant.

When facing a decision, specially in these more signi�cant ones, we undertake a care-

ful analysis before deciding, with the aim of making the choice properly, optimally

if it is possible. In this decision-making context, Operations Research (OR) brings

us the theory and the tools to make better decisions. Among all theories in OR,

Optimization is one of the most widely used ones. It drives us to optimal choices in

challenging decision-making problems. Optimization is applied in many areas such

as location, network design, shortest path, �nance, game theory or pricing problems.

Optimization problems have been largely studied in the specialized literature;

however, in the last decades, there has been a paradigm shift towards the treatment

of more realistic problems, in which uncertainty sources in the data and multiple

criteria or levels of optimization are included. This trend continues growing due

to the economic importance of the existing applications in areas such as location,

transportation, or planning. In this thesis, we study optimization models in which

uncertainty a�ects the data, and optimization problems in which there exist several

decisions makers, and thus multiple objectives, and a hierarchical decision order. We

handle the uncertainty via the minmax regret criterion from Robust Optimization,

and the hierarchical decision structure using Bilevel Optimization. In all our con-

sidered models, solving the optimization problem entails solving some other nested

optimization problems.

1.1 Minmax regret and bilevel approaches for decision-

making: relationship and theory

When trying to �nd an optimal decision, it is often possible to formulate the decision

problem as one of maximization or minimization of one or several objective functions

under a very wide collection of hypotheses. However, with the growth of theory and

techniques and with the expansion of applications in Operations Research the variety

in the structure of the problems in the �eld is immense. For instance, the objective

function can be linear or nonlinear, nonlinear with di�erentiability or nonlinear with-

out di�erentiability, the nature of the variables can be continuous or discrete, the

objective of the problem and also the number of involved decision-makers can be

single or multiple, some of the parameters of the problem can be uncertain or not,

etcetera.

Among this large collection of con�gurations, we can �nd a considerable group of

optimization problems, from very di�erent nature, in which solving the optimization

problem entails solving a nested optimization problem. That is, there exists a par-

ticular con�guration in Optimization where one (or several) problem(s) is embedded
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within another one. These problems can be understood as two (or more) stage prob-

lems: a �rst decision is made, in a �rst stage, taking into account that in a second

(or latter) stage(s) other decision(s) will be made by other(s) decision-maker(s). Or

equivalently, as problems in which the decision-maker integrates with her decision the

decision process of another optimization problem. Examples of this type of problems

can be found in areas such as Stochastic Optimization (Heyman and Sobel (2004);

Shapiro et al. (2009); Tijms and Tijms (1994)), Robust Optimization (Ben-Tal et

al. (2009); Kasperski (2008); Kouvelis and Yu (1997)) or Bilevel Optimization (Bard

(2013); Dempe (2002a); Dempe et al. (2015)). We will focus on the last two.

Robust Optimization is focused on decision-making problems under uncertainty

when no probabilistic information about the uncertain data is assumed. It is an

e�ective way to structure this type of uncertainty and to make a decision in the

presence of it. In Robust Optimization, the decision-maker constructs a solution

that is feasible or close to the optimal for any realization of the uncertain parameters

in a given set. In order to choose among the feasible solutions, there exist in the

literature di�erent criteria in order to assess the impact of the uncertainty on a given

solution. Some of these criteria are based in the de�nition of what is called the

worst-case performance of the assessed solution, such as the minmax, the minmax

regret or the relative regret criteria. In these problems, the decision-maker chooses

a solution anticipating the worst-case performance of the system for this solution.

Sometimes, the worst-case performance of a solution can be related to actions of

a real or �gurative decision-maker who plays against our solution. That is, the

decision-maker chooses an action taking into account that another real or �gurative

decision-maker, for instance, nature, will decide afterwards the actual performance

of the system (the realized value of the uncertain parameters) in such a way that

this is the worst possible realization of the uncertain parameters, for the chosen

solution, under the selected criterion. The decision-maker acts in a �rst stage and

the decision about the performance of the system is taken in a second stage. These

problems are commonly formulated embedding the worst-case system performance

decision problem within the decision-maker objective function.

On the other hand, Bilevel Optimization, as described in Bard (2013), addresses

problems in which two decision-makers, each one with their own interests, act and

react in a noncooperative, sequential manner. This hierarchical decision structure

is written in terms of a mathematical program in which the second decision-maker's

problem is part of the constraints of the �rst decision-maker's problem. Speci�-

cally, this second decision problem embedded within the constraints of the �rst one

translates the fact that, some of the variables of the �rst problem are an optimal

solution of the second decision problem. The �rst decision-maker anticipates the

second decision-maker's choice. In these problems, there are clearly two decision-
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makers, one acting in a �rst stage and another one in a second stage, and a nested

optimization problem (within the constraints of the main problem).

In the following subsections, we provide a more detailed interpretation of the

Robust and Bilevel Optimization, including a more in-depth discussion of formal

de�nitions, applications, and results in the literature regarding these two approaches.

In the robust case, we focus on a particular criterion, the minmax regret criterion,

and in the bilevel case, we introduce also the widely used application to price setting

problems.

1.1.1 Robust Optimization: the minmax regret criterion

Real-life is full of uncertainties. Hence, when attempting to build a realistic decision

problem, the input data like costs, times, lengths, prices, etcetera, can be very com-

monly not exactly known in advance. This can be easily appreciated when thinking

in concrete decision examples. For instance, when designing a new network, some

costs such as those derived from the construction of new infrastructure can be un-

certain; or when deciding the best schedule plans in which the cost of processing

a task depends on its starting time, the execution times can be imprecise a priori;

or in addition, when trying to determine a shortest path, the cost of traversing an

arc of such path can be undetermined beforehand, or also the demands in supply

chain problems can be unknown; and much more. Researchers became aware of

the importance of accepting these uncertainties and managing them when modeling

a problem long ago, as a consequence, literature is full of decision problems han-

dling with uncertainty (see e.g. Abeledo et al. (2013); Averbakh and Berman (2003);

Karasan et al. (2001); Conde (2004, 2007); Fortz et al. (2013); Marín et al. (2018);

Merton (1969); Nickel et al. (2012); Olivares-Nadal and DeMiguel (2018); Pan and

Nagi (2010); Puerto et al. (2009, 2011); Takahashi et al. (2001), etc.).

The uncertainty can be caused by a lack of information about the data or by the

varying nature of the data itself. For instance, in the design of a network that has

never been built in the past, the di�culty to estimate parameters (costs, times,...)

can lie in the lack of historical data for similar projects, or even existing this data,

the construction of new infrastructures can render the data obsolete; or for example,

in a shortest path problem the travel times can vary depending on external factors

as tra�c. However, sometimes, the set de�ning the range of possible values for the

uncertain parameters can be modeled in di�erent forms depending on the available

information. In fact, carrying out a proper study of the system, it may be possible

to determine a more precise uncertainty set. For instance, in a supply chain problem

in which the demand is uncertain, and a wide range of possible values is considered

due to the expensiveness of obtaining tighter information, an investment to perform

a prospective analysis of the demand may be sometimes carried out to obtain more
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accurate values.

Whatever the nature and the structure of the uncertainty, the best way to handle

it and to make decisions under its presence is to accept and assimilate this uncertainty

and make an e�ort to incorporate it in the decision-making model (Kouvelis and Yu

(1997)). Stochastic Programming and Robust Optimization are two of the most

well-known and commonly used frameworks to manage uncertainty.

Stochastic Optimization is a natural and useful approach to address uncertainty

when it is known the probability distribution of the input data. Under this knowl-

edge, a typical approach is to select a decision that maximizes o minimizes an ex-

pected performance measure, under the assumed probability distribution. However,

determining these probability distributions can be truly a di�cult task, mainly when

there exist multiple interdependent uncertain factors. Furthermore, an accepted

drawback of Stochastic Programming is, as noticed by Kouvelis and Yu (1997) or

Kasperski (2008), that the generated solutions can become meaningless when the

process is not repeated several times since it is being optimized an expected per-

formance of the system. Hence, the obtained solution may not be appropriate in

problems where the solution is implemented just once; specially in those cases in

which the decision-maker has to deal with the consequences on the system perfor-

mance of the decision made under the realization of the parameters, as for instance

when designing a network that will remain the same for a long period. Therefore,

paying attention to the behaviour of the solution under any possible realization of

the uncertain data can become essential.

In contrast, Robust Optimization can be a good approach for uncertainty envi-

ronments where:

• There exists imprecise information about the probabilities of the possible real-

ization of the parameters.

• The decision-maker is concerned about the e�ect of the solution with the re-

alized data, and even existing some probabilities for the possible values, she

desires to be prepared for any situation that may occur, not only for the most

probable one but also for the least probable realization of the data. In these

cases, the probabilistic information can be useful to select a subset of realiza-

tions su�ciently representative.

• The processes to implement are from a non-repetitive nature, that is, they are

not going to be implemented periodically.

• The solutions are evaluated ex-post, that is, as if the actual realization of the

parameters had been known before deciding.
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The robust approach is based on the concept of scenario, that is, uncertainty

is structured via a scenario-based description of the problem data. The notion of

scenario refers to a concrete realization of the possible values of the unknown pa-

rameters. Then, as claimed before, the aim of a robust solution is to hedge against

parameter variations, that is, to perform well under any of these plausible scenarios.

In order to structure the uncertainty via scenarios two main representations have

been considered in the literature: the discrete and the interval scenario cases. On

the one hand, in the discrete approach, an explicit list of possible con�gurations of

the parameters is given. This representation of the uncertainty allows considering

correlations between the parameters; however, the number of possible scenarios must

be �nite or countable. On the other hand, in the interval case, it is assumed that

each parameter can take on any value in a given interval, independently of the values

taken by the other parameters. This interpretation of the uncertainty is a natural

approach since in a lot of problems it is possible to determine a range of possible

values for an uncertain parameter. Furthermore, this approach is not very data de-

manding. Nevertheless, the independence assumption among the uncertain data is

sometimes not realistic or practicable. Thus, there exists a new tendency, still sub-

tle, of allowing dependencies among the parameters in a continuous set of scenarios.

This can be done by modeling uncertainty via more general sets of uncertainty. We

will consider this uncertainty structure in some of the models we present.

Some of the most well-known robust approaches are the absolute robust, the robust

deviation and the relative deviation robust criteria. The absolute robust criterion,

generally known as minmax criterion, seeks a solution that minimizes the worst

possible value among all the scenarios. A highly conservative approach quite useful

in decision environments in which anticipating the reaction if the worst case happens

is decisive. Less conservative and more compromised solutions are largely generated

by the minmax regret criterion, also denoted as robust deviation. The regret of a

solution under a scenario measures the cost or the risk of choosing such a solution

under such scenario. It compares the performance of a solution with the optimal

performance under a given scenario, that is, it compares each solution with the best

decision that would have been taken if the scenario had been known in advance.

Among all the regrets, one per scenario, the criterion takes the maximum one and

tries to minimize it. Then, the minmax regret criterion minimizes the maximum

deviation in the cost of a solution from the optimal one in each scenario. Finally, the

relative robustness criterion compares, again, a solution with the optimal solution

under a scenario, but measuring not the absolute deviation but the relative deviation

respect to the optimal value under the scenario.

In Chapters 2, 3 and 4 we will adopt the minmax regret criterion to deal with the

uncertainty. Since most of the minmax regret theory is developed for 0-1 determin-
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istic combinatorial optimization problems, in the following subsection we formally

de�ne the minmax regret criterion and summarize some general results as well as

complexity and approximation results for these type of problems. Most of this theory

can be found, for instance, in Aissi et al. (2009) and the references therein.

Formal de�nition

Let us consider the class of 0-1 deterministic combinatorial optimization problems

with linear objective function:

min
∑
a∈A

caxa (C)

subject to

x ∈ X,

where A is a �nite set of elements and X a feasible set of solutions identi�ed

as subsets of A, that is, every x ∈ X is a 0-1 (characteristic) vector with as many

components as the number of elements in A, x = (xa)a∈A, where xa = 1 if and only

if a belongs to the subset represented by x; and ca ∈ Z+ denotes a weight associated

to every element a ∈ A (cost, length, time, etc.).

Classical combinatorial optimization problems such as the discrete facility loca-

tion, shortest path, knapsack, network design or minimum spanning tree problems

�t in the above formulation (C).
Let us assume now that coe�cients c are uncertain. Let s denotes a given scenario

and cs = (csa1 , ..., c
s
a|A|

) the values of the uncertain coe�cients under such scenario.

For the interval scenario case we consider that each coe�cient ca can take on any

value in the interval [c−a , c
+
a ], independently of the rest, being c−a , c

+
a ∈ Z+, c−a ≤ c+

a ,

a ∈ A. And let S be the set of all scenarios. Observe that in the interval scenario

case, S is a hypercube determined by the Cartesian product of all these intervals.

Let Z(x, s) =
∑

a∈A c
s
axa denote the value of a solution x ∈ X under scenario

s ∈ S. Let x∗s denote an optimal solution under scenario s ∈ S, and Z∗(s) the

corresponding optimal value, that is

Z∗(s) = min
x∈X

Z(x, s) = Z(x∗s, s).

In order to obtain the value Z∗(s) the deterministic combinatorial optimization

problem C must be solved for the �xed scenario s ∈ S.
Given a solution x ∈ X, its regret, R(x, s), under scenario s, as underlined before,

is given by the di�erence between the value of the solution minus the value of the
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optimal solution under scenario s:

R(x, s) = Z(x, s)− Z∗(s).

The regret compares the behaviour of a solution with the best possible behaviour

under a scenario s.

Since there exists one regret per each scenario, the maximum regret is an aggre-

gation function that for a solution x takes the value of the maximum of the regrets

among all scenarios:

R(x) = max
s∈S

R(x, s) = max
s∈S
{Z(x, s)− Z∗(s)}.

A scenario s that maximizes the right hand side is called a worst case scenario

for x.

The minmax regret problem corresponding to C consists of �nding a solution

minimizing the maximum regret, which can be stated as

R∗ = min
x∈X

R(x) = min
x∈X

max
s∈S

(Z(x, s)− Z∗(s)) = min
x∈X

max
s∈S

R(x, s).

(MINMAX REGRET C)

This minmax regret criterion seeks a solution whose value is as close as possible

to the optimal value for every scenario. The criterion can also be understood and

stated as trying to set a threshold ε, as small as possible, looking for a solution x

such that

Z(x, s)− Z∗(s) ≤ ε, ∀s ∈ S,

that is, looking for an ε solution under any possible scenario with ε as small as

possible.

In order to present the theoretical results, we will denote by DISCRETE MINMAX

REGRET C the MINMAX REGRET C problem in the discrete scenario case, and by

INTERVAL MINMAX REGRET C in the interval scenario case.

General results

Solving a minmax regret problem implies solving, for each solution x ∈ X, a max-

imization problem over the set of scenarios. Sometimes an explicit form for this

maximum can be obtained a priori by constructing a worst-case scenario. In par-

ticular, one of these scenarios can be set up for the INTERVAL MINMAX REGRET C
Problem.

Proposition 1. Given a minimization problem C, the regret of a solution x ∈ X is
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maximized for scenario w de�ned as follows:

cwa (x) =

c+
a if xa = 1,

c−a if xa = 0.
a ∈ A.

Next result shows that an optimal solution of INTERVAL MINMAX REGRET C is

an optimal solution of C for one of the extreme scenarios of S.

Proposition 2. Given a minimization problem C, an optimal solution x∗ of IN-

TERVAL MINMAX REGRET C corresponds to an optimal solution of C for at least one

extreme of the hypercube of scenarios, in particular its most favourable scenario bx∗,

de�ned as follows:

cbx∗a =

c−a if x∗a = 1,

c+
a if x∗a = 0.

a ∈ A.

Complexity results

We compile in the following Table 1.1, taken from Aissi et al. (2009), the complexity

of some of the minmax regret versions of classical combinatorial problems. In the

�rst column of Table 1.1 it is shown the name of the problem, in the second one, the

complexity of such problems when the number of possible scenarios is constant, in

the third column, the complexity for a non-constant number of scenarios, and in the

last one, the complexity for the interval case.

PROBLEMS CONSTANT NUMBER NON-CONSTANT NUMBER INTERVAL

OF SCENARIOS OF SCENARIOS SCENARIO CASE

SHORTEST PATH NP-hard, pseudo-poly Strongly NP-hard Strongly NP-hard

(Yu and Yang (1998)) (Kouvelis and Yu (1997)) (Averbakh and Lebedev (2004))

SPANNING TREE NP-hard, pseudo-poly Strongly NP-hard Strongly NP-hard

(Kouvelis and Yu (1997); Aissi et al. (2006)) (Aissi et al. (2007)) (Averbakh and Lebedev (2004))

ASSIGNMENT NP-hard Strongly NP-hard Strongly NP-hard

(Kouvelis and Yu (1997)) (Aissi et al. (2005a)) (Aissi et al. (2005a))

KNAPSACK NP-hard, pseudo-poly Strongly NP-hard NP-hard

(Kouvelis and Yu (1997)) (Aissi et al. (2007))

MIN CUT Polynomial Strongly NP-hard Polynomial

(Aissi et al. (2005b)) (Aissi et al. (2005b)) (Aissi et al. (2005b))

MIN s-t CUT Strongly NP-hard Strongly NP-hard Strongly NP-hard

(Aissi et al. (2005b)) (Aissi et al. (2005b)) (Aissi et al. (2005b))

Table 1.1: Complexity of minmax regret versions of classical combinatorial problems.
(See Aissi et al. (2009)).

Table 1.1 shows the hardness of the minmax regret problem. It is interesting to

observe that most of the graph problems that are polynomial-time solvable become
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NP-hard in the minmax regret version; although the �rst of these polynomial-time

solvable problem whose minmax regret version becomes strongly NP-hard (even for

two scenarios) is the MIN s-t CUT.

Approximation results

Due to the di�culty of solving minmax regret problems it has been proposed in the

literature some constant factor approximation results. Approximate solutions can

be a valid approach to the solutions when obtaining an optimal one is not possible,

or also a good starting point to �nd an optimal solution.

The idea to �nd these approximate solutions is to solve the deterministic problem

C for a nice scenario. We gather here some approximation results.

The next proposition, given by Kouvelis and Yu (1997), provides an approxima-

tion result for the DISCRETE MINMAX REGRET C by solving the discrete problem for

the mean scenario.

Proposition 3. Consider an instance I of DISCRETE MINMAX REGRET C with k

scenarios where each scenario s ∈ S is represented by (csa1 , ..., c
s
a|A|

). Consider also

an instance I ′ of C where each coe�cient of the objective function is de�ned by c′i =∑k
s=1

csa
k
, a ∈ A. Then x′ an optimal solution of I ′ is such that maxs∈S R(x′, s) ≤

k·opt(I), where opt(I) denotes the optimal value of Problem MINMAX REGRET C under

instance I.

In fact, this approximate solution may be better than a k-approximation in some

cases. In order to compute the maximum regret we aim to maximize the following

function of c ϕ(c) = {
∑n

i=1 cix−miny∈X
∑n

i=1 ciy}.
Since ϕ(c) is a convex function, it is enough to consider S′ the convex hull of S.

Therefore, we only need to consider the v (v ≤ k) scenarios that are extreme points

of the convex hull of S S. In this way, if v < k we obtain a v-approximation.

For the cases in which S is not a discrete set and it is a polyhedron, function ϕ(c)

will reach its optimal value in some vertex of the polyhedron, so it would be enough to

consider the vertex of it. However, for the INTERVAL MINMAX REGRET C problem, if

there are n uncertain parameters, the number of vertex of the polyhedron, which is a

hypercube, is 2n. Kasperski and Zielinski (2006) showed that we can obtain a better

approximation for the INTERVAL MINMAX REGRET C , namely, a 2-approximation.

Proposition 4. Given an instance I of INTERVAL MINMAX REGRET C , consider

an instance I ′ of C where each coe�cient of the objective function is de�ned by

c′a = 1
2(c−a + c+

a ) (I ′ is the mid-point scenario). Then x′ an optimal solution of I ′ has

maxs∈S R(x′, s) ≤ 2opt(I), where opt(I) denotes the optimal value of instance I.

This approximation result has been recently generalized under more generic as-

sumptions. See for instance Chassein and Goerigk (2015); Conde (2012).
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Existing methods

In this section we brie�y review some exact procedures to solve minmax regret prob-

lems.

For the discrete scenario case Kouvelis and Yu (1997) implemented a branch

and bound procedure to solve the minmax regret version of several combinatorial

optimization problems. In this algorithm, a lower bound on each node of the tree is

calculated using surrogate relaxation (Aissi et al. (2009)).

For the interval scenario case, it is common, when possible, to reformulate the

non-linear minmax regret problem with a MILP formulation. It is possible to develop

MILP formulations for zero duality gap C problems. These formulations are obtained

by replacing the embedded C problem by its dual one and the maximum regret

embedded problem by a worst-case scenario expression. This type of resolution was

initially studied by Karasan et al. (2001); Yaman et al. (2001). We also apply it in

Chapters 2, 3 and 4.

One of the most used procedures to deal with minmax regret version of problem

C is a relaxation procedure based on a Benders decomposition; see for instance

Montemanni and Gambardella (2004, 2005b); Aissi et al. (2009) and the references

therein. Branch and bound algorithms were also designed for solving minmax regret

version of some combinatorial problems; see e.g. Aron and Van Hentenryck (2002);

Montemanni et al. (2004); Montemanni and Gambardella (2005a). Following these

ideas we implement in Chapters 2, 3 and 4 Benders decomposition algorithms and

branch and bound algorithms based on Benders cuts.

Preprocessing techniques has also been incorporated into the approaches de-

scribed above. For further details we refer the reader to Karasan et al. (2001);

Aissi et al. (2009); Catanzaro et al. (2011) and the references therein.

1.1.2 Bilevel Optimization

Multiobjective Optimization addresses problems with several simultaneous objec-

tives; meanwhile, Game Theory deals with problems in which di�erent decision-

makers strategically interact. As noted in Bard (2013), Bilevel Optimization can be

understood as the combination of these two. It targets optimization problem with

two decision-makers, and hence two objective functions, and a hierarchical decision

structure. One of the decision-makers, called the leader, plays �rst, and then, the

other one, called the follower, observes the decision made by the leader and acts

optimizing her choice. Bilevel Programming studies the problem from the leader's

point of view, that is, studies the leader's problem. In this problem it is optimized

the leader's strategy, minimizing (maximizing) the leader's objective function over

the set of feasible strategies, taking into account that the follower always reacts op-
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timally to the leader's decision. In these problems perfect information is assumed,

each decision-maker knows the objective and the feasible strategies of the other.

The bilevel concept has been extended to multiple levels. Multilevel Program-

ming addresses problems in which several (two or more) decision-makers interact

hierarchically, and in each sublevel, the decision-maker observes upper levels deci-

sions and then act, according to her own interests. A remarkable characteristic of

multilevel problems, and thus of bilevel problems, is that each decision-maker is

a�ected by the actions of the other decision-makers. A decision-maker from a par-

ticular level can modify with her choices the actions of others, but does not control

them completely.

In many real situations decisions do not depend on a single viewpoint, and;

in many of these occasions, the decision process can be modeled as a bilevel or

multilevel problem. In fact, one of the greatest interest in Bilevel Optimization

lies, apart from the challenging di�culty of these problems, in the large amount of

actual applications. Consider for instance a problem in which a good must be placed

in a particular location and must be protected from some attackers; the location

decision can be made keeping in mind that, once it is located, the attackers will try

to reach it. A lot of more applications can be found in the �elds of location, credit

allocation, production planning, electric power pricing, network design problems,

security, economic game theory, etcetera. See for instance Arroyo (2010); Dempe et

al. (2015); Camacho-Vallejo et al. (2014); Calvete et al. (2011); Colson et al. (2005);

Gri�th et al. (1998); Labbé and Violin (2013); Ma (2016); Marcotte (1986); Vicente

and Calamai (1994) and the references therein.

Bilevel Programming is also a good framework to model Stackelberg games from

game theory. These games were introduced by von Stackelberg et al. (1952). In

the game there are two players, the leader and the follower, the leader plays �rst

and decides her strategy taking into account the follower optimal reaction, and the

follower plays second, knowing the leader's choice. A closed concept in game theory

is the notion of Nash equilibrium. A solution in which any player has something

to gain by changing only their own strategy. As noted in Labbé and Violin (2013),

it is interesting to remark that the solutions or equilibrium obtained by these two

approaches correspond to di�erent assumptions in the game: Stackelberg solutions

are obtained in hierarchical decision structure games, meanwhile Nash equilibriums

come from simultaneous games, in which all players come at the same time.

Another powerful use of Bilevel Programming is in the so-called pricing prob-

lems. This �eld encompasses problems in which a �rst decision-maker, for instance,

a company or a government, must �x the prices or taxes of some products so that its

revenue is maximized, but the reaction of the potential clients or users must be taken

into account: if the prices are too high the sales will be shorter. This relationship,
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between the price-�xer and the consumers, can be modeled via Bilevel Optimization

since there exists a hierarchical decision structure, and the values of the decision

variables of one level in�uence the optimal solution of the other level (Labbé and

Violin (2013)). Think for instance in the problem of a bank that must decide the

transaction costs for clients investments; the bank can �x them trying to maximize

its reward, but must take into account that these rates will condition clients' invest-

ments and by extension the bank bene�t. Several examples of price setting problems

modeled via Bilevel Optimization can be found for instance in the �elds of toll opti-

mization of highways, pricing of express mail delivery or passengers transportation

systems, pricing telecommunications packages, etcetera (see for example Labbé and

Violin (2013) and the references therein).

Formal de�nition

Let x ∈ Rn1 and y ∈ Rn2 denote the decision vectors, F : Rn1 × Rn2 → R and

f : Rn1×Rn2 the objective functions and G : Rn1×Rn2 → Rm1 and g : Rn1×Rn2 →
Rm2 the vector-valued functions of the constraints of the leader and the follower

problems, respectively. Let X represent the set of constraints concerning only the x

variables. The general Bilevel Programming problem (BP) can be de�ned as:

min
x∈X,y

F (x, y) (1.1)

s.t. G(x, y) ≤ 0, (1.2)

y ∈ argmin
y
f(x, y), (1.3)

s.t. g(x, y) ≤ 0. (1.4)

(1.1) and (1.2) constitute the upper level problem, while (1.3) and (1.4) de�ne

the lower level problem. It can be observed that the lower level or follower problem

is included in BP as a part of the constraints. That is, in BP constraints (1.3) and

(1.4) translate the fact that some of the variables of the problem, the y variables, are

an optimal solution of a second and nested optimization problem. The lower level

problem must be solvable for global minima. In practice it is assumed to be convex

(Colson et al. (2005)).

The bilevel and multilevel terms were �rstly introduced by Candler and Norton

(1977), however, as pointed out by Colson et al. (2005), bilevel problems were in-

troduced before under the designation of mathematical programs with optimization

problems in the constraints in a series of papers by Bracken and McGill (1973, 1974,

1978), developed in the context of military and production and marketing decision-

making. In game theory, the Bilevel Programming problems were introduced by the
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name of Stackelberg games.

The above BP formulation can be particularly adapted for price setting problems.

Let us assume that there are t1 taxed and t2 untaxed activities, T ∈ Rt1 is the

tax vector, x ∈ Rt1 and y ∈ Rt2 are the decision vectors associated with taxed and

untaxed activities, respectively, and F and f are the objective functions of the leader

and the follower objective values. And let g(x, y) be the vector-valued function of

the constraints. The price setting bilevel problem (P-BP) can be formulated as the

following bilevel problem:

max
T

F (T, x, y)

(x, y) ∈ argmin
x,y

f(T, x, y),

s.t. g(x, y) ≤ 0.

In (P-BP) a function of the revenue of the price-�xer is maximized assuming

that, the taxed and untaxed activities are chosen by the user afterwards trying to

minimize a function of the cost according to some constraints.

We de�ne now di�erent concepts related to Bilevel Programming.

The relaxed problem associated to BP consists of removing the restriction that

the y variables must be an optimal solution of the follower level problem, that is,

removing constraint (1.3). Then, the relaxed feasible region or constrained region is

de�ned as

Ω = {(x, y) ∈ Rn1 × Rn2 : x ∈ X,G(x, y) ≤ 0 and g(x, y) ≤ 0} .

For a given vector x̄ ∈ X, the lower level feasible set is

Ω(x̄) = {y ∈ Rn2 : g(x̄, y) ≤ 0} ,

meanwhile the lower level reaction set is

LR(x̄) = {y ∈ Rn2 : y ∈ argmin{f(x̄, ŷ) : ŷ ∈ Ω(x̄)}} .

Every y ∈ LR(x̄) is a rational response.

Finally, the induced region, which include all the feasible points of the BP and

corresponds to the feasible set of the leader, is de�ned as

IR = {(x, y) ∈ Rn1 × Rn2 : x ∈ X,G(x, y) ≤ 0 and y ∈ LR(x)} .

This is usually nonconvex and it can be disconnected or even empty.
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In a BP problem, for a given value of x variables, the follower problem may have

multiple optimal solutions. Therefore, if it happens, di�erent choosing attitudes

can be adopted by the follower. The follower's behavior will give rise to di�erent

modelling approaches. A cooperative attitude leads to an optimistic solution so that

when there exist multiple follower solutions, the leader assumes that the follower

will choose the most favourable one for the leader. Formally, when LR(x) is not a

singleton, a point (x∗, y∗) ∈ Rn1×Rn2 is called a local optimistic solution for problem

BP if

x∗ ∈ X,

G(x∗, y∗) ≤ 0,

y∗ ∈ LR(x∗),

F (x∗, y∗) ≤ F (x∗, y), ∀y ∈ LR(x∗),

and there exists an open neighborhood of x∗, with radius δ > 0, B(x∗, δ), such that

φ0(x∗) ≤ φ0(x), ∀x ∈ B(x∗, δ) ∩X,

where φ0(x) = miny{F (x, y) : y ∈ LR(x)}. It is called a global optimistic solution if

δ =∞ can be chosen.

In contrast, an aggressive attitude leads to a pessimistic solution in which the

leader assumes that the follower will choose, among the optimal solutions for the

follower, the worst possible one for the leader. A point (x∗, y∗) ∈ Rn1 ×Rn2 is called

a local pessimistic solution for problem BP if

x∗ ∈ X,

G(x∗, y∗) ≤ 0,

y∗ ∈ LR(x∗),

F (x∗, y∗) ≥ F (x∗, y), ∀y ∈ LR(x∗),

and there exists an open neighborhood of x∗, with radius δ > 0, B(x∗, δ), such that

φp(x
∗) ≤ φp(x), ∀x ∈ B(x∗, δ) ∩X,

where φp(x) = maxy{F (x, y) : y ∈ LR(x)}. It is called a global pessimistic solution

if δ = ∞ can be chosen. For further details we refer the reader to Dempe (2002b);

Loridan and Morgan (1996)
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In the bilevel problems that we present, Chapters 5 and 6, we will only assume

cooperative behaviour.

As referred before, the Bilevel Programming concept can also be extended to

Multilevel by considering more than two levels, that is, more than two decision-

makers playing hierarchically and hence, more than one nested problem. Another

realistic and useful expansion is to consider that there exist several decision-makers

in the same follower level. All these followers observe the leader's decision and react,

all at the same time, according to their own interests. The decision of a follower can

depend, or not, on the other followers decisions. This extension will be considered

in Chapters 5 and 6.

General results

We gather in this subsection some basic properties and results for linear and binary

bilevel problems. These results and the proofs or references can be found in Bard

(2013), which can be also used for further details and references.

Linear Bilevel Programming includes all bilevel problems in which all the func-

tions, constraints and variables are linear. The following results hold for this type of

problems.

Theorem 1. The induced region IR of a linear bilevel problem can be written equiv-

alently as a piecewise linear equality constraint comprised of supporting hyperplanes

of Ω.

From this theorem, the next two results follow.

Corollary 1. The linear BP is equivalent to minimizing F over a feasible region

comprised of a piecewise linear equality constraint.

Corollary 2. A solution to the linear BP occurs at a vertex of IR.

The following results show that a solution vertex of IR is also a vertex of Ω.

Theorem 2. The solution (x∗, y∗) of the linear BP occurs at a vertex of Ω.

Corollary 3. If x is an extreme point of IR, then it is an extreme point of Ω.

We consider now the zero-one linear BP, where all or some variables are restricted

to binary variables.

Let us denote by (01-BP) the case in which all variables are binary and by (01U-

BP) and (01L-BP) the cases in which the upper level and lower level variables,

respectively, are binary.

The following results address the existence of optimal solutions
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Theorem 3. For the linear BP, let Ω be a bounded set, i.e., a polytope. If Ωu :=

{(x, y) : G(x, y) ≤ 0)} = Rn1+n2, then linear BP, (01-BP) and (01U-BP) have an

optimal solution if Ω 6= ∅. If Ωu 6= Rn1+n2, then linear BP, (01-BP) and (01U-BP)

have an optimal solution if there exists an x̄ ∈ X such that (x̄, ȳ) ∈ Ωu.

This theorem provided su�cient conditions for the existence of optimal solutions

when Ω is bounded. These conditions are equivalent to the conditions under which

the induced region is nonempty.

The latter result, provide conditions to guarantee that an existing optimal solu-

tion of (01L-BP) is a boundary point of the set Ω.

Theorem 4. Let Ωu := {(x, y) : G(x, y) ≤ 0)} = Rn1+n2, and Ω 6= ∅ and suppose

that there exists an optimal solution (x∗, y∗) to (01L-BP). Then (x∗, y∗) is a boundary

point of Ω.

Complexity results

Bilevel problems are, from a computational point of view, very di�cult to solve.

The linear BP was �rst shown to be NP-hard by Jeroslow (1985). Hansen et al.

(1992) strengthened this result by proving that the linear minmax bilevel problem is

strongly NP-hard. An immediate consequence of it was the strongly NP-hardness of

the linear BP problem. Later, Vicente et al. (1994) proved that even the problems

of checking strict local optimality and local optimality in linear BP are NP-hard.

Existing methods

Due to the di�culty of the bilevel problems it is not surprising that most of the

techniques and algorithms on the topic have been focused on the easiest bilevel

programs, those with nice properties such as linear, quadratic or convex objective

function and/or constraints functions. Even so, over the years, more complex bilevel

problems, for instance, with discrete variables or nonlinear programming problems

in both levels have also been subject of research (Colson et al. (2005)).

We brie�y gather in this section some of the more successful schemes to deal with

bilevel problems. For further details and references on the highlighted methods and

other ones we refer the reader to Bard (2013); Colson et al. (2005) and the references

therein.

For the case of linear BP, making use of Theorem 2, whereby there exist an

optimal solution of the problem in the vertex of Ω, a wide class of methods for

solving this linear BP have been developed based on vertex enumeration in the

context of the simplex method. For instance, the Kth-Best Algorithm, proposed

by Bialas and Karwan (1982), systematically explores the vertex beginning with
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the basis associated with the optimal solution to the linear program obtained by

removing constraint (1.3). The methods stops with a global optima.

Other method, possibly the most popular one, applicable when the lower level

problem is convex and regular, is the Khun-Tucker approach. We will apply it in

Chapters 4 and 5. The �rst step is to replace the lower level problem by its Karush-

Kuhn-Tucker (KKT) conditions, giving rise to a single level reformulation of the BP.

This method is also known as Branch-and-bound, since the basic idea is to apply a

branch and bound strategy to deal with the complementary constraint.

Alternative approaches proposed in the literature for linear BP are methods based

on penalty functions, complementary pivoting or reverse convex programming, or

also trying to �nd an explicit expression for the optimal solutions of the lower-level

problem.

Methods for Mixed Integer Bilevel Linear Problems (MIBLP) have also been

studied, in fact, it is an appearing current subject of research. The most common

approaches to solve this type of problems, under some conditions, are Branch and

Bound (see e.g. Moore and Bard (1990)) and Branch and Cut algorithms (see e.g.

DeNegre and Ralphs (2009); Fischetti et al. (2018)). Very recently, Fischetti et al.

(2017) proposed a new general-purpose branch and cut exact algorithm for MIBLP,

with continuous and discrete variables in both levels, based on several new classes

of valid inequalities. With this new algorithm, they were able to solve to optimality

more than 300 previously unsolved instances from the literature. In addition, decom-

position techniques, such as Benders Decomposition, can also be used for MIBLP

under some particular conditions. For instance, we will apply an algorithm based on

a Benders decomposition to a MIBLP in Chapter 6.

Due to the inherent complexity of the Bilevel Optimization, several heuristics

have also been developed in the literature to handle BP (see e.g. Bard (2013) and

the references therein).

The minmax regret problem as a bilevel model

As said before, in the minmax regret models, a solution is chosen taking into account

the most unfavorable possible reaction of the system. That is, the system chooses,

for each feasible solution, the worst possible realization of the uncertain parameters.

This can be understood, from the Bilevel Optimization point of view, as the reaction

of the system is determined by a follower, who acts in this case against the leader.

Hence, the minmax regret model

R∗ = min
x∈X

max
s∈S

R(x, s) = min
x∈X

max
s∈S
y∈X

Z(x, s)− Z(y, s),
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can be rewritten as the following bilevel programming problem

R∗ = min R(x, y, s)

s.t. x ∈ X,

(y, s) ∈ argmaxR(x, y, s),

s.t. s ∈ S,

y ∈ X,

where R(x, y, s) = Z(x, s)− Z(y, s).

1.2 Contributions of this thesis

The goal of this thesis is to derive optimization models, in the context of decision-

making, in which uncertainty is incorporated in the parameters de�ning the problem;

and also to build models in which there exist two (or more) decision-makers, with

two (or more) objective functions, and a hierarchical decision structure. To give a

compromise solution in those problems with uncertain parameters the minmax regret

paradigm is considered, whereas the hierarchy in the decision process is managed via

Bilevel Optimization. Hence, two main blocks can be distinguished in the thesis,

one devoted to the contributions to minmax regret models, addressed in Chapters

2, 3 and 4, and another one with the contributions to bilevel models, addressed

in Chapters 5 and 6. In the problems studied in the �rst chapters, each feasible

decision is evaluated with respect to the most unfavorable possible reaction in the

system. In Chapters 5 and 6 we continue using this idea but assuming in this case

that, the reaction to the initial feasible decision is carried out by an adversary of a

follower. All the models we propose, the minmax regret and the bilevel ones, be-

long to a class of optimization problems in which solving the optimization problem

entails solving some other nested optimization problems. In all these models, formu-

lations, algorithms, and properties of the problems are stated from a Mathematical

Programming perspective. The validity of all models is justi�ed from the practical

applications point of view and we also analyze computationally the viability of the

proposed formulations and optimization algorithms.

In Chapter 2, based on the paper by E.Conde and M.Leal (Conde and Leal, 2019),

we address the problem of designing a robust supply network, assuming uncertain

some of the parameters de�ning the problem. We examine the cases in which the

uncertainty a�ects the construction and/or operating costs, and/or the existing set

of supplier-client pairs, and/or the demand to serve. Our contributions are modeling
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the uncertainty using the minmax regret criterion, and assuming the uncertainty

set of parameters is given as a polyhedron, allowing in this way dependence rela-

tionships between the uncertain parameters. Benders decomposition techniques are

used to solve the models and the proposed algorithms are tested in a computational

experiment.

In Chapter 3, based on the paper by E.Conde, M.Leal and J.Puerto (Conde et

al., 2018), we study the minmax regret version of a time-dependent shortest path

problem. In particular, we assume that the cost structure takes into account the

position that each arc occupies in the path. Furthermore, we assume uncertainty

in the costs de�ning the time-dependency. Our �rst contribution in this chapter is

combining the time-dependency and the uncertainty of the costs in the context of the

minmax regret criterion. As a consequence of the combination, relationships between

the uncertain parameters emerge, and the common independence assumption among

the set of costs does not hold. In order to deal with the model, we provide a MILP

formulation for the uncertainty interval case, extending the classical duality and

worst-case scenario developments to obtain MILP formulations for minmax regret

problems, which represents another contribution of this chapter. Then, we extend

the model to a new and more general case in which polyhedral sets of uncertainty

are considered. This approach can also be extended to the minmax regret time-

dependent Traveling Salesman Problem. We propose three di�erent algorithms based

on Benders decomposition to solve the problem. We reinforce the algorithms with

constant factor approximations. The formulation and algorithms are tested in a

computational experiment.

In Chapter 4, based on the paper by E.Conde and M.Leal (Conde and Leal,

2017), we propose a new minmax regret optimization model in which the decision-

maker has some control over the uncertain parameters of the system. Until now

in the literature, most of the minmax regret models have ignored the possibility of

changes in the uncertainty, or in the degree of knowledge about the attainable values

of the parameters due to actions carried out in the system. Hence, in our model,

as a contribution, we incorporate this possibility by assuming that in some cases,

spending some resources we may be able to change the cost structure of the system

and take advantage of it to �nd a robust solution. Some properties of the model allow

us to construct Mathematical Programming formulations that can be solved by o�-

the-shelf solvers. We illustrate the model in the shortest path problem in a network

in which investments in the system produce variations in the uncertainty intervals for

the arc costs. We extend some existing results on constant factor approximation for

minmax regret problems without investments, give an approximate algorithm and

conduct a computational study.

In Chapter 5, based on the paper by M.Leal, D.Ponce and J.Puerto (Leal et al.,
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2018), we propose various price setting models in the context of Portfolio Optimiza-

tion. We present di�erent bilevel portfolio selection models in which the transaction

costs, generally assumed given in the portfolio problems, become decision variables,

and hence, the �nancial intermediary becomes a decision-maker in the problem.

This �nancial intermediary decides on the unit transaction costs for investing in

some securities, maximizing its bene�ts, and the investors choose the portfolio, min-

imizing risk and ensuring a desired expected return. Therefore, our contributions

are turning transaction costs into decision variables, and incorporating two levels of

decision-makers in the portfolio problem. We present di�erent bilevel programming

versions, depending on who makes the decision �rst, the investor or the �nancial

institution, and also analyze the social welfare version. We study the di�erent mod-

els, analyze some properties, develop MILP formulations and algorithms and report

some computational experiments performed on real data taken from the IBEX 35.

In Chapter 6, based on the paper by M.Labbé, M.Leal and J.Puerto (Labbé et

al., 2018), we address a new bilevel location model motivated by real-life problems

in which the location decision generates disagreements among users with opposite

interests. We consider two di�erent levels of decision-makers. The �rst one chooses

among a number of �xed potential locations some primary facilities to set up; next,

the second one chooses the location of a secondary facility in a continuous framework.

The leader and the follower have opposite targets; the leader's and follower's goal is

to maximize and minimize, respectively, some proxy of the overall weighted distance

between the primary and secondary facilities. We develop the bilevel model for one

follower and any polyhedral distance, proposing a proof of the NP-hardness of the

problem, di�erent MILP formulations and algorithms; and later we extend it for

several followers and any `p-norm, p ∈ Q, p ≥ 1. We also report some computational

results.

Finally, in Chapter 7, conclusions and some possible future research lines for the

di�erent proposed models are brie�y discussed.
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In this chapter we consider an optimization model to �nd a robust design of

supply networks under uncertainty. We explore the cases in which the uncertain-

ties a�ect, simultaneously or not, the construction and/or operating costs, the pairs

supplier-receptor, and the demands. The data uncertainty is modelled through poly-

hedral sets, allowing in this way describing dependency relations between the un-

certain parameters, and this uncertainty is incorporated and handled in the model

using the minmax regret criterion. In order to solve the model we use Benders de-

composition methodology. Finally, we perform a computational experiment using

specialized optimization solvers to test the e�ciency of the numerical algorithms.

2.1 Introduction

Finding e�cient designs of a distribution network through which the demands of

certain commodities must be served has been an interesting optimization problem

in the last decades. Once such an infrastructure is built, it will be, in general, very

di�cult and costly to modify its design. Therefore, it is important to take into

account not only the current construction costs, but also all the elements that may

a�ect the e�ciency of the system during a reasonable period of its service life. Some

of these elements could be costs of routing goods (Gutiérrez et al. (1996); Peng et

al. (2011)), link maintenance (roads, pipelines, electrical connections, optical �bre,

etc) or demands supplied by the system (Jabbarzadeh et al. (2017); Lee et al. (2013);

Pan and Nagi (2010)).

However, in many cases, at the moment in which the network is designed, some of

this data could remain unknown (Gutiérrez et al. (1996); Jabbarzadeh et al. (2017);

Lee et al. (2013); Magnanti and Wong (1984); Pan and Nagi (2010)) and, further-

more, it could be unrealistic to estimate data. As referred in Chapter 1, in certain

cases, the di�culty lies in the lack of historical data to estimate costs or demands

under which the future behaviour of the system will be evaluated. Even though this

data exists, it could become obsolete for e�ective estimations due to the very same

fact of the construction of the new infrastructure. Indeed, the stability conditions

of the data sample, frequently required in the estimation procedures, as the iden-

tical distribution, could be seriously compromised in the new framework. In other

situations, the system could be a�ected by rare events, like facility disruptions (Fer-

eiduni and Shahanaghi (2017); Peng et al. (2011)), which modify the input data. In

these cases, it could be nonsense to try to estimate the consequences of the event

in the data due to its unpredictable nature. However, it seems to be reasonable

to protect somehow the network e�ciency from the negative e�ects of these events

that could have considerable economical consequences in supply chain infrastructures

(Hendricks and Singhal (2005)).
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In order to protect the performance of the system, we can use an interesting

property observed by some authors (see Gutiérrez et al. (1996) and the references

therein) about the existence of multiple optimal designs in many of these optimiza-

tion problems. Hence, a set of near optimal solutions may contain signi�cantly dif-

ferent designs, where one could eventually identify a robust solution having a good

performance under di�erent sets of data. Therefore, a reasonable strategy (Aissi et

al. (2009); Averbakh and Lebedev (2004); Kouvelis and Yu (1997); Pan and Nagi

(2010); Peng et al. (2011); Rosenhead et al. (1972)) for �nding a robust network

design could be to take a nearly optimal solution for a variety of future operating

scenarios responding to changes in the behavior of the demand, costs or even rare

events, instead of seeking for an optimal solution under a �xed set of data that may

never happen. Therefore, the minmax regret paradigm may be ideal to deal with

the problem. We will adopt the minmax regret paradigm with a polyhedral set of

possible costs and/or a �nite set of demand scenarios.

This minmax regret approach has been used in di�erent applications in the con-

text of designing networks. Peng et al. (2011), used the relative robustness criterion

to �nd reliable logistics networks design with facility disruptions. Speci�cally, they

proposed a design of the network with minimal cost under a set of nominal data (the

costs when no disruptions occur) while it also performs relatively well when disrup-

tions strike. This last feature is modelled by upper bounding the cost in terms of its

relative regret by a pre-speci�ed constant p (level of robustness) when disruptions

occur. The authors proposed an approach to �nd e�cient solutions under a �nite set

of data scenarios modelling the possible disruptions. A similar robust optimization

model has been recently analized in Fereiduni and Shahanaghi (2017) to design an

e�cient response immediately following a natural disaster. In this case, the disrup-

tions are caused by natural disasters, such as earthquakes, where, as suggested in

the �rst chapter, it is vital the design of a robust network for humanitarian logistics

which will assist in the coordination of a response action.

Pan and Nagi, Pan and Nagi (2010), also included a worst-case absolute regret

analysis in their approach to �nd a robust supply chain design under uncertain de-

mand. They studied this problem into the context of agile manufacturing, a concept

used to describe new challenges for companies operating in competitive environments

in which market opportunities emerge and disappear continually without known pat-

terns. The source of uncertainty in the data is, in this case, not necessarily linked

to the lack of valid information to estimate future costs or demand but to the fact

that these estimations become quickly obsolete due to the fast changes of the condi-

tions in which the network should operate. The application of robust models seems

to be appropriate in such competitive environments in which the need for higher

production e�ciency and lower operational costs are forcing companies to search for
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innovative ways to do business. For instance, some authors have detected new high-

risk practices assumed by companies due to the need of purchase from cheaper but

less-reliable or unproven suppliers. These policies include new sources of uncertainty

in the data as mentioned by Jabbarzadeh et al. (2017). In their paper, these authors

provided a robustness approach, named elastic p-Robustness, in which the maximum

relative regret on costs is used to show a real application of these techniques. Other

real applications of a robust optimization model allowing �ow bifurcations and based

on a set of realizable scenario of the input data could be �nd in the paper by Lee et

al. (2013).

There exist in the literature enough evidences of the computational di�culty of

the robust network design both in its theoretical facet and in practical applications.

For the particular case of Network Optimization, Minoux (2010) provided a formal

NP-hardness proof of a wide family of robust network optimization problems under

polyhedral demand uncertainty. In his paper, the author showed that the fact of con-

sidering polyhedral demand uncertainty switches from P to NP-hard the complexity

status of one of the considered optimization models. If the uncertainty is considered

in the cost data the computational complexity has the same features since these

models include, in particular, robust counterparts of �ow problems which are known

to have NP-hard complexity (see Averbakh and Lebedev (2004); Kouvelis and Yu

(1997)). On the other hand, real applications of design network models are di�cult

to solve even in their deterministic versions due to either large problem sizes and/or

nonlinearity of the models (see e.g. Fahimnia et al. (2013)).

The formulation of the deterministic counterpart of a network design model fre-

quently drives us to a Mixed Integer Linear Programming (MILP) problem. Many

families of valid inequalities have been derived by exploiting the polyhedral properties

of the resulting MILP formulation. These cuts can be used in specialized branch and

bound schemes (Atamtürk (2002); Atamtürk and Rajan (2002); Barahona (1996);

Günlük (1999)). However, the methodology that may be used more frequently in

the context of network design is the one based on a Benders decomposition pro-

cedure (see Costa (2005) and the references therein). The nature of these models

allows us to decompose the set of decision variables into two sets modelling respec-

tively the topological structure of the network and the �ows needed to cover the

demands. This fact makes the Benders decomposition method a natural approach

since we can use these two sets of variables to de�ne the so-called master and primal

problems. Logically, this methodology has been extended to robust network design

problems (see Lee et al. (2013) and the references therein). For instance, in one of

the �rst published papers on robust design network, Gutiérrez et al. (1996) proposed

a Benders decomposition algorithm to solve a minmax regret problem with a �nite

set of cost scenarios. Given a tentative structure of the network, they used linear
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duality to construct cuts under each scenario. Using these cuts, the algorithm solved

simultaneously all the deterministic counterparts of the design problem under the

�nite set of scenarios, generalizing the existing Benders decomposition algorithm for

the deterministic version of the problem. More recently, the same methodology has

been used (Lee et al. (2013)) to design a real-life robust telecommunication network

under uncertain demand. In this case, the set of demand scenarios is modeled as any

vector of a hypercube verifying an additional constraint whose goal is to control the

maximum degree of allowed uncertainty.

We will also apply the Benders decomposition methodology to the optimization

problems proposed in the following sections of this chapter. Our contribution is to

model the uncertainty in data through general polyhedral, and handle it via the

minmax regret criterion. This will allow us to describe dependency relations that

may exist between the unknown parameters. We will also study the design of a robust

network under simultaneous uncertainty in the cost structure and in the demand.

In our case, the uncertainty in the demands may also a�ect to the origin and/or

destination of the commodities.

In the following section, a general model for the robust network design is stated

using a minmax regret objective function. In Section 2.3.1 the model with uncertain

�xed costs (construction, maintenance,. . . ) and uncertain transportation costs is

considered. This model is studied together with uncertainty in the origin-destination

pairs for the commodities in Section 2.3.2. In the next Section 2.3.3, the model is

addressed assuming that uncertainty a�ects also to the demand and the capacity of

the the arcs. Finally, a computational study for the di�erent models is conducted in

order to check the scope of the proposed algorithms.

2.2 Model description and deterministic case formulation

We consider

• N = {1, . . . , n} a set of nodes,

• A ⊆ N ×N a set of potential arcs,

• P ⊆ N ×N a list of pairs of linked nodes representing the origins and destina-

tions of a set of paths that must be de�ned in the network,

• fsij for all (i, j) ∈ A the �xed non-negative cost corresponding to the construc-

tion of the potential arc (i, j) under a given scenario s and

• csij for all (i, j) ∈ A the non-negative unitary transportation arc cost under

the scenario s of using the potential arc (i, j) to connect directly origin i and

destination j. These costs can model any resource that must be spent in order
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to send a unit of the considered commodity through the network like fuel,

electricity or maintenance operations.

We want to �nd the subset of potential arcs Ay ⊆ A that should be chosen such that

the pairs of origin-destination nodes of the preestablished list P can be connected

optimally in the network (N,Ay).

In the following Mathematical Programming formulation we will use two subset

of decision variables,

• yij ∈ {0, 1} for all (i, j) ∈ A, the design variables which determine the subset

of potential arcs Ay ⊆ A of the network and

• xijp ∈ {0, 1} for all (i, j) ∈ A, the �ow variables de�ning the route chosen to

connect the pair p ∈ P of the list of linked nodes.

A MILP formulation for what we will call hereafter the Deterministic Network

Design (DND) problem is the following one

Z∗(x) := min
∑

(i,j)∈A

f sijyij +
∑

(i,j)∈A,p∈P

csijxijp

subject to: ∑
(i,j)∈A

xijp −
∑

(k,i)∈A

xkip = bip, i ∈ N, p ∈ P,

xijp ≤ yij , (i, j) ∈ A, p ∈ P,
yij ∈ {0, 1}, (i, j) ∈ A,
xijp ∈ {0, 1}, (i, j) ∈ A, p ∈ P,

(DND)

where bip = 1, bjp = −1 if p = (i, j) ∈ N ×N and bip = 0 otherwise.

Remark 1. In the block of �ow constraints of the formulation (DND)∑
(i,j)∈A

xijp −
∑

(k,i)∈A

xkip = bip, i ∈ N, p ∈ P,

it is implicitly assumed that, if bip = 1 the left hand side of the equation reduces to the

�rst summation and in the case in which bip = −1 it reduces to the second summation.

In any case, since all the costs csij are considered nonnegative, any optimal solution

will satisfy this requirement because this solution will be free of circular �ows. This

will apply in any of the following formulations in this chapter thus, for the sake of

clarity, we will maintain the compact format of this block of constraints.
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Remark 2. Formulation (DND) can be stated in a more general format. For in-

stance, we can restrict the set of possible designs by including limited resources a�ect-

ing the choice of the subset of arcs (the y-variables). On the other hand, with respect

to the x-variables, one can consider more general coe�cients bip = bp, bjp = −bp for
p = (i, j) ∈ P and bkp = 0 otherwise, being bp ∈ Z+. In this case, bp can model the

amount of the commodity transported from i to j or a weight of the relative impor-

tance of the pair p ∈ P in comparison with the other pairs. However, for the sake

of simplicity, while this element does not play a relevant aspect for the optimization

model we will maintain all the bp weights equal to one.

Remark 3. The binary constraints on the variables xijp can be relaxed to nonneg-

ativity, xijp ≥ 0 for all (i, j) ∈ A, p ∈ P in the formulation (DND), due to the

separability of its objective function respect to the x-variables and y-variables. Note

that the unimodular property can be applied to the inner problem on the x-variables.

We will end this section setting out a simple example of the (DND) problem which

will be used to illustrate later formulations, results and behaviors of the solutions.

Example Grid Design

Consider the square grid network illustrated in Figure 2.1: a regular support of

points (reticle), with 100 nodes, in which from each node arises (if possible) three

potential directed arcs, one downward to the node below, one forward to the node on

the right, and one diagonally to the node on the right and above. This type of mesh

or topology, originally proposed in Cherkassky et al. (1996) and used in Fernández

et al. (2014) among others, located on a geography, can model for example pipelines

networks or simple circuits.

The circles in the �gure represent the nodes, the gray circles represent the origins

(suppliers), and the numbers inside them tag each origin; the squares represent

destinations (demand points), and the numbers inside the squares, the origin from

which each demand point should be supplied. The dashed gray arrows represent

potential arcs. All the �xed and unitary transportation arc costs were assumed to

be 1 and 0.3 respectively. The problem consists of choosing the network design that

connects all the origin-destination nodes at minimum cost.

The arrows highlighted in black color in Figure 2.1 represent an optimal network

design after solving the formulation (DND). Note that, since no bounds on the arc

capacities are considered, the solution has a very simple design in which several paths

overlap. In fact, the optimal network designs under these conditions are frequently

spanning trees, arborescences or spanning forests with a few spanning trees.
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2.3 Robust models and Benders resolution algorithms

2.3.1 Uncertain costs

In this section a minmax regret version of the (DND) problem is considered under

a polyhedral set of cost scenarios. Let S denote the set of possible scenarios which

is identi�ed with a polyhedron of costs (cs, fs), s ∈ S whose components are csij , f
s
ij

for all (i, j) ∈ A. The regret R(x, y, s) of a given solution (x, y) under the scenario

s ∈ S is de�ned for this problem as the following positive di�erence

R(x, y, s) :=
∑

(i,j)∈A

fsijyij +
∑

(i,j)∈A,p∈P

csijxijp − Z∗(s),

where Z∗(s) is the optimal value of the (DND) problem under the scenario s ∈ S.
For a given design solution (x, y) it makes sense to computeR(x, y), the maximum

regret over the set of possible scenarios S. This value represents the opportunity loss

cost for the solution (x, y) and can be obtained by solving the following optimization

problem

R(x, y) := max
∑

(i,j)∈A

fsijyij +
∑

(i,j)∈A,p∈P

csijxijp−

−
∑

(i,j)∈A

fsijyij −
∑

(i,j)∈A,p∈P

csijxijp

subject to: ∑
(i,j)∈A

xijp −
∑

(k,i)∈A

xkip = bip, i ∈ N, p ∈ P,

xijp ≤ yij , (i, j) ∈ A, p ∈ P,
yij ∈ {0, 1}, (i, j) ∈ A,
xijp ∈ {0, 1}, (i, j) ∈ A, p ∈ P,
s ∈ S.

(2.1)

In order to obtain a complete formulation of the problem (2.1) we will assume that

a polyhedral description of the set of �xed and unitary transportation arc costs is

known,

S :=

(c, f) ≥ 0 :
∑

(i,j)∈A

(afijkfij + acijkcij) ≤ dk, k ∈ K

 ,

where we have used the same letter S that already identi�ed the set of scenarios

to make the notation simpler. Additionally, it will be assumed the compactness of

this polyhedron of costs, thus there are constants c and f such as 0 ≤ cij ≤ c and

0 ≤ fij ≤ f for all (i, j) ∈ A.
Using this polyhedral representation of the set S of possible cost scenarios, a
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formulation of the optimization problem (2.1) can be given by

R(x, y) := max
∑

(i,j)∈A

fijyij +
∑

(i,j)∈A,p∈P

cijxijp−

−
∑

(i,j)∈A

fijyij −
∑

(i,j)∈A,p∈P

cijxijp

subject to: ∑
(i,j)∈A

xijp −
∑

(k,i)∈A

xkip = bip, i ∈ N, p ∈ P,

xijp ≤ yij , (i, j) ∈ A, p ∈ P,∑
(i,j)∈A

(afijkfij + acijkcij) ≤ dk, k ∈ K,

yij ∈ {0, 1}, (i, j) ∈ A,
xijp ∈ {0, 1}, (i, j) ∈ A, p ∈ P,
f ij ≥ 0, (i, j) ∈ A,
cij ≥ 0, (i, j) ∈ A.

(2.2)

The above formulation contains quadratic terms in the objective function which

added to the binary nature of some of the variables increase the di�culty to solve the

problem. Nonetheless, as stated in the following result, this nonlinear mixed integer

problem is equivalent to the following MILP formulation

R(x, y) := max
∑

(i,j)∈A

fijyij +
∑

(i,j)∈A,p∈P

cijxijp−

−
∑

(i,j)∈A

wij −
∑

(i,j)∈A,p∈P

zijp

subject to: ∑
(i,j)∈A

xijp −
∑

(k,i)∈A

xkip = bip, i ∈ N, p ∈ P,

xijp ≤ yij , (i, j) ∈ A, p ∈ P,∑
(i,j)∈A

(afijkfij + acijkcij) ≤ dk, k ∈ K,

cij − c(1− xijp) ≤ zijp, (i, j) ∈ A, p ∈ P,
0 ≤ zijp, (i, j) ∈ A, p ∈ P,
fij − f(1− yij) ≤ wij , (i, j) ∈ A,
0 ≤ wij , (i, j) ∈ A,
yij ∈ {0, 1}, (i, j) ∈ A,
xijp ∈ {0, 1}, (i, j) ∈ A, p ∈ P,
fij ≥ 0, (i, j) ∈ A,
cij ≥ 0, (i, j) ∈ A.

(PP-RND)
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Proposition 5. The optimization problem (2.1) is equivalent to the MILP formula-

tion (PP-RND).

Proof. The blocks of constraints of the (PP-RND) formulation

cij − c(1− xijp) ≤ zijp, (i, j) ∈ A, p ∈ P,
0 ≤ zijp, (i, j) ∈ A, p ∈ P,

imply that zijp = max{0, cij−c(1−xijp)} since zijp appears with a minus sign in the

objective function that must be maximized. Taking into account that the constant c

is an upper bound on the value of the possible unitary transportation arc cost, that

is, cij − c ≤ 0 for all (i, j) ∈ A, one has that

max{0, cij − c(1− xijp)} = cijxijp, (i, j) ∈ A, p ∈ P.

The same argument applies for the wij variables for all (i, j) ∈ A.

Remark 4. The binary constraints on the variables xijp cannot, in general, be re-

moved from the (PP-RND) formulation, contrary to what was mentioned in Remark

3 referent to the (DND) formulation. In this case, the separability reasoning of that

remark drives us to obtain an inner optimization problem in which a convex piecewise

linear function must be minimized. Since its optima need not be an extreme point of

the relaxed polyhedron of feasibility, the unimodular property cannot be applied.

Formulation (PP-RND) allows us to assess the opportunity loss of a given design

according to the above polyhedral model for the uncertainty on the cost structure.

Hence, if we need to compare a �nite (and small) number of network designs it

su�ces to choose one of them reaching the minimum of these assessments. However,

we are interested here in the problem of �nding a robust network design when the

number of possible choices is too large to assess the opportunity loss cost of each one

of them. If we consider all the possible choices of subsets of arcs Ay making possible

to connect the pairs of P , the resulting problem to be solved would be the following

one

R∗ := min R(x, y)

subject to: ∑
(i,j)∈A

xijp −
∑

(k,i)∈A

xkip = bip, i ∈ N, p ∈ P,

xijp ≤ yij , (i, j) ∈ A, p ∈ P,
yij ∈ {0, 1}, (i, j) ∈ A,
xijp ∈ {0, 1}, (i, j) ∈ A, p ∈ P.

(RND)
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Note that, we have just replaced the objective function of the deterministic model

(DND) by the opportunity loss cost in (RND). This change represents a substantial

change in the resolution methodology since R(x, y) is, in general, a nonlinear function

for which the MILP formulation (PP-RND) must be solved to assess it in a given

point.

In order to �nd a robust design we will solve the problem (RND) by a Benders

decomposition algorithm. It starts with a given design (x0, y0) and assess its maxi-

mum regret by solving the problem (PP-RND) which will be the primal problem. Its

optimal objective value represents an upper bound on the optimal value of (RND)

and one of its optimal solutions de�nes a worst-case adversary, (x0, y0), and a worst-

case scenario, s0 := (c0, f0), for the initial design (x0, y0). In each iteration, we will

�nd a minmax regret design for the �nite set of worst-case scenarios of the designs

previously assessed. The minmax regret value of this last solution will be assessed

by solving its corresponding primal problem (PP-RND) and the process continues.

The new design found in each iteration is a minmax regret solution for the subset

of considered scenarios of costs. The corresponding optimization problem is the

master problem and its optimum is a lower bound on the optimal objective value of

the problem (RND). For a generic iteration n, the master problem has the following

formulation

r∗ := min r

subject to: ∑
(i,j)∈A

f qijyij +
∑

(i,j)∈A,p∈P

cqijxijp −R(xq, yq, sq) ≤ r, q = 0, ..., n− 1,∑
(i,j)∈A

xijp −
∑

(k,i)∈A

xkip = bip, i ∈ N, p ∈ P,

xijp ≤ yij , (i, j) ∈ A, p ∈ P,
yij ∈ {0, 1}, (i, j) ∈ A,
xijp ∈ {0, 1}, (i, j) ∈ A, p ∈ P.

(MP-RND)

Hence, the resolution of the primal and master problems in each iteration allows

us to update a pair of lower and upper bounds on the optimal objective of the problem

(RND) whose positive di�erence is used to stop the procedure which is stated now

as Algorithm 1.

Proposition 6. If ε = 0, Algorithm 1 ends in a �nite number of iterations with an

optimal solution of the minmax regret network design problem (RND).

Proof. First observe that we can assume that the list L of worst-case scenarios can

be included in the �nite set of vertices of the polyhedron of scenarios of costs S. This
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Algorithm 1

1: procedure Initialization
2: Let (xε, yε) := (x0, y0) be an initial feasible design.
3: Solve the primal problem (PP-RND) to obtain the opportunity loss cost
R(x0, y0).

4: Let s0 := (c0, f0) be a worst-case cost scenario for (x0, y0).
5: Initialize the list L := {(c0, f0)}.
6: Set β := R(x0, y0), an upper bound on the optimal value of (RND).
7: Go to the iteration n := 1.
8: procedure Iteration (n = 1, 2, . . .)
9: Solve the master problem (MP-RND) and let (xn, yn) be one of its optimal

solutions.
10: Set α := r∗ the optimal value of the problem (MP-RND).
11: if β − α < ε then
12: (xε, yε) is an ε-approximation to the problem (RND).
13: else
14: Solve the primal problem (PP-RND) to obtain the value R(xn, yn).
15: Let sn := (cn, fn) be a worst-case cost scenario for (xn, yn) and (xn, yn)

a worst-case adversary.
16: Update the list L := L ∪ {(cn, fn)}.
17: if R(xn, yn) < β then
18: Update the upper bound β := R(xn, yn) and (xε, yε) := (xn, yn)

19: Go to the iteration n := n+ 1.

holds since, by (2.2), the maximum regret R(x, y) of any network design is attained

as the maximum of a convex piecewise linear function on a bounded polyhedron.

In order to prove the �niteness of Algorithm 1 we will show how the cardinality

of the list L increases in one unit in each iteration. Since we have seen the set of

possible worst-case scenarios can be considered �nite, the number of iterations must

be �nite too.

On the contrary, if the cardinality of L remains unchanged after an iteration n,

the worst-case scenario found in Line 15 of Algorithm 1 must already belong to the

list L, that is, this scenario has been generated in a previous iteration. In this case,

R(xn, yn) = R(xn, yn, sn) = max
q=0,1,...,n−1

{R(xn, yn, sq)} = α ≤ R∗ ≤ R(xn, yn),

where R∗ is the optimal value of the problem (RND) and it has been used that

(xn, yn) is an optimal solution of (MP-RND) for the list of scenarios {sq, q =

0, 1, . . . , n − 1} (see Line 9). Since in the above chain of inequalities, both extreme

are equal we have that Algorithm 1 will end in the following iteration n+ 1 with the

optimal solution (xn, yn).
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Example Grid Design (continuation)

In the �rst part of this example we assumed that the �xed and unitary transportation

arc costs were known. Now we will consider that some arc costs are a�ected by

uncertainty which can be caused by di�erent situations. Let us think, for instance,

that we are designing a transportation network in which we are considering to dig

a tunnel through a mountain. Its construction cost can be very variable depending,

for instance, on whether unexpected materials making more di�cult the digging

tasks are found or not. In other projects, the source of the uncertainty can be the

lack of experience making some of the involved construction tasks. For example, in

the Haramain High-Speed Railway recently opened to the public in Saudi Arabia,

connecting the Muslim holy cities of Medina and Mecca, the little experience in the

construction of rails over sand was one of the main sources of uncertainty about the

construction and maintenance costs (in economical and construction length terms).

In order to illustrate such features in our toy example we will identify by a

rectangular a unsure zone, that is, a set of potential arcs whose �xed costs may

vary in an uncertain amount. In Figure 2.2 this unsure zone has been depicted by a

grey rectangle where the enclosed arcs are those a�ected by the uncertain costs. We

assume that the �xed costs for all those arcs can now vary, increasing or decreasing its

value around the previously �xed cost of 1 unit, holding this value as the mid-point

of the interval of variation, [0.4, 1.6].

Figure 2.2 shows the network design that minimizes the maximum regret under

this new cost structure, after solving the RND problem with Algorithm 1. We can

observe that the network structure has changed signi�cantly in order to avoid the

construction of the potential arcs with uncertain �xed costs. Then, incorporating

uncertain costs to a road design may signi�cantly change the structure of the solution

by trying to dodge, if possible, the construction of the potential arcs having uncertain

costs due to the presence of the unsure zone. This change in the network design seems

to be a reasonable (robust) answer to the new unpredictable cost structure and shows

the sensitiveness of our model to the uncertain costs.
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Figure 2.1: Example of (DND).
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Figure 2.2: A robust design avoiding the
construction of arcs with high cost uncer-
tainty.

2.3.2 Uncertain costs and linked pairs

In this section we will study how to �nd a robust design of the network when the

list of linked pairs is partially known. In this case, P becomes the list of pairs

that could be linked, that is, the set of pairs that eventually could be connected

under a possible scenario, but not necessarily all of them will be connected in a

realized scenario. Hence, each scenario will de�ne the subset of these pairs that are

e�ectively connected and the corresponding transportation costs (csij). In this new

context, each feasible design will be de�ned by a set of arcs Ay, identi�ed through the

binary variables y as in the previous model, and a set of �ow variables x that must

determine how to connect any pair of origin-destination nodes of P independently of

whether they must be connected or not under the scenario that �nally occurs. That

is, since the scenario that �nally will occur is not known a priori, the robust solution

must include how to connect each pair of P , just in case the connection is given.

As discussed in the introduction, the set of possible scenarios of connected pairs

may model potential business relations or �ow patterns among nodes requiring some

type of connection through the network and verifying a given set of technical re-

quirements. To identify these pairs a new set of binary variables up, p ∈ P is de�ned

and it will be assumed that all the technical requirements can be modeled using the

following constraints∑
p∈P

eprup ≤ gr, r ∈ R, up ∈ {0, 1},∀p ∈ P. (2.3)
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For instance, if R = {1} and ep1 = 1 for all p ∈ P , any scenario in which at most g1

linkages in P may happen.

Hence, for a given design of the network, a worst-case scenario will detect a set

of pairs to be linked and a structure of costs such that, we can �nd a new design (its

worst-case adversary design) connecting those pairs of nodes as cheap as possible,

in comparison with the cost incurred by the initially considered design. In order to

�nd such a worst-case scenario, we will extend the formulation (PP-RND) to this

new context. To do this we will integrate in the formulation the new constraints

modelling the scenarios of pairs of nodes to be linked as it is shown in (PPUL-RND).

R(x, y) := max
∑

(i,j)∈A

fijyij +
∑

(i,j)∈A,p∈P

ξijpxijp−

−
∑

(i,j)∈A

wij −
∑

(i,j)∈A,p∈P

zijp

subject to: ∑
(i,j)∈A

xijp −
∑

(k,i)∈A

xkip = bip, i ∈ N, p ∈ P,

xijp ≤ yij , (i, j) ∈ A, p ∈ P,∑
(i,j)∈A

(afijkfij + acijkcij) ≤ dk, k ∈ K,∑
p∈P

eprup ≤ gr, r ∈ R,

cij − c(2− up − xijp) ≤ zijp, (i, j) ∈ A, p ∈ P,
0 ≤ zijp, (i, j) ∈ A, p ∈ P,
ξijp ≤ cij , (i, j) ∈ A, p ∈ P,
0 ≤ ξijp ≤ c up, (i, j) ∈ A, p ∈ P,
fij − f(1− yij) ≤ wij , (i, j) ∈ A,
0 ≤ wij , (i, j) ∈ A,
yij ∈ {0, 1}, (i, j) ∈ A,
xijp ∈ {0, 1}, (i, j) ∈ A, p ∈ P,
up ∈ {0, 1}, p ∈ P,
fij ≥ 0, (i, j) ∈ A,
cij ≥ 0, (i, j) ∈ A.

(PPUL-RND)

Now, for a given design (x, y), the formulation (PPUL-RND) will �nd the design

of a worst-case adversary network (x, y), a possible structure of �xed costs, f , unitary

transportation arc costs, c, and a subset of origin-destination nodes, u, whose linkage

is favoured under this scenario of costs compared with the linkage cost needed in the

original design.

In the formulation (PPUL-RND) the continuous variables ξijp for all (i, j) ∈ A
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and p ∈ P have been included to identify if the connection cost of the pair p needs to

be added, or not, to the overall cost of the design (x, y). Observe that the constrains

ξijp ≤ cij , (i, j) ∈ A, p ∈ P,

0 ≤ ξijp ≤ c up, (i, j) ∈ A, p ∈ P,

ensure that ξijp will only take the unitary transportation arc cost cij when the binary

variable up is equal to one, that is, when the pair of potentially linked nodes pointed

by p is included in the set of e�ectively linked nodes under the considered scenario.

Otherwise, these variables are zero for every (i, j) ∈ A.

Remark 5. Observe that, the equations∑
(i,j)∈A

xijp −
∑

(k,i)∈A

xkip = bip, i ∈ N p ∈ P,

of the formulation (PPUL-RND) make that all the feasible solutions considered as

possible worst-case designs for the solution (x, y) must allow the connection of every

potential pair of nodes p ∈ P . In other case, if we compare the solution (x, y) with

adversary designs in which it were only guaranteed the e�ective connections of those

pairs appearing in each assessed scenario we would be inserting an asymmetry into

the optimization model (PPUL-RND) since the solution (x, y) is required to have the

availability of connecting every potential pair on nodes of P . This asymmetry would

give rise to positive regrets even for those solutions (x, y) connecting optimally all

the possible pairs under every possible scenario of costs due to the fact that its worst

case adversary may not require the construction of the arcs which would assure all

the possible connections.

Hence in order to assess the maximum regret of a given solution using the for-

mulation (PPUL-RND), the �xed costs due to the choice of designs guaranteeing all

the potential connections are taken into account both in the considered solution as

in its worst-case adversary. However, in both cases the connecting costs are only

considered among those pairs of P appearing in the worst-case scenario. This fact is

modeled through the constraints a�ecting to the variables ξijp, as it was commented

earlier, together with the constraints lower bounding the variables zijp,

cij − c(1− up) ≤ zijp, (i, j) ∈ A, p ∈ P.

Hence, for any given solution (x, y), the primal problem (PPUL-RND) �nds a

worst-case design for it and a worst-case scenario of costs together with the pairs that

must be linked in order to reach its maximum regret. Algorithm 1 can be modi�ed
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to solve this new optimization model in accordance with a new MILP formulation of

the master problem that now becomes

min r

subject to:∑
(i,j)∈A

f qijyij +
∑

(i,j)∈A,p∈P

cqiju
q
pxijp −R(xq, yq, sq) ≤ r, q = 0, 1, ..., n− 1,∑

(i,j)∈A

xijp −
∑

(k,i)∈A

xkip = bip, i ∈ N, p ∈ P,

xijp ≤ yij , (i, j) ∈ A, p ∈ P,
yij ∈ {0, 1}, (i, j) ∈ A,
xijp ∈ {0, 1}, (i, j) ∈ A, p ∈ P,

(MPUL-RND)

In the formulation (MPUL-RND) we must observe the following,

• for each list of worst-case scenarios for the linked pairs, given by the binary

vector uq, q = 0, 1, . . . , n− 1, the �rst block of constraints compares the over-

all (construction and connection) cost under the considered design with the

optimum under the corresponding scenarios of costs and linked pairs,

• the second block of constraints de�nes a feasible set of �ow variables allowing

to connect every pair of potentially linked nodes.

Proposition 7. The optimal value of the problem (MPUL-RND) is a lower bound

on the optimal objective of the problem (RND) under uncertain structure of costs and

list of linked pairs.

Proof. The minimum value of r for each feasible design of the network in the problem

(MPUL-RND) represents the maximum regret of the considered design under the

�nite set of worst-case scenarios that de�nes this problem.

We will now state the Benders decomposition algorithm associated to the new

formulations of the primal and master problems which is a slight modi�cation of

Algorithm 1.

Proposition 8. If ε = 0, Algorithm 2 ends in a �nite number of iterations with

an optimal solution of the minmax regret network design problem (RND) under an

uncertainty set of linked pairs of nodes.

Proof. Given a feasible design of the network (x, y) and a feasible subset of linked

pairs u, the formulation (PPUL-RND) ensures that one can �nd an extreme point of

the bounded polyhedron of possible cost scenarios S attaining the maximum regret.

Since the feasible set of subsets of linked pairs u is �nite we can assume the list
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Algorithm 2

1: procedure Initialization
2: Let (xε, yε) := (x0, y0) be an initial feasible design.
3: Solve the primal problem (PPUL-RND) to obtain the opportunity loss cost
R(x0, y0).

4: Let s0 := (c0, f0, u0) be a worst-case scenario for (x0, y0).
5: Initialize the list L := {(c0, f0, u0)}.
6: Set β := R(x0, y0), an upper bound on the optimal value of (RND) with

uncertain linked nodes.
7: Go to the iteration n := 1.
8: procedure Iteration (n = 1, 2, . . .)
9: Solve the master problem (MPUL-RND) and let (xn, yn) be one of its optimal

solutions.
10: Set α := r∗ the optimal value of the problem (MPUL-RND).
11: if β − α < ε then
12: (xε, yε) is an ε-approximation to the problem (RND) with uncer-

tain linked nodes.
13: else
14: Solve the primal problem (PPUL-RND) to obtain the value R(xn, yn).
15: Let sn := (cn, fn, un) be a worst-case scenario for (xn, yn) and (xn, yn, un)

a worst-case adversary.
16: Update the list L := L ∪ {(cn, fn, un)}.
17: if R(xn, yn) < β then
18: Update the upper bound β := R(xn, yn)} and (xε, yε) := (xn, yn)

19: Go to the iteration n := n+ 1.
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L of Algorithm 2 is a subset of a �nite set of scenarios. Hence following the same

reasoning that proof in Proposition 6 one can conclude the �niteness of Algorithm 2

with ε = 0.

Example Grid Design (continuation)

Up until now, we have assumed that �ve of the pairs of origin-destination nodes

had to be linked. Nevertheless, in real life there exist design problems in which the

pairs to be linked by the network could be only partially known. As commented

in the introduction, in the context of agile manufacturing, companies must operate

competently in a continuously changing market, being able to adapt their distribution

networks to new potential suppliers. An example of this situation can be found in

the �eld of companies providing Internet access, where the demand is continuously

increasing and the suppliers can change due to the improvements carried out in the

equipments. With the aim of covering these situations in our illustrative example

we will now assume that an uncertain number of pairs from the list P will be linked

under any of the possible scenarios. Here we assume than no more than two pairs

will be linked under any scenario. However, additional constraints about the possible

subset of linked pairs could be considered.

Note that the new conditions increase considerably the existing uncertainty since

the design must ensure the eventual linkage of any pair of the list P while its e�ciency

will be measured confronting this design with the optimal design under any selection

of a subset of almost two pairs from the list P to link. The proposed design is

sensitive to the new conditions as can be seen by comparing the optimal solutions

shown in the �gures 2.2 and 2.3. When we solve the new model via Algorithm 2, the

optimal design of the network depicted in Figure 2.3 is obtained. In this design, four

of its arcs belong to the rectangular unsure zone while the solution of the previous

model, shown in Figure 2.2, avoids using arcs from this zone. The explanation to

this more risky design is that the uncertainty about the unitary transportation costs

of the arcs only a�ects the regret if the worst scenario includes the corresponding arc

to join one of the origin-destination pairs whose linkage is mandatory. Otherwise,

the cost does not a�ect the objective function. Assessing the optimal design of the

previous model under this new objective function one obtains a value of its maximum

regret 5.66% higher than the optimal value.

2.3.3 Uncertain costs, linked pairs and demands

Let us now consider the situation in which unknown demands must be served in

certain nodes from speci�ed sources. Speci�cally, let p = (i, j) ∈ P be a possible

pair of linked nodes, we consider the parameters bip = bp, bjp = −bp and bkp = 0 for

k /∈ {i, j} (see Remark 2), where bp is an unknown amount of certain commodity that
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must be served. If we can assume the uncertain values bp are non-negative integers

upper bounded by bp the corresponding minmax regret problem can be modeled

using the formulation of Section 2.3.2 in which a set of bp replicas of the pair p would

be added to the set of potential linked pairs. Since in the model of the previous

subsection each possible scenario de�nes, in particular, the subset of potential linked

nodes that must be managed by the distribution network, we are allowing, in fact,

the existence of uncertain �ows of commodities among the considered nodes, that is,

if under a given scenario one has that b replicas of the pair p occur it means that

a demand of b units is served at the node j from the node i, where p = (i, j). A

drawback of this approach is the considerable increase in the size of both, primal and

master problems, of the corresponding model since each replicated pair p entails a

new set of variables xijp and an additional variable up, which makes a total of |A|+1

new binary variables. This increase in the number of binary variables implies, for

instance, 2|A| new continuous variables zijp and ξijp and 4|A| new constraints for

the primal formulation (PPUL-RND).

However, the idea of using replicas of the linked pairs of nodes can be used with

a much less increasing in the size of the involved problems if a �nite set of demand

con�gurations is managed. Let us suppose, for instance, that the demand of a given

node j from a node i can be just one of the values of a �nite set {b1p, . . . , brp} including
the zero value, where p denotes de pair (i, j). Under this hypothesis, we can consider

that all the demand is transported just as an only block by adjusting the unitary

transportation arc costs. Doing that, we only need a replica of the �ow and its

corresponding auxiliary variables for each index in the set Dp = {1, . . . r} for each
pair p ∈ P . We can even make smaller the increasing in size of the problems if we

consider a �nite set of demand con�gurations that simultaneously �x the demands

of all the linked pairs.

In the set of potential demands of a given pair p, the zero value means that

this pair should not be connected under this scenario and then its contributions to

the objective function in terms of transportation costs is zero. However, even if

this null value is the realization of the demand for the given pair, every network

design under consideration must allow us to connect this pair of nodes and hence the

corresponding contribution in terms of �xed costs, must be added to the objective

function. In order to do that we consider the set of binary variables {up1, . . . , upr}
to model the posible scenario of demands associated to the pair p, and include the

constraints ∑
s∈Dp

ups = 1, p ∈ P,

which will be used, together with the �ow variables x, to force the feasible designs to

have the availability of connecting every potential pair p ∈ P of linked nodes. The
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goal is to avoid asymmetries as those discussed in the previous section when a design

is compared with its worst-case adversary. Finally, one can slightly modify the for-

mulation (PPUL-RND) to accommodate the new conditions in the new formulation

(PPUD-RND) using once again the original values bip ∈ {0, 1,−1}, i ∈ N, p ∈ P of

the (DND) formulation .

R(x, y) := max
∑

(i,j)∈A

fijyij +
∑

(i,j)∈A,p∈P,s∈Dp

ξijpsxijp−

−
∑

(i,j)∈A

wij −
∑

(i,j)∈A,p∈P,s∈Dp

zijps

subject to: ∑
(i,j)∈A

xijp −
∑

(k,i)∈A

xkip = bip, i ∈ N, p ∈ P,

xijp ≤ yij , (i, j) ∈ A, p ∈ P,∑
(i,j)∈A

(afijkfij + acijkcij) ≤ dk, k ∈ K,∑
s∈Dp

ups = 1, p ∈ P,∑
p∈P,s∈Dp

epsrups ≤ gr, r ∈ R,

cijb
s
p − cb(2− ups − xijp) ≤ zijps,

(i, j) ∈ A, p ∈ P, s ∈ Dp,

0 ≤ zijps, (i, j) ∈ A, p ∈ P, s ∈ Dp,

ξijps ≤ cijbsp, (i, j) ∈ A, p ∈ P, s ∈ Dp,

0 ≤ ξijps ≤ cbups, (i, j) ∈ A, p ∈ P, s ∈ Dp,

fij − f(1− yij) ≤ wij , (i, j) ∈ A,
0 ≤ wij , (i, j) ∈ A,
yij ∈ {0, 1}, (i, j) ∈ A,
xijp ∈ {0, 1}, (i, j) ∈ A, p ∈ P,
ups ∈ {0, 1}, p ∈ P,
fij ≥ 0, (i, j) ∈ A,
cij ≥ 0, (i, j) ∈ A.

(PPUD-RND)

The new formulation (PPUD-RND) contains a large number of mixed variables

which will make harder its numerical resolution, however the resulting robust model

cover a considerable set of uncertain parameters in the cost-demand structure of

the problem. It is also interesting the implications of considering linear relation to

model the possible linkages between these parameters. For example, the block of

constraints ∑
p∈P,s∈Dp

epsrups ≤ gr, r ∈ R,
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can be used to model how to serve at least a given amount of total demand B among

the considered pairs of nodes, ∑
p∈P,s∈Dp

bspups ≥ B.

To end this section we will brie�y consider the case in which the demand of the

commodity can be satis�ed using a route with bifurcations on the network. These

solutions can be interesting in the case in which the arcs have limited capacities. If we

consider only a �nite set of possible capacities for each arc, the corresponding problem

can be modeled using replicas of the design variables. Speci�cally, if the capacity of

the arc (i, j) is a new decision variable of the design, we can use t replicas of the

corresponding binary variable yij , {yij1, . . . , yijt} and modify the block of constraints

relating the design variables, y, and the �ow variables, x, in the formulation (PPUD-

RND) as follows ∑
p∈P,s∈Dp

bspxijps ≤
∑
t

Ktyijt, (i, j) ∈ A,

and ∑
t

yijt = 1, (i, j) ∈ A,

where Kt represents each value of the capacity for the arc (i, j) ∈ A.
Given the primal problem (PPUD-RND) of this general model, a similar proce-

dure of Benders decomposition to that described in Section 2.3.2 can be used to solve

the corresponding problem. In the next section, it is carried out an experimental

study on the computational time needed to solve some of these formulations. This

can serve as an indicator of the level of applicability of these models in real situations.

Example Grid Design (continuation)

To conclude the numerical example used throughout this chapter, the variant of

uncertain demand is considered. Once again, this feature can model actual situations

in which the tra�c or the commodity �ow between origin-destination nodes is only

partially known. An example of this situation can be found in the existing tra�c

in communication networks. In most cases, there exist no precise information about

the expected tra�c between the terminals to be connected. However, a collection of

possible tra�c matrices can be available. With the aim of covering this situation,

we will assume known a set of possible demands for each of the �ve pairs that

could be eventually linked under a possible scenario. These sets are respectively,

{0, 1, 2, 3}, {0, 1, 2}, {0, 1}, {0, 1} and {0, 1, 2, 3} for the ordered set of pairs of P .

Any con�guration of demands is allowed, that is, we consider that any choice of the

demand values from these sets can occur under a possible scenario and we maintain
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the constraint referring to the maximum number of two e�ective linkage under any

possible scenario. The values considered for the demands could represent the usual

tra�c value as 1, twice the usual tra�c value as 2 and so on. The value 0 represents

the absence of tra�c between the pair of nodes. If the constraint of a maximum

number of e�ective linkage is removed the resulting problem should consider all the

scenarios corresponding to the e�ective linkage of the pairs in any subset of the list

P . In our case, with the constraint of at most two e�ective linkages, these values of

0-demand are redundant.

Solving the problem via Benders decomposition, as described in this section, we

obtain an optimal design which is shown in Figure 2.4. Since the set of possible

scenarios contains all the possible scenarios of the previous considered variant, the

optimal regret increases 5.66% the optimal regret of the previous model. More-

over, the optimal design for the example assuming uncertain costs and linked pairs,

represented in Figure 2.3, is not optimal in this new variant of (RND) achieving a

maximum regret under the new conditions 58.93% higher that the optimal value.

This shows, once again, the sensitiveness of the optimal design under variation on

the uncertainty sources.

1
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1

Figure 2.3: Optimal design assuming un-
certain costs and linked pairs.
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Figure 2.4: Optimal design assuming un-
certain costs, linked pairs and demands.

2.4 Computational experiment

In this last section we report some numerical experiments conducted to check the

scope and speed of the proposed algorithms and to analyze the structure of the

solutions in di�erent instances of the (RND) problem under:
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1. uncertain costs,

2. uncertain costs and linked pairs and

3. uncertain costs, linked pairs and demands.

In order to conduct the computational study, we generated instances of directed

acyclic square grid networks as the one used in the Grid Design example. Speci�cally,

the process de�nes the following elements:

• A set of n = m ×m nodes corresponding to points on the plane with integer

coordinates [x, y], 1 ≤ x ≤ m, 1 ≤ y ≤ m.

• A set of forward arcs of the form ([x, y], [x+ 1, y]), 1 ≤ x ≤ m− 1, 1 ≤ y ≤ m.

• A set of downward arcs of the form ([x, y], [x, y − 1]), 1 ≤ x ≤ m, 2 ≤ y ≤ m.

• A set of diagonal arcs of the form ([x, y], [x + 1, y + 1]), 1 ≤ x ≤ m − 1,

1 ≤ y ≤ m− 1.

The grid structure of our instances could have certain actual applications but

what is more important for our experimental study is that the considered topology

allows us to control possible infeasibility due to the inclusion of disconnected pairs

of nodes in the list P . In our case, nodes [i, j], [k, l] can be linked if, and only if,

i ≤ k and j ≤ l, or, i > k, j ≤ l and (i − k) ≤ (l − j). Using this characterization

of the set of potentially linkable pairs of nodes, a list P of cardinality 3 or 6, was

generated randomly for the di�erent instances.

The computational experiment was carried out on a personal computer with

Intel R© Core (TM) i7-4720HQ, 2.60GHz with 16384 MB RAM. The algorithms were

implemented and solved by using Xpress, Version 8.0.

2.4.1 Uncertain costs

The structure of the set of uncertain costs was designed following the idea of the

uncertainty set of demand data proposed in Lee et al. (2013). The values f−ij and

c−ij were generated randomly in the interval [0, 1]. For each arc (i, j) ∈ A, the

�xed cost fij could take any value in the interval [f−ij , f
−
ij + dfij ], and the unitary

transportation arc cost cij belongs to the interval [c−ij , c
−
ij + dcij ], where d

f
ij and d

c
ij

denote the maximum possible deviations from the nominal cost values f−ij and c−ij ,

respectively. We use two parameters, Γf and Γc, to control the degree of uncertainty

of �xed and unitary transportation arc costs, which must belong to the sets

F =
{
fij = f−ij + dfijv

f
ij ,

∑
(i,j)∈A

vfij ≤ Γf , 0 ≤ vfij ≤ 1, ∀(i, j) ∈ A
}
,
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and

C =
{
cij = c−ij + dcijv

c
ij ,

∑
(i,j)∈A

vcij ≤ Γc, 0 ≤ vcij ≤ 1, ∀(i, j) ∈ A
}
.

The values for the parameters Γf and Γc, controlling the uncertainty degree in

costs, were obtained from a regular support of the interval (0, 0.1) as a fraction of the

number of the arcs having uncertain �xed cost or uncertain unitary transportation

cost, speci�cally

Γf ∈ {0.01, 0.03, 0.05, 0.07, 0.09} × nf ,

and

Γc ∈ {0.01, 0.03, 0.05, 0.07, 0.09} × nc,

where nf and nc represent the number of arcs with uncertainty in each type of cost.

These values were chosen after observing that for smaller values of Γf and Γc the

regret became almost 0, and for bigger values it remained almost constant. In fact,

the values corresponding to the 0.09-fraction of nf and nc are not shown in the

following tables 2.2 and 2.3 since they are very similar to the values obtained for the

0.07-fraction.

We generated di�erent types of instances for the values of the parameters dfij and

dcij . Table 5.1 shows the di�erent discrete distributions used to generate instances

at random. For example, for instances of type A, dfij will take the value 0 with

probability
3

4
, the value f−ij with probability

1

8
or the value 2 · f−ij with probability

1

8
and dcij will take the value 0 with probability

3

4
or the value c−ij with probability

1

4
. Observe that we are allowing more variability in the �xed cost fij from their

nominal cost value f−ij than in the unitary transportation cost cij , which can share

certain similarities with practical applications in which the construction costs are

more variable than the maintenance ones. Note also that in the successive types of

instances the probability of an arc to have uncertain costs increases.
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Instance type dfij dcij

0 · f−ij , with probability
3

4
0 · c−ij , with probability

3

4

A 1 · f−ij , with probability
1

8
1 · c−ij , with probability

1

4

2 · f−ij , with probability
1

8

0 · f−ij , with probability
2

3
0 · c−ij , with probability

2

3

B 1 · f−ij , with probability
1

6
1 · c−ij , with probability

1

3

2 · f−ij , with probability
1

6

0 · f−ij , with probability
1

3
0 · c−ij , with probability

1

3

C 1 · f−ij , with probability
1

3
1 · c−ij , with probability

2

3

2 · f−ij , with probability
1

3

Table 2.1: Types of instances.

We report in Tables 2.2 and 2.3 the type of instance (type), the number of nodes

of each instance (n), the cardinality of the list of node pairs to be linked P (#P ) and

the value of Γf = Γc = Γ of the solved problems. For each con�guration of instances

and parameters we solved 5 di�erent problems and reported the average values of

the corresponding indicators; the optimal regret (R∗), the CPU time (CPU), the

number of iterations of the algorithm (It.), the percentage of arcs with uncertain

cost c (among all the arcs with uncertain cost c) constructed in the optimal design

(%c) and the percentage of arcs with uncertain �xed cost f constructed in the optimal

design (%f).

We can observe that the average CPU time spent in solving each type of instance

clearly increases with the increase of the number of nodes, the cardinality of P , and

the value of Γ. For instance, in Table 2.3 we can observe that for type C, n = 100,

P = 3, Γ = 0.01 the average CPU time is less than 6 seconds, meanwhile if we

increase Γ to 0.07 the CPU time becomes 366 seconds (61 times higher).

Tables 2.2 and 2.3 also show the e�ect of the increase in the variability of the

random distributions (Table 5.1), used to generate the range of costs, in the time

needed to solve the problem. As might be expected the larger variability in the range
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of costs, the larger CPU time needed to solve the problem.

It can also be observed in Tables 2.2 and 2.3 that the percentage of arcs having

uncertain costs cij which are included in the robust design is bigger than the percent-

age of arcs with uncertainty in fij ; this is caused by the type of considered instances.

It can be seen in Table 5.1 that the range of variability allowed for costs fij is bigger

than the one allowed for costs cij , and therefore including arcs with uncertain fij has

a higher e�ect in the regret. For instance, for type B, n = 196, |P | = 6, Γ = 0.03 the

percentage of arcs with uncertain cij included is 38.10%, meanwhile the percentage

of arcs with uncertain fij included is 4.33%. This shows again the sensitiveness of

the model to the structure of the uncertainty.
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type n #P Γ R∗ CPU It. %c %f

A 100 3 0.01 0.35 0.36 2.20 47.37 6.08

A 100 3 0.03 89.82 0.81 4.00 47.37 5.78

A 100 3 0.05 110.78 1.23 5.00 47.68 5.78

A 100 3 0.07 116.00 1.00 5.00 47.69 6.06

A 100 6 0.01 0.19 0.62 2.20 51.29 7.91

A 100 6 0.03 47.99 1.68 4.20 50.72 6.65

A 100 6 0.05 54.52 2.00 4.20 50.72 6.65

A 100 6 0.07 56.00 1.00 4.00 50.00 6.35

A 196 3 0.01 2.74 1.56 2.80 51.55 1.68

A 196 3 0.03 65.95 2.79 4.40 51.86 0.92

A 196 3 0.05 66.21 2.39 4.00 51.39 1.38

A 196 3 0.07 66.00 2.00 4.00 51.16 1.53

A 196 6 0.01 93.82 4.79 5.20 47.64 3.55

A 196 6 0.03 187.68 7.97 8.20 47.96 3.09

A 196 6 0.05 189.82 7.47 7.80 47.96 3.09

A 196 6 0.07 190.00 8.00 8.00 48.03 3.10

A 225 3 0.01 41.14 2.71 4.00 49.59 2.30

A 225 3 0.03 135.33 5.53 7.00 49.59 2.17

A 225 3 0.05 139.61 6.39 7.60 49.59 2.17

A 225 3 0.07 140.00 6.00 8.00 49.66 1.91

A 225 6 0.01 66.82 6.53 5.00 48.63 3.76

A 225 6 0.03 166.72 9.73 6.40 48.63 3.63

A 225 6 0.05 173.84 13.95 7.80 48.50 3.49

A 225 6 0.07 174.00 11.00 7.00 48.37 3.36

B 100 3 0.01 74.73 2.51 7.00 41.18 4.72

B 100 3 0.03 205.79 6.93 12.40 41.39 3.07

B 100 3 0.05 215.08 4.89 10.80 41.39 2.83

B 100 3 0.07 215.00 6.00 11.00 41.30 2.35

B 100 6 0.01 56.13 0.96 3.80 38.29 6.44

B 100 6 0.03 217.71 2.95 8.00 37.78 5.56

B 100 6 0.05 269.03 2.81 8.00 38.29 5.56

B 100 6 0.07 273.00 3.00 8.00 37.97 5.56

B 196 3 0.01 71.99 3.36 4.80 36.13 1.53

B 196 3 0.03 162.90 4.62 6.00 36.02 1.41

B 196 3 0.05 165.09 4.81 5.60 36.02 1.41

B 196 3 0.07 165.00 4.00 5.00 36.21 1.18

Table 2.2: A-B instances solved by Algorithm 1.
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type n #P Γ R∗ CPU It. %c %f

B 196 6 0.01 83.35 4.39 5.00 38.10 4.22

B 196 6 0.03 133.85 7.22 8.00 38.10 4.33

B 196 6 0.05 134.73 6.30 6.80 38.10 4.33

B 196 6 0.07 135.00 6.00 7.00 38.29 4.09

B 225 3 0.01 80.74 2.52 3.80 38.51 2.83

B 225 3 0.03 184.94 4.63 5.80 38.51 2.83

B 225 3 0.05 209.82 12.19 10.40 38.51 2.83

B 225 3 0.07 211.00 13.00 11.00 38.24 2.44

B 225 6 0.01 289.96 25.11 14.40 41.49 4.79

B 225 6 0.03 358.70 131.23 40.40 41.39 4.28

B 225 6 0.05 410.18 162.56 40.80 41.29 4.69

B 225 6 0.07 411.00 287.00 48.00 41.18 4.59

C 100 3 0.01 122.49 5.68 11.00 14.24 5.57

C 100 3 0.03 421.24 96.54 39.40 14.59 5.23

C 100 3 0.05 497.29 366.81 61.00 14.12 5.11

C 100 3 0.07 506.00 366.00 56.00 14.62 5.23

C 100 6 0.01 277.63 3.05 8.40 18.67 8.35

C 100 6 0.03 446.80 13.03 20.80 18.32 8.35

C 100 6 0.05 376.19 13.77 21.60 18.32 8.59

C 100 6 0.07 378.00 11.00 19.00 18.13 8.82

C 196 3 0.01 303.89 11.65 12.00 13.29 3.76

C 196 3 0.03 366.71 34.03 21.80 13.40 3.59

C 196 3 0.05 202.07 31.38 20.60 13.40 3.59

C 196 3 0.07 202.00 29.00 20.00 13.33 3.70

C 196 6 0.01 591.27 63.55 28.80 14.10 5.55

C 196 6 0.03 153.55 631.47 65.60 14.44 5.38

C 196 6 0.05 118.20 957.16 72.60 14.44 5.44

C 196 6 0.07 138.00 952.00 71.00 14.89 5.49

C 225 3 0.01 471.41 155.13 40.00 12.96 2.64

C 225 3 0.03 419.10 475.85 57.00 12.72 2.59

C 225 3 0.05 419.22 361.13 51.60 12.72 2.59

C 225 3 0.07 419.00 396.00 53.00 12.62 2.64

C 225 6 0.01 460.06 169.47 32.20 15.32 5.32

C 225 6 0.03 363.59 410.52 37.00 15.22 5.42

C 225 6 0.05 499.10 413.69 35.60 14.94 5.32

C 225 6 0.07 500.18 397.38 36.20 15.27 5.32

Table 2.3: B-C instances solved by Algorithm 1.
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Finally, Tables 2.2 and 2.3 show clearly the positive correlation between the

parameter Γ and the value of the optimal regret. For any given con�guration of the

instances, the increase in this parameter supposes a higher degree of uncertainty in

the model, as a consequence of the de�nition of the polyhedra F and C, giving rise

to the increase of the regret of any feasible design. For instance, for the con�guration

of type A, n = 100, |P | = 3, Γ = 0.01 the regret is 0.35, meanwhile if we increase Γ

to 0.05 the average regret is 110.78.

2.4.2 Uncertain costs and linked pairs

The optimization model given by the formulation (RND) was enriched in Section

2.3.2 by enabling the possibility of considering uncertainty about the subset pairs

of nodes of the list P that should be linked under a given scenario. Hence, for

this model, one must compute the overall cost of constructing a network being able

to connect any pair of nodes that potentially could have to be linked, while the

transportation cost only has an e�ect in the objective function for those pairs of

nodes for which it is mandatory to make its linkage under the considered scenario.

We show in Tables 2.4, 2.5 and 2.6, as in the precedent tables, the type of

instance (A,B or C), its parameter con�guration and the average of the CPU times,

number of iterations and percentages of arcs with uncertain costs appearing in the

optimal design. Here again, �% c� is the percentage corresponding to the arcs with

uncertain unitary transportation cost included in the optimal design and �% f� the

one corresponding to the arcs with uncertain �xed cost. Furthermore, we show in

the column (g), the maximum number of pairs in P that must be linked under a

given scenario. The parameter g is the right-hand side of the constraints (2.3) when

r = 1 and in our experiment takes the values 1 and 2 if |P | = 3 and 1, 2, 3 if |P | = 6.

As the degree of uncertainty increases in this model, so does the size of the

corresponding formulation. Consequently, the CPU times spent in solving the new

instances increase as it can be clearly observed comparing them with the correspond-

ing entries of Tables 2.2 and 2.3. In fact, certain instances can not be solved within a

given time limit. To highlight this point, we have added for each parameter con�gu-

ration, two new values with the number of problems, out of �ve, solved to optimality

within a limit of 1800 seconds (column �#opt�), and its average gap (column �Gap�).

For example, in the easiest case, for instances of type A, n = 36, P = 3, Γ = 0.01,

g = 1, we could not solve to optimality one of the problems, whereas for instances of

type C, the most di�cult ones, we could only solve to optimality 21 out of the 200

generated problems. The size of the considered instances stresses this e�ect, as can

be seen comparing the instances with 36 and 49 nodes over the same table. When

compared these new two columns among the three tables, it becomes evident the

increase in the hardness of the problem as the result of the increase in the variability
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of the generated uncertain costs, according to the probability distributions speci�ed

in Table 5.1.

Finally, we observed the behaviour that one may expect in what refers to the

increase of the CPU times when the parameter g rises. The increase of such a value

results in a bigger set of uncertain scenarios for the problem, making it more di�cult

to be solved. For example, for instances type A, n = 49, P = 6, Γ = 0.07, g = 1, 2,

three problems out of �ve were solved to optimality, with an average gap of 29.60%

and for g = 3 only one of the problems was solved and the average gap raised to

55.63%.
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type n #P Γ g #opt CPU Gap It. %c %f
A 36 3 0.01 1 4 455.47 20.00 311.40 38.86 4.29
A 36 3 0.01 2 4 455.56 11.62 312.20 38.86 5.16
A 36 3 0.03 1 4 455.66 20.00 313.40 38.86 4.29
A 36 3 0.03 2 4 455.70 13.12 312.60 38.86 5.16
A 36 3 0.05 1 4 455.64 20.00 312.60 38.86 4.29
A 36 3 0.05 2 4 455.58 13.50 312.60 38.86 5.16
A 36 3 0.07 1 4 455.50 20.00 313.80 38.86 4.29
A 36 3 0.07 2 4 455.61 7.47 312.80 38.86 6.02
A 36 6 0.01 1 1 1800.00 64.03 712.00 48.67 14.42
A 36 6 0.01 2 2 1458.53 57.27 530.20 48.83 12.15
A 36 6 0.01 3 2 1458.80 60.00 532.20 50.89 11.15
A 36 6 0.03 1 1 1800.00 75.50 717.40 48.67 12.42
A 36 6 0.03 2 1 1816.99 74.77 712.80 49.78 14.25
A 36 6 0.03 3 1 1800.00 64.25 714.80 48.67 13.42
A 36 6 0.05 1 1 1800.00 63.01 719.40 49.78 10.31
A 36 6 0.05 2 1 1800.00 77.30 714.40 51.84 12.31
A 36 6 0.05 3 1 1800.00 72.96 716.80 51.84 11.31
A 36 6 0.07 1 1 1800.00 62.27 719.80 50.73 12.31
A 36 6 0.07 2 1 1800.00 66.49 720.60 50.89 12.31
A 36 6 0.07 3 2 1458.26 52.15 540.80 49.94 11.31
A 49 3 0.01 1 2 1176.00 52.91 848.40 52.05 4.93
A 49 3 0.01 2 2 1175.68 39.46 845.80 50.92 3.73
A 49 3 0.03 1 1 1535.86 68.98 1133.20 51.45 3.93
A 49 3 0.03 2 1 1536.27 59.18 1119.20 52.05 3.13
A 49 3 0.05 1 1 1535.76 70.32 1135.00 52.05 4.73
A 49 3 0.05 2 1 1535.88 58.59 1113.20 52.05 3.93
A 49 3 0.07 1 1 1535.81 68.00 1136.80 51.45 3.93
A 49 3 0.07 2 1 1535.75 60.71 1125.00 52.05 3.93
A 49 6 0.01 1 3 1102.89 33.57 353.00 50.98 11.98
A 49 6 0.01 2 3 1100.08 39.42 349.00 50.98 12.53
A 49 6 0.01 3 2 1458.78 48.56 523.80 50.98 13.16
A 49 6 0.03 1 2 1460.40 31.39 527.40 50.27 11.98
A 49 6 0.03 2 2 1459.32 31.04 526.20 51.38 13.49
A 49 6 0.03 3 1 1800.00 52.99 699.60 50.98 12.53
A 49 6 0.05 1 3 1102.66 29.86 350.60 50.27 11.98
A 49 6 0.05 2 2 1463.51 49.52 527.80 51.38 11.03
A 49 6 0.05 3 1 1800.00 59.20 703.40 52.29 11.65
A 49 6 0.07 1 3 1102.31 25.00 351.40 50.27 11.98
A 49 6 0.07 2 3 1101.47 29.60 348.40 51.38 10.47
A 49 6 0.07 3 1 1800.00 55.63 700.20 51.38 11.03

Table 2.4: Numerical results for Algorithm 2 with instances Type A.
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type n #P Γ g #opt CPU Gap It. %c %f
B 36 3 0.01 1 4 456.02 20.00 312.80 40.42 6.50
B 36 3 0.01 2 4 456.46 20.00 314.00 40.42 6.50
B 36 3 0.03 1 3 816.30 39.50 621.40 40.42 6.50
B 36 3 0.03 2 3 816.44 39.99 618.40 39.81 6.50
B 36 3 0.05 1 3 816.10 39.99 625.40 40.42 7.27
B 36 3 0.05 2 3 816.25 39.62 625.00 39.81 5.73
B 36 3 0.07 1 2 1175.47 41.90 930.80 39.81 6.47
B 36 3 0.07 2 2 1175.90 41.26 932.00 39.81 6.50
B 36 6 0.01 1 1 1800.00 79.07 728.00 46.88 12.05
B 36 6 0.01 2 1 1800.00 64.98 724.00 47.06 11.43
B 36 6 0.01 3 1 1800.00 66.04 725.00 49.05 14.90
B 36 6 0.03 1 2 1460.05 57.81 543.00 48.43 13.03
B 36 6 0.03 2 1 1800.00 58.68 724.00 47.63 16.05
B 36 6 0.03 3 1 1800.00 67.81 727.20 49.11 13.61
B 36 6 0.05 1 2 1460.59 50.41 544.40 47.63 14.45
B 36 6 0.05 2 1 1800.00 52.44 719.60 47.06 10.76
B 36 6 0.05 3 1 1800.00 57.01 726.20 48.31 14.23
B 36 6 0.07 1 1 1800.00 69.47 719.60 47.00 12.85
B 36 6 0.07 2 0 1800.00 62.43 894.40 49.78 15.02
B 36 6 0.07 3 0 1800.00 61.31 893.20 48.98 15.64
B 49 3 0.01 1 3 816.11 29.03 559.20 41.76 8.46
B 49 3 0.01 2 3 815.97 29.31 565.80 41.76 7.55
B 49 3 0.03 1 2 1176.10 51.29 813.60 41.76 8.46
B 49 3 0.03 2 2 1175.99 43.96 836.20 42.28 7.94
B 49 3 0.05 1 2 1176.33 47.19 812.60 41.76 6.76
B 49 3 0.05 2 2 1175.96 51.91 829.80 41.76 7.28
B 49 3 0.07 1 2 1176.34 55.99 815.60 42.77 6.76
B 49 3 0.07 2 2 1176.15 50.09 837.20 42.28 7.28
B 49 6 0.01 1 2 1458.73 59.84 511.80 41.07 9.54
B 49 6 0.01 2 2 1458.22 58.84 505.00 40.44 9.12
B 49 6 0.01 3 2 1458.71 55.82 511.60 42.23 10.35
B 49 6 0.03 1 1 1800.00 50.48 681.40 43.42 7.91
B 49 6 0.03 2 1 1800.00 57.33 675.80 42.87 10.59
B 49 6 0.03 3 1 1800.00 66.32 677.40 42.23 10.34
B 49 6 0.05 1 1 1800.00 63.41 663.00 41.08 8.56
B 49 6 0.05 2 1 1800.00 56.90 672.20 43.40 8.31
B 49 6 0.05 3 1 1800.00 66.83 672.20 41.64 8.72
B 49 6 0.07 1 1 1800.00 52.44 674.60 41.67 9.54
B 49 6 0.07 2 1 1800.00 55.80 665.40 40.48 7.27
B 49 6 0.07 3 1 1800.00 67.07 669.40 42.80 7.90

Table 2.5: Numerical results for Algorithm 2 with instances Type B.
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type n #P Γ g #opt CPU Gap It. %c %f
C 36 3 0.01 1 1 1535.06 76.76 1230.80 16.85 8.48
C 36 3 0.01 2 2 1175.61 52.66 909.40 16.51 10.07
C 36 3 0.03 1 1 1535.30 59.27 1218.40 16.81 8.90
C 36 3 0.03 2 1 1535.25 71.75 1224.80 15.79 9.69
C 36 3 0.05 1 1 1535.25 60.70 1206.40 16.80 9.03
C 36 3 0.05 2 1 1535.81 69.44 1237.20 17.87 9.64
C 36 3 0.07 1 1 1535.37 60.45 1214.60 16.80 9.03
C 36 3 0.07 2 1 1535.45 70.35 1226.00 16.50 9.09
C 36 6 0.01 1 0 1800.00 95.61 876.20 27.45 17.57
C 36 6 0.01 2 0 1800.00 88.23 858.40 29.59 20.09
C 36 6 0.01 3 0 1800.00 96.53 874.60 29.59 19.12
C 36 6 0.03 1 0 1800.00 70.56 859.00 28.44 19.08
C 36 6 0.03 2 0 1800.00 92.44 858.00 29.21 18.58
C 36 6 0.03 3 0 1800.00 91.76 865.00 28.87 18.73
C 36 6 0.05 1 0 1800.00 71.40 837.40 27.45 16.53
C 36 6 0.05 2 0 1800.00 79.61 838.20 27.79 16.67
C 36 6 0.05 3 0 1800.00 94.88 853.00 29.59 20.09
C 36 6 0.07 1 0 1800.00 61.14 834.60 29.27 19.43
C 36 6 0.07 2 0 1800.00 85.81 836.20 29.56 18.32
C 36 6 0.07 3 0 1800.00 80.82 840.40 28.13 17.39
C 49 3 0.01 1 2 1176.02 43.33 832.40 18.27 7.92
C 49 3 0.01 2 1 1535.62 74.10 1106.80 16.53 7.97
C 49 3 0.03 1 2 1176.59 42.72 833.40 18.02 7.92
C 49 3 0.03 2 1 1536.03 67.79 1105.20 16.80 9.15
C 49 3 0.05 1 1 1536.27 69.81 1071.20 16.56 7.48
C 49 3 0.05 2 2 1176.88 48.50 830.80 19.01 8.92
C 49 3 0.07 1 1 1535.30 75.65 1084.20 17.03 8.45
C 49 3 0.07 2 2 1176.03 55.42 829.20 17.02 8.21
C 49 6 0.01 1 0 1800.00 94.58 827.40 20.76 13.27
C 49 6 0.01 2 0 1800.00 99.49 822.20 19.69 13.74
C 49 6 0.01 3 0 1800.00 95.32 826.20 19.76 12.78
C 49 6 0.03 1 0 1800.00 70.65 784.60 21.56 13.25
C 49 6 0.03 2 0 1800.00 94.01 814.20 19.74 12.07
C 49 6 0.03 3 0 1800.00 94.56 825.00 19.53 13.74
C 49 6 0.05 1 0 1800.00 71.38 770.60 20.26 11.79
C 49 6 0.05 2 0 1800.00 88.23 798.00 23.78 14.20
C 49 6 0.05 3 0 1800.00 90.82 801.40 18.70 12.78
C 49 6 0.07 1 0 1800.00 72.66 756.60 19.96 11.57
C 49 6 0.07 2 0 1800.00 82.86 783.80 20.64 13.51
C 49 6 0.07 3 0 1800.00 92.62 804.80 21.62 14.47

Table 2.6: Numerical results for Algorithm 2 with instances Type C.
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2.4.3 Uncertain costs, linked pairs and demands

To conclude this numerical experiment, we consider our most general model, devel-

oped in Section 2.3.3, in which apart from the costs and the pairs to be linked, there

exists uncertainty about the demands to be served through each linkage.

As observed in the last set of generated instances in our experiment, the hardness

of the problem prevents our algorithm from solving a large number of instances within

a reasonable CPU time limit (specially for the Type C). If this was the observed

behaviour under the assumption of uncertain costs and pairs to be linked, one may

expect this situation does not become better when the uncertainty in served demands

is also incorporated into the model. The di�culty of solving experimentally this

problem was already observed in the literature for other similar design optimization

models. For example, Lee et al. (2013), utilized in their computational study two

test instances from real-life telecommunication network design problems, with 24

and 27 nodes respectively, that by that moment remained unsolved even for the

deterministic case.

The model proposed in Section 2.3.3 is very general, having many di�erent un-

known parameters modeling the existing uncertainty about costs, pairs to be linked

and �ows. Furthermore, it combines uncertainty in a polyhedron of costs with dis-

crete uncertainty for the pairs to be linked and demands to be served. This fact

makes the model harder to be solved, even for moderate sizes, using conventional

capabilities of computation. For this reason, we have decided to explore in detail

just a numerical instance of the model instead of showing a table with CPU times

and other indicators for a few small instances. This numerical example represents a

real optical network topology with simulated parameters used in the literature (see

for example Alt�n et al. (2007); Buchheim et al. (2011); Klinkowski et al. (2005)).

The chosen network is the NSFNET, a USA backbone network with 14 nodes and

21 bi-directional links, depicted in Figure 2.5.

For this instance we generated at random the uncertain intervals for all the con-

sidered arc costs cij and fij . We de�ned 26 di�erent pairs of nodes that potentially

may be linked (bi-directionally): WA and DC with all the remaining nodes in the

network. The possible demands to be sent across any potential linkage were assumed

to be 0, 1 or 2. Remind that 0 means that no demand is served, 1 can be under-

stood as the usual demand and 2, as twice the usual demand. Furthermore, the

connections (WA,DC), (WA,UT) and (GA,DC) were considered as potential arcs to

be constructed (depicted as dashed arcs in Figure 2.6). Finally, we assumed that the

exact number of pairs to be linked was not known, but it was known that at most

�ve of them could be linked.
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Figure 2.5: The NSFNET network topology. 1

The regret obtained for this instance was 13.92. The CPU time in seconds re-

quired for solving the instance was 193094 (approximately 54 hours!) with 489

iterations of our proposed algorithm. We show in Figure 2.7 an optimal network

design for this problem, where only 13 (highlighted with thicker lines) of the 21 bi-

directional arcs were included in the optimal network design. We can also observe

that the three potential arcs (WA,DC), (WA,UT) and (GA,DC) were constructed,

extending in this way the existing optical network.

Figure 2.6: New potential arcs in the
NSFNET network topology.

Figure 2.7: An optimal design for the
NSFNET network topology.

After analysing the results obtained through the numerical experiment described

in this section we may conclude that our methodology can be used in the design of

1Image from https : //www.dit.upm.es/vnumlwiki/index.php/Example−NSF − 141.8
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robust distribution networks in the presence of a high level of uncertainty. Further-

more, using appropriate computational resources one can solve realistic approaches

using di�erent ways of modeling the existing uncertainty. By comparing the corre-

sponding optimal solutions to di�erent uncertainty models one may provide to the

decision makers with a useful tool to choose robust designs of expensive infrastruc-

tures.

2.5 Conclusions

The models studied in this chapter help to built robust supply networks connecting

pairs of (distant) nodes with a competitive performance under the uncertainties

a�ecting the considered activity. The mathematical modeling of the problem using a

scenario-based representation of the uncertainty can also help to design distribution

networks when there is no historical database that can be used to formulate the

problem through an approximation to the statistical distribution of the involved

costs. This is the case, for instance, of humanitarian logistic networks that must

assist the population a�ected by a speci�c natural disaster. These techniques can also

be appropriate when we need a solution which will be implemented in unstable and

changeable environments as commented in the context of the agile manufacturing.

In these situations, the volatile nature of the conditions faced by the distribution

network, weakens con�dence in the use of stochastic modeling which need some

stability to ensure the approximation of the average costs to the expectation of the

statistical distributions in use for these costs (Strong Law of Large Numbers).

The minmax regret optimization models considered in this chapter have been

solved by using a Benders decomposition framework. This methodology has shown

to be �exible enough to be adapted to the di�erent sources of uncertainty. The

computational experiment carried out in the chapter, seem to support the applica-

bility of the approach to real problems, although we must be realistic concerning to

the certi�cation of optimality. The increase in size of the considered networks will

inevitably drive us to fail in the certi�cation of the optimality using our numerical

algorithm. However, even prematurely stopped, this numerical procedure still has

the ability of providing an approximation to the optimal design as well as an upper

bound on the incurred gap. The quality of such an approximation can be improved

if the initial design used in the algorithm were obtained by solving the design opti-

mization problem under one or several scenarios of costs/demands that could ensure

a given degree of proximity to the optimal value (see Section 1.1.1). This could be

a future research line aiming to guarantee the initialization of the numerical scheme

with a good solution. Other further research lines could be the integration of these

robust design models in other more general supply chain management problems. In
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this context, new uncertainty sources could be considered in the production pro-

cess. Moreover, cost structures of a more general nature could be used to model,

for instance, the e�ect of the traveled distances in the quality of the transported

commodities or dependencies of the uncertain demand of a given node respect to the

supplier assigned.
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We consider a shortest path problem where the arc costs depend on their relative

position on a given path and there exist uncertain cost parameters. We study a min-

max regret version of the problem under di�erent types of uncertainty of the involved

parameters. First, we provide a Mixed Integer Linear Programming formulation by

using strong duality in the uncertainty interval case. Second, we develop three algo-

rithms based on Benders decomposition for general polyhedral sets of uncertainty. In

order to speed up the algorithms we use constant factor approximations to initialize

them. Finally, we report some computational experiments for di�erent uncertainty

sets in order to compare the behavior of the proposed algorithms.

3.1 Introduction

Certain real applications require deciding the best schedule plans in which the cost

of processing a task depends on its starting time. In many cases, we are given a

set of planning tasks, usually represented as the arcs of a network that may model

precedence relationships between them, while the goal is to determine the instant in

which each task (arc) should start its processing (is traversed) in order to optimize

some objective function. Natural examples are timetabling and scheduling problems

(Borndörfer and Schlechte (2007); Cacchiani et al. (2010); Cacchiani and Toth (2012);

Fischer and Helmberg (2014); Gawiejnowicz (2008)), Shortest Path Problems (SPP)

in dynamic networks (Ahuja et al. (2003); Aronson (1989); Cooke and Halsey (1966);

Fischer and Helmberg (2014); Hashemi et al. (2010)) or Time-Dependent Traveling

Salesman Problems (TDTSP) (Bigras et al. (2008); Furini et al. (2016); Pessoa et al.

(2010); Picard and Queyranne (1978); Ta³ et al. (2016); Vander Wiel and Sahinidis

(1996)), among others.

An interesting type of time-dependency that we would like to emphasize here

and that appears in some of the above TDTSP models (Bigras et al. (2008); Picard

and Queyranne (1978); Vander Wiel and Sahinidis (1996)) is that of de�ning the

travel cost between the two nodes of any arc as a function of the order in which the

traveler moves from one of them to the other into the route. More speci�cally, the

travel cost from node i to node j depends on the position that the node i occupies in

the ordering sequence of visited nodes. This problem with discrete travel times can

be viewed as a single machine scheduling problem with sequence-dependent setup

times (Bigras et al. (2008); Picard and Queyranne (1978)).

The time-dependent SPP (TDSPP) has been considered under di�erent optimal-

ity criteria and although there are models that can be solved in polynomial time

(Ahuja et al. (2003)), their complexity level is usually very high. The size of an

associated network called sometimes time-expanded network (Fischer and Helmberg

(2014)), multipartite network (Bigras et al. (2008)) or layered graph (Abeledo et al.
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(2013)) plays an important role in this level of complexity. This network is the basis

of one of the most useful modeling approaches for discrete planning. Depending on

the number of arcs and discretized time periods, the full time-expanded network

easily grows to a huge number of arcs in actual applications. In order to handle this

behavior Fischer and Helmberg (2014) developed a general dynamic graph genera-

tion framework to control the size of the network, what is crucial in order to obtain

e�cient algorithms to solve exactly the corresponding problem.

In this chapter, we use a time-expanded network as the basis to obtain a Linear

Programming (LP) formulation of time-dependent SPP models where the cost struc-

ture takes into account the position that each arc occupies in the path, speci�cally,

the total cost associated to each arc is the sum of an amount proportional to the po-

sition of the arc in the path and another quantity associated to the arc independently

of its position. Furthermore, it is assumed that there exists uncertainty in these two

cost coe�cients and we propose a robust -minmax regret- optimization model in or-

der to obtain a good solution. The complexity of the resulting optimization problem

will be related to the region modeling the uncertainty and to the type of dependency

on time of the cost structure. In most cases, this complexity will be NP-hard, for

instance when the uncertain parameters are modeled through uncertainty intervals

the TDSPP includes in particular the standard minmax regret SPP, which is known

to be NP-hard (see Section 1.1.1).

Although time-dependent and robust SPP models have been studied separately

in the literature (see e.g. Ahuja et al. (2003) and Karasan et al. (2001); Montemanni

and Gambardella (2004), respectively), to the best of our knowledge this is the �rst

time that a model, combining the time-dependency and the uncertainty of the costs,

is addressed in the context of the minmax regret criterion. As we will see, combining

both aspects will have as a consequence the emergence of relationships between the

uncertain parameters which breaks the independent variation assumption usually

considered in this context. In this chapter we will show how to �nd a MILP formu-

lation for the problem assuming uncertainty intervals for the unknown parameters.

Generalizing the structure of these uncertainty sets will require new developments

in order to extend previous results and to accommodate the new conditions on the

sources of uncertainty. We will use a Benders decomposition algorithm to solve nu-

merically the resulting minmax regret TDSPP problem. Moreover, the proposed

algorithm can easily be adapted to more general contexts as, for instance, that of

the minmax regret TDTSP.

An interesting application of this last optimization model can be found in the

context of scheduling. As said earlier, some authors (Bigras et al. (2008); Picard

and Queyranne (1978)) have applied the TDTSP to model the problem of �nding

the optimal ordering in which a set of jobs must be processed in a single machine
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to minimize the total completion time. In actual scheduling applications, at times,

the parameters describing the problem are only partially known. This uncertainty

justi�es �nding robust solutions. For instance, in the simple case in which no prece-

dence order between the tasks is considered and the processing times are uncertain,

the shortest processing time (SPT schedule), optimal for the total completion time

criterion, may vary from scenario to scenario. This is a serious drawback for decision

makers since their actions will possibly be evaluated ex-post and it would be really

worthy to have an ex-ante robust schedule as the one proposed by the minmax regret

criterion.

The minmax regret TDSPP model can also have interesting applications in the

�eld of scheduling under uncertainty. In TDTSP applications one must �nd an

optimal circuit in a network representing all the feasible processing orderings. Anal-

ogously, in the TDSPP model the goal is to determine an ordered sequence of a

subset of tasks. In a context of uncertain processing times, a minmax regret TDSPP

optimal solution will ensure a competitive total completion time under any of the

considered scenarios. This type of solutions can be used as the basis of a procedure

that sequentially assigns subsets of tasks to a set of available machines. In such a

procedure, once the �rst sequence of tasks (a path) has been assigned to one of the

machines, they (the tasks) would be removed from further consideration. Then, a

new network would be built and the process repeated with the remaining tasks not

yet processed. Similar schemes are used in Grid Computing (see, for instance He et

al. (2003)) to assign feasible sequences of tasks to a set of available processors. In

a grid computing architecture, a set of processors share a set of tasks according to

certain technical characteristics. Some of them, as the required processing time of

the tasks or the transfer speed together with the required computing recourses, could

be uncertain. Most of this problems studied in the literature have a high level of

di�culty since they are modeled as multiobjective combinatorial optimization prob-

lems (see for instance Ma et al. (2011a,b) and the references therein). This inherent

di�culty increases when the problem is considered in an uncertainty context, which

makes the construction of heuristic assignment procedures, like the one suggested

above, a valuable tool.

In the following Section 3.1.1, we give another application of the TDSPP, based

on the design of a searching strategy to �nd a hidden object in a �nite set of pos-

sible locations. We present this application only for illustrative purpose. This op-

timization model will be used along the chapter as a conductive example to write

di�erent formulations for its minmax regret version under uncertain costs, to show

dependency relations between these cost parameters and to complete some of the

numerical experiments reported at the end of the chapter. In Section 3.2 we give an

LP formulation of the TDSPP using a time-expanded network. As an application,



3.1. Introduction 69

a formulation of the searching problem is proposed. In Section 3.3.1, it is shown

how the dual of this LP problem allows us to obtain a MILP formulation for the

minmax regret TDSPP under uncertainty intervals of costs. We extend here pre-

vious results on the minmax regret SPP to the speci�c cost structure in which the

two types of involved costs vary independently into their corresponding uncertainty

intervals. A new and more general case in which we consider polyhedral sets of un-

certainty for these costs is also studied in this section, where three di�erent Benders

decomposition algorithms are analyzed. Although Benders decomposition has been

applied to SPP in the past (see e.g. Montemanni and Gambardella (2005b)), we

have developed a speci�c Branch and Cut procedure with Benders cuts reinforced

with a set of initial cuts which are obtained from constant factor approximations to

the problem (Conde (2010); Kasperski and Zielinski (2006)). In the last section of

this chapter, the computational results of a numerical experiment including di�erent

uncertainty models for the searching problem are shown. In this experiment we have

also compared di�erent strategies for the Benders scheme with the exact resolution

of the problem using standard optimization software.

3.1.1 An illustrative Example

We will describe here a new application of the TDSPP in the form of a game in which

a hidden item is searched in a �nite set of possible locations. This item could be some

material object or not, for example a piece of information searched within a set of

databases where one has to decide which databases are processed and which are not.

The sequence followed over the locations to search for the item is determined by the

accessing costs and the rewards obtained in the case of �nding the object. Obviously,

practical situations may include additional aspects to this basic optimization model

that could substantially increase its di�culty. However, even in those cases, the

resulting model could still share some of the essential characteristics described here.

Suppose that we need to �nd an object that can be located in one of n possible

positions with probability pi, i = 1, . . . , n. If the object is found at the position i one

obtains a given reward ri, otherwise the pro�t is zero. In the case that the object

has been found at the position i, the searching process is stopped, otherwise we can

continue searching at another position j or �nish the process. In this model, the

decision of searching at the position j, given that the object has not been found at

the location i, can only be taken if the arc (i, j) exists. In addition, we assume that

this decision implies that one must pay dij units to access to this location j from

i. The searching problem consists in choosing a sequence of positions in which we

will search this object according to the expected reward. This sequence is chosen a

priori, that is, we do not use the information of the previously visited nodes in order

to modify the searching strategy. Next, we formally describe the searching example.
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Let us consider a connected digraph G = (N,A) with a set of nodes N =

{0, 1, . . . , n + 1} and a set of arcs A ⊆ N × N . Nodes 0 and n + 1 represent,

respectively, the starting point and the ending of the searching process. Any other i

represents one of the n positions where the object may be searched. We assume that

all the arcs (0, i), i = 1, . . . , n + 1 and (j, n + 1), j = 0, 1, . . . , n belong to A, each

with zero cost, d0i = 0, i = 1, . . . , n+ 1 and dj(n+1) = 0, j = 1, . . . , n. The inclusion

of these arcs, at zero cost, enables us to start/end the searching process at any node.

Any other arc in A has an associated cost dij . As it was described above, under

these conditions the searching problem is equivalent to determining a shortest path

in G between 0 and n+ 1 with the cost structure induced by the coe�cients dij and

ri, for every possible i and j. For instance, if the resulting path is only composed

of the arc (0, n+ 1), then the optimal solution does not search for the object at all.

This particular case can occur if the expected reward of �nding the object does not

compensate the expected cost of any searching process.

Let P denote the set of paths in G from 0 to n + 1, and let us consider a path

(0, i1), (i1, i2), . . . , (ik−1, ik), (ik, n + 1). For notational convenience we take i0 = 0,

ik+1 = n + 1 and r0 = rn+1 = 0. Once a path has been chosen, the corresponding

cost is a random variable taking the values

t∑
s=0

disis+1 − rit+1 , t = 0, . . . k − 1

with `a priori' probability pit+1 of �nding the object at the node it+1, where p0 =

pn+1 = 0, and the value
k∑
s=0

disis+1 ,

with a probability 1 −
∑k

t=1 pit that the object is located in one of the non-visited

nodes. After some algebra, the expected cost can be written as

k∑
s=0

(
disis+1 − ris+1pis+1 − disis+1

s∑
t=1

pit

)
. (3.1)

Hence, the contribution of each arc (is, is+1) to the cost has two parts, an individual

cost which is speci�c for the arc, disis+1−ris+1pis+1 minus the amount disis+1

∑s
t=1 pit

that depends on the nodes visited previously to is in the path. In the case that

pi = 1/n, i = 1...n (discrete uniform distribution) the latter contribution depends

only on the position of the arc (is, is+1) into the path, that is, the expression (3.1)

reduces to
1

n

k∑
s=0

(
ndisis+1 − ris+1 − sdisis+1

)
. (3.2)
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Let us observe that each one of these addends can be written as

(n− s)disis+1 − ris+1 . (3.3)

Hence, in order to minimize the expression (3.2) a tentative searching path should

locate its arcs with larger dij-costs in its last positions. In this way, these accessing

costs would penalize the total cost as little as possible since they would be multiplied

by the factor (n − s) which is decreasing with respect to the position of the arc in

the path. On the other hand, if the reward rj is high enough, the node j, could be

included in the searching path even if the cost of accessing this node is considerable,

because the path will try to include all the arcs with negative contribution to the

cost (3.3). Note at this point that, although the coe�cients (3.3) could be negative

and could give rise to negative cycles, an optimal solution of the problem can be

found by means of a �ow problem with unitary upper bounds on the arc �ows. For

further details on this point, the reader is referred to the discussion in Section 3.2.

Thus, taking into account that n is a constant, the proposed optimization problem

would consist in determining a shortest path x ∈ P, from 0 to n+ 1, with arc costs

cij + αijpositij(x), where cij = ndij − rj , αij = −dij and positij(x) is the position

occupied by the arc (i, j) in the corresponding path x ∈ P.
We will end this section setting out a very simple numerical instance of this

searching problem which will be used to illustrate later formulations and results.

Example Searching Game

Consider the digraph G = {N,A} with N = {1, 2, 3} and A = {(1, 2), (1, 3),

(2, 3)}. We need to �nd an object that is located in one of the 3 nodes of G with

probabilities 1
3 .
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1

r1 = 5

2

r2 = 5

3 r3 = 10d12 = 2

d13 = 5

d23 = 4

Figure 3.1: Searching network.

If the object is found at the positions 1 or 2 one obtains rewards r1 = r2 = 5, and

if it is found at the position 3 a reward of r3 = 10. The costs of crossing the three

arcs (1, 2), (1, 3) and (2, 3) of the graph are d12 = 2, d13 = 5 and d23 = 4 respectively,

as shown in Figure 3.1.

We add to the network of Figure 3.1, the node 0 representing the starting point

of the searching process, the node 4 representing its ending, and the corresponding

arcs (0, i), i = 1, 2, 3, 4, (j, 4), j = 1, 2, 3, all of them with cost 0 (Figure 3.2).

1r1 = 5

2r2 = 5

3

r3 = 10

0r0 = 0 4 r4 = 0d12 = 2

d13 = 5

d23 = 4

0

0

0

0

0

0

0

Figure 3.2: Searching problem network.

Then, from the de�nition of the searching problem, the choice of a sequence

of positions in which we will search the object according to the expected reward is
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equivalent to determining a shortest path from 0 to 4 with arc costs cij+αijpositij(x),

where cij = ndij − rj , αij = −dij . Therefore, we have the following table of costs for
the network of Figure 3.2

(i, j) (0,1) (0,2) (0,3) (0,4) (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)
cij -5 -5 -10 0 1 5 0 2 0 0
αij 0 0 0 0 -2 -5 0 -4 0 0

Table 3.1: Table of costs for the network of Figure 3.2.

3.2 Model description and deterministic case formulation

Let us consider a connected acyclic digraph G = (N,A) with a set of nodes N =

{0, 1, . . . , n + 1} and a set of arcs A ⊆ N ×N . The acyclicity of G is instrumental

in order to obtain a compact formulation of the problem. As mentioned above, if

this condition were not ful�lled, a �ow model with unitary upper bound on the �ow

traversing each arc could still be used in order to �nd an optimal path without cycles

in P. These upper bounds are compatible with the developments of Section 3.3.2

where some numerical methods are proposed but they are not with the structure

of the time-expanded network used in Section 3.3.1 where a MILP formulation is

obtained.

The problem here is to �nd a path in P with minimum cost according to a function

that takes into account not only the costs cij , (i, j) ∈ A but also a penalization

proportional to αij associated to the position occupied for every arc in the ordering

induced by the path. If x denotes a feasible path of P and (i, j) is one of its arcs we

consider the following cost structure

cij(x) = cij + αijpositij(x) (3.4)

where cij is the �xed cost of traversing the arc (i, j) independently of its position in

the path, positij(x) denotes the position of arc (i, j) in the path x, and αij is the

unitary cost of traversing it in a given position on the path x.

It is possible to write a Mathematical Programming formulation for this problem

by using a time-expanded network inspired on a similar one given in Picard and

Queyranne (1978) for developing a Mixed Integer Linear Programming formulation

for the TDTSP.

In what follows, we describe the time-expanded network G that �ts to our

optimization model. By N it is denoted the set of nodes, each one de�ned through
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the pair (i, k) identifying that node i is the kth node to be visited following the

ordering induced by a given path x ∈ P, where i ∈ N \ {0, n+ 1} and k = 1, . . . , n.

Two special nodes, (0, 0) and (n+ 1, n+ 1), are added to the set N with a di�erent

meaning, the beginning and the end of every feasible path considered in P.
The set of arcs, A, of this new graph could be described by a vector of three

indices (i, j, k), where (i, j) ∈ A and k ∈ {0, 1, . . . , n}, with the following meaning:

• If i 6= 0 and j 6= n + 1 the arc described by the triplet (i, j, k), for all k =

1, . . . , n, has the node (i, k) ∈ N as its origin and (j, k + 1) ∈ N as its ending

node.

• If i = 0 there are two possibilities:

� j 6= n + 1, in which case, the arc (0, j, 0) is de�ned in A with origin at

(0, 0) and end at (j, 1).

� j = n + 1, in which case, the arc (0, n + 1, 0) is de�ned in A with origin

at (0, 0) and end at (n+ 1, n+ 1).

• If j = n+ 1, then (n+ 1, n+ 1) is the ending node of the arc (i, n+ 1, k) and

(i, k) is its origin node for all i, k ∈ N \ {0, n+ 1}.

The cost associated to the three groups of the arcs (i, j, k) ∈ A is cij + kαij , which

corresponds to visiting node j right after visiting node i as the kth node in the

ordering induced by the path. Note that, under this assumption, the cost of the arcs

of the form (0, j, 0) is c0j . In our instance of the searching problem described in

Section 3.1.1, c0j = −rj , where rj is the reward associated to the location j, since

all the costs d0j are zero.

The third group of arcs (i, n+ 1, k) of the above description were not included in

the multipartite networks considered in Bigras et al. (2008); Picard and Queyranne

(1978). In our case, we need to include them in order to model the set of paths

from the node 0 to n+ 1 in the original network G instead of a tour of a TSP as in

Bigras et al. (2008); Picard and Queyranne (1978). Hence, when the arc (i, n+ 1, k)

is included in the path, the node i is visited in the kth place and after that the path

ends at node n+ 1 of G.

De�ning the �ow variables xkij taking value 1 when the arc (i, j, k) ∈ A is in-

cluded in the path, and 0 otherwise, one has the following LP formulation for the

Deterministic TDSPP
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Z(c, α) = min Z(x, c, α) :=
∑

(i,j,k)∈A

xkij(cij + kαij)

st. ∑
(i,j,k)∈A

xkij −
∑

(l,i,k−1)∈A

x
(k−1)
li = bi, ∀(i, k) ∈ N,

xkij ≥ 0, ∀(i, j, k) ∈ A,

(DTDSPP)

where b0 = 1, bn+1 = −1 and bi = 0 for all i ∈ N \ {0, n+ 1}.
Observe that, if the graph were not acyclic, the unitary upper bound constraints∑
k:(i,j,k)∈A x

k
ij ≤ 1, ∀(i, j) ∈ A, could be included into the above formulation to

ensure that there is no cycle in any feasible path. However, in this case, we must

consider binary variables xkij ∈ {0, 1} since the unimodularity property of the �ow

constraints is lost.

Example Searching Game (continuation)

We present next, the time-expanded network Ḡ that �ts to the searching problem of

our example.

We have the following set of nodes

N̄ = {(0, 0), (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), (4, 4)}.

Observe that the node 1 ∈ N can only be visited in position 1, since we can only

reach it from node 0; node 2 ∈ N can be visited in positions 1 and 2, from nodes 0

and 1 ∈ N ; and node 3 ∈ N in position 1, 2 and 3.

Figure 3.3 shows the time-expanded network with arc costs cijk = cij + kαij .

We can easily observe that the shortest path is given by the path

(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)

with a total cost of −12. This sequence translated in terms of our searching problem

means that:

1. the search process should start in node 1;

2. then, if the object is not found there, the search should be continued in node

2;

3. �nally, if the object is not found in node 2, the search should end in node 3.

According to (DTDSPP), we can obtain the optimal path by solving the following

LP formulation:
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Figure 3.3: Time-expanded network.
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Z(c, α) = min Z(x, c, α) := −5x0
01 − 5x0

02 − 10x0
03 − 1x1

12 − 2x1
23 − 6x2

23

st.

x0
01 + x0

02 + x0
03 + x0

04 = 1,

x0
01 − x1

12 − x1
13 − x1

14 = 0,

x0
02 − x1

23 − x1
24 = 0,

x0
03 − x1

34 = 0,

x1
12 − x2

23 − x2
24 = 0,

x1
13 + x1

23 − x2
34 = 0,

x2
23 − x3

34 = 0

−x0
04 − x1

14 − x1
24 − x1

34 − x2
24 − x2

34 − x3
34 = −1,

xkij ≥ 0, ∀(i, j, k) ∈ A,

3.3 Robust Model formulations and Benders algorithms

Once the model, i.e. the expanded network and the cost structure, is introduced, we

assume that the coe�cients of the objective function of Problem (DTDSPP ) are

imprecisely known and we propose a robust solution by using the minmax regret cri-

terion. First, we will consider the model in which the uncertainty is modeled through

a hypercube of coe�cients cij and αij . In this case, we assume that uncertainty in-

tervals [c−ij , c
+
ij ] and [α−ij , α

+
ij ] are known and each coe�cient can vary independently

of the rest. The set S given by the Cartesian product of these intervals de�nes the set

of possible scenarios of costs. Then, we will consider a more general set of scenarios

S in which we allow some dependencies between the uncertain parameters.

For a given path x in P, from 0 to n+1, the regret under a cost scenario (c, α) ∈ S
is de�ned as

R(x, c, α) = Z(x, c, α)− Z(c, α), (3.5)

where x identi�es at the same time a path in P and the characteristic vector of the

path that obviously satis�es the constraints of Problem (DTDSPP ).

The problem that we consider is the one of �nding a path in P minimizing the

maximum regret over the whole set of scenarios S, that is, the Robust TDSPP:

R∗ = min
x∈P

max
(c,α)∈S

R(x, c, α). (RTDSPP)

This problem will be called in what follows the minmax regret Time-Dependent
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Shortest Path Problem. Observe that in the particular interval scenario case where

all α+
ij = α−ij = 0 this model reduces to the standard minmax regret SPP, whose

complexity is NP-hard even if the network is directed, acyclic, and has a layered

structure (see Section 1.1.1), so that the same complexity is achieved in our model.

3.3.1 Hypercube uncertainty set

We assume in this �rst case that coe�cients cij and αij can take any value in the

intervals [c−ij , c
+
ij ] and [α−ij , α

+
ij ], respectively, independently of the rest. Then, set S

is the hypercube determined by the Cartesian product of these intervals of costs.

As said before, one of the most common techniques used in the literature in

order to solve the minmax regret SPP with uncertainty intervals of costs is based

in determining a worst-case scenario (see Section 1.1.1). Remind that this is a

scenario for which the maximum regret for a given path x ∈ P is reached, that is,

(cw(x), αw(x)) ∈ S represents a worst-case scenario for the path x if it satis�es that

max
(c,α)∈S

R(x, c, α) = R(x, cw(x), αw(x)).

For a given x ∈ P the set of scenarios verifying the above equation may have a

cardinality greater than one but, at least, there exists one of these scenarios since,

by de�nition, R(x, c, α) is convex as a function of (c, α) ∈ S, hence it reaches its

maximum at one of the extreme points of S. We denote one of these worst-case

scenarios by (cw(x), αw(x)).

Let us suppose that we can identify one of the worst-case scenarios for x by

means of a linear function, namely, there exists a 2|A| × |A|-matrix B such that

(cw(x), αw(x))′ = Bx. In this case, due to the unimodularity properties of the

SPP, the value Z(cw(x), αw(x)) can be obtained by solving the dual formulation of

(DTDSPP ) in which the product Bx will appear in the right hand side of the con-

straints of the dual problem. This technique allows us to write Problem (RTDSPP )

using a MILP formulation as it has been done in the literature, for instance in Kasper-

ski (2008) (Section 7.5) or in the paper Karasan et al. (2001). We can follow the

same steps in our model if, for example, there is only uncertainty about the cost co-

e�cients cij , that is, the parameters αij are considered crisp or nominal (α−ij = α+
ij).

In this case, by using Proposition 2, it is easy to obtain a worst-case scenario for a

given x ∈ P as

cwij(x) = c−ij + (c+
ij − c

−
ij)

 ∑
k:(i,j,k)∈A

xkij

 . (3.6)

Since this expression is linear in the variables x we can use duality to obtain a MILP
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formulation (Kasperski (2008); Karasan et al. (2001)).

However, for a given x ∈ P, if the function

y 7→ max
(c,α)∈S

[Z(x, c, α)− Z(y, c, α)]

can be written as a linear function of y with its coe�cients also depending linearly

on x, it is still possible to apply LP duality in order to obtain a MILP formulation.

We will use this property to extend the classical duality development to obtain

a MILP formulation when there exists uncertainty about the true values of both

sets of costs, cij and αij , that is, the parameters αij are not longer crisp or nominal

(α−ij ≤ α
+
ij). Let us de�ne the following set of linear functions of x ∈ P,

αwijk(x) = kα−ij + (α+
ij − α

−
ij)

 ∑
t:(i,j,t)∈A

min{k, t}xtij

 . (3.7)

Proposition 9. The costs cwij(x) and αwijk(x) for (i, j, k) ∈ A, de�ned by (3.6) and

(3.7), verify

max
(c,α)∈S

[Z(x, c, α)− Z(y, c, α)] =
∑

(i,j,t)∈A

(c+ij + tα+
ij)x

t
ij −

∑
(i,j,k)∈A

(cwij(x) + αwijk(x))y
k
ij

when the set of cost scenarios S is the hypercube de�ned by the uncertainty interval

[c−ij , c
+
ij ] and [α−ij , α

+
ij ] for every (i, j) ∈ A.

Proof. By (DTDSPP ),

Z(x, c, α)− Z(y, c, α) =
∑

(i,j,k)∈A

cij(x
k
ij − ykij) +

∑
(i,j,k)∈A

kαij(x
k
ij − ykij). (3.8)

The �rst summation can be written as

∑
(i,j)∈A

cij

 ∑
k:(i,j,k)∈A

xkij

−
 ∑
k:(i,j,k)∈A

ykij


therefore, as x, y ∈ P, its maximum in cij ∈ [c−ij , c

+
ij ] is reached when cij = cwij(x) as

de�ned in (3.6). Hence,

max
cij ∈ [c−ij , c

+
ij ],

(i, j) ∈ A

∑
(i,j,k)∈A

cij(x
k
ij − ykij) =

∑
(i,j,t)∈A

c+
ijx

t
ij −

∑
(i,j,k)∈A

cwij(x)ykij ,

since, for any x ∈ P,
∑

k:(i,j,k)∈A x
k
ij ∈ {0, 1}.

On the other hand, in order to maximize in α the second summation of (3.8) we
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can observe that

max
αij ∈ [α−ij , α

+
ij ],

(i, j) ∈ A

∑
k:(i,j,k)∈A

kαij(x
k
ij − ykij) = α+

ij

 ∑
t:(i,j,t)∈A

txtij −
∑

k:(i,j,k)∈A

kykij

− (3.9)

−(α+
ij − α

−
ij)

 ∑
k:(i,j,k)∈A

 ∑
t:(i,j,t)∈A

min{k, t}xtij − k

 ykij

 , (3.10)

where (3.10) is nonzero only if there exists k >
∑

t:(i,j,t)∈A tx
t
ij such that ykij = 1.

Using this last expression the result follows.

Based on the construction of the network G described in the previous section,

one can write the dual formulation of the SPP problem (DTDSPP ) as

Z(c, α) = max u00 − u(n+1)(n+1)

st.

uik − uj(k+1) ≤ cij + kαij , ∀(i, j, k) ∈ A,
(3.11)

where the variable u00 can be �xed to 0 since the structure of this problem makes

that any feasible solution can be identi�ed with a ray of solutions obtained by adding

the same constant to all its components.

On the other hand, the problem (RTDSPP ) can be written as

R∗ = min
x∈P

max
y∈P

max
(c,α)∈S

[Z(x, c, α)− Z(y, c, α)] . (3.12)

Therefore, by using Proposition 9 and the expressions (3.6), (3.7), and using an

approach similar to that in Karasan et al. (2001), a MILP formulation for problem

(RTDSPP ) on acyclic networks can be written as follows

R∗ = min
∑

(i,j,t)∈A

(c+
ij + tα+

ij)x
t
ij − u00 + u(n+1)(n+1)

st. ∑
(i,j,k)∈A

xkij −
∑

(l,i,k−1)∈A

x
(k−1)
li = bi, ∀(i, k) ∈ N,

uik − uj(k+1) ≤ cwij(x) + αwijk(x), ∀(i, j, k) ∈ A,
xkij ∈ {0, 1}, ∀(i, j, k) ∈ A,

(3.13)

where b0 = 1, bn+1 = −1 and bi = 0 for all i ∈ N \ {0, n+ 1} and cw(x), αw(x) are

given in (3.6), (3.7).

The above MILP formulation does not apply in general to the searching problem

described in the section 3.1.1. The reason is the dependency relationship between
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the set of costs cij and αij when there exists uncertainty about the true values of

the distance costs dij . However, the worst-case scenario (3.6) can be adapted to this

model when it is only assumed uncertainty about the set of rewards rj . In the latter

situation we have the following speci�cations

• cij = ndij − rj and αij = −dij ,

• rj is an uncertain parameter that can take on any value in the interval [r−j , r
+
j ]

for every j = 1, · · · , n,

• c−ij = ndij − r+
j and c+

ij = ndij − r−j for all (i, j) ∈ A,

• (0, j) ∈ A and (j, n+ 1) ∈ A for all j = 1, · · · , n,

• c+
0j = −r−j , c

−
0j = −r+

j and c±j,n+1 = αj,n+1 = 0 for all j = 1, · · · , n,

• the remaining parameters are known (crisp or nominal).

By using Proposition 2, it is easy to obtain a worst-case scenario for x ∈ P given

by the linear expression

cwij(x) = ndij − r+
j + (r+

j − r
−
j )

 ∑
i,k:(i,j,k)∈A

xkij

 . (3.14)

Finally, using (3.14) and taking αwijk(x) = −dij for all k and x ∈ P, we obtain

with (3.13) a valid MILP formulation for this model.

Example Searching Game (continuation)

We continue now with our example assuming that each reward is uncertain, and can

take any value in the following intervals r1 ∈ [3, 6], r2 ∈ [4, 6] and r3 ∈ [10, 30]. The

corresponding uncertainty intervals cij ∈ [ndij − r+
j , ndij − r

−
j ] are shown in Table

3.2.

(i, j) (0,1) (0,2) (0,3) (0,4) (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)
[c−ij , c

+
ij ] [-6,-3] [-6,-4] [-30,-10] 0 [0,2] [-15,5] 0 [-18,2] 0 0
αij 0 0 0 0 -2 -5 0 -4 0 0

Table 3.2: Uncertainty intervals for the cij costs and values for αij .

Therefore, following (3.14), we can write the next MILP formulation that models
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the minmax regret time-dependent searching problem:

R∗ = min −3x0
01 − 4x0

02 − 10x0
03 + 0x1

12 + 0x1
13 − 2x1

23 − 6x2
23 − u00 + u44

st.

x0
01 + x0

02 + x0
03 + x0

04 = 1,

x0
01 − x1

12 − x1
13 − x1

14 = 0,

x0
02 − x1

23 − x1
24 = 0,

x0
03 − x1

34 = 0,

x1
12 − x2

23 − x2
24 = 0,

x1
13 + x1

23 − x2
34 = 0,

x2
23 − x3

34 = 0

−x0
04 − x1

14 − x1
24 − x1

34 − x2
24 − x2

34 − x3
34 = −1,

u00 − u11 ≤ −6 + 3x0
01,

u00 − u21 ≤ −6 + 2x0
02,

u00 − u31 ≤ −30 + 20x0
03,

u00 − u41 ≤ 0,

u11 − u22 ≤ 2x1
12 − 2,

u11 − u32 ≤ −15 + 20x1
13 − 5,

u21 − u32 ≤ −18 + 20(x1
23 + x2

23)− 4,

u22 − u33 ≤ −18 + 20(x1
23 + x2

23)− 8,

u11 − u42 ≤ 0,

u21 − u42 ≤ 0,

u31 − u42 ≤ 0,

u22 − u43 ≤ 0,

u32 − u43 ≤ 0,

u33 − u44 ≤ 0,

xkij ≥ 0, ∀(i, j, k) ∈ A,

As we have seen in this section, under a speci�c structure of the uncertain pa-

rameters of the model, we can obtain a MILP formulation and hence, we can solve

exactly the problem for instances of moderate size. However, the independent varia-

tion of the uncertain parameters in the set of scenarios could be unrealistic in some

applications. For instance, in the searching problem, as we have just seen, if the

rewards rj and the accessing costs dij are all uncertain it is not possible to apply

Proposition 9 to get the above MILP formulation. In the following section we will

consider an alternative way of solving a more general problem.



3.3. Robust Model formulations and Benders algorithms 83

3.3.2 Polyhedral uncertainty set

In this section, we analyze the minmax regret TDSPP problem (RTDSPP ) in a

more general context. Now, we will permit that the uncertainty a�ects and links

simultaneously both coe�cients cij and αij of (3.4). This new framework allows us,

for instance, to consider the searching problem of the section 3.1.1 under simultaneous

variations of the rewards rj and accessing costs dij , for every (i, j) ∈ A. Recall that,
in spite of the fact that the following formulations will be given for acyclic graphs,

they can be extended to not acyclic graphs by including the unitary upper bound

constraints described in Section 3.2. Furthermore, the approach developed in this

section can also be applied to the minmax regret TDTSP problem by adapting the

constraints of the formulations described here to the structure of the TSP.

In order to model the set of possible scenarios, it is assumed that (c, α) ∈ S,

where S ⊂ R2|A| is a bounded polyhedron.

In general, when an arbitrary polyhedron models the set of possible scenarios,

one does not have a closed-form for a worst-case scenario that could be used to

reformulate the problem. In this situation, we need to determine numerically a worst-

case scenario for each given solution x ∈ P. Solving the following formulation (3.15),

one can �nd simultaneously a worst-case scenario for a given x and additionally

an optimal solution to the underlying deterministic model for such a scenario, a

worst-case adversary,

R(x) = max
∑

(i,j,k)∈A

xkij(cij + kαij)−
∑

(i,j,k)∈A

ykij(cij + kαij)

st. ∑
(i,j,k)∈A

ykij −
∑

(l,i,k−1)∈A

y
(k−1)
li = bi, ∀(i, k) ∈ N,

ykij ∈ {0, 1}, ∀(i, j, k) ∈ A,
(c, α) ∈ S,

(3.15)

where b0 = 1, bn+1 = −1 and bi = 0 for all i ∈ N \ {0, n+ 1}.
Under our hypothesis all the constraints of (3.15) are linear functions of the

decision variables (y, c, α). Nevertheless, we have a quadratic objective function

and the binary variables ykij . This last inconvenience comes from the fact that the

constraints of (3.15) are, in general, not totally unimodular since we are considering

general polyhedra S to model the set of possible cost scenarios.

In what follows the quadratic objective function of the problem (3.15) will be

linearized using that S is a bounded set. This linearization makes possible to write

the problem as a MILP formulation which opens the possibility to apply o�-the-shelf

solvers in order to have an optimal solution.
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Let us de�ne

M = max
(c,α)∈S

‖(c, α)‖∞. (3.16)

Such a constant M exists since S is bounded. We add now the new decision

variables zkij , w
k
ij , ∀i, j, k, and the following constraints

−Mykij ≤ zkij ≤ cij +M(1− ykij),

cij −M(1− ykij) ≤ zkij ≤Mykij ,

−Mykij ≤ wkij ≤ αij +M(1− ykij),

αij −M(1− ykij) ≤ wkij ≤Mykij ,

∀i, j, k, to formulation (3.15).

On the one side, observe that if ykij = 0 the above constraints imply that zkij = 0

and wkij = 0. On the other hand, if ykij = 1 we obtain that zkij = cij and wkij = αij .

Therefore, making zkij = cijy
k
ij and wkij = αijy

k
ij , ∀i, j, k in formulation (3.15) we

obtain an equivalent MILP formulation.

R(x) = max
∑

(i,j,k)∈A

xkij(cij + kαij)−
∑

(i,j,k)∈A

(zkij + kwkij)

st. ∑
(i,j,k)∈A

ykij −
∑

(l,i,k−1)∈A

y
(k−1)
li = bi, ∀(i, k) ∈ N,

ykij ∈ {0, 1}, ∀(i, j, k) ∈ A,
−Mykij ≤ zkij ≤ cij +M(1− ykij), ∀(i, j, k) ∈ A,
cij −M(1− ykij) ≤ zkij ≤Mykij , ∀(i, j, k) ∈ A,
−Mykij ≤ wkij ≤ αij +M(1− ykij), ∀(i, j, k) ∈ A,
αij −M(1− ykij) ≤ wkij ≤Mykij , ∀(i, j, k) ∈ A,
(c, α) ∈ S,

(PP-RTDSPP)

where b0 = 1, bn+1 = −1 and bi = 0 for all i ∈ N \ {0, n+ 1}.
Henceforth we will refer to Problem (PP −RTDSPP ) as the primal problem.

By solving the primal problem we obtain a worst-case scenario (cw(x), αw(x)) ∈ S
for the solution x ∈ P. Furthermore, by solving this primal problem we also obtain

the maximum regret for x, R(x), which de�nes an upper bound for the optimal

objective value of the problem (RTDSPP ). A lower bound of this optimal value

can be obtained through the master problem. In order to de�ne it, let us suppose we

have solved several primal problems (PP −RTDSPP ) for a set of feasible solutions

xτ , τ ∈ T and we have obtained the set of worst-case scenarios (cτ , ατ ) for τ ∈ T . In
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what follows, for simplicity, we will represent by (cτ , ατ ) the speci�c solution (worst-

case scenario) of the primal problem for each iteration τ ∈ T . The master problem

associated to this set T has the following format

t∗ = min t

st.

x ∈ P,
R(x, cτ , ατ ) ≤ t,∀τ ∈ T.

(3.17)

Given the set of scenarios ST = {(cτ , ατ ) : τ ∈ T} ⊂ S obtained from the resolution

of a family of primal problems, we have

max
(c,α)∈ST

R(x, c, α) ≤ max
(c,α)∈S

R(x, c, α)

that is

t∗ = min
x∈P

max
(c,α)∈ST

R(x, c, α) ≤ min
x∈P

max
(c,α)∈S

R(x, c, α) = R∗. (3.18)

Hence, solving the master problem allows us to bound from below the optimal ob-

jective R∗ of the minmax regret TDSPP (RTDSPP ).

In order to solve the master problem by a standard solver we must rewrite its for-

mulation (3.17). First, note that, after solving the primal problem (PP −RTDSPP )

corresponding to a feasible solution xτ , τ ∈ T , one obtains its worst-case scenario

(cτ , ατ ) and its worst-case adversary yτ which is optimal for the deterministic prob-

lem under the scenario (cτ , ατ ). Hence, according to the de�nition of the regret

function in (3.5) we have

R(x, cτ , ατ ) = Z(x, cτ , ατ )− Z(cτ , ατ ) = Z(x, cτ , ατ )− Z(yτ , cτ , ατ ).

This identity allows us to rewrite the corresponding constraints of the master

problem as linear inequalities on x using the expression of the function Z(x, c, α)

given in (DTDSPP ). Therefore, one has the following MILP formulation for the

master problem

t∗ = min t

st. ∑
(i,j,k)∈A

xkij −
∑

(l,i,k−1)∈A

x
(k−1)
li = bi, ∀(i, k) ∈ N,∑

(i,j,k)∈A

(xkij − ykτij )(cτij + kατij) ≤ t, ∀τ ∈ T,

xkij ∈ {0, 1}, ∀(i, j, k) ∈ A,

(MP-RTDSPP)
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where b0 = 1, bn+1 = −1 and bi = 0 for all i ∈ N \ {0, n+ 1}.
Let x∗ be an optimal solution of Problem (MP −RTDSPP ) with objective value

t∗. Now the process will continue computing the maximum regret of x∗ by solving

the corresponding primal problem (PP −RTDSPP ). Next, its worst-case scenario

(c∗, α∗) is added to the set ST after a new index is also added to T and the process

is repeated. The optimality of the algorithm is guaranteed due to the �niteness of

the set P and the following observation.

Proposition 10. Let x∗ be an optimal solution of the master problem associated

to the set of indices T and (c∗, α∗) an optimal solution of its corresponding primal

problem. Then x∗ is an optimal solution for the minmax regret TDSPP (RTDSPP )

if there exists an index τ ∈ T for which x∗ = xτ or (c∗, α∗) = (cτ , ατ ).

Proof. Let us �rst suppose that x∗ = xτ for a given τ ∈ T . According to the

formulation (3.17) we have

t∗ ≥ R(x∗, cτ , ατ ) = R(xτ , cτ , ατ ) = R(xτ ),

where the last equality follows from the de�nition of the primal problem (PP −RTDSPP ).

Furthermore, we know by (3.18) that t∗ is a lower bound for R∗, then

t∗ ≤ R∗ ≤ R(xτ ),

hence R(x∗) = R(xτ ) = R∗, that is, x∗ is an optimal solution the minmax regret

TDSPP (RTDSPP ).

Let us now suppose that (c∗, α∗) = (cτ , ατ ) for a given τ ∈ T . In that case,

considering the constraints of the problem (3.17), we have

R(x∗) ≥ R∗ ≥ t∗ ≥ R(x∗, cτ , ατ ) = R(x∗, c∗, α∗) = R(x∗).

Therefore, x∗ solves the minmax regret TDSPP (RTDSPP ).

Using these results, we will propose three algorithms for solving the minmax

regret TDSPP (RTDSPP ).

The �rst algorithm is based on a Benders Decomposition. A similar algorithm

was originally applied to a Robust Shortest Path Problem (RSPP) in Montemanni

and Gambardella (2005b). Here, we adapt it to our time-expanded network and in

addition we initialize the algorithm with a Benders cut coming from a guaranteed

2-approximated solution.
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Algorithm 3 Benders

1: procedure Initialization
2: Choose x0 ∈ P and solve the primal problem (PP −RTDSPP ) for x = x0.
3: Let (c0, α0) be an optimal solution for (PP −RTDSPP ). Take T = {0},
R+ := R(x0), x̂ = x0 and go to iteration ν = 1.

4: procedure Iteration (ν = 1, 2, . . .)
5: Solve the master problem (MP −RTDSPP ) and let x∗ be an optimal solu-

tion of such problem.
6: Solve the primal problem (PP −RTDSPP ) for x = x∗. Let (c∗, α∗, y∗) be

an optimal solution of such problem. If R(x∗) < R+ take R+ := R(x∗) and
x̂ = x∗.

7: if ∃τ ∈ T verifying x∗ = xτ or (c∗, α∗) = (cτ , ατ ) then
8: x∗ is an optimal solution for the minmax regret problem (RTDSPP ).

END.
9: else if R+ − t∗ ≤ ε then
10: the solution x̂ is an ε-approximation to the optimal solution of the problem

(RTDSPP ). END.
11: else
12: take xν = x∗, (cν , αν) = (c∗, α∗), T := T ∪ {ν}, and go to iteration

ν := ν + 1.

Remark 6. In the �rst iteration of the Algorithm 3, ν = 1, we can always take

x∗ = y0, the worst-case adversary obtained in the initialization step when the primal

problem (PP −RTDSPP ) is solved for x = x0. This is true because R(x, c0, α0) =

Z(x, c0, α0) − Z(cτ , α0) hence, as in the �rst iteration it is solved the master prob-

lem (MP −RTDSPP ) for T = {0}, it is equivalent to minimize Z(x, c0, α0) with

x ∈ P, that is, y0 is an optimal solution of the master problem according to the

de�nition of the primal problem (3.15) and the formulation (DTDSPP ). Therefore,

the statement of the �rst iteration of the algorithm could be modi�ed according to the

above considerations. However, we have preferred to state all the iterations in the

same way in order to ease the description of the procedure.

Remark 7. Proposition 10 guarantees that the above Algorithm 3 is �nite since the

number of di�erent paths in P and the number of extreme points of S, the candidates

to be worst-case scenarios, are �nite. Therefore, the algorithm will end with an

optimal solution whenever ε = 0. Otherwise, when ε > 0 we can ensure the proposed

solution x̂, is an ε-approximation for Problem (RTDSPP ) since t∗ is a lower bound

of the optimal objective value R∗ and x̂ is the best solution generated during the

execution of the algorithm. Therefore, one has

0 ≤ R(x̂)−R∗ ≤ R+ − t∗ ≤ ε.

It is interesting to point out that the best lower bound t∗ coincides in each iteration
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with the optimal objective value of the corresponding master problem which will be

greater than or equal to the above lower bound as can be seen from the de�nition of

the master problem (3.17).

The second algorithm that we will analyze is based on a Branch and Cut ap-

proach using Benders cuts. To the best of our knowledge, this method has never

been applied to a RSPP; however, a similar approach was used, for instance, by

Pereira and Averbakh (2013) on the robust set covering problem. In addition, as

mentioned in the introduction, we reinforce our Branch-and-Cut with a set of initial

cuts from guaranteed 2-approximate solutions based on mid-point scenario solutions,

as developed in Section 3.3.3.

In the next algorithm we propose, as referred in the �rst chapter, Benders cuts are

used in a Branch and Cut scheme. First, our procedure starts using an incomplete

description of the feasible set of the problem (3.17) and solving its linear relaxation.

This initial description will be reinforced during the process by using separating

Benders cuts in each subproblem generated with the branch-decision tree. Whenever

an integer solution x̂ of the master problem is found, with objective value t̂, the

primal problem is solved for the corresponding x̂-solution. Let (ĉ, α̂, ŷ) be an optimal

solution of such problem. If R(x̂) − t̂ ≤ ε, x̂ is a candidate to optimal solution and

t̂ a candidate to the optimal objective value, we keep them if they improve the

incumbent solution. Otherwise, the solution is cut by introducing the constraint∑
(i,j,k)∈Ā(xkij − ŷkij)(ĉij + kα̂ij) ≤ t∗ to the master problem in the corresponding

node of the branch-decision tree. The cut is propagated to all currently active nodes

of the corresponding branch of the decision tree.

On the other hand, whenever a fractional solution of the master problem is found,

with a depth lower than a prespeci�ed level, one of the above cuts is also added to

the master problem in order to separate that fractional solution.

Once the branch-decision tree has been explored, the incumbent solutions (if

there were more than one) are optimal solutions of the problem. We encode the

procedure in Algorithm 4

The advantages of this Branch and Cut approach are that the master problem is

loaded only once and the cuts are added without restarting the branching tree after

every cut is introduced. The disadvantage is that every cut to be added requires

to solve a primal problem (and in some cases this number of primal problems to be

solved is larger than in the Benders Algorithm 3).

Remark 8. For the case in which the uncertainty set is a hypercube (Section 3.3.1)

the primal problem is a shortest path problem. Therefore, these problems can be
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Algorithm 4 Branch and Cut

1: procedure Initialization
2: Let L be the list of active problems and dmax be the maximum depth to get

Benders cuts for fractional solutions.
3: Set L := {master problem (MP )}, dMP := 0 and t∗ = +∞.

4: procedure Repeat until L is empty

5: Select and remove a problem P̂ from L with associated depth dP̂ .
6: Solve the linear relaxation of P̂ . Let x̂ be an optimal solution and t̂ its

corresponding objective value.
7: if x̂ is integer then
8: solve the primal problem for x = x̂. Let (ĉ, α̂, ŷ) be an optimal solution

of such problem.
9: if R(x̂)− t̂ ≤ ε then
10: x̂ is a candidate solution. If t̂ ≤ t∗ then t∗ = t̂ and x∗ = x̂.
11: else
12: add the cut

∑
(i,j,k)∈A(xkij − ŷkij)(ĉij + kα̂ij) ≤ t to the problem P̂ .

13: Add P̂ to L with depth dP̂ = dP̂ + 1.
14: Go to 1.
15: else if x̂ is not integer and dP̂ < dmax then
16: solve the primal problem for x = x̂. Let (ĉ, α̂, ŷ) be an optimal solution

of such problem.
17: Add the cut

∑
(i,j,k)∈A(xkij − ŷkij)(ĉij + kα̂ij) ≤ t to problem P̂ .

18: Add P̂ to L with depth dP̂ = dP̂ + 1.
19: Go to 1.
20: else
21: Branch problem P̂ into new problems with restricted feasible regions.
22: Add these problems to L with associated depth dP̂ + 1.
23: Go to 1.
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solved either directly by any solver as a linear program or with speci�c combinatorial

algorithms for shortest path problems.

We propose a third algorithm which is a combination of the two previously de-

scribed Algorithms 3 and 4. Observe that, if we include in the master problem all the

Benders cuts corresponding to the extreme points of the polyhedron S, the master

problem is a valid MILP formulation for problem (RTDSPP ). The main idea of

this combined algorithm is to apply Benders Algorithm 3 until some threshold for

the gap is achieved or until a �xed number of cuts are added to the master problem.

By applying several iterations of the sequential Benders Algorithm 3, we obtain a

master problem that provides a better description of problem (RTDSPP ). Once

this tighter master problem is obtained the Branch and Cut Algorithm 4 is launched

using as master problem the one obtained in the sequential Benders Algorithm 3

stopped with the above criteria. This is:

Algorithm 5 Combined Benders - Branch and Cut

1: procedure Initialization(Set maxc, the maximum numbers of cuts to be
added to the master problem and ε the accuracy threshold.)

2: Apply Algorithm 3 until it reaches a precision ε or maxc cuts are added (what
happens �rst).

3: Apply Algorithm 4 initializing L with the resulting master problem from step 1.

In what follows, we propose a feasible solution for the initialization step of the

algorithms.

3.3.3 Initializing by 2-approximations

In the initialization of the proposed algorithms a solution x0 is chosen arbitrarily. It

would be interesting to use a solution as close as possible to the optimal one. In this

sense, if the set of scenarios allows us to have a constant factor approximation such

strategy could be used to initialize the algorithms. The following result provides

a 2-approximation that can be used when the set of scenarios is a hypercube (see

1.1.1).

Proposition 11. Let us consider S =
∏

(i,j)∈A

[c−ij , c
+
ij ] ×

∏
(i,j)∈A

[α−ij , α
+
ij ] and the mid-

point scenario (c, α), that is,

cij =
c−ij + c+

ij

2
, αij =

α−ij + α+
ij

2
, ∀(i, j) ∈ A,

then any optimal solution x ∈ P of the deterministic Problem (DTDSPP ) under

the scenario (c, α) is a 2-approximation for the minmax regret problem (RTDSPP ).
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Proof. Problem (DTDSPP ) can be rewritten equivalently as

Z(c, α) = min Z(x, c, α) :=
∑

(i,j)∈A

(cijyij + αijwij)

st. ∑
(i,j,k)∈A

xkij −
∑

(l,i,k−1)∈A

x
(k−1)
li = bi, ∀(i, k) ∈ N,∑

k:(i,j,k)∈A

xkij − yij = 0, ∀(i, j) ∈ A,∑
k:(i,j,k)∈A

kxkij − wij = 0, ∀(i, j) ∈ A,

xkij ≥ 0, ∀(i, j, k) ∈ A,

(3.19)

where b0 = 1, bn+1 = −1 and bi = 0 for all i ∈ N \ {0, n+ 1}.
The formulation (3.19) has a linear objective value and a compact feasible set,

therefore (see, e.g. Conde (2010)) x is a 2-approximation for the minmax regret

problem (RTDSPP ).

The result presented in Proposition 11 can be extended to the searching problem

with the speci�cations given in Section 3.3.1 and adding the existence of uncertainty

intervals for the accessing costs.

Proposition 12. Let us consider the searching problem in which cij = ndij− rj and
αij = −dij, where the coe�cients dij , (i, j) ∈ A and rj , j = 1, ..., n can take on any

value from the uncertainty intervals [d−ij , d
+
ij ] and [r−j , r

+
j ] respectively. Let (c, α) be

the scenario de�ned as,

cij =
n(d−ij + d+

ij)− (r−j + r+
j )

2
, ∀(i, j) ∈ A, αij =

−(d−ij + d+
ij)

2
, ∀j = 1, ..., n,

then any optimal solution x ∈ P of the deterministic problem (DTDSPP ) under the

scenario (c, α) is a 2-approximation for the minmax regret searching problem.
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Proof. In this case, the formulation (3.19) is equivalent to

Z(c, α) = min Z(x, c, α) :=
∑

(i,j)∈A

(dijzij − rjyij)

st. ∑
(i,j,k)∈A

xkij −
∑

(l,i,k−1)∈A

x
(k−1)
li = bi, ∀(i, k) ∈ N,∑

k:(i,j,k)∈A

xkij − yij = 0, ∀(i, j) ∈ A,∑
k:(i,j,k)∈A

kxkij − wij = 0, ∀(i, j) ∈ A,

nyij − wij − zij = 0, ∀(i, j) ∈ A,
xkij ≥ 0, ∀(i, j, k) ∈ A,

(3.20)

where b0 = 1, bn+1 = −1 and bi = 0 for all i ∈ N \ {0, n+ 1}. Hence, we can apply

the same argument as in the above proof.

3.4 Computational Experiment

In this last section we report some numerical experiments conducted to compare

the di�erent proposed algorithms to solve the minmax regret TDSPP under distinct

types of uncertainty sets:

- either coe�cients cij , (i, j) ∈ A or parameters αij , (i, j) ∈ A are uncertain, but

uncertainty intervals [c−ij , c
+
ij ] and [α−ij , α

+
ij ] are known, and the coe�cients can

vary independently from one another (Section 3.3.1).

- uncertainty a�ects simultaneously both coe�cients cij and αij , (i, j) ∈ A, and
not necessarily in an independent way (Section 3.3.2).

The computational experiments were carried out on a personal computer with

Intel R© Core (TM) i7-4720HQ, 2.60GHz with 16384 MB RAM. The algorithms were

implemented and solved by using Xpress Version: 8.0.

We generated, as in Chapter 2, instances of directed and acyclic square grid

networks, following Fernández et al. (2014), adapting the SPGRID generator by

Cherkassky et al. (1996). Recall that the n = m×m nodes of these graphs correspond

to points on the plane with integer coordinates [x, y], 1 ≤ x ≤ m, 1 ≤ y ≤ m. These

points are connected forward by arcs of the form ([x, y], [x + 1, y]), 1 ≤ x ≤ m − 1,

1 ≤ y ≤ m, down by arcs of the form ([x, y], [x, y − 1]), 1 ≤ x ≤ m, 2 ≤ y ≤ m and

diagonally by arcs of the form ([x, y], [x+ 1, y + 1]), 1 ≤ x ≤ m− 1, 1 ≤ y ≤ m− 1.
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For the implementation of the algorithms proposed in the previous section we

set the following parameters after experimenting with di�erent values. In Algorithm

4, we set the depth for the fractional cuts to 3. In Algorithm 5, the gap and the

maximum number of iterations of the sequential Benders Algorithm 3 were set to

either 20% or 50% and 30 iterations, respectively. We report the best performance

among these combinations. In order to perform a clean comparison of the di�erent

algorithms we disabled the presolving routines of Xpress solver and the remaining

parameters were set to their default values. Our Branch and Cut code makes use of

the framework provided by Xpress via callbacks.

3.4.1 Hypercube uncertainty set.

The computational experiment compares the algorithms proposed in Section 3.3.2

and the MILP formulation (3.13) for the TDSPP. In order to perform this compari-

son we generated instances of the general TDSPP with arc costs cij + αijpositij(x),

assuming �rst that only coe�cients cij , ∀(i, j) ∈ A, are uncertain varying in [c−ij , c
+
ij ]

(Table 3.3), and then assuming also that coe�cients αij , ∀(i, j) ∈ A, can take

any value in the interval [α−ij , α
+
ij ] (Table 3.4). Finally, for the particular search-

ing problem application, we generated instances with arc costs cij + αijpositij(x),

with cij = ndij − rj , αij = −dij and rj ∈ [r−j , r
+
j ] (Table 3.5).

The lower and upper bounds of the uncertainty intervals for the general TDSPP

were randomly generated following a uniform distribution in (−1, 1) and in (c−ij , 1)

respectively. The TDSPP is very sensitive to variations in the parameters αij and

the nature of the optimal solution changes signi�cantly depending on the values of

these parameters. For instance, if αij takes the value 0 for all the arcs, our problem

becomes the standard Minmax Regret Shortest Path Problem. However, if it takes

the same large enough value α for every arc, the optimal solution tends to have the

smaller possible number of arcs. Taking this into account, each nominal αij was

generated following a uniform distribution in (0, α0), with α0 equal to 1
m and 1

3m

(experimentally we observed that the chosen values for the parameter α0 generate

interesting instances of the TDSPP for our grid networks). For the case in which

the parameters αij are also assumed to be unknown, the intervals [α−ij , α
+
ij ] were

built around the previous nominal αij , by generating a random value εij ∈ [0, αij ]

and de�ning the new extreme points of the uncertainty intervals as α−ij = αij − εij
and α+

ij = αij + εij ∀(i, j) ∈ A.
The accessing costs dij for the searching problem were randomly generated from

a uniform distribution in (0, 1). The bounds of the uncertainty intervals for the

parameters rj were generated with the aim that the reward that can be obtained

by visiting a node were larger than the corresponding accessing cost for some nodes,

this is, rj ≥ (n−positij)dij for some (i, j) ∈ A (note that the cost associated to each
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arc (i, j) is (n− positij)dij − rj). Following this rationale, r−j and r+
j were randomly

generated from the interval

(
pmidj ,m2d̄j +

Lj
q

)
for every j, with q = 4, where pmidj

and Lj denote the mid-point and the length of the interval [(m2− 3m+ 3)d̄j ,m
2d̄j ],

respectively, and d̄j is the average accessing cost of the arcs ending at node j. The

structure of these intervals was determined by the fact that (n−positij)dij ∈ [(m2−
3m + 3)dij ,m

2dij ] depending on the position of arc (i, j) for our particular grid

graphs.

Ten di�erent instances of each problem were generated for n = 100, 169, 225,

324, 400. We show in Tables 3.3, 3.4 and 3.5 the number of problems (out of 10)

solved to optimality for each n, in less than 7200 seconds (# opt), the average gaps

and the average computational times (CPU) for the three algorithms and the MILP

formulation. In those cases in which the execution process is stopped before an

optimal solution is found we report, in our computational experiments, the CPU

time limit of 7200 seconds. Table 3.4 does not report results for n = 400 since

already for n = 324, most of the instances could not be solved to optimality by the

algorithms and even, the exact formulation for these instances could not be charged

by the solver.

We observe in Tables 3.3, 3.4 and 3.5 that the fastest numerical procedure is

the Combined Algorithm 5. For example, in Table 3.3, when α0 = 1
m and n = 225

the average CPU time of the Benders Algorithm 3 is almost twice the average CPU

time of the combined one, and in Table 3.4, in the case in which α0 = 1
3m and

n = 225, the Exact Formulation and Algorithms 3 and 4 spent, on average, more

than 5300 seconds to solve the instances whereas the Combined Algorithm 5 spent

3305.4 seconds. Furthermore, it can be seen in Table 3.3 that the Branch and

Cut Algorithm 4 is also faster than both, the Benders Algorithm 3 and the exact

formulation, for most of the instances of the general TDSPP with only uncertainty

on the αij parameters. However, as it can be seen in Table 3.5, Benders Algorithm

3 works faster for the searching problem instances of sizes 100, 169 and 225. This

performance is due to the fact that Benders Algorithm 3 performs better when the

solution can be found with a few Benders cuts, and in this experiment we observed

that the number of required cuts in the instances solved to complete Table 3.5 was

small. Nevertheless, when the number of cuts that need to be added increases, the

performance of Benders Algorithm 3 gets worse due to the increase of the number of

master problems that have to be solved.

Tables 3.3, 3.4 and 3.5 also show that the Combined Algorithm 5 is able to solve

instances that cannot be solved using either the exact formulation or Algorithms 3

and 4 within the time limit of 7200 seconds. In fact, for all the cases, the Combined

Algorithm 5 is the one that solved the major number of instances. For example when
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the parameter α0 takes the value 1
3m and both coe�cients cij and αij are uncertain

(Table 3.4) the Combined Algorithm 5 could solve 9 out of 10 instances for the size

225, whereas the exact formulation and Algorithms 3 and 4 could only solve 0, 5 and

4 instances, respectively. In the same way, when n increases to 324, and α0 = 1
m ,

the Combined Algorithm 5 could solve 5 out of 10 instances, whereas Algorithms

3 and 4 could only solve 1 instance, and the exact formulation could not even be

charged by the solver. Furthermore, in those problems where only the coe�cients cij
are uncertain (Table 3.3), for α0 = 1

m , the Combined and the Benders algorithms

were able to solve 8 and 4 out of 10 instances, respectively, when n = 324 within the

bound of 7200 seconds. Similarly, we can observe in Table 3.5 that when we consider

the instances for graphs with 400 nodes, the Combined algorithm could solve all the

instances while the Branch and Cut algorithm was able to solve only 7 out of 10.

Finally, from Tables 3.3 and 3.4 we can also conclude that the smallest average

gaps, for the general TDSSP, are achieved by the Combined Algorithm 5.
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3.4.2 Polyhedral uncertainty set.

To end this computational experiment we are going to consider the minmax regret

problem (RTDSPP) under a polyhedral uncertainty set of scenarios S. The instances

of this optimization model will be generated according to the searching problem of

Section 3.1.1 in which it will be allowed that the uncertainty a�ects simultaneously

to both types of coe�cients: the accessing costs dij and the rewards rj . Each one of

these coe�cients is supposed to take on any value in their corresponding uncertainty

interval, dij ∈ [d−ij , d
+
ij ] and rj ∈ [r−j , r

+
j ] ∀(i, j) ∈ A. This uncertainty translated in

terms of the coe�cients c and α gives rise to the following uncertainty polyhedron

S = {(c, α) : −d+
ij ≤ αij ≤ −d−ij , −r

+
j ≤ cij + nαij ≤ −r−j , ∀(i, j) ∈ A}. Observe

that S is a bounded set and the constantM , de�ned in (3.16), can be easily obtained

as

αmax = max{|d−ij |, |d
+
ij | : (i, j) ∈ A},

cmax = max{|nαmax − r−j |, |nαmax + r+
j | : j = 1, . . . , n},

M = max{αmax, cmax}.

Ten di�erent instances of each problem were generated for n = 16, 25, 36, 49.

Note that the number of nodes, n, of the graph has been reduced drastically with

respect to the instances solved in the previous subsection due to that the di�culty of

the problems becomes much higher. For each instance, the vectors d− and d+ were

randomly generated from a uniform distribution in (0, 1), and the uncertainty interval

bounds for the rewards, r−j and r+
j , were randomly generated in

(
pmidj ,m2d̄j +

Lj
q

)
for every j, with q = 4, as in the previous subsection.

We report in Table 3.6 the number of problems (out of 10) solved to optimality for

each n in less than 7200 seconds (# opt), the average gaps and the average compu-

tational times (CPU) for the three algorithms. The initialization of these algorithms

was made using the cost scenario given by the mid-points of the uncertainty intervals

of the coe�cients dij and rj according to Proposition 12.

Table 3.6 shows that Benders Algorithm 3 is always faster than the other two

algorithms. For instance, the average CPU time for 25 nodes instances is 91.9 seconds

whereas it is larger than 370 seconds for the other algorithms. The reason is that

the primal problem (PP-RTDSPP) is an unstructured general LP problem, and the

Branch and Cut algorithm has to solve one of these problems in each node of the

branching tree. In contrast to the hypercube uncertainty case, when we consider

polyhedral uncertainty sets, the saving obtained by the Branch and Cut algorithm

by not solving several master problems does not compensate the number of primal

problems that need to be solved.
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Furthermore, Table 3.6 also shows that in spite of the fact that Benders Algorithm

3 is faster, Combined Algorithm 5 is able to solve optimally the same number of

problems for n = 49, 6 out of 10, with a smaller average gap, that is, near half of

the average gap incurred by Algorithm 3.

Benders Algor. 1 Branch and Cut Algor. 2 Combined Algor. 3

n # opt CPU gap # opt CPU gap # opt CPU gap

16 10 19.1 0.0 10 91.7 0.0 10 67.2 0.0
25 10 91.9 0.0 10 496.7 0.0 10 379.3 0.0
36 10 557.2 0.0 10 2673.6 0.0 10 1835.9 0.0
49 6 4770.5 6.3 1 7028.2 20.7 6 7016.5 3.2

Table 3.6: Computational results for the minmax regret searching problem with
polyhedral uncertainty sets.

3.5 Conclusions

In this chapter we dealt with a SPP model with costs dependent on the position oc-

cupied by the corresponding arcs in the path, the time-dependent SPP. The problem

has been studied when the cost parameters are unknown using the minmax regret

paradigm. Two methodologies have been developed, the �rst one consists on solv-

ing a MILP formulation, the second one applies Benders cuts in order to have an

approximation to the optimal solution.

The MILP formulation works for the TDSPP when hypercube uncertainty sets

are considered. The second methodology is more general. It allows us to consider

the minmax regret time-dependent SPP problem under a polyhedral set of possible

cost scenarios. Moreover, including in the primal and master problems the constraint

that the desired path passes through every node exactly once, the same framework

can also be applied to the minmax regret time-dependent TSP problem. This opens

a wider set of real applications in timetabling and scheduling, as mentioned in the

introduction. Using linear constraints to model dependency relationships amongst

the unknown parameters allows us to face new and more realistic situations.

Three algorithms have been proposed to solve the problems. These algorithms

make use of Benders cuts that, with some variants, are added to a master problem

whose solutions become closer to the optimal solution over successive iterations. As it

has been reported in the numerical experiments, the performance of these iterative

algorithms has been improved by starting the procedure using cuts associated to

constant factor approximations. In this chapter we have used 2-approximations

obtained, following the propositions 11 and 12, from an optimal solution under the

mid-point scenario. However, these approximations are only de�ned for the cases in

which every uncertain cost varies independently of each other in its corresponding
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uncertainty interval. It would be interesting to study the possible extension of these

results to more general uncertainty sets Conde (2012). This could give rise to a

research line consisting on the adaptation of these schemes to improve the Benders

cuts algorithm when applied to uncertainty sets where the 2-approximations obtained

from mid-point scenarios cannot be used.

Another possible improvement of the algorithms proposed in this chapter could

come from the application of size reduction techniques to the time-expanded network.

The size of this network can easily grow in actual applications limiting the e�ciency

of the algorithms, hence it would be a good idea having some type of preprocessing

which prunes the network before applying the numerical approach. For instance,

Karasan et al. (2001), and more recently Catanzaro et al. (2011), provided su�cient

conditions for a node and an arc to be always or never in an optimal solution of

the minmax regret SPP. It seems interesting to analyze the possible extension of

su�cient conditions like the ones proposed in those papers to the minmax regret

time-dependent models in order to develop variable �xing strategies (pegging tests)

to reduce the size of the network.
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In this chapter, we propose new minmax regret optimization models in a system

with uncertain parameters, in which it is allowed to make investments before a

minmax regret solution is implemented in order to modify the source or the nature

of the existing uncertainty. Therefore, it is allowed to spend resources in order to

change the basic cost structure of the system and take advantage of the modi�ed

system to �nd a robust solution. Some properties of this model allow us to have

proper Mathematical Programming formulations that can be solved by standard

optimization packages. As a practical application, we consider the shortest path

problem in a network in which it is possible to modify the uncertainty intervals for

the arc costs by investing in the system. We also give an approximate algorithm and

generalize some existing results on constant factor approximations.

4.1 Introduction

Most of the minmax regret optimization models considered in the literature (see e.g.

Chapter 1 and the references therein) rule out the fact of having some kind of control

over the set of unknown parameters. However, the source of uncertainty could be

modi�ed or the degree of knowledge about the possible scenarios could change as a

consequence of particular actions carried out in the system. For instance, as pointed

out in the introduction, if we consider a problem in which the demand of a customer

is modeled as an uncertain parameter and we assume that this parameter can take

on any value from an interval �xed beforehand, then the length of this uncertainty

interval can be reduced by performing a prospective study and obtaining some extra

information about its behavior.

It can be logically assumed that this kind of actions that modify the uncertainty

set of possible scenarios involves certain costs in terms of a set of limited resources.

On the one hand, these costs can be considered as an investment in the system

with the purpose of gaining insight into the mechanism involved in its behavior

and obtaining, in this way, more information about the uncertain elements (costs,

capacities, lengths, times, etc.). On the other hand, the investment can also have a

di�erent purpose, the available resources could be spent to modify the nature of the

system itself. For example, if we consider a communication network with uncertain

parameters, like transfer speed or capacity of the connections, one can invest in order

to increase this transfer speed or the capacity of a given connection or even invest

in the construction of new connections. In all these cases we are investing in the

system in order to modify the range of possible values of the uncertain parameters.

Then, the problem will consist in determining how to invest the available re-

sources in order to obtain a robust solution as close as possible to the optimal one

under whatever scenario that may occur in the transformed system. Therefore, the
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purpose of the investments is to protect the decision-maker, in some way, against the

uncertainty of implementing a feasible solution without the knowledge of the e�ects

that the behavior of the system could have on it.

In the next section, we will assume some rationality principles for the optimization

model in order to avoid undesirable e�ects of the proposed solution. For instance,

if we allow the possibility of investing in order to deteriorate the behavior of the

system, the optimization model could propose investing to get a poor performance

of the system for those scenarios under which it initially worked �ne, which would

be nonsense. In this way, by making more homogeneous this (bad) behavior of the

system under di�erent scenarios we could �nd a solution with a small regret whatever

scenario may occur. In order to avoid this undesirable e�ect it will only be allowed

those investments that improve in some way the performance of the system. For

example, if the interval representing the range of possible costs of a given item or

action is reduced then the behavior of the whole system will be improved because it

is more predictable. In the limit, we could think that, if we had enough resources,

we could invest them in the system in order to eliminate all the existing uncertainty,

reducing to zero the maximum regret incurred by an optimal solution under the only

possible scenario. The performance of the system, in terms of its cost structure, will

also be improved if the length of an interval of possible costs remains constant but

its lower and upper bounds simultaneously decrease.

In what follows, we will consider two di�erent types of decision variables of the

mathematical formulation of the model; t ∈ T modeling the feasible investments that

will determine the set of possible scenarios and x ∈ X de�ning the feasible actions

that can be implemented in the system under any of the possible scenarios. We

will seek a feasible solution minimizing the maximum regret in the resulting system

after the investment has been carried out. Logically, the computational complexity

of the resulting problems will be harder than that of its corresponding counterparts

in which no investments are allowed, that is, it will be, almost without exception,

NP-hard for most of the combinatorial optimization problems considered in the lit-

erature (see e.g. Section 1.1.1 and the references therein). This high computational

complexity underlines the importance of the study of approximate solutions and, if

it is possible, the construction of a bound for the incurred error. After obtaining

some properties of the general model, a possible generalization of existing results

about constant factor approximations under uncertainty intervals will be proposed.

In this chapter, the Shortest Path Problem (SPP) will be used as the reference op-

timization problem where the di�erent de�nitions and formulations will be shown,

nonetheless, as it will be pointed out later, the methodology and results we present in

this chapter can be applied to other combinatorial optimization problems. Finally,

a computational study for the minmax regret SPP in which it is allowed a set of
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possible investments to modify the cost structure is conducted in order to compare

the exact solution obtained by means of a professional optimization software with

respect to the approximation proposed in this chapter.

4.2 Model description

Let us consider the deterministic combinatorial optimization problem de�ned in Sec-

tion 1.1.1, that is, let A be a �nite set of elements and X be a feasible set of solutions

identi�ed as subsets of A, that is, every x ∈ X is a 0-1 (characteristic) vector with

as many components as the number of elements in A, x = (xa)a∈A, where xa = 1 if

and only if a belongs to the subset represented by x. We assume that every element

a ∈ A has an associated weight ca (cost, length, time, etc.). Recall that this problem

is given by

min
∑

a∈A caxa

subject to

x ∈ X.

As said in Chapter 1, this formulation encompasses a wide range of optimization

problems, but in many practical applications, the weights ca are only partially known.

This situation can be modeled by assuming that an interval of possible values of

each weight is known in advance, that is, ca ∈ [c−a , c
+
a ], a ∈ A. Additionally, it

could be interesting and realistic to consider that these uncertainty intervals are

not invariable, but they can be modi�ed by making some kind of investment in the

system. Speci�cally, we identify by a compact set T these feasible investments in the

system and for each investment t ∈ T , an interval [c−a (t), c+
a (t)] of possible weights

for ca, regardless of the weights of the other elements.

In what follows we will study how to invest in the system in order to �nd a

feasible solution with a performance as close as possible to the optimal one under

each possible scenario. If we denote by St the set of possible scenarios that may

occur after a given investment t ∈ T has been carried out in the system, that is, the

cartesian product of all the uncertainty intervals and, by csa, the weight associated

to the element a ∈ A under the scenario s ∈ St, we can state the minmax regret

combinatorial optimization problem with Investments as

R∗ = min
t∈T

min
x∈X

max
s∈St

[
R(x, t, s) :=

{∑
a∈A

csaxa −min
y∈X

∑
a∈A

csaya

}]
. (RCI)

In this case, the value R(x, t, s) is the regret of x under the scenario s ∈ St.
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The structure of the feasible set X, where each solution is a 0 − 1 vector, and the

independent variation supposed for the weights allow us to compute the maximum

regret for a solution x by using the following property (see e.g. Section 1.1.1)

Proposition 13. The regret of a solution x ∈ X for a given investment t ∈ T is

maximized under the scenario s(x, t) de�ned as follows:

cs(x,t)a =

c+
a (t) if xa = 1,

c−a (t) if xa = 0.
a ∈ A.

Hence, as done before, having a closed-form of the worst-case scenario s(x, t)

allows a more compact rewriting of the problem (RCI):

min
t∈T,x∈X

{∑
a∈A

c+
a (t)xa −min

y∈X

∑
a∈A

[
(c+
a (t)− c−a (t))xa + c−a (t)

]
ya

}
. (4.1)

Henceforth, some additional conditions on the sets X and T will be imposed in

order to obtain a proper Mathematical Programming formulation of (4.1) that can be

solved by a standard optimization software. Furthermore, it will be considered that

the bounds of the uncertainty intervals (weight/cost bound functions) have certain

monotonic properties with respect to the amount of invested resources. As it was

mentioned before, the investment of limited resources in the system should guarantee,

in some sense, a better running in terms of costs or in terms of a reduction of the

existing uncertainty. We will also consider that these weight bound functions have

linear or piecewise linear structure in order to make easier the numerical resolution

of the resulting formulation.

Total unimodularity of the feasible set of actions Hereafter it will be assumed

that the structure of the feasible set is given by

X = {x ∈ {0, 1}|A| : Mx = b},

where M is a totally unimodular matrix and b is an integer n-vector. Under this

condition the binary constrains on the decision variables can be replaced by bounds

on continuous variables, 0 ≤ xa ≤ 1, for every element a ∈ A and the inner sub-

problem of the formulation (4.1) can be solved as a linear optimization problem for

a given investment t ∈ T . Furthermore, the linear structure of this problem allows

us to utilize duality in order to obtain a more suitable formulation of the problem

from the optimization viewpoint (see Section 1.1.1).
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Duality In order to rewrite the problem (RCI) in a format that can be recognized

by standard optimization packages we will use linear duality in the inner problem

that obtain the minimum weight under the scenario s ∈ St for a given investment

t ∈ T , that is,
min
y∈X

∑
a∈A

csaya. (4.2)

As previously said in the �rst chapter, this technique has been used in other opti-

mization problems where the deterministic counterpart is linear. In the considered

case, the total unimodularity of the matrixM de�ning the set X guarantees that this

set can be replaced by its continuous relaxation in (4.2). Furthermore, the existence

of a closed-form of the worst-case scenario for any possible solution (Proposition 13)

allows us to eliminate one of the inner optimization problem of the formulation (RCI)

where the regret is maximized. After using linear duality, we obtain an equivalent

formulation of the problem (RCI), already known for �xed t ∈ T (see e.g. Aissi et

al. (2009)):

min
∑
a∈A

c+
a (t)xa −

n∑
i=1

biui

subject to

Mx = b,
n∑
k=1

ma
kuk ≤ c−a (t) + (c+

a (t)− c−a (t))xa, ∀a ∈ A,

xa ∈ {0, 1}, ∀a ∈ A,

t ∈ T,

(RCI-D)

where ma
k is the k-th component of the column vector of the matrix M associated

to the variable xa for each element a ∈ A.

Polyhedron of investments We will consider that the set of possible investments

is a bounded polyhedron. The variable tka, with k ∈ K and a ∈ A, represents the
amount of the resource k which is invested in the element a. The total amount of

each resource will be assumed to be limited. In addition to these constraints, the

polyhedron T could include some other type of linear constraints. For example, we

could consider blocking conditions that avoid investing in a given subset of elements

A1 or limit such an investment if it has not been invested anything in another subset

of elements A2, that is, constraints like∑
a∈A1

tka ≤ λk(A1, A2) + µk(A1, A2)
∑
a∈A2

tka,
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for given constants λk(A1, A2) and µk(A1, A2). In other cases, it could be necessary to

add some constraints to the set T in order to guarantee that the uncertainty intervals

of weights are not empty, that is, c−a (t) ≤ c+
a (t) ∀t ∈ T, a ∈ A. If these constraints

can be written in linear form, the polyhedral structure of T will be preserved.

Monotonic weight/cost bound functions In the particular examples consid-

ered in the following sections we will only allow investments that improve in some

sense the performance of the system. This condition may not be strictly necessary

in order to have a structured problem that can be solved, however it is convenient

in order to provide useful and meaningful solutions for the system. In our model the

bounds c±a (t) are considered piecewise linear functions and the upper bound c+
a (t)

will also be assumed to be a component-wise non-increasing function. Additionally,

for each element a ∈ A, either the lower bound c−a (t) or the di�erence between

both bounds, c+
a (t)− c−a (t), is also assumed to be a component-wise non-increasing

function. By assuming this property in the cost bound functions, the investment

in the system achieves the goal of improving the weights or reducing the existing

uncertainty about them.

In the following subsection, we will write the formulation (RCI −D) as an equiv-

alent MILP for some particular choices of the weight bound functions c±a (t), a ∈ A.

4.3 Model formulation

Problem (RCI −D) is a general nonlinear mixed integer optimization problem,

hence, in order to design a numerical algorithm to solve it, it is necessary to im-

pose additional conditions on the cost bound functions. The goal is to obtain a

reformulation of this problem as a MILP. Hereafter we will consider a speci�c struc-

ture of the �nite set of elements A, it will be de�ned as the set of arcs of a given

network G = (V,A) where V = {1, . . . , n} is the set of nodes. Now, a generic element

a ∈ A will be replaced by an ordered pair of nodes a = (i, j), i, j ∈ V and the weight

ca = cij will de�ne a cost (time or length) associated to the corresponding arc.

In this section, we will see how to linearize the resulting problem after a particular

shape for each cost bound function has been assumed. In order to do it, a set of

auxiliary variables will be de�ned as products of the original ones. Although this

change of variables can be made for general sets of investments T , for the sake of

simplicity we will restrict ourselves to consider a set with just one type of resource.

By the variable tij ≥ 0 we represent the amount of the given resource invested in

the arc (i, j) ∈ A, with a total amount of available resource of 1 unit that can not

be exceeded. Therefore, we consider an initial set of possible investments as the
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following one

T =

(tij)(i,j)∈A :
∑

(i,j)∈A

tij ≤ 1, tij ≥ 0,∀(i, j) ∈ A

 , (4.3)

having in mind that it is possible we need to add some additional constraints to

this set in order to guarantee that the cost bound functions will de�ne nonempty

uncertainty intervals for the corresponding costs.

Despite of the fact that the new mathematical formulation considered here can

be applied to any problem with totally unimodular feasible set, it will be adapted

in this section to a speci�c set of feasible solutions, namely the set of paths between

the nodes 1 and n in the network G. Hence, we will consider in this section the

particular model of the Minmax Regret or Robust Shortest Path Problem with In-

vestments (RSPPI). The reason is not other than illustrating the minmax regret with

investments model by means of a particular problem whose resulting transformed for-

mulation will be used to conduct a further computational study to compare exact

and approximate methods on a speci�c problem. Therefore, the general formulation

(RCI −D) can be now written as

min
∑

(i,j)∈A

c+
ij(t)xij − un

subject to

−
∑

(i,j)∈A

xij +
∑

(j,k)∈A

xjk = bj , j = 1, 2, ..., n,

uj ≤ ui + c−ij(t) + (c+
ij(t)− c

−
ij(t))xij , ∀(i, j) ∈ A,

u1 = 0,

xij ∈ {0, 1}, ∀(i, j) ∈ A,

t ∈ T,

(RSPPI)

where b1 = 1, bn = −1, bj = 0 ∀j ∈ V \ {1, n},

xij =

1 if we include the arc (i, j) in the path,

0 otherwise,
∀(i, j) ∈ A,

and ui, i = 1, ..., n are dual variables.
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4.3.1 Linear cost bound functions

The simplest shape of a cost bound function is the one describing a variation in cost

proportional to the investment carried out, that is,

c−ij(t) = c−ij − α
−
ijtij ,

c+
ij(t) = c+

ij − α
+
ijtij ,

where α−ij , α
+
ij , c

−
ij , c

+
ij ∈ R+ and c−ij(t) ≤ c

+
ij(t) ∀t ∈ T .

By replacing these cost functions in the formulation (RSPPI) one has the follow-

ing quadratic problem,

min
∑

(i,j)∈A

(c+
ij − α

+
ijtij)xij − un

subject to

−
∑

(i,j)∈A

xij +
∑

(j,k)∈A

xjk = bj , j = 1, 2, ..., n,

uj ≤ ui + c−ij − α
−
ijtij + (c+

ij − α
+
ijtij − (c−ij − α

−
ijtij))xij , ∀(i, j) ∈ A,∑

(i,j)∈A

tij ≤ 1,

u1 = 0,

xij ∈ {0, 1}, ∀(i, j) ∈ A,

tij ≥ 0, ∀(i, j) ∈ A,

(4.4)

where b1 = 1, bn = −1, bj = 0 ∀j ∈ V \ {1, n}.
In order to linearize this formulation we de�ne a new set of variables given by

pij =

tij if xij = 1,

0 otherwise,
∀(i, j) ∈ A. (4.5)

Therefore, adding the following set of constraints to the previous formulation to

ensure that pij is the wished product

pij ≤ xij ,

pij ≤ tij ,

pij ≥ tij + xij − 1,

pij ≥ 0

we can replace each product tijxij by pij obtaining, in this way, a MILP formulation
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for the problem (RCI).

Observe that if we consider cost bound functions with the same slope for each

arc, that is,

c−ij(t) = c−ij − αijtij , c
+
ij(t) = c+

ij − αijtij , ∀(i, j) ∈ A,

the length of the uncertainty cost intervals remains constant for every t ∈ T .
Using these functions we obtain a simpler Mixed Integer Quadratic Formulation

for the problem (RCI) in which only the objective is a quadratic function, that is,

min
∑

(i,j)∈A

(c+
ij − αijtij)xij − un

subject to

−
∑

(i,j)∈A

xij +
∑

(i,j)∈A

xjk = bj , j = 1, 2, ..., n,

uj ≤ ui + c−ij − αijtij + (c+
ij − c

−
ij)xij , ∀(i, j) ∈ A,∑

(i,j)∈A

tij ≤ 1,

u1 = 0,

xij ∈ {0, 1}, ∀(i, j) ∈ A,

tij ≥ 0, ∀(i, j) ∈ A.

(4.6)

Some commercial solvers allow to solve this problem directly (like CPLEX), in any

case it can be linearized following the same procedure as before.

4.3.2 Piecewise linear cost bound functions

We �rst discuss the case in which the lower bound for the cost of each arc is de�ned

by the function

c−ij(t) = max{c−ij − α
−
ijtij , c

−
ij0} (4.7)

where c−ij0 is a constant and the corresponding upper bound function is linear, c
+
ij(t) =

c+
ij − α

+
ijtij , and veri�es c−ij(t) ≤ c+

ij(t) ∀t ∈ T . If this last condition was not veri�ed

it would be included in the set T , in fact, it would be equivalent to include a bound

on the investment tij .

In order to linearize this new model, the following auxiliary variables are included

clowij = max{c−ij − α
−
ijtij , c

−
ij0}, ∀(i, j) ∈ A,
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and

lowij =

1 if c−ij − α
−
ijtij ≤ c−ij0,

0 if c−ij − α
−
ijtij ≥ c−ij0,

∀(i, j) ∈ A.

Using the variables lowij we can rewrite clowij as follows

clowij = lowijc
−
ij0 + (1− lowij)(c−ij − α

−
ijtij) ∀(i, j) ∈ A.

Finally, we de�ne the set of constraints that guarantee that lowij takes the correct

value

lowij(c
−
ij0 − c

−
ij + α−ijtij) + (1− lowij)(c−ij − α

−
ijtij − c

−
ij0) ≥ 0 ∀(i, j) ∈ A.

Using this new set of variables and constraints, we can formulate the RSPPI with

these piecewise linear lower bound cost functions as

min
∑

(i,j)∈A

(c+
ij − α

+
ijtij)xij − un

subject to

−
∑

(i,j)∈A

xij +
∑

(j,k)∈A

xjk = bj , j = 1, 2, ..., n,

uj ≤ ui + clowij + (c+
ij − α

+
ijtij − clowij)xij , ∀(i, j) ∈ A,

clowij = lowijc
−
ij0 + (1− lowij)(c−ij − α

−
ijtij), ∀(i, j) ∈ A,

lowij(c
−
ij0 − c

−
ij + α−ijtij) + (1− lowij)(c−ij − α

−
ijtij − c

−
ij0) ≥ 0, ∀(i, j) ∈ A,

c+
ij − α

+
ijtij ≥ clowij , ∀(i, j) ∈ A,∑

(i,j)∈A

tij ≤ 1,

u1 = 0,

tij ≥ 0, ∀(i, j) ∈ A,

xij , lowij ∈ {0, 1}, ∀(i, j) ∈ A,

where b1 = 1, bn = −1, bj = 0 ∀j ∈ V \ {1, n}.
Observe that once again we obtain a quadratic objective function and quadratic

constraints due to products xijtij , clowijxij and lowijtij . By de�ning a new set of

variables as in (4.5) we can obtain a MILP Formulation using previous arguments.

The above procedure used to adapt the MILP formulation to this type of piecewise

linear cost bound functions can also be generalized to manage general piecewise linear

functions. Hence, it can also be used to have an approximate MILP formulation

for those models using general cost bound functions after approximating them by

piecewise linear functions.
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Example Robust SPP with Investments

We will consider here an extension of the example proposed in Montemanni and

Gambardella (2004) in which it will be allowed to make investments in order to

improve the cost structure of the following network

3 4

1 2

[1, 2]

[4, 6]
[1, 2]

[4, 8]

[3, 5]

[1, 7]

Figure 4.1: Network (V,A) for the Robust Shortest Path Problem.

The intervals depicted near the arcs represent the static uncertainty cost intervals.

For this input, the robust shortest path optimal solution is (1, 2), (2, 4) which reaches

the minimum maximum regret of 3 units.

We will now consider that we can invest a total amount of one unit of a given

resource and the cost bound functions are described as in (4.7) with cij0 = 0 for all

(i, j) ∈ A and the following slopes

α±12 = 0, α±13 = 4, α±23 = 2, α±24 = 0.4, α±32 = 3.2, α±34 = 4

In the following Figure 4.2 it has been depicted the dynamic uncertainty cost

intervals which depend on the investment carried out in each arc.
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Figure 4.2: Dynamic uncertinty costs intervals depending on the investment.

Using solver Cplex, one can obtain the optimal solution

t34 = 1, and x12 = 1, x23 = 1, x34 = 1

which illustrates how the cost structure of the network is improved by investing all

the available resource in the arc (3, 4), giving rise to the input network depicted in

the �gure 4.3 for the problem of �nding the robust shortest path.

Now, the minimum maximum regret reached by the path (1, 2), (2, 3), (3, 4) is 2.
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3 4

1 2

[1, 2]

[4, 6]
[1, 2]

[4, 8]

[0, 1]

[1, 7]

Figure 4.3: Network (V,A) for the Robust Shortest Path Problem with investment
t34 = 1.

Hence, the behavior of the new solution with respect to the optimal path under the

worst-case scenario has been improved after the investment made in the system. In

other words, the consequence of the investment is the reduction of the risk that the

decision maker must face up to the action of implementing a solution without the

knowledge of the exact scenario that will occur.

RSPPI and other problems �tting into the formulation (RCI −D) like assign-

ment problems or general �ow problems with investments are Strongly NP-hard, due

to the fact that the minmax regret versions of these problems without investments,

that is, when T is a singleton, are Strongly NP-hard (Section 1.1.1). This fact high-

lights the importance of having e�cient methods that provide approximate solutions

even when there exist mathematical formulations enabling us to solve the problem

exactly.

4.4 Approximations

4.4.1 2-approximation result

Let us consider the problem (RCI) for a �xed t ∈ T ,

min
x∈X

R(x, t) := max
s∈St

 ∑
(i,j)∈A

csij(t)xij −min
y∈X

∑
(i,j)∈A

csij(t)yij


 , (4.8)

and let c̄(t) be the cost scenario where all its components are �xed as the mid-point of

their corresponding uncertainty cost intervals de�ned by the investment t ∈ T (mid-

point scenario). One can have a 2-approximation (see Section 1.1.1, Proposition 4)

of this problem by solving the following one
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min
∑

(i,j)∈A c̄ij(t)xij

subject to

x ∈ X,

(MRCPIt)

the deterministic problem associated to the mid-point scenario. Under the unimodu-

larity condition on the set of feasible solutions X, imposed in Section 4.2, (MRCPIt)

is a Linear Programming problem that can be e�ciently solved. Furthermore, there

are su�cient optimality conditions that can be written in terms of basic feasible

solutions allowing us making a parametric study with respect to the vector of invest-

ments.

Let us consider the function

t ∈ T −→ x̄t ∈ X,

assigning an arbitrary optimal solution x̄t of the problem (MRCPIt) to each vector

of investments. Following Kasperski and Zielinski (2006), x̄t is a 2-approximation of

the problem (RCI) for a �xed t ∈ T , that is,

R(x∗t , t) ≤ R(x̄t, t) ≤ 2R(x∗t , t), (4.9)

where R(x, t) is the objective function minimized in (4.8) and x∗t is one of its optimal

solutions. It is easy to see that, by considering only a �nite number of investments,

one can have a 2-approximate solution for the problem (RCI) when X has the uni-

modularity property. In order to prove it, let us de�ne the following �nite family of

sets

TB =
{
t ∈ T : c̄N (t)− c̄B(t)B−1N ≥ 0

}
, B ∈ B, (4.10)

where B is the set of all the basic feasible matrices B of X = {x : Mx = b, x ∈
[0, 1]|A|}. Here, we have used for simplicity, the same notation for X and for its

continuous relaxation. For a given matrix B, N is the corresponding nonbasic matrix

and c̄B(t), c̄N (t) are the vectors of basic and nonbasic components of c̄(t). The family

B allows to write the set of feasible investments as a �nite union of TB-sets

T =
⋃
B∈B

TB. (4.11)

The previous equality holds because for any arbitrary investment t ∈ T , the problem
(MRCPIt) has, at least, a basic optimal solution (X is a bounded polyhedron) with

an associated basic feasible matrix B for which c̄N (t) − c̄B(t)B−1N ≥ 0 is veri�ed.
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The set TB represents the set of investments t ∈ T for which the basic feasible solution

associated with the matrixB is an optimal solution of the problem (MRCPIt). Hence,

this basic solution is a 2-approximation to the optimal solution of the problem (4.8)

for every t ∈ TB.
The �nite union of TB-sets (4.11) could eventually have only one nonempty set,

let us say, TB1 6= ∅ and let x1 be its corresponding basic feasible solution. Under

this situation, any optimal solution (x∗, t∗) of the problem (RCI) must verify that

t∗ ∈ TB1 , hence the equation (4.9) guarantees that

R(x∗, t∗) ≤ R(x1, t∗) ≤ 2R(x∗, t∗),

that is, x1 would be a 2-approximation for the problem (RCI). If this is not the case,

but there is a relatively small set of basis de�ning a �nite union of TB-sets of T ,

one can still �nd e�ciently a 2-approximation for the problem (RCI) by selecting

for any one of the corresponding basic feasible solutions an investment minimizing

its maximum regret. To see this, we will label as elements of a set K a minimal

subfamily of basic feasible matrices B whose sets TB de�ne a �nite union of TB-sets

of T ,

T =
⋃
k∈K

TBk . (4.12)

We have a set X0 = {xk, k ∈ K}, where xk is the corresponding basic feasible

solution for the matrix Bk, that is, xk is optimal for the problem (Pt) for every

t ∈ TBk . For each basic solution xk we compute an investment reaching its minimum

maximum regret t(xk) given by

min
t∈T

max
s∈St

R(xk, t, s) =

= min
t∈T

 ∑
(i,j)∈A

c+
ij(t)x

k
ij −min

y∈X

∑
(i,j)∈A

[
(c+
ij(t)− c

−
ij(t))x

k
ij + c−ij(t)

]
yij

 .

Note that, if c+
ij(t) and c−ij(t) are linear functions, the problem of determining

t(xi) is equivalent to solve a linear problem according to the formulation (4.4). If

these cost bound functions are piecewise linear one can obtain an equivalent MILP

by introducing binary variables as in the subsection 4.3.2.

Proposition 14. The pair (x̄, t(x̄)) de�ned by

(x̄, t(x̄)) = argmink∈KR(xk, t(xk))

is an approximation of constant factor 2 for the minmax regret combinatorial opti-

mization problem with investments (RCI).
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Proof. If we denote by (x∗, t∗) an optimal solution of the problem (RCI):

R(x∗, t∗) ≤ R(x̄, t(x̄)).

As T =
⋃
k∈K TBk , ∃k0 ∈ K such that t∗ ∈ TBk0 , therefore:

R(x∗, t∗) ≤ R(x̄, t(x̄)) ≤ R(xk0 , t(xk0)) ≤ R(xk0 , t∗) ≤ 2R(x∗, t∗).

2

Unfortunately, obtaining a �nite union of TB-sets of T with a small set of basis

{Bk : k ∈ K} is, in general, a di�cult task. Note that, if the cost bound functions

c±ij(t) are not linear, the set TB do not need to be a convex set nor even a connected

set. Hence, the development of a general method to �nd an e�cient �nite union of

TB-sets can not take advantage of good geometrical properties whilst generating all

the feasible basis is not an option because it is not a polynomial process and it would

be equivalent to solve the problem (RCI) by enumeration. In fact, if all the basic

feasible matrices are generated the problem of obtaining an approximate solution

is meaningless because, in this case, the pair (x̄, t(x̄)) de�nes by itself an optimal

solution since X has the unimodularity property. In what follows, Proposition 14

will be used as the basis of a heuristic scheme to propose a solution close to a

2-approximate solution and an indicator of the quality of such a solution.

4.4.2 Heuristic

The algorithm proposed here generates a random sequence of investments in T , for

each generated investment t, the problem (MRCPIt) is solved and after that, the pair

(x̄, t(x̄)) is obtained as in Proposition 14. If, in this sequence of investments, there

is at least one of them in one of the TB-sets containing the investment vector t∗ of

one of the optimal solution of (RCI) then, the sequence of inequalities of the proof

of Proposition 14 can be applied and a 2-approximation solution is guaranteed. In

order to ensure that this situation occurs with probability one, when the size of the

random sample of investments increases to in�nity (convergence almost sure), it is

su�cient to check that a �nite union of TB-sets of T can always be selected in such a

way that the probability of generating an investment of the random sample belonging

to each TB-set is strictly positive. If this is true and the sample is constituted of

independent and identically distributed random vectors, the Strong Law of Large

Numbers (SLLN) asserts this procedure will �nd a 2-approximation of the problem

(RCI) with probability one when the size of the sample increases to in�nity.
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Before giving some conditions under which this argument can be applied, we will

formally state the

Algorithm 6 Approximate algorithm

1: Choose a sample of investments T = {t1, ..., tr} ⊂ T .
2: Solve the problem (Pt) for all t ∈ T in order to obtain the set X0 = {x1, ..., xr},

where xi denotes an optimal solution of (Pti), t
i ∈ T.

3: For each xi ∈ X0 obtain its best investment t(xi) or one of them if there are more
than one.

4: Choose as a candidate solution:

(x̄, t(x̄)) ∈ argmin{R(xi, t(xi)) : xi ∈ X0}. (4.13)

Proposition 15. If the sample of investments of the Approximate algorithm

is independent and identically distributed according to an absolute distribution over

T with strictly positive density and the cost bound functions c±ij(t) are continuous in

T for all (i, j) ∈ A, then the candidate solution (4.13) converges almost sure to a

2-approximation of the problem (RCI).

Proof. Let us suppose that the set T has nonempty interior, we will show that there

exists a �nite union of TB-sets of T like (4.11) with all the TB-sets having nonempty

interior. If T has an empty interior one can reason in the same way with the relative

interior of T , that is, its interior within the a�ne hull of T . Once this is shown one

has that there exists at least a TB-set, with nonempty interior, containing a vector

of optimal investments t∗ for the problem (RCI). By the distributional imposed

hypotheses, the probability of generating a vector of investments contained in this

set is strictly positive, that is, the SLLN guarantees that almost sure one of this

vectors will be generated as the size of the sample increases. Finally, we can use

the argument stated in the �rst paragraph of this section to assert the almost sure

convergence of the candidate solution (4.13) to a 2-approximation of the problem

(RCI).

Let t be an interior point of T , for ε > 0 su�ciently small, one can have t ∈
B(t, ε) ⊂ int(T ), where B(t, ε) is a ball with its center at t and a radius ε > 0

with respect to the Euclidean distance in <|A|. Since this is a complete metric

space, the union of every countable collection of closed sets with empty interior has

empty interior (Baire space). Furthermore the functions c±ij are all continuous, by

its de�nition, (4.10), the sets TB are closed. Hence the following set has an empty

interior ⋃
B′∈B′

TB′

where B′ is the set of basic feasible matrices B′ for which int(TB′) = ∅. The fact
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that this set has an empty interior means that

B(t, ε) *
⋃

B′∈B′
TB′

for each ε > 0, that is, since the number of feasible basis is �nite and it is veri�ed

(4.11), one has that t is an accumulation (limit) point of one of the TB-sets with

int(TB) 6= ∅. This set is closed so t ∈ TB, that is,

int(T ) ⊆
⋃

B∈B\B′
TB.

Finally, as the �nite union of closed sets is closed one has

T =
⋃

B∈B\B′
TB.

2

Remark 9. This result remains valid for problems of type (RCI) in which one can

have a 2-approximation for the problem (4.8) for a �xed t ∈ T by solving the corre-

sponding deterministic problem (MRCPIt) under the mid-point scenario. Such prob-

lems do not neet to have as feasible set a polyhedron X with unimodular matrix (see

for instance Conde (2010); Kasperski (2008); Kasperski and Zielinski (2006)).

Although the SLLN ensures the convergence of this procedure to a 2-approximation

if the above-mentioned conditions are veri�ed, in practice, the size of the sequence

of investments that should be generated is unknown. Hence, it is important to have

an indicator of the quality of the proposed solution when the process is stopped and

no way of guaranteeing a 2-approximation is known.

Hereafter, some results of Conde (2010) are adapted to our optimization model

in order to bound the error of the solution proposed by the heuristic algorithm. Let

us de�ne

δ∗(x, t) = max
s∈St

0,
∑

(i,j)∈A

csij(t)xij

 .

It is easy to see that we can rewrite the maximum regret of a given solution x under

an investment t as

R(x, t) = max
y∈X

δ∗(x− y, t). (4.14)

Therefore the problem (RCI) can be expressed as

min
t∈T

min
x∈X

max
y∈X

δ∗(x− y, t).
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The following properties can be used in order to obtain a bound on R(x̄, t(x̄)).

Proposition 16. Given x ∈ X, t ∈ T , we have that

R(x, t) ≥
∑

(i,j)∈A

c+
ij(t) max{xij − yij , 0} −

∑
(i,j)∈A

c−ij(t) max{yij − xij , 0}, ∀y ∈ X.

Proof. By (4.14) we know that

R(x, t) ≥ δ∗(x− y, t) ≥
∑

(i,j)∈A

c∗ij(xij − yij), ∀y ∈ X,

where

c∗ =

c∗ij = c+
ij(t) if xij ≥ yij ,

c∗ij = c−ij(t) if xij < yij .
(i, j) ∈ A.

Then, we obtain the inequality

R(x, t) ≥
∑

(i,j)∈A

c+
ij(t) max{xij − yij , 0} −

∑
(i,j)∈A

c−ij(t) max{yij − xij , 0}.

2

Proposition 17. Given x, y ∈ X, t ∈ T , we have:

R(x, t) ≤ R(y, t) + δ∗(x− y, t).

Proof. Given x, y ∈ X, t ∈ T , by the triangular property of the function δ∗(.) we

have

δ∗(x− v, t) ≤ δ∗(x− y, t) + δ∗(y − v, t), ∀v ∈ X.

Now, by taking the maximum on v ∈ X in the previous inequality, one has

R(x, t) ≤ δ∗(x− y, t) +R(y, t).

2

The following auxiliary optimization problem will give us an indicator of the

quality of the approximation when the algorithm is stopped. Its optimum is an

upper bound on the di�erence between the objective value of the candidate solution

and twice the optimum of the problem (RCI). The formulation of this auxiliary
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problem is as follows

b = max minx̂∈X0 2
∑

(i,j)∈A c̄ij(t)(x̂ij − xij)
subject to

t ∈ T,
x ∈ X,

(Pb)

where the constant b is always �nite since T and X are compact sets. Observe that,

in the case in which there exists a common optimal solution x̂ ∈ X0 of (Pt) for every

t ∈ T , the constant b is zero. This also happens when there is at least an investment

vector of the sample T in each element of a �nite union of TB-sets of T .

It is important to note that the problem (Pb) only needs to be solved at the end

of the approximate algorithm if one wants to have a bound on the incurred error. In

the numerical experiments presented in the next section it will be solved after every

generated sample of investments is processed in order to show an indicator of the

quality of the approximation. However, if this bound is not necessary, as in the case

in which the approximation is used as a starting solution for an exact algorithm, the

problem (Pb) does not need to be solved. In any case, as it is justi�ed later, from a

computational viewpoint, it is much more e�cient to solve (Pb) than (RCI).

After having solved the problem (Pb) one has the following bound on the error

of the approximate solution

Proposition 18. The maximum regret of a solution (x̄, t(x̄)) de�ned as in (4.13)

veri�es that

R(x̄, t(x̄)) ≤ b+ 2R∗,

where R∗ denotes the optimal value of the problem (RCI), and b is the optimal ob-

jective value of the problem (Pb).

Proof. Let (x∗, t∗) be an optimal solution of the problem (RCI), then there exists

x̂ ∈ X0 such that

2
∑

(i,j)∈A

c̄ij(t
∗)(x̂ij − x∗ij) =

∑
(i,j)∈A

(c+
ij(t
∗) + c−ij(t

∗))(x̂ij − x∗ij) ≤ b. (4.15)

Let us suppose that R(x∗, t∗) < R(x̄, t(x̄)) then, by Proposition 17 one has that

0 < R(x̄, t(x̄))−R(x∗, t∗) ≤ R(x̂, t(x̂))−R(x∗, t∗) ≤

≤ R(x̂, t∗)−R(x∗, t∗) ≤ δ∗(x̂− x∗, t∗) =

=
∑

(i,j)∈A c
+
ij(t
∗) max{x̂ij − x∗ij , 0} −

∑
c−ij(t

∗),max{x∗ij − x̂ij , 0} (4.16)
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where the �rst inequality hold by de�nition of x̄ and t(x̂).

We can now write (4.15) as

∑
(i,j)∈A(c+

ij(t
∗) + c−ij(t

∗)) max{x̂ij − x∗ij , 0}−

−
∑

(i,j)∈A(c+
ij(t
∗) + c−ij(t

∗)) max{x∗ij − x̂ij , 0} ≤ b.

In particular,∑
(i,j)∈A

c+
ij(t
∗) max{x̂ij − x∗ij , 0} −

∑
(i,j)∈A

c−ij(t
∗) max{x∗ij − x̂ij , 0} ≤

≤ b+
∑

(i,j)∈A

c+
ij(t
∗) max{x∗ij − x̂ij , 0} −

∑
(i,j)∈A

c−ij(t
∗) max{x̂ij − x∗ij , 0} ≤

≤ b+R(x∗, t∗).

Therefore, using (4.16), we �nally obtain the bound

R(x∗, t∗) ≤ R(x̄, t(x̄)) ≤ b+ 2R(x∗, t∗).

2

In order to solve the problem (Pb) we can de�ne a new variable γ to move the

objective function to the constraints, that is,

b = max γ

subject to

t ∈ T,
x ∈ X,
γ ≤ 〈2c(t), x̂− x〉,∀x̂ ∈ X0.

(P ′b)

In the case of functions c±ij(t) with linear or piecewise linear structure, this last

problem can be linearized by using auxiliary sets of variables, as in (4.5), to obtain

a MILP problem.

Observe that problem (P ′b) has the same number of integer decision variables

than the exact formulation, nevertheless the number of quadratic constraints to be

linearized is substantially reduced from three per each arc in the exact formulation

to, at most, one per each investment of the sample T (exactly to |X0| quadratic
constraints). Despite the fact that problem (P ′b) can have a maximum of |T| quadratic
constraints, our numerical experiments show us that this number is, in practice,

smaller due to the fact that di�erent investments considered in the sample can have

the same optimal path. In the next section we will show some numerical experiments

in which this signi�cant reduction on the number of quadratic constraints will result
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in a considerable decrease of the computational times spent to solve (P ′b) with respect

to the exact formulation, in particular, for big graphs.

To end this section we will apply the above results to the example of section 4.3.2

Example Robust SPP with Investments (continuation)

1. We consider 3 di�erent feasible investments:

T = {t1 = (0.125, 0.125, 0.125, 0.125, 0.125, 0.125), t2 = (0, 0.5, 0, 0, 0, 0.5),

t3 = (0, 0.25, 0, 0.25, 0.25, 0.25)},

where ti = (ti12, t
i
13, t

i
23, t

i
24, t

i
32, t

i
34), i = 1, 2, 3.

2. We solve Pt1 , Pt2 , Pt3 obtaining the following set X0:

X0 = {x1 = (1, 0, 0, 1, 0, 0), x2 = (1, 0, 1, 0, 0, 1), x3 = (1, 0, 0, 1, 0, 0)},

where xi = (xi12, x
i
13, x

i
23, x

i
24, x

i
32, x

i
34), i = 1, 2, 3.

3. We compute the best investment,or one of them if there are more than one, for

each path x1, x2 (observe that x1 = x3):

t(x1) = (0, 0, 0, 1, 0, 0), t(x2) = (0, 0, 0, 0, 0, 1),

so, for each pair, we obtain the following values:

R(x1, t(x1)) = 2.6, R(x2, t(x2)) = 2.

4. Then the solution candidate proposed by the heuristic would be

x2 = (1, 0, 1, 0, 0, 1), t(x2) = (0, 0, 0, 0, 0, 1), R(x2, t(x2)) = 2

which coincides with the optimal solution of the problem.

Finally, by using the result given in Proposition 18, we can bound the error of

this approximate solution after solving the problem (P ′b). In this case, b = 1,

so we have

R(x∗, t∗) ≤ R(x2, t(x2)) ≤ 1 + 2R(x∗, t∗).
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4.5 Computational experiment

In this last section we will show a numerical experiment conducted to check the

e�ectiveness of the approximate algorithm of the previous section. The experiment

concerns the minmax regret shortest path problem with piecewise linear cost bound

functions (section 4.3.2) and feasible set of investments given by

T =

(tij)(i,j)∈A :
∑

(i,j)∈A

tij ≤ 1, c−ij(t) ≤ c
+
ij(t), tij ≥ 0, ∀(i, j) ∈ A

 .

Instances of this problem were randomly generated and solved both exactly, by us-

ing the formulation of Section 4.3.2, and with the approximation procedure of the

previous section.

For a given number of nodes n, the arc (i, j), i = 1, . . . , n and j = i+1, . . . ,min{i+
s, n}, is independently created with a �xed probability p, where s is also a �xed pa-

rameter for each sample of instances. The networks without at least a path between

the node 1 and n are discarded. This type of graphs allows us to limit the number

of neighbors of the nodes, that is, those nodes that can be accessed directly from

the considered one, providing feasible paths passing through a signi�cant number of

nodes like it is frequent in real applications.

The constants c−ij0, c
−
ij and c

+
ij of the piecewise linear cost bound functions were

generated randomly in such a way that c−ij0, c
−
ij ∈ [0, 10], c−ij0 ≤ c

−
ij and c

+
ij ∈ [c−ij , c

−
ij+

10]. The slopes α±ij of these functions are random values uniformly distributed in

the interval [0, α] where α is the 0.1% of the sum of the values c−ij0 (type I ) or the

1% of this sum (type II ). We consider these two cases in order to check the e�ects of

di�erent scales for the slopes of the cost bound functions in the performance of the

approximate algorithm. Note that the slopes generated in our experiment allow cost

variations of even the 100α% of the reference cost incurred if no investment is in the

arc since the components of the investment vector have been normalized according

to (4.3).

The number of feasible investments �nt� used by the approximate algorithm, that

is, the cardinality of the set T, was taken as 15 for all instances. This number was

chosen after doing some experiments with nt = 15, 25, 50 and observing that the

increase of this number increased also the computational time of the heuristic but

the bound b remained almost the same. These investments for each instance of the

problem were also randomly generated according to the following procedure:

• A subset of arcs was chosen randomly using independent Bernoulli distributions

with probability of success of 2% of the sum of the reference values c−ij0 divided

by the number of arcs, that is, this probability is always lower than 0.2 since
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the values c−ij0 belong to [0, 10].

• If the above subset has h arcs, a random vector is generated according to a

uniform distribution in [0, 1]h+1. This vector was normalized to one and h of

its components were assigned as the investments in the h arcs included in the

subset; the remaining component is considered the slack with respect to the

total amount of available resources (one unit).

• The investments in the arcs not included in the subset were �xed to zero.

Note that this procedure verify the conditions of Proposition 15 since the density of

the investment vector is a mixture of positive densities in subsets covering the set T .

The computational experiment was carried out on a personal computer with Intel

R© Core (TM) i7-4720HQ, 2.60GHz with 16384 MB RAM. The optimization problems

were solved exactly by using CPLEX Version: 12.6.1.0 and the approximate algo-

rithm was written as an IBM ILOG CPLEX Optimization Studio project, Version:

12.6.1.0.

In tables 1 to 4 it is shown the results obtained for 280 di�erent instances of the

problem varying the number of nodes of each network and taking the probability of

generating an arc as p = 0.6. The averages of the number of generated arcs appear in

the column (m). In each table the parameter s is �xed, s ∈ {3, 10} (see the heading
of each table) and the parameter n takes the values 150, 300, 450, 600, 750, 900 and

1050.

Once α, s and n were �xed, each row of the table was completed with the

averages of the computational times of the exact algorithm (CPU1), the heuristic

algorithm (CPU2) and the resolution of the problem (P ′b) (CPU3) for 10 di�erent

instances of the problem. It is also shown in each row the average values of the

fraction (r) of the objective value of the approximate solution (numerator) over the

optimal objective value of the problem (RCI) (denominator) and the fraction (b′) of

the bound b (numerator) over the optimal value of the problem (RCI) (denominator).

s=3 α(type I) EXACT FORM. HEURISTIC (Pb')

n m CPU1 CPU2 r CPU3 b'

150 267.4 1.0 3.1 1.012 1.0 0.004
300 561.8 3.5 4.0 1.027 3.0 0.006
450 832.1 11.5 5.6 1.029 6.9 0.006
600 1100.7 49.5 7.5 1.028 13.6 0.007
750 1376.9 36.7 7.7 1.021 19.2 0.007
900 1663.7 167.9 9.6 1.023 28.7 0.007
1050 19506.0 ** 11.2 1.025* 39.2 0.007*

Table 4.1: Computational Results for s = 3, α(type I).
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s=3 α(type II) EXACT FORM. HEURISTIC (Pb')

n m CPU1 CPU2 r CPU3 b'

150 282.4 1.1 3.7 1.029 1.0 0.053
300 547.7 3.5 5.3 1.023 4.0 0.055
450 824.2 9.2 7.1 1.026 8.9 0.068
600 1108.4 24.1 9.2 1.024 17.9 0.064
750 1380.1 24.6 9.6 1.029 24.3 0.066
900 1678.6 65.3 10.7 1.026 34.0 0.067
1050 1969.0 ** 12.8 1.018* 50.6 0.062*

Table 4.2: Computational Results for s = 3, α(type II).
By * we mean that the corresponding value was obtained considering just the prob-
lems solved exactly, fewer than 10 instances. By ** we mean that the exact algorithm
was stopped after 30 minutes of CPU without �nding an exact solution.

From Proposition 18 one has the theoretical bound on the optimal objective value

of the problem (RCI)

R(x̄, t(x̄)) ≤ b+ 2R∗,

which guarantees us an upper bound on the indicator r greater or equal to 2. How-

ever, experimentally we observe that this bound is very conservative because most

of the estimations of the parameter r using the corresponding sample average are

lower than 1.06, this is, in most cases the candidate solution is better than a 1.06-

approximation, which is a solution very close to an optimal one. In the worst observed

cases, the candidate solution was better than a 1.12-approximation. Moreover, these

approximations were obtained, on average, in a fraction of 0.21 of the time used by

the exact formulation.

s=10 α(type I) EXACT FORM. HEURISTIC (Pb')

n m CPU1 CPU2 r CPU3 b'

150 826.0 2.2 5.0 1.055 3.0 0.032
300 1726.6 12.0 9.1 1.046 7.7 0.052
450 2635.9 41.8 14.2 1.062 15.1 0.060
600 3522.4 118.4 23.1 1.055 33.2 0.055
750 4495.8 166.4 26.8 1.051 45.6 0.065
900 5371.0 303.7 32.5 1.058 78.2 0.059
1050 6299.1 ** 41.6 1.055* 142.9 0.065*

Table 4.3: Computational Results for s = 10, α(type I).
By * we mean that the corresponding value was obtained considering just the prob-
lems solved exactly, fewer than 10 instances. By ** we mean that the exact algorithm
was stopped after 30 minutes of CPU without �nding an exact solution.

If we compare the computational times required to solve the exact formulation
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s=10 α(type II) EXACT FORM. HEURISTIC (Pb')

n m CPU1 CPU2 r CPU3 b'

150 856.8 2.9 5.4 1.049 3.2 0.758
300 1753.1 20.0 10.4 1.099 11.8 0.798
450 2667.8 43.6 15.9 1.103 23.7 0.809
600 3571.4 99.1 22.9 1.122 50.9 0.884
750 4499.8 168.7 28.8 1.091 72.8 0.857
900 5412.4 274.1 36.4 1.117 104.1 0.868
1050 6294.2 328.2 44.9 1.098 144 0.855

Table 4.4: Computational Results for s = 10, α(type II).
By * we mean that the corresponding value was obtained considering just the prob-
lems solved exactly, fewer than 10 instances. By ** we mean that the exact algorithm
was stopped after 30 minutes of CPU without �nding an exact solution.

and the ones required to obtain approximate solutions we observe that, when the

number of nodes is greater than 300, the heuristic is always faster than the exact

formulation. The di�erence between these two computational time averages increases

substantially with the rise in the number of nodes in the graph. This good behavior

of the heuristic procedure, in terms of its computational times, compared with the

exact algorithm allows us to �nd approximate solutions for large instances of the

problem for which the exact formulation can not be solved within the time limit

considered (30 mins of CPU). As it can be seen in the three �rst tables, for n = 1050

there are instances whose MILP formulations could not be solved within the limit

of 30 minutes of CPU. However, the heuristic spent less than 45 seconds to �nd

an approximate solution in some of these instances. In fact, although it has not

been included in the tables, the heuristic found approximate solutions for instances

of the problem with 6000 nodes and more than 13200 arcs in less than 4 minutes.

This is very interesting since the approximate solution can also be used as a starting

solution for exact methods with the consequent saving in computational time due to

the fact that a wide subset of feasible solutions can be cut by bounding the objective

function.

Finally, we comment the experimental results obtained about the bound b on the

optimal value of the problem (Pb). We can see that the estimations of this indicator

are relatively small compared with the optimum of the problem in most instances.

However, in the last table one can notice a signi�cative increase of these estimations.

The reason of this fact could be the greater arc density of the generated networks

(s = 10) together with the high level of variation allowed in the coe�cients cij (α

type II). The enlargement in the ranges of variation of the cost coe�cients de�ning

the feasible scenarios would produce, at least as a trend, the increase in the number

of the elements of the �nite union of TB-sets (4.11) needed to cover the feasible
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set of investments. As it was said in the previous section, in order to obtain a 2-

approximation it is needed to have at least a vector of investments of the set T in the

interior of each TB-set with non-empty interior. Hence, the greater number of TB-

sets, the worse the bound b (as a trend), for a �xed number of generated investments

in the set T .

4.6 Conclusions

In this chapter we have proposed an optimization model under uncertainty in the

cost coe�cients of a linear objective function. Every con�guration of possible costs

is called a scenario and it is assumed this vector belongs to a hypercube St which

depends on a set of investments t ∈ T carried out in the system. It was adopted

as optimization criterion the minimization of the maximum regret over the set of

possible scenarios and possible investments. Hence, this model seeks a set of invest-

ments under which there exists at least a solution with a performance close to the

optimal one under each possible scenario, that is, the objective of the investments

is to reduce the uncertainty about the performance of the implemented solution.

Some rationality criteria had been considered in order to model the modi�cations

undergone by the set of possible scenarios under every feasible investment.

We have obtained exact formulations for di�erent choices of the structure of the

set of scenarios St that allow us to solve the problem using large-scale optimization

software packages. However, according to our numerical experiments, the computa-

tional cost increases quickly with the size of the problem. This justi�es the study of

approximate methods that could obtain a good starting solution in order to speed

up the execution of a subsequent exact algorithm by eliminating a wide subset of

feasible solutions. The proposed approximation is based on the resolution of a se-

quence of deterministic problems with linear structure, thus e�ciently solvable by

standard optimization algorithms. In addition, it is possible to �nd a bound on the

incurred error to assess the quality of the approximate solution. This bound extends

previous results on constant factor approximations for minmax regret optimization

problems where no investment is allowed. The numerical comparison of the approxi-

mate algorithm with respect to exact methods points out that these approximations

could be e�ciently applied in the design of specialized algorithms to solve new ro-

bust combinatorial optimization problems. The analysis of how any piece of relevant

information can be extracted from the data and from the structure of the problem in

order to guide the generation of the sample of investments used in the approximate

algorithm could give rise to interesting results. This research line will be explored in

the short future.
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In this chapter, we present new price setting models in the Portfolio Optimiza-

tion area. Speci�cally, we assume in our models, as a novelty, that the unit transac-

tion costs, charged for investing in some assets of the portfolio, must be decided in

the decision process by the �nancial intermediary, instead of assuming them given.

Henceforth, there are two di�erent decision-makers involved in the Portfolio Problem:

the �nancial intermediary, setting the transaction costs, and the investor, selecting

a portfolio. The transaction costs are set trying to maximize the bank's revenue,

and the portfolio is chosen trying to minimize the risk and ensuring an expected

pro�t. We assume a hierarchical decision order, and therefore, we present di�erent

leader-follower versions of the model: �nancial intermediary-leader, investor-leader,

and social welfare models; and we analyze their properties. Moreover, we develop

Mixed Integer Linear Programming formulations for some of the models and e�ective

algorithms for some others. Finally, we report on some computational experiments

performed on real data taken from the IBEX 35, the main benchmark stock exchange

index of the Spanish stock market, and analyze and compare the results obtained by

the di�erent models.

5.1 Introduction

The classical model in portfolio optimization was originally proposed by Markowitz

(1952). This model has served as the initial point for the development of modern

portfolio �nancial theory. Over time, portfolio optimization problems have become

more realistic, incorporating real-life aspects that make the resulting portfolios more

cost e�ective than the alternatives that do not consider them (Castro et al. (2011);

Kolm et al. (2014); Mansini et al. (2014, 2015)). Transaction costs can be seen

as one of these important actual features to be included in portfolio optimization.

These costs are those incurred by the investors when buying and selling assets on

real �nancial markets, charged by the brokers or the �nancial institutions playing the

role of intermediary. Transaction costs usually include banks and brokers comissions,

fees, rates, etc. These commissions/fees/rates have a direct impact on the portfolio,

specially for individual or small investors, since they will determine the net returns,

reducing them and decreasing also the budget available for future investments (Baule

(2010); Baumann and Trautmann (2013)).

To the best of our knowledge, in the existing literature, transaction costs are

assumed to be given (Mansini et al. (2014, 2015)). They can be a �xed cost applied

to each selected security in the portfolio (see e.g. Baule (2010); Baumann and Traut-

mann (2013); Kellerer et al. (2000); Mansini et al. (2014, 2015); Valle et al. (2014);

Woodside-Oriakhi et al. (2013) and the references therein); or a variable rate to be

paid which depends on the amount invested on each security included in the port-
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folio. This dependence can be proportional or be given by a �xed cost that is only

charged if the amount invested exceeds a given threshold, or some other functional

form (see e.g. Baule (2010); Konno et al. (2005); Le Thi et al. (2009); Mansini et

al. (2014, 2015) and the references therein). But in any case, unit transaction costs

are known and predetermined in the optimization process. Nevertheless, it is mean-

ingful to analyze the situations where transaction costs can be decision variables on

�nancial institutions' hands so that they are set trying to maximize its own pro�t as

part of the decision process that leads to optimal portfolios for investors.

The portfolio optimization problem considered in this chapter is based on a single-

period model of investment and incorporates a pricing aspect on the transaction

costs. We assume that there are two decision-makers involved in the situation: the

investor and the �nancial institution (that we will call from now on �the bank� for

simplicity). At the beginning of a period, an investor allocates the capital among

various assets and during the investment period, each asset generates a random rate

of return. Moreover, we consider that the bank can charge some transaction costs on

the securities selected by the investor trying to maximize its bene�ts. This is a pricing

phase in which the bank makes the decision on how much is going to charge to the

traded securities. Considering transaction costs as a decision variable of the model

is a novel element in portfolio optimization and it is one of the main contributions of

this chapter. Then, at the end of the period, the result for the investor is a change

of the capital invested (increased or decreased) which is measured by the weighted

average of the individual rates of return minus transactions costs. On the other

hand, the result for the bank is the amount paid by the investor which depends on

the prices set on the traded securities and the portfolio selected by the investor.

Based on the structure of �nancial markets, we assume a hierarchical relationship

between the parties involved in the portfolio problem, that is, we consider a natural

model in which the bank sets the prices �rst, trying to anticipate the rational response

of the investor. This hierarchical analysis of the portfolio problem has not been

addressed before and it is another contribution of our chapter. Once the prices are

�xed, the investor chooses her optimal portfolio. For the sake of completeness, we

also analyze the case in which the investor chooses her portfolio �rst, and after that,

the bank sets the transaction costs. In order to model these hierarchical structures,

we use a bilevel optimization approach (see Section 1.1.2). Furthermore, we consider

a social welfare model, that is, a model in which both, bank and investor, cooperate

to maximize their returns. We assume in the di�erent models that all economic or

�nancial information is common knowledge and that all the decision-makers in the

problem have access to it.

The contributions of this chapter can be summarized in the following: 1. it

incorporates for the �rst time, the above hierarchical approach with two-levels of
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decision-makers on portfolio optimization problems (the bank sets transaction costs

trying to maximize its bene�ts, whereas the investor minimizes risk while ensuring

a given expected return (Benati (2003, 2015))); 2. it introduces transaction costs

as decision variables on �nancial institutions' hands; 3. it develops di�erent bilevel

programming formulations to obtain optimal solutions for the considered models.

The rest of the chapter is organized as follows. Section 5.2 states the prelimi-

naries and the notation used throughout the chapter. In Section 5.3 we present the

models description, the formulations and the resolution algorithms. Particularly, in

Section 5.3.1, we present the model in which the bank is the leader and we develop

two di�erent MILP formulations to solve such problem; in Section 5.3.2, we introduce

the investor-leader model and develop a Linear Programming (LP) formulation for

it. In the more general case where additional constraints are required on the port-

folio selection, we present a convergent iterative algorithm based on an �add hoc�

decomposition of the model. Next, in Section 5.3.3, it is addressed a social welfare

model. There, we propose a MILP formulation and an algorithm based on Benders

decomposition for solving the problem. In Section 5.4, we report on the computa-

tional study of the di�erent models discussed in the previous sections. Our results

are based on real data taken from IBEX 35, the main benchmark stock exchange

index of the Spanish stock market. Finally, Section 5.5 concludes the chapter.

5.2 Preliminaries

Let N = {1, ..., n} be the set of securities considered for an investment, and B ⊆ N
a subset of securities in which the bank can charge transaction costs to the investor.

In most cases, B = N , but there is no loss of generality to consider that B is a

proper subset of N .

On the one hand, we assume that the bank can price security j ∈ B from a

discrete set, with cardinality sj , of admissible prices, Pj = {cj1, ..., cjsj}, and the

bank's goal is to maximize its bene�t. Further, we consider the case in which the

price charged by the bank per security is proportional to the amount invested in

such security. In other words, the bank's decision variables are unit transaction

costs (commissions, fees, rates, ...) to be charged to the securities.

Let x = (xj)j=1,...,n denote a vector of decision variables weighting xj the pro-

portion of the total amount invested on security j in the portfolio. We only suppose

that the invested capital can not exceed the available budget, i.e.

x :
n∑
j=1

xj ≤ 1, xj ≥ 0, for j = 1, ..., n.

This budget constraint is the minimum requirement on the structure of the portfolios.
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Nevertheless, without loss of generality, we could have assumed that some other

linear constraints are imposed on the structure of the requested portfolio x. All the

results in this chapter can be easily extended to more general situations that consider

polyhedral sets of constraints de�ning the admissible set of portfolios.

Let us denote by pj the value chosen by the bank to price security j. Then, for

a given portfolio x (�xed), the problem faced by the bank can be modeled using the

following set of binary decision variables: ajk = 1 if price cjk is assigned to pj , this

is, if pj = cjk and ajk = 0 otherwise. Thus, to maximize its pro�t the bank solves

the following problem:

max
∑
j∈B

pjxj (PricP)

s.t. pj =

sj∑
k=1

cjkajk, j ∈ B, (5.1)

sj∑
k=1

ajk = 1, j ∈ B, (5.2)

ajk ∈ {0, 1}, j ∈ B, k = 1, ..., sj . (5.3)

If no further constraint is imposed on prices the above is a valid formulation.

However, in general, we will assume without loss of generality that the set of prices

for the bank can be restricted to belong to some polyhedron P, allowing P = R|B|+ .

This can be easily included in the above formulation with the following constraint:

p ∈ P. (5.4)

We observe that, if x is known, and constraint (5.4) is not included, the above

problem is easy to solve (see Proposition 21): the bank will set prices to the maximum

ones among those available for each security. Nevertheless, if the portfolio is unknown

(to be decided by the investor) or a more general polyhedron is considered, the

problem becomes more di�cult.

On the other hand, we suppose that the investor wants to reduce the risk of its

investment while ensuring a given expected return. At this point, several risk mea-

sures could be considered, among them variance of returns, Mean Absolute Deviation

(MAD), Conditional Value at Risk (CVaR), Gini's Mean Di�erence, etcetera, (here,

we refer the reader to Mansini et al. (2003) for further details on the topic). In this

chapter, we have focused on a portfolio optimization problem based on the CVaR

measure. This risk measure aims to avoid large losses: for a speci�c probability level

α, the CVaR measures the conditional expectation of the smallest returns (largest
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losses) with a cumulative probability α, that is, the average return of the given size

(quantile) of worst realizations Mansini et al. (2003); Puerto et al. (2017); Rockafel-

lar et al. (2000). Therefore, we assume that the investor's goals are to maximize

its CVaR and, at the same time, to ensure that a minimum expected reward µ0 is

obtained with her portfolio.

In order to model the above situation, we consider that the rate of return of each

security j ∈ N is represented by a random variable Rj with a given mean µj = E(Rj).

Each portfolio x de�nes a random variable Rx =
∑n

j=1Rjxj that represents the

portfolio rate of return (its expected value can be computed as µ(x) =
∑n

j=1 µjxj).

We consider T scenarios, each of them with probability πt, t = 1, ..., T , and assume

that for each random variable Rj its realization, rjt, under the scenario t is known.

Thus, once the bank has set its prices, p, the realization of the portfolio rates of

return Rx under scenario t is given as yt =
∑n

j=1 rjtxj −
∑

i∈B pixi.

With this information, we assume that our investor wants to maximize the

CVaRα, namely the conditional expectation of the smallest returns with cumulated

probability α, while ensuring a minimum expected return µ0. Thus, the portfolio

optimization model that the investor wants to solve can be formulated as:

max η − 1

α

T∑
t=1

πtdt (CVaRP)

s.t. dt ≥ η − yt, t = 1, ..., T, (5.5)

yt =
n∑
j=1

rjtxj −
∑
i∈B

pixi, t = 1, ..., T, (5.6)

n∑
j=1

xj ≤ 1, (5.7)

T∑
t=1

πtyt ≥ µ0, (5.8)

dt ≥ 0, t = 1, ..., T, (5.9)

xj ≥ 0, j = 1, ..., n, (5.10)

Observe that the objective function and the set of constraints (5.5) and (5.9)

model the CVaR (see Mansini et. al Mansini et al. (2003) for details), whereas (5.6)

gives the expected return in each scenario. Note that, the expected return in each

scenario accounts for the net rate of returns,
∑n

j=1 rjtxj , minus the transaction rates∑
i∈B pixi. The sets of constraints (5.7) and (5.10) force x to de�ne a portfolio, and

�nally constraint (5.8) ensures an expected return of, at least, µ0.

There are di�erent ways of accounting for the transaction costs in the literature.

For instance, including them in the objective function Angelelli et al. (2012); Olivares-
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Nadal and DeMiguel (2018); Woodside-Oriakhi et al. (2013), subtracting them from

the expected return Kreji¢ et al. (2011); Mansini and Speranza (2005), reducing the

capital available for the investment Woodside-Oriakhi et al. (2013), etcetera (see

Mansini et al. (2015) and the references therein for further details). Among the

di�erent options, as it can be seen in the above formulation, we have incorporated

the transaction costs in the investor problem subtracting them from the expected

pro�t.

Note also that by choosing di�erent values for parameters α and µ0, in the for-

mulation above, di�erent types of investors (i.e. di�erent level of attitude towards

risk) can be considered.

5.3 Models description, formulation and resolution algo-

rithms

We consider in this section di�erent forms of structuring the hierarchical relationship.

5.3.1 Bank-Leader Investor-Follower Problem (BLIFP)

We start analyzing the most common hierarchical structure in �nancial markets

in which the bank sets the transaction costs �rst, and after that, the investor chooses

her portfolio. Observe that in this situation, the problem faced from the point of

view of the investor reduces to a portfolio selection, under the considered criterion,

which in this case is to hedge against risk maximizing the average α-quantile of

her smallest returns (CVaRα). Therefore, we study this situation from the �nancial

intermediary point of view, which is a novel perspective.

We model the situation as a bilevel leader-follower (price setting) problem in

which the bank has to �x the transaction costs, from the polyhedral set P ∈ R|B|,
maximizing its bene�ts by assuming that, after its decision is made, the investor will

make her decision to optimize her considered criterion.

Using the bilevel optimization framework, the BLIFP can be modeled as follows:

max
∑
j∈B

pjxj (BLIFP0)

s.t. (5.1), (5.2), (5.3), (5.4), (Bank Constraints)

x ∈ argmax η − 1

α

T∑
t=1

πtdt

s.t. (5.5), (5.6), (5.7), (5.8), (5.9), (5.10). (CVaR Constraints)
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Our goal is to solve the above problem to provide answers to the new portfolio

optimization model. We propose two di�erent MILP formulations with the aim of

making a computational comparison to check which one is more e�ective.

Formulation BLIFP1

The main di�culty in handling (BLIFP0) is that some of its decision variables

are constrained to be optimal solutions of a nested optimization problem. This

nestedness property complicates obtaining a solution of the problem. In order to

overcome that issue we observe that the follower problem in (BLIFP0) is linear on

x when p is given. Hence, as explained in the introductory chapter, this allows us to

compute its exact dual as:

min β + µ0µ (Dual1)

s.t. β −
T∑
t=1

(rjt − pj)δt ≥ 0, j ∈ B, (5.11)

β −
T∑
t=1

rjtδt ≥ 0, j ∈ R, (5.12)

−
T∑
t=1

γt = 1, (5.13)

γt ≥ −
πt
α
, t = 1, ..., T, (5.14)

γt + δt + πtµ = 0, t = 1, ..., T, (5.15)

γt ≤ 0, t = 1, ..., T, (5.16)

µ ≤ 0, β ≥ 0. (5.17)

Then, the problem (BLIFP0) can be reformulated, applying the Strong Duality

Theorem, see Section 1.1.2, including the constraints of the primal and dual problem

together with the equation that matches the objective values of the follower primal

and dual problems. Thus, (BLIFP0) is equivalent to solving this new mathematical

programming model:
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max
∑
j∈B

pjxj

s.t. (5.1), (5.2), (5.3), (5.4), (Bank Constraints)

η − 1

α

T∑
t=1

πtdt = β + µ0µ, (5.18)

(5.5), (5.6), (5.7), (5.8), (5.9), (5.10), (CVaR Constraints)

(5.11), (5.12), (5.13), (5.14), (5.15), (5.16), (5.17). (Dual Constraints)

For the sake of presentation, we have restricted ourselves to consider the problem

with only one follower. However, from a theoretical point of view, the problem with

several followers will have a similar structure since their decisions are independent.

In the model with F followers, there would be F follower problems, then, the number

of follower variables and constraints would be multiplied by F . In this situation, the

bank's goal would be rather general as maximizing the overall bene�t or any other

linear function of its prices.

We can observe that in the above formulation we have some bilinear terms, pjxj
and pjδt that appear in the leader objective function and constraints (5.6) and (5.11).

In order to solve the problem using o�-the-shelf solvers, they can be linearized `a la'

McCormick (see McCormick (1976)) giving rise to another exact MILP formulation

for the bilevel problem.

Indeed, since pj =
∑sj

k=1 cjkajk, ∀j ∈ B, we could substitute the terms pjxj =∑sj
k=1 cjkâjk adding variables âjk, ∀j ∈ B, k = 1, ..., sj , and the following set of

constraints:

âjk ≤ xj , j ∈ B, k = 1, ..., sj ,

âjk ≤ ajk, j ∈ B, k = 1, ..., sj ,

âjk ≥ xj − (1− ajk), j ∈ B, k = 1, ..., sj ,

âjk ≥ 0, j ∈ B, k = 1, ..., sj .

(5.19)

Furthermore, this linearization can be simpli�ed. Observe that it is su�cient to

include in (BLIFP0) the variables âjk and the constraints

âjk ≤ ajk, j ∈ B, k = 1, ..., sj ,

âjk ≥ 0, j ∈ B, k = 1, ..., sj ,
(5.20)

from (5.19) and to substitute the variables xj =
∑sj

k=1 âjk, ∀j ∈ B. We obtain in this

manner an equivalent more compact formulation with the products ajkxj linearized

for all j ∈ B, k = 1, ..., sj , with less constraints and decision variables.
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Following a similar argument we can linearize the products pjδt =
∑sj

k=1 cjkajkδt.

To do that, take M a su�ciently large positive number and de�ne the new variables

δ̂jkt = ajkδt, ∀j ∈ B, k = 1, ..., sj , t = 1, ..., T . This set of variables together with the

following family of constraints linearize all the bilinear terms:

δ̂jkt ≤ δt, j ∈ B, k = 1, ..., sj , t = 1, ..., T,

δ̂jkt ≤Majk, j ∈ B, k = 1, ..., sj , t = 1, ..., T,

δ̂jkt ≥ δt − (1− ajk)M, j ∈ B, k = 1, ..., sj , t = 1, ..., T,

δ̂jkt ≥ 0, j ∈ B, k = 1, ..., sj , t = 1, ..., T.

(5.21)

Combining the above elements, all together, we obtain a valid MILP formulation

for BLIFP:
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max
∑
j∈B

sj∑
k=1

cjkâjk (BLIFP1)

s.t.
sj∑
k=1

ajk = 1, j ∈ B, (5.2)

ajk ∈ {0, 1}, j ∈ B, k = 1, ..., sj , (5.3)

p ∈ P, (5.4)

η − 1

α

T∑
t=1

πtdt = β + µ0µ (5.18)

dt ≥ η − yt, t = 1, ..., T, (5.5)

yt =
∑
j∈B

rjt

( sj∑
k=1

âjk

)
+
∑
j 6∈B

rjtxj −
∑
j∈B

sj∑
k=1

cjkâjk, t = 1, ..., T, (5.22)

∑
j∈B

sj∑
k=1

âjk +
∑
j 6∈B

xj ≤ 1, (5.23)

T∑
t=1

πtyt ≥ µ0, (5.8)

dt ≥ 0, t = 1, ..., T, (5.9)

xj ≥ 0, j 6∈ B, (5.10)

âjk ≤ ajk, j ∈ B, k = 1, ..., sj ,

âjk ≥ 0, j ∈ B, k = 1, ..., sj ,
(5.20)

β −
T∑
t=1

(
rjtδt −

sj∑
k=1

cjkδ̂jkt

)
≥ 0, j ∈ B, (5.24)

β −
T∑
t=1

rjtδt ≥ 0, j ∈ R, (5.12)

−
T∑
t=1

γt = 1, (5.13)

γt ≥ −
πt
α
, t = 1, ..., T, (5.14)

γt + δt + πtµ = 0, t = 1, ..., T, (5.15)

γt ≤ 0, t = 1, ..., T, (5.16)

µ ≤ 0, β ≥ 0, (5.17)

δ̂jkt ≤ δt j ∈ B, k = 1, ..., sj , t = 1, ..., T,

δ̂jkt ≤Majk j ∈ B, k = 1, ..., sj , t = 1, ..., T,

δ̂jkt ≥ δt − (1− ajk)M j ∈ B, k = 1, ..., sj , t = 1, ..., T,

δ̂jkt ≥ 0 j ∈ B, k = 1, ..., sjt = 1, ..., T,

(5.21)
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The above long formulation can be easily understood once the di�erent sets of

constraints are grouped by meaningful blocks. We observe that (5.2), (5.3) and

(5.4) are the constraints that de�ne the feasible domain of the bank. Constraint

(5.18) imposes the strong duality condition among the primal and dual formulation

of the follower problem. Next, (5.5), (5.22), (5.23), (5.8), (5.9), (5.10) and (5.20) are

the constraints that correctly de�ne the linearized version of the CVaR subproblem.

Finally, the constraints that come from the linearized version of the dual of the

follower problem are (5.24),(5.12), (5.13), (5.14), (5.15), (5.16), (5.17) and(5.21).

Using these blocks of constraints Problem (BLIFP1) can be written in the fol-

lowing compact form.

max
∑
j∈B

sj∑
k=1

cjkâjk (BLIFP1)

s.t. (5.2), (5.3), (5.4), (Linear Bank Constraints)

(5.18), (Strong Duality Constraint)

(5.5), (5.8), (5.9), (5.10), (5.20), (5.22), (5.23), (Linear CVaR Constraints 1)

(5.24), (5.12), (5.13), (5.14), (5.15), (5.16),

(5.17), (5.21).
(Linear Dual Constraints)

This valid formulation of (BLIFP1) requires to set a valid value for the big-M

constraint. In the following, we prove the existence of a valid upper bound for such

a value.

Proposition 19. Let B(p) be the set of all full rank submatrices of the matrix repre-

senting the constraints of problem (Dual1) in standard form, where p is a �xed

set of prices, and let BS(p) be the set of all matrices that result from B(p) re-

placing, one each time, their columns by the RHS of that problem. Moreover, let

∆(p) := min{|det(B)| : B ∈ B(p)} and ∆S(p) = max{|det(B)| : B ∈ BS(p)}.
Then UBδ := max

p
∆S(p)/∆(p) is a valid upper bound for the big-M constant in

(BLIFP1).

Proof. It is easy to observe that for each �xed set of prices p, M ≤ maxt=1,...,T δt.

Therefore the proof reduces to bound the terms δt.

From constraint (5.15) in formulation (Dual1) we know that δt = −γt−πtµ, ∀t =

1, ..., T, which implies that δt ≥ 0 for all t = 1, ..., T , since µ ≤ 0, and δt ≤ 0, and

πt ≥ 0 for all t = 1, ..., T .

We observe that β + µ0µ is bounded for any µ0 and for any set of prices p (re-

call that this o.f. gives a CVaR) then, if we denote by rmax = max
j=1,...,n,t=1,...,T

rjt,

rmin = min
j=1,...,n,t=1,...,T

rjt and cmax = max
j=1,...,n, k=1,...,sj

cjk, rmin − cmax ≤ β + µ0µ ≤
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rmax. This implies that the solution of (Dual1) is attained at an extreme point and

therefore no rays have to be considered. Next, the extreme points of the feasible re-

gions are solutions of systems of full dimensional equations taken from the constraint

matrix of (Dual1) in standard form. Therefore, applying Cramer's rule we obtain

that, at the extreme points, the values of any variable δt for all t = 1, . . . , T satisfy:

δt ≤ ∆S(p)/∆(p). Next, letting p vary on the �nite set of possible prices we obtain

that δt ≤ max
p

∆S(p)/∆(p).

This bound is only of theoretical interest and in our computational experiments

we have set it experimentally to be more accurate.

Formulation BLIFP2

In this section, we derive an alternative formulation for BLIFP based on the repre-

sentation of the prices as pjxj =
∑sj

k=1 cjkâjk in the follower problem before its dual

problem is obtained. This artifact produces an alternative compact model that we

will analyze in the following.

Let us consider the CVaR problem in (BLIFP0), and let us linearize the products

of variables pixi, as in the previous formulation. This way we obtain:

max η − 1

α

T∑
t=1

πtdt

s.t. dt ≥ η − yt, t = 1, ..., T, (5.5)

yt =
∑
j∈B

rjt

( sj∑
k=1

âjk

)
+
∑
j 6∈B

rjtxj −
∑
j∈B

sj∑
k=1

cjkâjk, t = 1, ..., T, (5.22)

∑
j∈B

sj∑
k=1

âjk +
∑
j 6∈B

xj ≤ 1, (5.23)

T∑
t=1

πtyt ≥ µ0, (5.8)

dt ≥ 0, t = 1, ..., T, (5.9)

xj ≥ 0, j = 1, ..., n, (5.10)

âjk ≤ ajk, j ∈ B, k = 1, ..., sj ,

âjk ≥ 0, j ∈ B, k = 1, ..., sj .
(5.20)

Once again, to ease presentation, we write the above formulation in the following

compact format.
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max η − 1

α

T∑
t=1

πtdt

s.t. (5.5), (5.8), (5.9), (5.10), (5.20), (5.22), (5.23). (Linear CVaR Constraints 1)

Its dual problem is:

min β + µ0µ+
∑
j∈B

sj∑
k=1

ajkσjk (Dual2)

s.t. (5.12), (5.13), (5.14), (5.15), (5.16), (5.17),

β −
T∑
t=1

rjtδt +

T∑
t=1

cjkδt + σjk ≥ 0, j ∈ B, k = 1, ..., sj , (5.25)

σjk ≥ 0, j ∈ B, k = 1, ..., sj . (5.26)

Therefore, we can replace in (BLIFP0) the nested optimization problem on the

CVaR including the group of constraints in (Linear CVaR Constraints 1) and (5.12)-

(5.17), (5.25), (5.26), that we will referred from now on as (Dual2 Constraints),

together with the strong duality condition given by

η − 1

α

T∑
t=1

πtdt = β + µ0µ+
∑
j∈B

sj∑
k=1

ajkσjk.

The combination of all these elements results in the following alternative valid for-

mulation for (BLIFP0).

max
∑
j∈B

sj∑
k=1

cjkâjk

s.t. (5.2), (5.3), (5.4) (Bank Constraints)

η − 1

α

T∑
t=1

πtdt = β + µ0µ+
∑
j∈B

sj∑
k=1

ajkσjk (5.27)

(5.5), (5.8), (5.9), (5.10), (5.20), (5.22), (5.23), (Linear CVaR Constraints 1)

(5.12), (5.13), (5.14), (5.15), (5.16), (5.17),

(5.25), (5.26).
(Dual2 Constraints)

The formulation above still contains bilinear terms, namely ajkσjk, in constraint

(5.27). Therefore, we linearize them as in (BLIFP1) and we obtain another valid



5.3. Models description, formulation and resolution algorithms 147

MILP formulation for BLIFP.

max
∑
j∈B

sj∑
k=1

cjkâjk (BLIFP2)

s.t. (5.2), (5.3), (5.4) (Linear Bank Constraints)

η − 1

α

T∑
t=1

πtdt = β + µ0µ+
∑
j∈B

sj∑
k=1

σ̂jk, (5.28)

(5.5), (5.8), (5.9), (5.10), (5.20), (5.22), (5.23), (Linear CVaR Constraints 1)

(5.12), (5.13), (5.14), (5.15), (5.16), (5.17),

(5.25), (5.26).
(Dual2 Constraints)

σ̂jk ≤ σjk, j ∈ B, k = 1, ..., sj ,

σ̂jk ≤Majk, j ∈ B, k = 1, ..., sj ,

σ̂jk ≥ σjk −M(1− ajk), j ∈ B, k = 1, ..., sj

σ̂jk ≥ 0, j ∈ B, k = 1, ..., sj ,

(5.29)

Again, this valid formulation for (BLIFP2) requires to prove the existence of a

valid upper bound for the big-M constraint. In the following, we prove that a valid

upper bound for such a value does exist.

Proposition 20. Let UBδ be the bound obtained in Proposition 19 and LBβ =

min
p

∆S(p)/∆(p). Then max{T (rmax − cmin)UBδ − LBβ, 0} is a valid upper bound

for M in (BLIFP2).

Proof. It is easy to observe that M = max
j∈B,k=1,...,sj

{σjk} is a valid upper bound.

Since σjk is being minimized (it is minimized in (Dual2)) and it must satisfy

constraints (5.25) and (5.26), there always exists, ∀j ∈ B, k = 1, ..., sj , an optimal

solution where these variables get the values:

σjk =

{
0, if β +

∑T
t=1(cjk − rjt)δt ≥ 0

−β +
∑T

t=1(rjt − cjk)δt, otherwise.

Since β ≥ 0 by de�nition, if it happens that β +
∑T

t=1(cjk − rjt)δt is negative,
then

∑T
t=1(cjk − rjt) ≤ 0 and therefore

∑T
t=1(rjt − cjk) ≥ 0.

Consequently the maximum value of this variable would be max{0, T (rmax −
cmin)UBδ − LBβ}, where UBδ and LBβ are found by doing a similar discussion as

in in the Proposition 19.
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5.3.2 Investor-Leader Bank-Follower Problem (ILBFP)

For the sake of completeness, in this section, we consider the reverse situation to

the one that has been analyzed in Section 5.3.1, i.e. a hierarchical structure in

�nancial markets where the investor acts �rst and once its portfolio x is chosen the

bank sets prices. Although one could claim that this situation may be atypical in

actual �nancial markets, we want to analyse this case from a theoretical point of

view. Moreover, we wish to analyse its implications depending of di�erent banks

and investors pro�les. See Section 5.4 for a comparative analysis. This situation

leads to a bilevel leader-follower model in which the investor (leader) has to optimize

her utility (maximize the CVaR ensuring a given expected reward, µ0) by assuming

that once she has chosen the portfolio, the bank (follower) will maximize its bene�ts

deciding on the applicable transaction costs.

We can formulate the problem as:

max η − 1

α

T∑
t=1

πtdt (ILBFP0)

s.t. (5.5), (5.6), (5.7), (5.8), (5.9), (5.10), (CVaR Constraints)

p ∈ argmax
∑
j∈B

pjxj (5.30)

s.t. (5.1), (5.2), (5.3), (5.4). (Bank Constraints)

We show in the following proposition that if no further polyhedral constraints

are imposed on prices, i.e. P = R|B|+ , �xing the prices to their maximum possible

values is always an optimal solution of the follower (bank) problem.

Proposition 21. Let (PricP) be the follower bank problem, not including con-

straint (5.4), in the problem ILBFP0. Let x be a given portfolio and let p+
j =

max
k=1,...,sj

cjk ∀j ∈ B. Then p+
j , ∀j ∈ B, is an optimal solution of (PricP).

Proof. Let us consider (PricP) not including constraint (5.4). The solution p+
j ∀j ∈

B is feasible for the problem.

Let x be a given portfolio vector. Clearly, for any given x the objective value

given by
∑
j∈B

p+
j xj can not be improved with any other feasible solution of the bank

problem. Hence, this proves the claim.

Using the previous result, the (ILBFP0) can be simpli�ed in the cases in which

constraint (5.4) is not included, since the nested optimization problem is replaced by

the explicit form of an optimal solution (see Section 1.1.2). This results in a valid

linear programming formulation to solve the problem.
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max η − 1

α

T∑
t=1

πtdt (ILBFP-LP)

s.t. (5.5), (5.7), (5.8), (5.9), (5.10), (CVaR Constraints)

yt =

n∑
j=1

rjtxj −

∑
j∈B

p+
j xj

 , t = 1, ..., T.

Nevertheless, the above result can not be extended to the case in which a more

general polyhedron P de�nes the admissible set of transaction costs, and a compact

MILP formulation can neither be obtained. With the purpose of solving ILBFP, in

this more general case, we propose an `add hoc' algorithm. To justify its validity we

need the following theorem.

Theorem 5. Let ϑ =
∑

j∈B pjxj, and denote by Λ the set containing the feasible

rates of the bank problem in P. The problem (ILBFP0) is equivalent to:

max η − 1

α

T∑
t=1

ptdt (ILBFP-Compact)

st.

n∑
j=1

xj ≤ 1,

dt ≥ η − yt, t = 1, ..., T,

yt =

n∑
j=1

rjtxj − (ϑ) , t = 1, ..., T,

T∑
t=1

πtyt ≥ µ0

xj ≥ 0, j = 1, ..., n,

dt ≥ 0, t = 1, ..., T,

ϑ ≥
∑
j∈B

pint,jxj , pint ∈ Λ.

Proof. We prove �rst that, maximizing the objective function η − 1

α

T∑
t=1

πtdt in

(ILBFP0) is equivalent to maximizing η(1− Cx) +
1

α

∑
t∈T′

n∑
j=1

πtrjtxj − Cxϑ, where

Cx =
∑

t∈T′
πt
α > 0 and T′ := {t = 1, ..., n : η−yt ≥ 0}. Observe that the constraints

in (ILBFP-Compact) imply that dt = max{0, η − yt} and yt =
∑

j∈B rjtxj −
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∑
j∈B pjxj for all t = 1, ..., T . Therefore the objective value in the problem satis�es:

max η − 1

α

T∑
t=1

πtdt = max η − 1

α

T∑
t=1

πt max{0, η − yt}

= max η − 1

α

∑
t∈T′

πt(η − yt)

= max η(1− Cx) +
1

α

∑
t∈T′

πt

∑
j∈B

rjtxj −
∑
j∈B

pjxj


= max η(1− Cx) +

1

α

∑
t∈T′

πt

∑
j∈B

rjtxj

− Cxϑ. (5.31)

Secondly, we have that, for a given portfolio x, the optimal value ϑ̄ of the follower

problem is

ϑ̄ = max
∑
j∈B

pjxj

s.t. (5.1), (5.2), (5.3), (5.4), (Bank Constraints)

and it is equivalent to evaluate the objective function in all the feasible points and

to choose the largest one:

ϑ̄ = max
∑
j∈B

pint,jxj , pint ∈ Λ.

Since Cx and ϑ are positive, and ϑ is being minimized in (5.31), the follower problem

in (ILBFP0), can be replaced by

ϑ ≥
∑
j∈B

pint,jxj , pint ∈ Λ,

and the result follows.

Observe that, if the set of points in Λ were explicitly known, (ILBFP-Compact)

would be a MILP compact formulation with very likely an exponential number of

constraints for the general case of (ILBFP0). However, the points in the set Λ are

usually di�cult to enumerate a priori.

The idea of our algorithm is to start with an incomplete formulation of (ILBFP-

Compact) and reinforce it with a new inequality, coming from a new point in Λ,

after each new iteration of the algorithm.
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Algorithm 7

1: procedure Initialization
2: Choose a feasible portfolio x0. Set CV aR0 = +∞.

3: procedure Iteration (τ = 1, 2, . . .)
4: Solve the bank (follower) problem for xτ−1. Let pτ be an optimal solution.
5: Solve the incomplete formulation:

max η − 1

α

T∑
t=1

πtdt (ILBFP-Incompleteτ )

st.
n∑
j=1

xj ≤ 1,

dt ≥ η − yt, t = 1, ..., T,

yt =
n∑
j=1

rjtxj − ϑ, t = 1, ..., T,

T∑
t=1

πtyt ≥ µ0

xj ≥ 0, j = 1, ..., n,

dt ≥ 0, t = 1, ..., T,

ϑ ≥
∑
j∈B

pνjxj , ν = 1, ..., τ.

6: Let χτ = (xτ , yτ , ητ , dτ ), and let (χτ , ϑτ ) be an optimal solution and CV aRτ

the optimal value.
7: if (χτ , ϑτ ) is feasible in (ILBFP-Incompleteτ ) then
8: (χτ−1, pτ ) are optimal solutions of (ILBFP0), and CV aRτ the optimal

value. END.
9: else if (χτ , ϑτ ) is not feasible in (ILBFP-Incompleteτ ) then
10: go to iteration τ := τ + 1.
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We prove in the following result the optimality of the solution obtained in Algo-

rithm 7 and also the �niteness of it.

Theorem 6. Algorithm 7 �nishes in a �nite number of iterations with an optimal

solution of (ILBFP0).

Proof. We start guaranteeing the �niteness of the algorithm. On the one hand,

the number of feasible solutions of the bank problem is �nite, then the number of

di�erent cuts ϑ ≥
∑

j∈B p
τ
jxj that can be added to the incomplete formulation is also

�nite. On the other hand, if a repeated cut is added then, xτ−1 is feasible in ILBFP-

Incompleteτ , since ILBFP-Incompleteτ is equal to ILBFP-Incompleteτ−1, and

then the algorithm stops. Therefore the algorithm �nishes in a �nite number of

iterations.

We continue now proving the optimality of the solution obtained. Let us denote

by CV aR∗ the optimal value of (ILBFP0), that by Theorem 5 is also the optimal

value of (ILBFP-Compact).

First, assume that (χτ−1, ϑτ−1) satis�es the stopping criterion. Then, it is clear

that (χτ−1, ϑτ−1) is also feasible in ILBFP-Incompleteτ and CV aRν ≤ CV aRν−1

for all ν = 1, ..., τ , by construction. Hence, (χτ , ϑτ ) is also optimal in ILBFP-

Incompleteτ and CV aRτ−1 = CV aRτ .

Second, we have that CV aR∗ ≤ CV aRτ always holds, since the polyhedron

describing the feasible region of (ILBFP-Compact) is included in the one de�ning

the feasible region in ILBFP-Incompleteτ .

Finally, we have that if (χτ−1, pτ ) is feasible in (ILBFP0), then CV aR∗ =

CV aRτ and it is an optimal solution of (ILBFP0). Therefore, it remains to prove

that (χτ−1, pτ ) is feasible in (ILBFP0).

Clearly χτ−1 veri�es constraints (5.5), (5.7), (5.8), (5.9), (5.10), since they are

all included in the incomplete formulation, and also, xτ−1, pτ verify constraints

p ∈ argmax
∑
j∈B

pjxj , (5.1), (5.2), (5.3) and (5.4), since

pτ ∈ argmax
∑
j∈B

pjx
τ−1
j

s.t. (5.1), (5.2), (5.3), (5.4). (Bank Constraints)

To complete the proof we need to check that constraint (5.6) is also satis�ed.

Since pτ ∈ argmax
∑
j∈B

pjx
τ−1
j , then

∑
j∈B p

τ
jx

τ−1
j ≥

∑
j∈B pjx

τ−1
j for any price

p verifying (5.1), (5.2), (5.3) and (5.4). Using the same arguments that in Theorem

5 it follows that variable ϑ is being minimized in ILBFP-Incompleteτ , thus ϑτ =∑
j∈B p

τ
jx

τ−1
j and then constraint (5.6) holds.
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5.3.3 The Maximum Social Welfare Problem (MSWP)

From an economical point of view it is interesting to study the Social Welfare Model

in which it is assumed that the �nancial institution and the investor cooperate to

improve the social welfare of the society. In fact, apart from the theoretical interest,

there may be actual situations in which they may have an incentive to work together

to share risk and bene�ts so as to improve, in this way, their solutions by designing

a joint strategy.

We have also analyzed this model for the sake of completeness and to compare the

performance of this situation where none of the parties has a hierarchical position over

the other one. We think that even if the actual implementation of the cooperative

model may be di�cult, in a competitive actual market, one may gain some insights

into the problem through its analysis.

In this social welfare model we assume that both, �nancial intermediary and

investor, cooperate. If 0 < ξ < 1 denotes the �proportion" of cooperation of each

part, the cooperative version of the problem can be written as a weighted sum of

the two objective functions of each party in the feasible region delimited by the

constraints of both problems:

max ξ
∑
j∈B

pjxj + (1− ξ)

(
η − 1

α

T∑
t=1

πtdt

)
s.t. (5.1), (5.2), (5.3), (5.4), (Bank Constraints)

(5.5), (5.6), (5.7), (5.8), (5.9), (5.10). (CVaR Constraints)

The above problem can be modeled as a MILP problem by linearizing the prod-

ucts of variables ajkxj , ∀j ∈ B following the same linearization as in Section 5.3.1:

max ξ
∑
j∈B

sj∑
k=1

cjkâjk + (1− ξ)

(
η − 1

α

T∑
t=1

πtdt

)
(MSWP0)

s.t. (5.2), (5.3), (5.4), (Linear Bank Constraints)

(5.5), (5.8), (5.9), (5.10), (5.20), (5.22), (5.23) (Linear CVaR Constraints 1)



154
Chapter 5. Bilevel Portfolio Selection Problem with Pricing decisions

on transaction costs

Without loss of generality we can consider an unweighted maximum social wel-

fare model where the two objective functions
∑

j∈B
∑sj

k=1 cjkajk (bank) and η −
1

α

∑T
t=1 πtdt (investor) are simply added. The following result proves that coopera-

tion is always pro�table for both parties in that the joint return exceeds the sum of

individual returns of each of them.

Proposition 22. An optimal solution of the unweighted maximum social welfare

model induces an objective value that is greater than or equal to the sum of the optimal

returns of the two parties in the same bilevel problem in any of the hierarchical models.

Proof. Any feasible solution of (BLIFP0) and (ILBFP0) is feasible in (MSWP0)

since all the constraints in this last problem appear in the two former formulations.

Therefore, the feasible region of (MSWP0) includes the feasible regions of both,

(BLIFP0) and (ILBFP0) and the result follows.

Benders decomposition

We can also obtain a Benders decomposition in order to state a Benders like algorithm

to solve (MSWP0), and compare the performance of both proposed methods to solve

the problem.

Recall that the equal-cooperative model can be written as:

max
∑
j∈B

pjxj +

(
η − 1

α

T∑
t=1

πtdt

)
s.t. (5.1), (5.2), (5.3), (5.4), (Bank Constraints)

(5.5), (5.6), (5.7), (5.8), (5.9), (5.10). (CVaR Constraints)

In order to apply Benders decomposition we reformulate (MSWP0) as follows:
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max
∑
j∈B

sj∑
k=1

cjkâjk + q(y) (MSWP1)

s.t. (5.2), (5.3), (5.4) (Linear Bank Constraints)

âjk ≤ ajk, j ∈ B, k = 1, ..., sj ,

âjk ≥ 0, j ∈ B, k = 1, ..., sj ,
(5.20)

yt =
∑
j∈B

rjt

( sj∑
k=1

âjk

)
+
∑
j 6∈B

rjtxj −
∑
j∈B

sj∑
k=1

cjkâjk, t = 1, ..., T, (5.22)

∑
j∈B

sj∑
k=1

âjk +
∑
j 6∈B

xj ≤ 1, (5.23)

T∑
t=1

πtyt ≥ µ0, (5.8)

xj ≥ 0, j 6∈ B, (5.10)

where

q(y) = max η − 1

α

T∑
t=1

πtdt

s.t.: dt − η ≥ −yt, t = 1, ..., T,

dt ≥ 0, t = 1, ..., T.

Note that in q(y) we are essentially computing the CVaR for the given solution

{yt : t = 1, . . . , T}.
Computing again its dual problem, the evaluation of q(y) can also be obtained

as:

q(y) = min

T∑
t=1

−γtyt (PrimalP)

s.t.: γt ≥
−πt
α
, t = 1, ..., T,

−
T∑
t=1

γt = 1,

γt ≤ 0.

Observe that the above problem, which we de�ne as the Primal Problem, is a
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continuous knapsack problem with lower bounds, therefore it is well known that it

can be solved by inspection. It su�ces to sort non-increasingly the yt values and

assigning, in that order, to each variable γt the minimum feasible amount.

Note that in the above formulation the feasible region does not depend on the

variables in (MSWP1), so if we denote by Λ the set of extreme point solutions of

the feasible region of (PrimalP), q(y) is equivalent to:

q(y) = max q

s.t. q ≤
T∑
t=1

−γτt yt, γτ ∈ Λ. (5.32)

Therefore, the problem (MSWP0) with discrete prices can be written as:

max
∑
j∈B

sj∑
k=1

cjkâjk + q (MasterP)

s.t. (5.2), (5.3), (5.4) (Linear Bank Constraints)

âjk ≤ ajk, j ∈ B, k = 1, ..., sj ,

âjk ≥ 0, j ∈ B, k = 1, ..., sj ,
(5.20)

yt =
∑
j∈B

rjt

( sj∑
k=1

âjk

)
+
∑
j 6∈B

rjtxj −
∑
j∈B

sj∑
k=1

cjkâjk, t = 1, ..., T, (5.22)

∑
j∈B

sj∑
k=1

âjk +
∑
j 6∈B

xj ≤ 1, (5.23)

T∑
t=1

πtyt ≥ µ0, (5.8)

xj ≥ 0, j 6∈ B, (5.10)

q ≤
T∑
t=1

γτyt, γτ ∈ Λ. (5.32)

This analysis allows us to state a Benders algorithm as follows:
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Algorithm 8 Benders decomposition

1: procedure Initialization

2: Choose a solution y0 of the master problem, solve the primal problem (Pri-

malP) for the chosen y0.

3: Let γ0 be an optimal solution for (PrimalP) under y0 and q(y0) the corre-

sponding optimal value.

4: Take Υ = {γ0} and go to iteration τ = 1.

5: procedure Iteration (τ = 1, 2, . . .)

6: Solve the master problem (MasterP) replacing Λ with Υ. Let y∗ and q∗ be

optimal solutions of such problem.

7: if τ = 1 and q(y0) = q∗ then

8: END.

9: else if τ > 1 and q(y∗) = q∗ then

10: END.

11: else

12: Solve the primal problem (PrimalP) for y = y∗. Let γ∗ be an optimal

solution of such problem. Take γτ = γ∗, Υ = Υ ∪ {γτ}, and go to iteration

τ := τ + 1.

5.4 Computational Experiment

This section is devoted to report some numerical experiments conducted to: 1) com-

pare the e�ectiveness of the di�erent methods proposed to solve the di�erent model;

2) analyze the form of the solutions within each model, and 3) compare the pro�les

of the solutions, in terms of net values for the bank and expected return for the

investor, across the three developed models.

The computational experiments were carried out on a personal computer with

Intel(R) Core(TM) i7-2600 CPU, 3.40GHz with 16.0 GB RAM. The algorithms and

formulations were implemented and solved by using Xpress IVE 8.0.

In order to conduct the computational study, we have considered historical data

from IBEX 35. IBEX 35 is the main benchmark stock exchange index of the Spanish

stock market. It is made up of the 35 most liquid companies that are listed on

the Electronic Spanish Stock Market Interconnection System (SIBE) on the four

Spanish stock exchanges (Madrid, Barcelona, Bilbao, and Valencia). We took the

monthly returns of these 35 companies during the last three years (T = 36 scenarios),

and these T historical periods have been considered as equally probable scenarios

(πt = 1/T ).

Di�erent types of instances were generated assuming di�erent random sets B of

securities in which the bank can charge some rates. We have considered that this set
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can have cardinality ranging in |B| = 35, 25, 10. Moreover, we have assumed that

the number of di�erent price values sj , for security j ∈ B, is a random value in the

interval [0,K] with K = 5, 15, 50. The next table gathers the nine di�erent types of

instances (A to I) that we considered:

K = 5 K = 15 K = 50

|B| = 35 A B C

|B| = 25 D E F

|B| = 10 G H I

Table 5.1: Types of instances depending on the values of |B| and K.

In order to generate each type of instance, di�erent pro�les of prices were consid-

ered. Approximately 15% of the companies in B were given cheap prices; approxi-

mately 70% of the companies normal prices, and the rest of securities in B, expensive

prices. Based on actual �nancial market information, cheap prices were generated

randomly in the interval [0.001, 0.003], this means that the prices charged by the

bank are between the 0.01% and the 0.03% of the invested amount; normal prices

randomly generated in [0.002, 0.008], and expensive prices, generated in the interval

[0.006, 0.010].

For each type of instance de�ned in Table 5.1, �ve di�erent instances were gen-

erated and solved and the average values are reported in all the tables and �gures.

With the purpose of making a richer comparison, di�erent pro�les of investors

with respect to their risk attitude were also considered varying the values of param-

eters µ0 and α. We assumed two thresholds for the expected return µ0 = −0.1, 0.0.

This way, we are modeling investors willing to lose, at most, 10% or 0% of their

invested amount. In addition, we consider �ve di�erent CVaR risk levels, α =

0.1, 0.3, 0.5, 0.7, 0.9. Note that the smaller the α, the higher the risk-aversion.

5.4.1 Comparing solution methods

This section compares the computational performance of the di�erent methods pro-

posed to solve each one of the models.

For the �rst model, BLIFP, we proposed two di�erent formulations: (BLIFP1)

and (BLIFP2). We show in all our tables, the average CPU time expressed in

seconds (CPU) and the number of problems (#) solved to optimality (out of 5) for

each formulation, with a time limit of 1800 seconds.

Table 5.2 is organized in two blocks of rows. The �rst block reports results for

µ0 = −0.1 and the second one for µ0 = 0.0. Each row in the table refers to a type
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of instance (A, . . . , I). The columns are also organized in �ve blocks. Each block

reports the results for a di�erent risk level α.

It can be observed that (BLIFP2) is always faster and it solves a higher number

of problems than (BLIFP1) to optimality. For example, when α = 0.1 and µ = 0.0,

(BLIFP2) is able to solve all the instances of types B, E, F in at most 165 seconds

(on average), while (BLIFP1) is not able to solve any of these instances. Therefore,

we conclude that formulation (BLIFP2) is more e�ective than (BLIFP1) for solving

the BLIFP, problem.

The second model in our analysis is the one presented in Section 5.3.2, namely

ILBFP. For this situation, we have proposed a compact LP formulation (ILBFP-

LP) and the Algorithm 7 to solve the problem. Finally, for MSWP, we have also

proposed another compact formulation (MSWP0) and a Benders' like algorithm

(Algorithm 8). The primal problems in the Benders Algorithm 8 were solved by

using the inspection method described in the previous section. We report the results

concerning these two models in Tables 5.3 and 5.4, and with the same layout as

it was already used in Table 5.2. It can be observed that in both models, namely

ILBFP and MSWP, the compact formulations are faster than the algorithms. In

spite of that, the algorithms are also able to solve the considered instances quickly.

For example, in Table 5.3, the maximum average time spent by Algorithm 7 to solve

any instance is almost negligible and less than one second. Analogously, and in

table 5.4 the maximum average time spent by the Benders' Algorithm 8 forMSWP

is less than 11 seconds. Note that in the case of ILBFP if additional constraints

are impossed over the set of prices, the problem has to be solved with the Benders

Algorithms 8.

α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

µ0 (BLIFP1) (BLIFP2) (BLIFP1) (BLIFP2) (BLIFP1) (BLIFP2) (BLIFP1) (BLIFP2) (BLIFP1) (BLIFP2)

CPU # CPU # CPU # CPU # CPU # CPU # CPU # CPU # CPU # CPU #

−0.1 A 1800 0 1 5 1319 2 1 5 1273 2 2 5 1120 2 2 5 763 3 1 5

B 1800 0 460 5 1800 0 1238 3 1800 0 1444 1 1799 0 767 3 1800 0 373 4

C 1800 0 1800 0 1800 0 1800 0 1800 0 1800 0 1800 0 1799 0 1800 0 1474 1

D 21 5 1 5 729 3 1 5 6 5 2 5 3 5 1 5 2 5 2 5

E 1451 1 4 5 1800 0 34 5 1392 2 13 5 824 3 7 5 190 5 0 5

F 1800 0 371 4 1800 0 221 5 1800 0 815 3 1491 2 200 5 1447 1 33 5

G 2 5 0 5 1 5 0 5 1 5 0 5 1 5 0 5 1 5 0 5

H 383 5 1 5 408 4 1 5 365 4 1 5 4 5 2 5 2 5 1 5

I 1121 2 14 5 1472 1 12 5 1138 2 338 5 275 5 1 5 511 4 1 5

0.0 A 1153 2 1 5 1467 1 2 5 1370 2 2 5 592 4 1 5 410 5 2 5

B 1800 0 109 5 1800 0 598 4 1800 0 1095 2 1800 0 784 3 1800 0 447 4

C 1800 0 1800 0 1800 0 1800 0 1800 0 1800 1 1800 0 1574 1 1800 0 1490 1

D 16 5 1 5 365 4 2 5 363 4 1 5 5 5 2 5 155 5 2 5

E 1800 0 2 5 1444 1 16 5 1342 2 13 5 825 3 4 5 33 5 0 5

F 1800 0 165 5 1800 0 78 5 1800 0 1112 2 1800 0 364 4 1800 0 74 5

G 4 5 0 5 1 5 0 5 1 5 0 5 1 5 0 5 1 5 0 5

H 78 5 1 5 17 5 1 5 66 5 1 5 8 5 2 5 721 3 1 5

I 1638 1 28 5 765 3 19 5 824 3 46 5 51 5 1 5 158 5 1 5

Table 5.2: Comparison of the average CPU and number of problems (out of 5) solved to optimality,

for (BLIFP1) and (BLIFP2).
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α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

µ0 LP Alg. 1 LP Alg. 1 LP Alg. 1 LP Alg. 1 LP Alg. 1

−0.1 A 0.01 0.07 0.01 0.07 0.01 0.06 0.00 0.07 0.01 0.09

B 0.00 0.05 0.01 0.09 0.01 0.06 0.00 0.08 0.00 0.10

C 0.00 0.13 0.04 0.15 0.06 0.38 0.00 0.11 0.01 0.12

D 0.00 0.07 0.01 0.10 0.00 0.07 0.00 0.06 0.00 0.07

E 0.00 0.05 0.00 0.10 0.01 0.07 0.01 0.04 0.00 0.08

F 0.01 0.05 0.00 0.06 0.00 0.05 0.01 0.07 0.00 0.08

G 0.00 0.05 0.00 0.05 0.01 0.06 0.00 0.04 0.00 0.04

H 0.00 0.05 0.00 0.05 0.00 0.05 0.01 0.05 0.00 0.05

I 0.00 0.04 0.00 0.06 0.01 0.05 0.00 0.04 0.00 0.04

0.0 A 0.01 0.08 0.00 0.07 0.01 0.08 0.01 0.08 0.00 0.07

B 0.01 0.09 0.00 0.13 0.01 0.07 0.01 0.08 0.01 0.10

C 0.01 0.12 0.01 0.17 0.01 0.08 0.01 0.07 0.00 0.12

D 0.01 0.07 0.00 0.08 0.01 0.05 0.01 0.05 0.01 0.05

E 0.01 0.10 0.01 0.09 0.01 0.06 0.01 0.05 0.01 0.05

F 0.01 0.05 0.01 0.10 0.01 0.05 0.01 0.06 0.01 0.07

G 0.01 0.04 0.00 0.06 0.01 0.04 0.01 0.05 0.01 0.05

H 0.01 0.05 0.01 0.04 0.01 0.05 0.01 0.05 0.00 0.06

I 0.01 0.05 0.01 0.05 0.01 0.06 0.01 0.05 0.00 0.04

Table 5.3: Comparison of the average CPU for (ILBFP-LP) and Algorithm 7.

α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

µ0 (MSWP0) Ben. (MSWP0) Ben. (MSWP0) Ben. (MSWP0) Ben. (MSWP0) Ben.

−0.1 A 0.03 0.55 0.03 0.79 0.04 1.21 0.03 0.75 0.03 0.47

B 0.07 0.99 0.07 1.99 0.08 2.83 0.07 1.36 0.06 0.77

C 0.19 2.63 0.21 4.77 0.21 8.07 0.19 3.94 0.20 2.55

D 0.02 0.52 0.03 0.92 0.02 1.84 0.02 0.61 0.02 0.52

E 0.05 0.83 0.06 1.67 0.05 2.42 0.05 1.14 0.05 0.92

F 0.12 1.74 0.14 3.01 0.14 4.76 0.12 2.45 0.13 1.84

G 0.01 0.55 0.02 0.77 0.01 1.05 0.01 0.48 0.01 0.34

H 0.03 0.58 0.03 0.82 0.03 1.29 0.03 0.65 0.03 0.43

I 0.07 1.01 0.07 1.63 0.07 2.47 0.06 1.40 0.07 0.78

0.0 A 0.03 0.74 0.03 5.85 0.06 6.52 0.05 1.18 0.04 0.53

B 0.10 0.61 0.10 2.48 0.11 3.39 0.10 1.37 0.07 0.86

C 0.26 1.79 0.27 6.14 0.26 10.50 0.23 3.75 0.20 2.64

D 0.03 0.45 0.03 0.79 0.03 0.99 0.03 0.50 0.03 0.34

E 0.09 0.65 0.07 1.89 0.06 3.91 0.07 1.07 0.05 0.73

F 0.17 1.27 0.16 3.53 0.16 5.01 0.15 2.64 0.14 1.79

G 0.02 0.36 0.02 0.67 0.02 0.86 0.02 0.41 0.02 0.31

H 0.03 0.80 0.03 0.86 0.04 1.31 0.03 0.71 0.03 0.36

I 0.08 0.88 0.09 1.62 0.08 2.40 0.07 1.39 0.06 0.80

Table 5.4: Comparison of the average CPU for (MSWP0) and Benders Algorithm 8.
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5.4.2 Comparing solutions and risk pro�les within models

This subsection analyzes the results provided by the three models in terms of bank

net pro�t and risk and expected return attained by the investor.

Figure 5.1 compares the CVaR values obtained for the di�erent risk pro�les. The

left sub�gure refers to µ0 = −0.1 whereas the right one to µ0 = 0.0. Each piecewise

curve reports the CVaR values for di�erent α-levels and the nine markets pro�les

(A, . . . , I). We observe that in BLIFP, the CVaR always increases with the value

of α, since this implies to assume more risk. It can also be seen in these �gures

that, when the value of α increases, the CVaR for µ0 = −0.1 (left) becomes closer

to the CVaR for µ0 = 0.0 (right). This can be explained because when α = 1, if the

constraint that the expected return must be greater or equal to 0 is satis�ed, both

problems become the same, then, the bigger the α the more similar the results for

µ0 = −0.1 and µ0 = 0.0. Furthermore, for small values of the level α, the CVaR for

µ0 = −0.1 is higher than for µ0 = 0.0 because the �rst constraint on the expected

return enlarges the feasible region as compared with the second one.
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Figure 5.1: Values of the CVaR for model BLIFP, for di�erent values of α and µ0 = −0.1 (left),

µ0 = 0.0 (right).

Figure 5.2 compares, with a similar organization as in Figure 5.1, the bank net

pro�t for di�erent investor's risk pro�les. Analogously, Figure 5.3 represents the

expected return for the investor.

We observe in Figure 5.2 that the results of the bank net pro�t are bigger for pro-

�les with smaller values of α, that is, for more risk-averse investments. In addition,

we also show in Figure 5.3 that, in general, bigger expected returns are obtained for
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higher values of α. The reason for this is that by increasing α one is considering a

wider range of values to compute the CVaR, and then the result is a value closer

to the expected return (note that when α = 1 the expected return is equal to the

CVaR).
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Figure 5.2: Values of the bank pro�t for model BLIFP, for di�erent values of α and µ0 = −0.1
(left), µ0 = 0.0 (right).
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Figure 5.3: Values of the expected return for model BLIFP, for di�erent values of α and µ0 =

−0.1 (left), µ0 = 0.0 (right).

Finally, to conclude with the analysis of model BLIFP, we remark that the

smaller the cardinality of the set B the better the CVaR and expected returns for

the investor, but the worse the bank net pro�t. This is clearly expected since we are

reducing the number of securities where the bank could charge transaction costs.
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We proceed next to analyze the solutions of the second model, namely ILBFP.

The behavior of these results, Figures 5.4, 5.5 and 5.6, are very similar to those ob-

served in Figures 5.1, 5.2 and 5.3 for the corresponding BLIFP model. For instance,

we observe in Figure 5.5 the same trend that in the previous model: more risk-averse

investments produce bigger pro�ts for the bank, and decreasing the cardinality of

the set B results in a reduction of the bank pro�t.
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Figure 5.4: Values of the CVaR for model ILBFP, for di�erent values of α and
µ0 = −0.1 (left), µ0 = 0.0 (right).
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Figure 5.5: Values of the bank pro�t for model ILBFP, for di�erent values of α and µ0 = −0.1
(left), µ0 = 0.0 (right).
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Figure 5.6: Values of the expected return for modelILBFP, for di�erent values of α
and µ0 = −0.1 (left), µ0 = 0.0 (right).

To �nish this section devoted to the analysis of the solutions for our models, we

consider the MSWP model. In this case, we have only included the comparison

of the objective function of this model, namely bank net pro�t plus CVaR, for the

di�erent risk pro�les wrt µ0 and α, and type of market (A, . . . , I). It can be seen

in Figure 5.7 that the sum of the expected pro�t and the CVaR, i.e. the objective

function of the problem, increases with α. One can also observe that for di�erent

values of µ0 the objective values are almost the same. No signi�cant di�erences are

perceived between the di�erent markets for this last model.
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Figure 5.7: Values of the bank pro�t + CVaR for the model MSWP, for di�erent values of α

and µ0 = −0.1 (left), µ0 = 0.0 (right).
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5.4.3 Comparing solutions across models

This last section of the computational experiment is devoted to compare the solutions

provided for the three models considered in this chapter, namely BLIFP, ILBFP

and MSWP. The goal is to analyze the solution across models with respect to the

goals of the two parties: bank net pro�t, CVaR levels and expected returns.
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Figure 5.8: Values of the CVaR for the bank-investor model and the investor-bank model, for

µ0 = −0.1, α = 0.3 (up-left), for µ0 = −0.1 α = 0.7 (up-right), for µ0 = 0.0, α = 0.5 (down-left)

and for µ0 = 0.0, α = 0.9 (down-right).

Figure 5.8 shows a comparison of the CVaR values attained with the BLIFP

(red line) and ILBFP (blue line) for di�erent risk pro�les: upper-left µ0 = −0.1

and α = 0.3, upper-right µ0 = −0.1 and α = 0.7, down-left µ0 = 0.0 and α = 0.5

and down-right µ0 = 0.0 and α = 0.9. In all cases, the CVaR values are higher

in the BLIFP model than in the ILBFP. Analogously, Figure 5.9 compares the

values of the bank pro�t for the two models and the same risk pro�les. It is also
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remarkable that the BLIFP model always results in higher pro�t values for all risk

pro�les and type of instances. In these comparisons, we do not include the values

for the social welfare model because they are not comparable due to the existence of

multiple solutions (with the same value for the objective function but very di�erent

balance between the distribution of the CVaR and the bank pro�t). As we mentioned

above, we emphasize that in all our experiments the bank-investor model BLIFP

always gives higher pro�t for the bank and better CVaR for the investor than the

investor-bank model ILBFP.
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Figure 5.9: Values of the bank pro�t for the bank-investor model and the investor-bank model,

for µ0 = −0.1, α = 0.3 (up-left), for µ0 = −0.1 α = 0.7 (up-right), for µ0 = 0.0, α = 0.5 (down-left)

and for µ0 = 0.0, α = 0.9 (down-right).

The last comparisons across models refer to the sum of bank pro�t + CVaR,

in Figure 5.10, and expected return, in Figure 5.11. These two �gures show the

values attained by the three models for the di�erent instances (A, . . . , I) and the

same four risk pro�les that we have already described in the previous cases and in

Figures 5.8 and 5.9. As theoretically proved in Proposition 22 the sum of the bank
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pro�t plus the CVaR is always greater for social welfare model MSWP than for

the other two, namely BLIFP and ILBFP. To conclude, we compare models with

respect to obtained expected returns. Looking at Figure 5.11 for the comparison

of expected returns we can not conclude that there exists a model dominating the

others with respect to this criterion and therefore the experiments do not prescribe

any preference relationship among the models with respect to this element.

● ● ● ●
● ● ● ● ●

●
● ● ●

●

●

● ●

●

● ● ● ● ● ● ● ● ●

−0.03

−0.02

−0.01

0.00

A B C D E F G H I
Instances

B
an

k 
pr

of
it 

+
 C

V
aR

Models:
●

●

●

Bank−Investor
Investor−Bank
Social Welfare

●
● ●

●

● ● ●
●

●

●
●

●

●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

−0.03

−0.02

−0.01

0.00

A B C D E F G H I
Instances

B
an

k 
pr

of
it 

+
 C

V
aR

Models:
●

●

●

Bank−Investor
Investor−Bank
Social Welfare

●
●

●

●

●
●

●
●

●

●
●

●
●

●
●

● ●
●

● ● ● ● ● ● ● ● ●

−0.03

−0.02

−0.01

0.00

A B C D E F G H I
Instances

B
an

k 
pr

of
it 

+
 C

V
aR

Models:
●

●

●

Bank−Investor
Investor−Bank
Social Welfare

●

● ●

●

● ● ●
●

●

● ● ●

●

●
●

●

●

●

● ● ● ● ● ● ● ● ●

−0.03

−0.02

−0.01

0.00

A B C D E F G H I
Instances

B
an

k 
pr

of
it 

+
 C

V
aR

Models:
●

●

●

Bank−Investor
Investor−Bank
Social Welfare

Figure 5.10: Values of the bank pro�t + CVaR for the three models, for µ0 = −0.1, α = 0.3

(up-left), for µ0 = −0.1 α = 0.7 (up-right), for µ0 = 0.0, α = 0.5 (down-left) and for µ0 = 0.0,

α = 0.9 (down-right).
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Figure 5.11: Values of the expected return for the three models, for µ0 = −0.1, α = 0.3 (up-left),

for µ0 = −0.1 α = 0.7 (up-right), for µ0 = 0.0, α = 0.5 (down-left) and for µ0 = 0.0, α = 0.9

(down-right).

5.5 Conclusions

We have presented a single-period transaction costs portfolio optimization problem

with two di�erent decision-makers: the investor and the �nancial institution. Includ-

ing the �nancial intermediaries as decision-makers leads to the incorporation of the

transaction costs as decision variables in the portfolio selection problem. The action

of both decision-makers was assumed to be hierarchical. We have studied the situ-

ations where each party is leader and analyse their implications. This hierarchical

structure has been modelled using bilevel optimization. In addition, a social welfare

model was also studied.

In all cases, it has been assumed that the �nancial intermediary had to choose the

unit transaction costs, for each security, from a discrete set of prices, maximizing its

bene�ts, and that the investor aimed to minimize the risk (optimizing her CVaR),
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ensuring a given expected return. In order to solve the three proposed models,

MILP and LP formulations, as well as algorithms, have been proposed. By making

variations in the sets of prices, and in the parameters to model the CVaR and the

expected return, α and µ0, di�erent bank and investor pro�les can be considered.

In our analysis in Sections 5.3.1 and 5.3.2, all the problems have been presented,

for simplicity, with only one follower. Nevertheless, they could be easily extended to

more than one. In particular, in Section 5.3.1, the problem has been studied from

the point of view of the bank, that is, the bank aimed to maximize its bene�t by

assuming that once the prices for the securities are set, a single investor will choose

her portfolio according to the described goals. We remark that the same procedure

could be applied for several followers (investors). In fact, in that model, F di�erent

pro�les of followers (risk averse, risk taker, etc.) could be considered, and the bank's

goal would be maximizing the overall bene�t for any linear function of its prices.

This approach would allow the bank to improve the decision-making process in the

cases where the same prices have to be set for all the investors, but di�erent investor's

pro�les are considered.

A detailed computational study has been conducted using data from the IBEX 35.

We have compared the solution methods, the solutions and the risk pro�les within

models, and the solutions across models. From our computational experience, we

have observed that the bank-leader investor-follower model result in best solutions

for both, the bank and the investor, in comparison with the investor-leader bank-

follower model, and also that the social welfare model results, as theoretically proved,

in higher aggregated bene�ts.

A future research line could be to extend the model to the case in which the

bank considers continuous sets of possible prices. This would lead to hard global

optimization models with products of continuous variables. Therefore, other type of

techniques must be considered. Also incorporating ordered transaction costs in the

pricing could be an interesting research line.
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In this chapter, motivated by recent real-life applications in Location Theory in

which the location decisions generate controversy, we propose a novel bilevel loca-

tion model. In this model, we consider that on the one hand, there is a leader that

chooses among a number of �xed potential locations which ones to establish. Next,

on the second hand, there is one or several followers that, once the leader location

facilities have been set, chooses her location points in a continuous framework. The

leader's goal is to maximize some proxy to the weighted distance to the follower's

location points, while the follower(s) aim is to locate her location points as close as

possible to the leader ones. We develop the bilevel location model for one follower

and for any polyhedral distance, and we extend it for several followers and any `p-

norm, p ∈ Q, p ≥ 1. We prove the NP-hardness of the problem and propose di�erent

mixed integer linear programming formulations. Moreover, we develop alternative

Benders decomposition algorithms for the problem. Finally, we report some compu-

tational results comparing the formulations and the Benders decomposition on a set

of instances.

6.1 Introduction

Location is a research area devoted to the optimal placement of facilities (Albareda-

Sambola et al. (2015); Boonmee et al. (2017); Hammad et al. (2018); Kalcsics et al.

(2014); Labbé et al. (1995); Nickel and Puerto (2006); Owen and Daskin (1998)),

including among many others emergency systems (Bélanger et al. (2019); Boonmee

et al. (2017); Schmid and Doerner (2010)), service providers (Albareda-Sambola et

al. (2009); Berman et al. (2010)), infrastructures, etcetera, and it is a basic building

block of most transportation, communication or logistic problems. Moreover, these

models also �t perfectly to positioning problems, as for instance of �rms or prod-

ucts, in spaces of attributes or features where the dimension is much higher than

in standard location problems on the plane or the tri-dimensional space. An opti-

mal location can be chosen according to di�erent criteria depending on the rationale

behind the considered model. The most popular ones are the minimization of the

total or maximum transportation cost (Albareda-Sambola et al. (2015); Boonmee

et al. (2017)), the maximization of some coverage goal (Albareda-Sambola et al.

(2009); Bélanger et al. (2019); Berman et al. (2010); Boonmee et al. (2017)), or the

minimization of the undesirable e�ects induced by the facilities (Brimberg and Juel

(1998); Church and Scaparra (2007); Hammad et al. (2018)).

Location Theory includes a number of real-life applications in which the location

decisions generate controversy. This controversy must be understood as a disagree-

ment among users with di�erent, non-aligned or opposite interests. Examples of this

controversial location can be found in the literature, for example, in the areas of
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semi-obnoxious facility location or in problems that involve the location and pro-

tection of critical infrastructures, the positioning of products in attribute spaces or

facilities sensitive to intentional attacks.

In the last decades, the consciousness-raising in environmental issues has grown

substantially, specially in those aspects that a�ect human health or have adverse

e�ects on people. As a consequence of this awareness-raising, the location of (semi-)

obnoxious facilities has been extensively studied. Obnoxious facilities are those that

generate a disservice to the people nearby while producing an intended product

or service (Erkut and Neuman (1989)). However, if only these undesirable e�ects

are taken into account when locating them, these facilities would never be opened or

would be located too far from the population centers making use of the produced ser-

vices, thus generating huge costs. For that reason, in the last years, there has been

an increasing focus in analyzing the problem of locating semi-obnoxious facilities

(Brimberg and Juel (1998); Hammad et al. (2018); Melachrinoudis and Xanthopulos

(2003)). Semi-obnoxious facilities has been de�ned as useful but unwelcome facili-

ties that produce environmental concerns. That is, facilities that population centers

(demand points) want them away, but there are some interests (political, economical

...) in locating them close the demand points, generating in this way, location con-

troversy. Classical examples of this kind of facilities are chemical and power plants,

airports, waste dumps, detoxi�cation centers, etc., as listed in Melachrinoudis and

Xanthopulos (2003).

Another area that has also attracted increasing attention of researchers in the

last years is the location and protection of vulnerable facilities (with high risk of

disruption) and the protection of critical facilities, including not only those related to

disruptions produced by natural disasters or natural failures, but also those referred

to disruptions produced by man-made attacks (Church and Scaparra (2007); Aksen

and Aras (2012); Scaparra and Church (2008)). Critical infrastructure is a term to

describe assets that are essential for the functioning of a society and economy. Most

commonly associated with the term are facilities for heating, water supply, public

health, security services, telecommunication, economic sector, etcetera. Clearly, the

location and protection of these types of facilities generates also controversy due

to the confrontation between two antagonist parties: attackers and defenders with

visibly opposite goals.

The above-mentioned problems have been usually addressed via biobjective (mul-

tiobjective) approaches, di�erence of objective functions, maximin optimization and,

if there exists a hierarchical structure in the decision-making process, by means of

bilevel optimization.

Motivated by the increasing interest in real-world applications generating location

controversy, we introduce a new model for its study and analysis.
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The situation that we want to address models the existence of two parties acting

sequentially in a decision-making process. On the one hand, there is a leader who

wants to locate some primary facilities and must choose among a number of �xed

potential locations where to establish them. On the other hand, there is one (or

several) follower(s) that, once the primary facilities have been set, chooses the place-

ment of some secondary facilities, in a continuous environment. The leader's goal is

to maximize some proxy of the overall weighted distance to the follower's secondary

facility locations. Meanwhile, the follower(s) aim is to locate their secondary facili-

ties as close as possible to the primary ones, minimizing a cost proportional to the

distance from the secondary facilities to the primary ones set by the leader.

The reader may observe that this model �ts perfectly to the cases mentioned

above.

The chapter is structured as follows. The following section introduces the model,

sets the notation and proves the NP-hardness of the considered problem. In Sec-

tion 6.3, we develop the mathematical programming formulations and resolution

algorithms for the problem with one follower and any block norm. Two di�erent

approaches, based on the representation of the norms, have been considered. Fur-

thermore, due to their importance, they have been applied to the case of the `1 and

`∞ norm. In the next Section 6.5, we extend the model to several followers and

non-polyhedral norms. Section 6.4 is devoted to the computational study of the dif-

ferent methods discussed in the previous sections. Finally, Section 6.6 concludes the

chapter.

6.2 Model description

We consider a situation with two di�erent types of location entities: the primary

facilities (critical infrastructures, goods to protect, demand-points, etc.), and the

secondary facilities (terrorists nets, thefts, semi-obnoxious facilities, detoxi�cation

centers, recycling or power plants, etc.). The primary facilities wish to be located

as far as possible from the secondary facilities, meanwhile the secondary facilities

aim to be located as close as possible to the primary ones. The model we present

consists in choosing the location of the primary facilities (these are set �rst), taking

into account that, the secondary facilities will be located afterwards knowing their

location. For the ease of presentation, we restrict ourselves to the case where a

unique secondary facility will be located. The reader is referred to Section 6.5 for

the extension to several facilities.

We will model this hierarchical structure using Bilevel Optimization. We assume

that there is a leader (setting the primary facilities) that chooses among a set of

potential locations B the placement of some new primary facilities. We also consider
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that there is a set NB of primary facilities already established, and there exists

a budget constraint on the overall investment for the location of the new primary

facilities. On the other hand, once the primary facilities are set, the follower chooses

the location of the secondary facility in a continuous framework. The proximity

between the primary and secondary facilities is measured as a weighted sum of a

distance to all primary facilities.

We denote by cj the cost of opening the primary facility j, for all j ∈ B, by C
the maximum budget, by fj ∈ Rn the given location point j ∈ B ∪NB, and by wj
the weight factor that scales the distance from the secondary facility to fj according

to its importance. We de�ne the binary decision variables yj = 1 if fj , j ∈ B, is

open, and yj = 0 otherwise.

For the follower problem we de�ne the decision variable x ∈ Rn that speci�es the
location of the secondary facility.

Therefore, the bilevel problem can be modeled as:

max
∑
j∈B

wjd(x, fj)yj +
∑
j∈NB

wjd(x, fj) (BLP)

st.
∑
j∈B

cjyj ≤ C, (6.1)

yj ∈ {0, 1} j ∈ B, (6.2)

x ∈ arg min
x

∑
j∈B

wjd(x, fj)yj +
∑
j∈NB

wjd(x, fj),

where d(x, fj) denotes any distance induced by some norm:

d(x, fj) = ‖x− fj‖.

Observe that (BLP) is a bilevel max-min problem, in which the objective function

of both levels is a proxy of the distance between the primary and the secondary

facilities. The resulting bilevel problem contains a knapsack problem at the upper

level, and a continuous single-facility location problem at the lower level.

To state the complexity of the problem, we provide the following result.

Theorem 7. The bilevel location model (BLP) is NP-hard.

Proof. Let us consider the distance induced by a norm ‖ · ‖, and an instance such

that |NB| = 1 and wj0 >
∑

j∈B wj for j
0 ∈ NB.

For this instance, we know, using the majority theorem, see for example Love et

al. (1988), that the optimal solution of the continuous location problem is x∗ = f0
j .
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Then, if we denote r∗j = ‖f0
j − fj‖, Problem (BLP) can be written as:

max
∑
j∈B

wjyjr
∗
j

s.t.∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1} ∀j ∈ B,

which is a knapsack problem, known to be NP-hard Garey (1979).

6.3 Model formulations and resolution algorithms

This section is devoted to present useful mathematical programming formulations

for (BLP) in order to solve it with of-the-shelf solvers. In addition, we will present

alternative add-hoc algorithms, based on decompositions, that prove to be more

e�cient than the solvers acting on the MILP above-mentioned formulations.

For the sake of presentation, we assume in this section that we measure distances

via block norms. The family of block norms, also called polyhedral norms, includes

all norms ||.||P whose unit ball P is a symmetric with respect to the origin, convex

bounded polyhedral set containing the origin in its interior. We will denote then

by ext(P ) the set of extreme points of P and by P o : the polar set of P , that is,

P o := {x ∈ Rn : 〈x, p〉 ≤ 1, ∀p ∈ P}. The reader may note that the commonly

used `1 and `∞ norms belong to this family.

In order to deal with the problem we develop two di�erent procedures: the �rst

one is based on the evaluation of the norm through its primal expression, using its

unit ball de�ned by P , and the second one evaluates the norm through its dual

expression, using its dual unit ball P o.

These two di�erent forms used to handle the problem are justi�ed, as we will

see, by the fact that depending on the cases one can be more e�cient than the other

due to the structure of the set of extreme points of P and P o. We will illustrate this

behavior in the following sections with the `1 and `∞ norms.

6.3.1 First approach: Evaluating norms by its primal expression

It is well-known (see for example Nickel and Puerto (2006) and Rockafellar (1970)),

that the value of ||x||P is given as:
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||x||P = min
∑

b∈ext(P )

µb, (PrimalNormP)

s.t. x =
∑

b∈ext(P )

µbb,

µb ≥ 0, b ∈ ext(P ).

This representation of the norm gives rise to a trilevel problem. Using such

representation we develop a MILP Formulation and a Benders like algorithm in

order to solve (BLP), using o�-the-shelf solvers.

A MILP formulation

Let us assume that x = (x1, . . . , xn), fj = (fj1, . . . , fjn), for all j ∈ B ∪ NB and

b = (b1, . . . , bn) for all b ∈ ext(P ). By representing ||x||P as in (PrimalNormP),

(BLP) can be written as the following bilevel problem:

max
∑
j∈B

wjyjrj +
∑
j∈NB

wjrj (BLP-P)

s.t.
∑
j∈B

cjyj ≤ C, (6.1)

yj ∈ {0, 1} j ∈ B, (6.2)

r ∈ arg min
x,r

∑
j∈B

wjyjrj +
∑
j∈NB

wjrj , (6.3)

rj =
∑

b∈ext(P )

µjb, j ∈ B ∪NB, (6.4)

xi =
∑

b∈ext(P )

µjbbi + fji, j ∈ B ∪NB, i = 1, ..., n, (6.5)

µjb ≥ 0, b ∈ ext(P ), j ∈ B ∪NB, (6.6)

rj ≥ 0, j ∈ B ∪NB, (6.7)

xi ∈ R, i = 1, ..., n. (6.8)

In the above formulation, the secondary facility x is represented in terms of the

reference system induced by fj and the extreme points of P (fundamental directions

of the norm b ∈ ext(P )). The summation of the coe�cients in this representation

gives the norm of a vector (see PrimalNormP). The minimality of the rj variables is

ensured because they are obtained minimizing a linear expression with non-negative

coe�cients. Therefore, variables rj , de�ned in constraint (6.4), represent the distance
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between x and fj and constraints (6.5) set the correct representation of coordinates of

the secondary facility in terms of the reference system induced by fj and the extreme

points of P . Constraints (6.1) and (6.2), as in (BLP), are knapsack constraints, corre-

sponding to the choice of the location of the primary facilities, according to a budget

constraint. Constraints (6.3)-(6.8) de�ne the lower level problem, the continuous

location problem, in which the representation of the norm has been included.

Proposition 23. Problem (BLP-P) can be reformulated as the following single level

problem (BLP-P').

max
∑
j∈B

wjyjrj +
∑
j∈NB

wjrj (BLP-P')

s.t.
∑
j∈B

cjyj ≤ C, (6.1)

yj ∈ {0, 1} j ∈ B, (6.2)∑
j∈B

wjyjrj +
∑
j∈NB

wjrj =

n∑
i=1

∑
j∈B∪NB

βjifji (6.9)

rj =
∑

b∈ext(P )

µjb, j ∈ B ∪NB, (6.4)

xi =
∑

b∈ext(P )

µjbbi + fji, j ∈ B ∪NB, i = 1, ..., n, (6.5)

µjb ≥ 0, b ∈ ext(P ), j ∈ B ∪NB, (6.6)

rj ≥ 0, j ∈ B ∪NB, (6.7)

xi ∈ R, i = 1, ..., n, (6.8)

αj ≤ wjyj , j ∈ B, (6.10)

αj ≤ wj , j ∈ NB, (6.11)∑
j∈B∪NB

βji = 0, i = 1, ..., n, (6.12)

− αj −
n∑
i=1

biβji ≤ 0, j ∈ B ∪NB, b ∈ ext(P ). (6.13)

Proof. Given a solution y, representing a feasible set of locations for the primary

facilities in (BLP-P), the inner problem in (BLP-P) is a feasible Linear Program

(LP) with �nite solution, and its dual is:
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max
n∑
i=1

∑
j∈B∪NB

βjifji (Dual-P)

s.t. αj ≤ wjyj , j ∈ B, (6.10)

αj ≤ wj , j ∈ NB, (6.11)∑
j∈B∪NB

βji = 0, i = 1, ..., n, (6.12)

− αj −
n∑
i=1

biβji ≤ 0, j ∈ B ∪NB, b ∈ ext(P ). (6.13)

Then, Problem (BLP-P) is equivalent to the single level formulation (BLP-P')

(see Section 1.1.2) since constraint (6.9) is the strong duality condition stating that

the primal and dual objectives of the lower level problem must be equal, and the

blocks of constraints (6.1)-(6.2), (6.4)-(6.8) and (6.10)-(6.13) represent, respectively,

the upper level problem constraints, the lower level primal problem constraints and

the lower level dual problem constraints.

We can observe that the above formulation contains some bilinear terms: rjyj . In

order to transform that formulation into a mixed integer linear problem, the bilinear

terms can be linearized `a la' McCormick (see McCormick (1976)) giving rise to

an exact MILP formulation for the bilevel problem. To this end, we substitute the

terms rjyj by the variables r̂j ; ∀j ∈ B∪NB and add the following set of constraints:

r̂j ≤ rj , j ∈ B ∪NB,
r̂j ≤Mjyj , j ∈ B ∪NB
r̂j ≥ rj −Mj(1− yj), j ∈ B ∪NB
r̂j ≥ 0, j ∈ B ∪NB.

(6.14)

The previous block of constraints requires to set a valid value for the �big-M �-

constants. It is easy to observe thatMj can be chosen equal to the maximum distance

between fj and any other point in B ∪NB.

Benders like algorithm for solving (BLP).

Now, we propose an alternative method to solve the bilevel location problem under

a block norm which is based on a decomposition of the problem.

For a given solution y, the inner problem in (BLP-P) is an LP whose set of con-

straints does not depend on the variables associated to the master (leader) problem

(does not depend on y). Then, if we denote by P the set of extreme points of the

inner problem, solving such problem is equivalent to evaluate the objective function
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at the points in P and to take the minimum objective function value. Then, the

continuous location inner problem can be rewritten as the following optimization

problem:

max q

s.t. q ≤
∑
j∈B

n∑
i=1

wjyjr
τ
j +

∑
j∈NB

n∑
i=1

wjr
τ
j , ∀ rτ ∈ P.

In order to apply Benders decomposition, and using the above formulation, Prob-

lem (BLP-P) can be reformulated as:

max q

s.t.
∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1}, j ∈ B,

q ≤
∑
j∈B

n∑
i=1

wjyjr
τ
j +

∑
j∈NB

n∑
i=1

wjr
τ
j , ∀ rτ ∈ P.

Again, our approach to solve the above problem is to sequentially identify and

add extreme points in P to the problem until a certi�cate of optimality is ful�lled

(eventually in the worse case after adding all extreme points).

To describe the algorithm, we denote by P a subset of points in P. With the

purpose of obtaining upper bounds for (BLP-P), in the algorithm, we de�ne the

following Master Problem:

max q (MP)

s.t. q ≤
∑
j∈B

n∑
i=1

wjyjr
τ
j +

∑
j∈NB

n∑
i=1

wjr
τ
j , rτ ∈ P,

∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1} ∀j ∈ B.

Lower bounds for the Problem (BLP-P) are obtained in the algorithm by solving

the following subproblem:
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q(ȳ) = min
∑
j∈B

wj ȳjrj +
∑
j∈NB

wjrj , (PP-P (ȳ))

rj =
∑

b∈ext(P )

µjb, j ∈ B ∪NB,

xi =
∑

b∈ext(P )

µjbbi + fji, j ∈ B ∪NB, i = 1, ..., n,

µjb ≥ 0, b ∈ ext(P ), j ∈ B ∪NB,

rj ≥ 0, j ∈ B ∪NB,

xi ∈ R, i = 1, ..., n.

If r̄ is an optimal solution of the above problem for a given solution ȳ feasible to

the master problem (MP), the inequality q ≤
∑
j∈B

n∑
i=1

wjyj r̄j +
∑
j∈NB

n∑
i=1

wj r̄j either

generates a new lower bound for (MP) or, if the optimal solution coincides with the

previous one, it is a certi�cate of optimality. Based on this recursion, we propose

the following algorithm:

Algorithm 9 Benders decomposition

1: procedure Initialization

2: Choose a solution y0 satisfying the knapsack constraint, and solve the problem

(PP-P (ȳ)) for ȳ = y0. Let r0 be an optimal solution for (PP-P (ȳ)).

3: Take P = {0} and go to iteration ν = 1.

4: procedure Iteration (ν = 1, 2, . . .)

5: Solve the Master Problem (MP). Let y∗ be an optimal solution of such prob-

lem and q∗ the corresponding optimal value.

6: Solve (PP-P (ȳ)) for ȳ = y∗.

7: if q∗ = q(y∗) then

8: END.

9: else

10: Let r∗ be an optimal solution of (PP-P (ȳ)) . Take rν = r∗, P := P ∪{ν},
and go to iteration ν := ν + 1.

The case of the `1-norm

In this section, we apply the above reasoning to the particular important case of

problem (BLP-P) under the rectangular distance, that is, the distance induced by

the `1-norm. We take advantage of some speci�c properties of this norm to exploit

further its algorithmic implications. As before, n denotes the dimension of the space.
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The set of extreme points of the unit ball of the `1 norm is ext(P ) = {e1, ..., en,−e1, ...,−en},
where ei the i-th vector of the canonical basis. Further, the `1-norm of a vector x is

given by ‖x‖1 =
∑n

i=1 |xi|.
By introducing variables rji representing the non linear terms |xi−fji|, we adapt

(BLP-P) to the `1-norm case.

max
∑
j∈B

wjyj

n∑
i=1

rji +
∑
j∈NB

wj

n∑
i=1

rji (BLP−`1)

s.t.∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1}, j ∈ B,

x ∈ arg min
x

∑
j∈B

wjyj

n∑
i=1

rji +
∑
j∈NB

wj

n∑
i=1

rji (6.15)

rji ≥ xi − fji, j ∈ B ∪NB, i = 1, ..., n, (6.16)

rji ≥ fji − xi, j ∈ B ∪NB, i = 1, ..., n, (6.17)

As in Subsection 6.3.1, we can derive a MILP by using the primal dual optimality

conditions and then linearizing the bilinear terms yjrji by introducing new variables

r̂ji. In this formulation, dual variables αji correspond to contraints (6.16). The dual

variables associated to constraints (6.17) have been eliminated.
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max
∑
j∈B

wj

n∑
i=1

r̂ji +
∑
j∈NB

wj

n∑
i=1

rji (BLP-`1-1)

s.t.
∑
j∈B

cjyj ≤ C, (6.1)

yj ∈ {0, 1}, j ∈ B, (6.2)∑
j∈B

n∑
i=1

wj r̂ji +
∑
j∈NB

n∑
i=1

wjrji =
∑

j∈B∪NB

n∑
i=1

−fjiαji+

+
∑
j∈B

n∑
i=1

fji(wjyj − αji) +
∑
j∈NB

n∑
i=1

fji(wj − αji), (6.18)

rji ≥ xi − fji, j ∈ B ∪NB, i = 1, ..., n, (6.19)

rji ≥ fji − xi, j ∈ B ∪NB, i = 1, ..., n, (6.20)

xi ∈ R, i = 1, ..., n, (6.8)

r̂ji ≤Mjiyj , j ∈ B, i = 1, ..., n, (6.21)

r̂ji ≤ rji, j ∈ B, i = 1, ..., n, (6.22)

r̂ji ≥ rji − (1− yj)Mji, j ∈ B, i = 1, ..., n, (6.23)

r̂ji ≥ 0, j ∈ B, i = 1, ..., n, (6.24)

αji ≤ wjyj , j ∈ B, i = 1, ..., n, (6.25)

αji ≤ wj , j ∈ B, i = 1, ..., n, (6.26)

αji ≥ 0, j ∈ B ∪NB, i = 1, ..., n, (6.27)∑
j∈B

(−2αji + wjyj) +
∑
j∈NB

(−2αji + wj) = 0, i = 1, ..., n. (6.28)

The reader can observe that valid big-M constant in this formulation are Mji =

maxk∈B∪NB |fki − fji|, for all i = 1, . . . , n and j ∈ B.
An alternative formulation can be derived for Problem (BLP−`1) by using the

fact that the inner location problem can be decomposed into n independent linear

programs, one for each coordinate. Using the optimality conditions for each such

problem and the linearization technique described above, we obtain a formulation

(BLP-`1-2) identical to (BLP-`1-1) except that constraint (6.18) is replaced by the

group of contraints:

∑
j∈B wj r̂ji+

∑
j∈NB wjrji =

∑
j∈B∪NB −fjiαji+

∑
j∈B fji(wjyj−αji)+

∑
j∈NB fji(wj−

αji), i = 1, ..., n.

Algorithm 1 can also be adapted to the case of the `1-norm. Then, q(ȳ) is
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obtained by solving the lower level problem de�ned by (6.15) - (6.17) but it can

be solved in O(n|B ∪ NB|) time since, for each coordinate, it amounts to �nd the

median of a discrete distribution.

We can also use the separability property in the proposed Benders Algorithm,

by solving in each iteration n subproblems qi(y) (one for each coordinate), and

considering the following Master Problem:

max
∑n

i=1 qi

s.t.

qi ≤
∑
j∈B

wjyjz
τ
ij +

∑
j∈NB

wjz
τ
ij ∀τ ∈ P, ∀i = 1, ..., n,∑

j∈B
cjyj ≤ C,

yj ∈ {0, 1} ∀j ∈ B,

(MP-`1-i)

We will compare the performance of the four approaches in the computational

study presented in Section 6.4.

6.3.2 Second approach: Evaluating the norm by its dual expression

Since the polar set of a polyhedron is a polyhedron, P o induces the so-called dual

norm of || · ||P that can also be used to evaluate || · ||P . In this case, || · ||P is the

optimal solution of the following linear program (see for example Nickel and Puerto

(2006) or Rockafellar (1970)):

||x||P = min r (NormP0)

s.t.
n∑
i=1

uixi ≤ r, u ∈ ext(P 0)

Depending on the number and structure of the set of extreme points of P and

P o, it may be more convenient to compute || · ||P , by using its primal or dual expres-

sion. Further, this dual representation leads to di�erent MILP formulations and the

Benders approach can also be adapted.

MILP formulation:

Using the dual representation of the norm, (BLP) can be formulated as:
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max
∑
j∈B

wjyjrj +
∑
j∈NB

wjrj (BLP-P0)

s.t.
∑
j∈B

cjyj ≤ C, (6.1)

yj ∈ {0, 1} j ∈ B, (6.2)

r ∈ arg min
x,r

∑
j∈B

wjyjrj +
∑
j∈NB

wjrj , (6.9)

rj ≥
n∑
i=1

ui(xi − fji), u ∈ ext(P 0), j ∈ B ∪NB, (6.29)

rj ≥ 0, j ∈ B ∪NB, (6.7)

xi ∈ R, i = 1, ..., n, (6.8)

where variables rj , de�ned in constraint (6.29), represent the distance between x

and fj . Constraints (6.1) and (6.2) relate the choice of the location of the primary

facilities, according to a budget constraint, and constraints (6.9), (6.29), (6.7) and

(6.8) de�ne the inner subproblem, in which the representation of the norm via its

dual expression has been included.

Proposition 24. Problem (BLP-P0) can be formulated as the following single level

problem BLP-P0'.
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max
∑
j∈B

wjyjrj +
∑
j∈NB

wjrj (BLP-P0')

s.t.
∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1} j ∈ B,∑
j∈B

wjyjrj +
∑
j∈NB

wjrj =
∑

u∈ext(P 0)

∑
j∈B∪NB

( n∑
i=1

−fjiui
)
γuj ,

rj ≥
n∑
i=1

ui(xi − fji), u ∈ ext(P 0), j ∈ B ∪NB,

rj ≥ 0, j ∈ B ∪NB,

xi ∈ R, i = 1, ..., n,∑
u∈ext(P 0)

γuj ≤ wjyj , j ∈ B,

∑
u∈ext(P 0)

γuj ≤ wj , j ∈ NB,

∑
u∈ext(P 0)

∑
j∈B∪NB

(−ui)γuj = 0, i = 1, ...n,

γuj ≥ 0 u ∈ ext(P 0), j ∈ B ∪NB

The proof of this proposition follows the same lines as that of Proposition 23 and

is thus omitted.

We can observe that in the above formulation there appear the same bilinear

terms that we have already obtained in Section 6.3.1. Therefore, the same lineariza-

tion (6.14) can be applied to obtain the corresponding MILP formulation.

Benders like algorithm for solving (BLP-P0)

The Benders Algorithm proposed in Section 6.3.1 can also be applied when the norm

is induced by the polar polyhedron, with the same Master Problem (MP) and the

following primal problem:
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min q(y) =
∑
j∈B

wjyjrj +
∑
j∈NB

wjrj , (PP-P0)

s.t. rj ≥
n∑
i=1

uki(xi − fji), u ∈ ext(P 0), j ∈ B ∪NB,

r ≥ 0, x ∈ Rn,

xi ∈ R, i = 1, ..., n.

The case of the `∞-norm

This is Section, we apply the above results to the important case of the in�nity

norm. The set of extreme points of the in�nity norm is ext(P ) =
{

(a1, ..., an) ∈ Rn :

ai ∈ {1,−1}, i = 1, ..n,
}
, so that |ext(P )| = 2n. Then formulation (BLP-P') would

include 2n(|B| + |NB|) µje variables, and more than 2n(|B| + |NB|) constraints.

However, the number of extreme points of the polar polyhedron is much smaller:

ext(P 0) = {e1, ..., en,−e1, ...,−en} and |ext(P 0)| = 2n. Further, the `∞-norm of a

vector x is given by ‖x‖∞ = maxi=1,...,n |xi|. This allows to adapt (BLP-P) to the

`∞-norm case as follows:

max
∑
j∈B

wjyjrj +
∑
j∈NB

wjrj (BLP−`∞)

s.t.
∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1}, j ∈ B,

x ∈ arg min
x

∑
j∈B

wjyjrj +
∑
j∈NB

wjrj ,

rj ≥ xi − fji, j ∈ B ∪NB, i = 1, ..., n,

rj ≥ fji − xi, j ∈ B ∪NB, i = 1, ..., n.

Further, a MILP formulation can also be derived.
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max
∑
j∈B

wj r̂j +
∑
j∈NB

wjrj (BLP-`∞-1)

s.t.
∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1}, j ∈ B,∑
j∈B

wj r̂j +
∑
j∈NB

wjrj =
n∑
i=1

∑
j∈B∪NB

fji(−γeij + γ−eij),

rj ≥ xi − fji, j ∈ B ∪NB, i = 1, ..., n,

rj ≥ fji − xi, j ∈ B ∪NB, i = 1, ..., n,

rj ≥ 0, j ∈ B ∪NB,
n∑
i=1

(γeij + γ−eij)≤wjyj , j ∈ B,

n∑
i=1

(γeij + γ−eij)≤wj , j ∈ NB,∑
j∈B∪NB

(−γeij + γ−eij) = 0, i = 1, ..., n,

γeij ≥ 0, j ∈ B ∪NB, i = 1, ..., n,

γ−eij ≥ 0, j ∈ B ∪NB, i = 1, ..., n,

r̂j ≤Myj , j ∈ B

r̂j ≤ rj , j ∈ B,

r̂j ≥ rj − (1− yj)M, j ∈ B,

r̂j ≥ 0, j ∈ B.

Finally, the proposed Benders Algorithm can also be applied to the problem under

the `∞ norm. The resulting inner subproblem is given by the lower level problem of

(BLP−`∞).

6.4 Computational Experiment

In the following we report some numerical results conducted to compare the e�ciency

of the di�erent methods proposed to solve (BLP), and to check experimentally their

scope.

The computational experiments were carried out on a personal computer with

Intel B. Core (TM) i7-4720HQ, 2.60 gigahertz with 16384 megabytes RAM. The
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MILP formulations and algorithms were implemented and solved by using Xpress

Version 8.0.

The distances considered for the numerical experiments were computed using the

`1 and `∞ norms. Therefore, we implemented the MILP formulations and algorithms

proposed in Sections 6.3.1 and 6.3.2, in which we adapted the general methods in

Section 6.3 to the models with these two particular distances.

For the computational study we generated di�erent random instances taking into

account the following factors: the dimension of the space, n, the cardinality of B

and NB, which are the set of potential locations for the new primary facilities and

the set of existing primary facilities, respectively, and also the maximum budget C.

We considered the following levels for each factor:

• n = 2, 3, 10, 20,

• |B| = 1000, 2000, 5000, 10000,

• |NB| = 1

4
|B|, 1

3
|B|, 1

2
|B|,

• C =
1

C ′
|B|, where C ′ = {3, 4}. This C ′ will be used in the tables for the sake

of space.

The costs, cj , and the weights, wj , were generated randomly in the interval [0, 1],

and each coordinate, fji, of the location of the primary facilities fj was generated

randomly in the interval [−1000, 1000], for all the instances.

For each combination of levels, 5 di�erent instances were generated and solved.

The CPU time limit to solve the problems was set to 1800 seconds.

In Figures 6.1 and 6.2 we show the performance pro�le graphs of the number of

solved instances for the di�erent proposed models for the `1-norm (Figure 6.1) and

`∞-norm (Figure 6.2). We represent in the abscissa axis the time (in seconds) and

in the ordinate axis the number of solved instances. Figure 6.1 reports the results

for the `1-norm and it compares the two MILP formulations (BLP-`1-1) and (BLP-

`1-2), the basic Benders Algorithm, that we denote by (Bend-`1), and the Benders

algorithm using the separability property, denoted as (Bend-`1-sep). Figure 6.2 shows

the results for the `∞-norm and it compares the MILP formulation, (BLP-`∞-1), and

Benders algorithm denoted as (Bend-`∞).

We can observe in Figures 6.1 and 6.2 that the Benders algorithms are more

e�cient than the MILP formulations, in both cases with the `1-and-`∞-norm cases.

The Benders algorithms solve all the instances in very short time, whereas none of

the MILP formulations could solve to optimality all the instances. We can see in

the �gures that the formulations (BLP-`1-1) and (BLP-`1-2) solve around 300 out



190 Chapter 6. New bilevel models for the location of controversial facilities

of the 480 instances in 1800 seconds, and formulation (BLP-`∞-1) solves around 400

instances in the same time.

The average number of cuts added in the Benders algorithm is 5, 03 for (Bend-`1),

4, 75 for (Bend-`1-sep) and 4, 28 for (Bend-`∞). The maximum number of Benders

cuts, 14, was added for the (Bend-`1-sep) for an instance with n = 10, |B| = 5000,

|NB| = 6667 and C =
1

4
|B|.

For the `1-norm case, in Figure 6.1, we can see that the Benders algorithm

(Bend-`1) solves all the instances in approximately 200 seconds, whereas the Benders

algorithm using the separability property, (Bend-`1-sep), needs a bit more time.

Nevertheless the performance of both methods is very similar. The same trend can

be observed for the MILP formulations, the one without the separability property

could solve in the end more instances within the same time limit. However, (BLP-

`1-2) works better for the big instances, n = 10, 20, as can bee seen in Figure 6.3, in

which we show the performance pro�le graph of the number of instances solved to

optimality by the di�erent proposed models for big instances (n = 10, 20) and the `1
norm.

With respect to the `∞-norm case, Figure 6.2 shows that the Benders algorithm

solves all the instances in less than 51 seconds, meanwhile (BLP-`∞-1) only solves,

in the same time, approximately one half of the instances.
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Figure 6.1: Performance pro�le graph of #solved instances for the di�erent proposed
models for the `1 norm.

More details about the Computational Results of each type of instance can be

found in Tables 6.1 and 6.2. We report in this tables the average CPU times (CPU),

and the numbers of problems, out of 5, solved to optimality (#OPT), for each type

of instance and each formulation or algorithm. It can be observed, for instance, the

speed of the Benders Algorithms in comparison with the MILP formulations, that



6.4. Computational Experiment 191

0 500 1,000 1,500

100

200

300

400

T ime(s)

#
o
f
so
lv
ed

in
st
a
n
ce
s

(BLP-`∞-1)

(Bend-`inf)

Figure 6.2: Performance pro�le graph of #solved instances for the di�erent proposed
models for the `∞ norm.
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Figure 6.3: Performance pro�le graph of #solved instances for the di�erent proposed
models for big instances (n = 10, 20) for the `1 norm.

for example, for the instances of dimension n = 2 and |B| = 10000, the CPU time

for (BLP-`∞-1) is around 100 seconds meanwhile for the Benders Algorithms around

3 seconds. Or for example, for dimension n = 3, |B| = 10000 and |NB| = 5000,

the proposed MILP formulations for (BLP−`1) solved few instances within the time

limit, whereas the Benders algorithm solved them in less than 6 second. The power

of the Benders algorithm becomes even more evident in Table 6.2, since it can be

seen that it can solve instances in dimension n = 20, and 10000 potential locations

in less than 168 seconds.
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INSTANCES (BLP-`1-1) (BLP-`1-2) (Alg-`1) (Alg-`1-sep) (BLP-`∞-1) (Alg-`∞)
n |B| |NB| C' #OPT CPU #OPT CPU #OPT CPU #OPT CPU #OPT CPU #OPT CPU

2 1000 250 3 5 10,82 5 10,36 5 0,41 5 0,50 5 2,13 5 0,56
2 1000 250 4 5 4,80 5 5,89 5 0,62 5 0,52 5 2,22 5 1,03
2 1000 333 3 5 13,39 5 10,07 5 0,35 5 0,41 5 2,19 5 0,65
2 1000 333 4 5 7,57 5 4,98 5 0,55 5 0,62 5 2,47 5 1,05
2 1000 500 3 5 11,70 5 12,76 5 0,38 5 0,43 5 8,53 5 0,81
2 1000 500 4 5 7,86 5 6,35 5 0,54 5 0,52 5 3,02 5 0,95
2 2000 500 3 5 36,59 5 37,27 5 0,75 5 1,44 5 6,34 5 0,79
2 2000 500 4 5 13,36 5 11,66 5 0,65 5 0,73 5 9,15 5 1,36
2 2000 667 3 5 217,01 5 152,79 5 0,68 5 0,85 5 7,20 5 0,92
2 2000 667 4 5 20,58 5 14,54 5 0,45 5 0,60 5 6,14 5 1,17
2 2000 1000 3 5 56,48 5 78,63 5 0,45 5 0,61 5 15,29 5 0,81
2 2000 1000 4 5 29,85 5 20,60 5 0,52 5 0,65 5 12,74 5 1,56
2 5000 1250 3 5 204,62 5 508,34 5 1,19 5 1,58 5 48,51 5 1,62
2 5000 1250 4 5 124,68 5 97,10 5 1,49 5 2,36 5 52,24 5 1,70
2 5000 1667 3 5 381,53 5 268,18 5 1,03 5 1,32 5 45,06 5 1,47
2 5000 1667 4 5 135,94 5 198,89 5 2,08 5 1,66 5 37,01 5 1,96
2 5000 2500 3 5 416,01 5 369,43 5 0,80 5 1,12 5 139,15 5 2,34
2 5000 2500 4 5 107,17 5 405,78 5 1,23 5 1,89 5 38,32 5 1,92
2 10000 2500 3 4 708,80 3 955,21 5 1,68 5 2,57 5 137,97 5 3,29
2 10000 2500 4 5 325,03 5 355,51 5 2,44 5 3,75 5 81,66 5 3,72
2 10000 3333 3 5 390,82 5 296,18 5 1,94 5 2,78 5 121,14 5 3,42
2 10000 3333 4 5 329,09 5 439,71 5 3,09 5 3,46 5 159,98 5 3,16
2 10000 5000 3 5 506,03 4 671,22 5 2,16 5 2,09 4 530,49 5 3,38
2 10000 5000 4 5 516,73 5 416,86 5 2,83 5 3,27 5 141,33 5 3,77
3 1000 250 3 5 9,67 5 19,03 5 0,21 5 0,27 5 5,95 5 0,70
3 1000 250 4 5 58,74 5 43,20 5 0,63 5 0,71 5 3,09 5 1,18
3 1000 333 3 5 21,51 5 50,24 5 0,36 5 0,37 5 6,99 5 0,60
3 1000 333 4 5 29,05 5 32,52 5 0,65 5 0,90 5 4,68 5 1,21
3 1000 500 3 5 26,14 5 28,70 5 0,34 5 0,49 5 10,17 5 0,57
3 1000 500 4 5 33,46 5 47,28 5 0,38 5 0,52 5 6,86 5 0,73
3 2000 500 3 5 120,41 5 144,41 5 0,38 5 0,53 5 63,77 5 1,19
3 2000 500 4 5 389,05 5 301,49 5 0,76 5 1,22 5 21,33 5 1,41
3 2000 667 3 5 316,33 5 232,75 5 1,04 5 0,92 5 31,18 5 1,04
3 2000 667 4 5 129,52 5 224,55 5 0,47 5 0,56 5 21,81 5 1,48
3 2000 1000 3 5 113,90 5 261,64 5 0,65 5 0,53 5 81,42 5 1,38
3 2000 1000 4 5 179,31 5 249,42 5 0,62 5 0,71 5 11,05 5 0,88
3 5000 1250 3 4 1014,05 3 1310,24 5 1,95 5 1,85 5 131,33 5 1,94
3 5000 1250 4 3 1352,73 2 1442,08 5 2,43 5 2,24 5 106,38 5 2,12
3 5000 1667 3 4 763,66 4 669,57 5 1,14 5 1,28 5 180,78 5 1,94
3 5000 1667 4 3 1102,02 4 1047,36 5 1,56 5 1,91 5 213,59 5 2,08
3 5000 2500 3 5 636,19 5 689,33 5 0,76 5 1,14 5 391,97 5 2,07
3 5000 2500 4 5 592,53 2 1223,05 5 1,42 5 1,58 5 77,89 5 1,90
3 10000 2500 3 1 1778,05 1 1800,00 5 2,42 5 3,38 5 899,86 5 3,09
3 10000 2500 4 1 1727,79 0 � 5 5,59 5 5,16 5 198,48 5 4,18
3 10000 3333 3 3 1127,45 1 1732,91 5 2,67 5 3,91 5 832,12 5 3,17
3 10000 3333 4 3 1253,69 2 1321,56 5 4,79 5 6,15 4 797,61 5 3,91
3 10000 5000 3 3 1379,12 1 1771,16 5 2,86 5 4,41 4 470,05 5 4,01
3 10000 5000 4 0 � 0 � 5 4,18 5 5,79 5 325,39 5 4,87

Table 6.1: Numerical results for (BLP) under the l1 and ell∞ norm.
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INSTANCES (BLP-`1-1) (BLP-`1-2) (Alg-`1) (Alg-`1-sep) (BLP-`∞-1) (Alg-`∞)
n |B| |NB| C' #OPT CPU #OPT CPU #OPT CPU #OPT CPU #OPT CPU #OPT CPU

10 1000 250 3 5 175,69 5 262,45 5 0,52 5 0,84 5 23,53 5 0,73
10 1000 250 4 5 286,71 5 199,67 5 0,58 5 1,02 5 10,04 5 0,60
10 1000 333 3 5 170,27 5 168,75 5 0,29 5 0,57 5 50,58 5 0,68
10 1000 333 4 5 380,23 5 308,91 5 0,79 5 0,98 5 16,31 5 0,66
10 1000 500 3 5 365,20 5 412,48 5 0,56 5 0,64 5 40,66 5 0,80
10 1000 500 4 4 838,00 5 608,46 5 0,74 5 1,17 5 26,14 5 1,16
10 2000 500 3 3 1538,42 3 1310,11 5 0,81 5 1,90 5 104,57 5 1,31
10 2000 500 4 3 1197,88 4 1020,28 5 1,04 5 1,44 5 64,34 5 1,62
10 2000 667 3 2 1406,81 2 1365,28 5 1,23 5 1,20 5 123,13 5 1,22
10 2000 667 4 3 1092,84 4 928,63 5 1,01 5 1,24 5 58,13 5 1,16
10 2000 1000 3 4 1155,24 4 1125,38 5 0,72 5 0,83 5 183,55 5 1,59
10 2000 1000 4 3 980,54 3 1215,99 5 1,11 5 1,84 5 91,77 5 1,66
10 5000 1250 3 1 1673,56 1 1796,25 5 2,66 5 3,00 3 1265,41 5 4,80
10 5000 1250 4 0 � 0 � 5 9,46 5 14,29 5 421,92 5 5,76
10 5000 1667 3 0 � 0 � 5 5,08 5 10,21 4 840,57 5 3,86
10 5000 1667 4 2 1430,78 2 1690,69 5 2,77 5 3,19 4 627,48 5 5,12
10 5000 2500 3 1 1568,60 0 � 5 3,91 5 5,34 4 754,36 5 5,44
10 5000 2500 4 1 1727,35 1 1649,57 5 6,04 5 8,31 3 1125,20 5 5,97
10 10000 2500 3 0 � 0 � 5 9,37 5 17,15 2 1211,56 5 10,24
10 10000 2500 4 0 � 0 � 5 16,19 5 26,46 4 955,69 5 8,48
10 10000 3333 3 0 � 0 � 5 17,88 5 20,49 1 1649,16 5 13,44
10 10000 3333 4 0 � 0 � 5 19,62 5 18,73 3 1152,58 5 10,75
10 10000 5000 3 1 1800,00 0 � 5 11,24 5 23,00 2 1800,00 5 10,91
10 10000 5000 4 0 � 0 � 5 28,00 5 16,26 2 1314,08 5 14,30
20 1000 250 3 4 797,87 5 477,74 5 0,70 5 1,38 5 41,66 5 1,25
20 1000 250 4 5 852,01 5 548,28 5 0,64 5 1,31 5 20,22 5 0,88
20 1000 333 3 4 608,99 5 296,04 5 0,54 5 1,03 5 29,01 5 0,99
20 1000 333 4 4 1026,53 4 773,41 5 1,01 5 1,93 5 39,01 5 1,55
20 1000 500 3 4 881,29 5 412,55 5 0,51 5 1,13 5 55,68 5 1,42
20 1000 500 4 2 1499,86 3 1478,83 5 0,93 5 1,55 5 36,02 5 1,48
20 2000 500 3 1 1629,43 2 1800,00 5 1,93 5 2,21 5 212,07 5 2,08
20 2000 500 4 1 1623,38 2 1634,03 5 3,91 5 2,82 5 217,86 5 2,42
20 2000 667 3 2 1612,20 3 1801,02 5 1,78 5 2,05 5 223,80 5 2,40
20 2000 667 4 3 1421,62 2 1416,62 5 1,34 5 2,44 5 134,67 5 2,64
20 2000 1000 3 0 � 2 1800,00 5 2,45 5 1,86 5 181,95 5 3,02
20 2000 1000 4 1 1800,00 1 1800,00 5 5,09 5 3,08 5 345,70 5 3,44
20 5000 1250 3 0 � 0 � 5 7,20 5 9,37 3 1188,15 5 8,67
20 5000 1250 4 0 � 0 � 5 14,87 5 17,02 5 868,00 5 9,05
20 5000 1667 3 0 � 0 � 5 7,92 5 30,75 2 1513,57 5 8,88
20 5000 1667 4 0 � 0 � 5 7,28 5 18,85 5 1034,49 5 9,46
20 5000 2500 3 0 � 0 � 5 16,23 5 13,53 2 2447,37 5 15,67
20 5000 2500 4 0 � 0 � 5 20,15 5 10,45 2 1585,53 5 13,13
20 10000 2500 3 0 � 0 � 5 52,42 5 65,91 2 1745,86 5 23,08
20 10000 2500 4 0 � 0 � 5 96,02 5 63,30 1 1800,00 5 27,02
20 10000 3333 3 0 � 0 � 5 28,93 5 25,17 2 1750,37 5 22,32
20 10000 3333 4 0 � 0 � 5 125,00 5 93,66 0 � 5 29,79
20 10000 5000 3 0 � 0 � 5 40,39 5 85,61 2 1800,00 5 38,66
20 10000 5000 4 0 � 0 � 5 88,29 5 167,54 1 1800 5 27,76

Table 6.2: Numerical results for (BLP) under the `1 and l∞ norm.
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6.5 Extensions

This section is devoted to present extensions of the problem (BLP) to several sec-

ondary facilities and non-polyhedral norms. We analyze the problem with K > 1

secondary facilities which means to locate K new facilities also in the lower level

problem. Moreover, we extend the problem (BLP) to deal with norms `τ for τ ∈ Q,
τ ≥ 1 which requires to apply conic programming and conic duality to obtain results

similar to the ones presented in previous sections.

6.5.1 The model with K secondary facilities (independent follow-

ers)

We are interested to incorporate to the problem (BLP) the possibility to locate

several secondary facilities rather than only one, and the goal of each secondary

facility is to minimize the overall distance to the primary facilities. In the following,

we analyze problem (BLP) with K secondary points to be located in the lower level

problem, that is, we consider that instead of locating one secondary facility, K of

these points must be located. For this extension we assume that we are given vectors

of weights wk ∈ Rn+, for k = 1, . . . ,K, and we de�ne K vectors of decision variables

xk ∈ Rn, for k = 1, . . . ,K; where xk are the coordinates of the location of the k-th

secondary point. With this notation, the new problem can be written as:

max
∑
k∈K

∑
j∈B

wkj d(xk, fj)yj +
∑
j∈NB

wkj d(xk, fj)

 (BLP-K)

s.t.
∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1}, j ∈ B,

xk ∈ arg min
xk

∑
j∈B

wkj d(xk, fj)yj +
∑
j∈NB

wkj d(xk, fj) ∀k = 1, ...,K.

In the particular case in which w1 = w2 = ... = wk, we observe that by symmetry,

there is an optimal solution where the secondary facilities co-locate.

Coming back to the general problem (BLP-K), the evaluation of the norm can

be done via the primal or dual expression. In both cases, in order to develop a

MILP formulation for the model with K secondary facilities, we can apply the same

technique that in the previous section. Given a solution y of the upper level problem,

the continuous location problem of each follower is linear and thus, the strong duality

theorem can be applied as before. This implies thatK di�erent one-secondary facility

problems are added to the leader problem. In conclusion, the same approach used
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with the one-secondary facility location problem is replicated K times and the same

results follow.

Furthermore, the Benders Algorithm can also be extended to the case with K

followers. The Master Problem for this extension must be slightly modi�ed:

max
∑
k∈K

qk (MP-K)

s.t. qk ≤
∑
j∈B

n∑
i=1

wkj yjr
kτ
j +

∑
j∈NB

n∑
i=1

wkj r
kτ
j ∀τ ∈ P, ∀k ∈ K,

∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1} ∀j ∈ B.

In addition, in this formulation, there are K primal subproblems with the same

structure but with di�erent set of w weights. Therefore, in each iteration of this

Benders approach, K primal subproblems must be solved.

6.5.2 The problem under the `τ -norm

This section extends the analysis of the problem to the case where the inner sub-

problem measures distances with `τ -norms via τ ∈ Q, τ ≥ 1. Recall that ||x||τ =

(
∑n

i=1 |xi|τ )1/τ .

The problem to be considered in this case is

max
∑
j∈B

wj ||x− fj ||τyj +
∑
j∈NB

wj ||x− fj ||τ (BLP-`τ )

st.
∑
j∈B

cjyj ≤ C, (6.1)

yj ∈ {0, 1} j ∈ B, (6.2)

x ∈ arg min
x

∑
j∈B

wj ||x− fj ||τyj +
∑
j∈NB

wj ||x− fj ||τ ,

Let ρ ∈ Q be such that 1/τ + 1/ρ = 1.

In order to reformulate Problem BLP-`τ as a single level program, we use stan-

dard arguments of conic duality Ye (2004) and a representation for the `tau-norms

given in Blanco et al. (2014).

Proposition 25. The problem BLP-`τ can be reformulated as a single level mixed
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integer conic program.

max
∑
j∈B

wj ||x− fj ||τyj +
∑
j∈NB

wj ||x− fj ||τ (ConicP)

s.t.
∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1}, j ∈ B,∑
j∈B

wj ||x− fj ||τyj +
∑
j∈NB

wj ||x− fj ||τ =
∑

j∈B∪NB

n∑
i=1

Vjifji,

x+ Zj = fj , ∀ j ∈ B ∪NB,

||Zj ||τ ≤ rj , ∀ j ∈ B ∪NB,

x ∈ Rn, Zj ∈ Rn, r ∈ Rn,

Vj0 = −wjyj , ∀j ∈ B,

Vj0 = wj , ∀j ∈ NB,∑
j∈B∪NB

Vji = 0, ∀ i = 1, . . . , n,

||Vj ||ρ ≤ Vj0, ∀ j ∈ B ∪NB,

Vj ∈ Rn+1, ∀ j ∈ B ∪NB.

Proof. We observe that the inner location problem can be formulated as the following

conic linear program in standard form Luenberger et al. (1984):

min
∑
j∈B

wjyjrj +
∑
j∈NB

wjrj

s.t. x+ Zj = fj , ∀ j ∈ B ∪NB,

||Zj ||τ ≤ rj , ∀ j ∈ B ∪NB,

x ∈ Rn, Zj ∈ Rn, r ∈ Rn,

Therefore, its conic dual can be written, following Ye (2004), as the next formu-

lation:
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max
∑

j∈B∪NB

n∑
i=1

Vjifji

s.t. Vj0 = −wjyj , ∀j ∈ B,

Vj0 = wj , ∀j ∈ NB,∑
j∈B∪NB

Vji = 0, ∀ i = 1, . . . , n,

||Vj ||ρ ≤ Vj0, ∀ j ∈ B ∪NB,

Vj ∈ Rn+1, ∀ j ∈ B ∪NB.

Clearly, the inner primal and dual problems satisfy Slater condition so that strong

duality applies. This allows us to insert the optimality conditions in BLP-`τ to

obtain the �nal single level program ConicP.

We illustrate the usefulness of the above result with some computational ex-

periments performed on our test instances for the `2-norm. The model has been

implemented in XPRESS 8.0 with the mmnl module that allows solving this type

of mixed integer second order cone problems. Table 6.3 summarizes our results. As

before, for each combination of n, |B|, |NB| and C', we solved 5 di�erent instances

and the table reports, in the last two columns, the number of instances out of 5

solved to optimality and the average CPU times
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INSTANCES ConicP

n |B| |NB| C' #OPT CPU

2 1000 250 3 5 345,75

2 1000 250 4 4 687,87

2 1000 333 3 3 826,18

2 1000 333 4 4 800,60

2 1000 500 3 4 837,86

2 1000 500 4 5 413,87

2 2000 500 3 2 1235,24

2 2000 500 4 1 1488,53

2 2000 667 3 0 1800,00

2 2000 667 4 1 1632,02

2 2000 1000 3 0 1800,00

2 2000 1000 4 2 1346,31

3 1000 250 3 4 690,83

3 1000 250 4 5 957,83

3 1000 333 3 2 1259,77

3 1000 333 4 2 1429,08

3 1000 500 3 1 1718,03

3 1000 500 4 2 1524,58

3 2000 500 3 0 1800,00

3 2000 500 4 0 1800,00

3 2000 667 3 0 1800,00

3 2000 667 4 0 1800,00

3 2000 1000 3 0 1800,00

3 2000 1000 4 0 1800,00

Table 6.3: Numerical results for ConicP under the `2 norm.

As a result of our tests we have observed that already for n = 3 and |B| = 2000

none of the instances can be solved to optimality within the time limit which justi�es

not reporting results for larger size instances.

6.6 Conclusions

This chapter considers models for the location of controversial facilities. Controver-

sial facilities must be understood as those facilities such that their placement induces

a disagreement among users with di�erent, non-aligned or opposite interests. Semi-

obnoxious facility location and the location and protection of critical infrastructures
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or facilities sensitive to intentional attacks are typical examples of this area of re-

search.

We model these situations by a bilevel optimization problem. The �rst level

locates primary facilities trying to be as far away as possible from the secondary

ones, which in turns, wish to be as close as possible to the primary ones. We develop

mathematical programming formulations for the above mentioned bilevel programs

as well as some algorithms that perform very-well in all our experiments that range

from small problems on the plane (n=2) with up to |B| = 10000, possibilities for the

primary facilities until dimension n = 20 and |B| = 10000.
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This thesis has addresses minmax regret and bilevel models, motivated by the

increasing trend to incorporate uncertainty sources and multiple decision levels in op-

timization problems, in the last decades. For all the models we have analyzed, Math-

ematical Programming techniques have been used to develop MILP formulations and

algorithms to solve the problems with o�-the-shelf solvers. Some properties of the

models have also been studied. Furthermore, the validity of the models has been

shown by means of practical applications, and detailed computational experiments

have been conducted to check the performance, scope, and speed of the proposed

algorithms and formulations. Next, we brie�y summarize the major achievements

and discuss possible future research lines of each chapter.

In Chapter 2, we have proposed a model to build robust supply networks under

uncertainty a�ecting the activity. A scenario-based representation has been used to

model the uncertainty, which can be useful to �nd a network design in unstable sys-

tems or when no historical data about the parameters is available, as for instance, in

humanitarian logistics in emergency situations. A Benders decomposition framework

has been proposed to solve the models, which has shown to be applicable for di�er-

ent sources of uncertainty. However, for big networks, certifying optimality could be

intractable. Hence, an interesting research line may be addressed to reinforce the

algorithm by initializing it with network designs close to optimal ones, or by devel-

oping other types of cuts. Furthermore, another future research line could be related

with the extension of the model to more general supply chain management problems,

considering hence other sources of uncertainty, as for example, the dependence of the

quality of the transported goods on the travel time.

Motivated by real life applications, as scheduling, task sequencing, or grid com-

puting, in Chapter 3, we have studied minmax regret Shortest Path and Traveling

Salesman Problems in which the arc costs depend on their relative position on the

given path and there exist uncertain cost parameters. In order to model the time-

dependent Shortest Path Problem, we have extended the classical development to

formulate minmax regret problems with hypercube uncertainty sets, by de�ning lin-

ear functions of the feasible solutions to obtain the maximum regret. The more

realistic case, in which dependency relations among all the parameters are allowed,

has also been considered for the TDSPP and the TDTSP; for which we have pro-

posed di�erent algorithms based on Benders cuts. The one based on a combination

of the other algorithms seemed to work better, being able to solve a bigger number

of instances in the computational study. The algorithms have been reinforced with

approximation cuts from mid-point scenarios for the hypercube uncertainty set case.

Hence, a possible future research line could be to develop approximation results for

more general uncertainty sets. Furthermore, as the computational experiment re-

veals, the increase in the size of the problem makes more di�cult the resolution
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of it due to the use of time-expanded networks; then, the study of preprocessing

techniques could be an interesting and useful element to be analyzed in the future.

In Chapter 4, as a novelty in the minmax regret literature, we have presented a

model in which the hypercube of scenarios, St, for the uncertain parameters varies

depending on a vector of investments t ∈ T related to a set of available resources from

the system. This model recognizes the possibility of having some kind of control over

the uncertainty. The aim of these investments is to reduce the existing uncertainty

about the performance of the implemented solutions or improve the performance of

the system. In order to avoid undesirable e�ects, some rationality principles have

been assumed. We have developed compact formulations for the model under some

particular structures for the St sets. We have also proposes an approximate method,

due to the computational di�culty observed when using the proposed formulations.

This method depends on the generation of a sample of feasible investments. The

computational experiment has shown that this approximate method could be used

in real applications; and possible future research line could be done in the study

of how these approximations could be applied in the design of algorithms to solve

new robust combinatorial optimization problems. Furthermore, another possible line

could be the study of how to extract information from the data and the structure of

the problem to generate a better sample of investments. We have also found a bound

on the error to asses the quality of the approximate solution, extending in this way

previous constant factor approximation results for minmax regret problems without

investments.

In Chapter 5, we have presented portfolio problems in which the transaction costs

have been turned into decision variables and hence, the �nancial institution, setting

these costs, has become a decision-maker in the problem. We have assumed that the

decisions are taken sequentially and we have modeled it using bilevel optimization.

We have studied the model in which the �nancial institution sets the prices �rst, and

then the investor chooses her portfolio trying to maximize de CVaR, ensuring a given

expected pro�t. For this model we have proposed two di�erent MILP formulations.

We have also studied the opposite model in which the investor decides �rst; and we

have developed for this one an LP formulation for the case in which no additional

constraints are imposed on the prices, and an algorithm for the more general case.

Finally, we have addressed the maximum social welfare model. For this last model,

we have proposed a MILP formulation and an algorithm based on a Benders decom-

position. We have observed in our computational experiment that the bank-leader

model seems to return better solutions for both decision-makers, and the social wel-

fare model, as theoretically proved, returns higher aggregated bene�ts. By making

variations in the parameters to model the CVaR and the prices, di�erent bank and

investor pro�les can be considered. Future research lines could be to consider other
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risk measures, to assume continuous ranges of values for the transaction costs or also

to incorporate ordered costs in the pricing.

In Chapter 6, we have considered bilevel models for the location of controversial

facilities. Primary and secondary facilities had to be located sequentially, in a �rst

and second level, respectively. The �rst ones as far as possible to the second ones,

and the second ones as close as possible to the primary ones. We have developed

di�erent MILP formulations and algorithms based on Benders decomposition for the

model for di�erent representations of the norm. And we have illustrated them in

the `1 and `∞ norm cases. Benders algorithms have shown to perform better than

the formulations in the computational experiment, being able to solve instances in

dimension 20 and with 10000 potential locations for the primary facilities in less

than 100 seconds for the `1 norm case. A possible future research line could be to

consider an assignment problem in the lower level or to consider di�erent objective

functions for the leader and the follower.
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