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Summary 1 

• Target of Rapamycin (TOR) kinase is a conserved regulator of cell growth whose activity is 2 

modulated in response to nutrients, energy and stress. Key proteins involved in the pathway 3 

are conserved in the model photosynthetic microalga Chlamydomonas reinhardtii, but the 4 

substrates of TOR kinase and downstream signaling network have not been elucidated. Our 5 

study provides a new resource for investigating the phosphorylation networks governed by the 6 

TOR kinase pathway in Chlamydomonas. 7 

• We used quantitative phosphoproteomics to investigate the effects of inhibiting 8 

Chlamydomonas TOR kinase on dynamic protein phosphorylation. Wild-type and AZD-9 

insensitive Chlamydomonas strains were treated with TOR-specific chemical inhibitors 10 

(rapamycin, AZD8055 and Torin1), after which differentially affected phosphosites were 11 

identified.   12 

• Our quantitative phosphoproteomic dataset comprised 2,547 unique phosphosites from 1,432 13 

different proteins. Inhibition of TOR kinase caused significant quantitative changes in 14 

phosphorylation at 258 phosphosites, from 219 unique phosphopeptides. 15 

• Our results include Chlamydomonas homologs of TOR signaling-related proteins, including a 16 

site on RPS6 with a decrease in phosphorylation. Additionally, phosphosites on proteins 17 

involved in translation and carotenoid biosynthesis were identified. Follow-up experiments 18 

guided by these phosphoproteomic findings in lycopene beta/epsilon cyclase showed that 19 

carotenoid levels are affected by TORC1 inhibition and carotenoid production is under TOR 20 

control in algae. 21 

Keywords: Phosphoproteomics, Chlamydomonas, AZD8055, rapamycin, Torin1, target of 22 

rapamycin, TOR, NL  23 
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Introduction 24 

The Target of Rapamycin (TOR) protein kinase is a conserved eukaryotic growth regulator whose 25 

activity is modulated in response to stress, nutrients and energy supply (Wullschleger et al., 2006; 26 

Loewith & Hall, 2011; Dobrenel et al., 2016a; González & Hall, 2017; Pérez-Pérez et al., 2017). 27 

In metazoans and fungi, TOR is found in two compositionally and functionally distinct 28 

multiprotein complexes (TORC1) and (TORC2) that control rates of biosynthetic growth and 29 

cytoskeletal dynamics respectively (Raught et al., 2001; Wullschleger et al., 2006). In the green 30 

lineage (algae and land plants), only homologs of TORC1 proteins have been identified (Diaz-31 

Troya et al., 2008; van Dam et al., 2011; Dobrenel et al., 2016a). TORC1 kinase activity is 32 

modulated by nutrients and stress, and serves to control protein biosynthesis and other metabolic 33 

processes in response to environmental conditions (Raught et al., 2001). Selective chemical 34 

inhibitors of TOR kinase including rapamycin, AZD8055, and Torin1 have been instrumental in 35 

dissecting the TOR signaling pathway (Fingar & Blenis, 2004; Thoreen et al., 2009; Chresta et al., 36 

2010; Benjamin et al., 2011). Rapamycin (Rap) inhibits TORC1 activity through an allosteric 37 

mechanism requiring formation of a FKBP12-Rap complex (Heitman et al., 1991; Brown et al., 38 

1994; Sabatini et al., 1994).  Recent studies support the notion that several functions of TOR kinase 39 

are not inhibited by rapamycin (Thoreen et al., 2009). Instead, novel drugs like Torin1 and 40 

AZD8055 have been reported to more completely inhibit TOR kinase by acting as ATP-41 

competitors (Thoreen et al., 2009; Chresta et al., 2010). Torin1 has slower off-binding kinetics 42 

than other mTOR inhibitors in mammalian cell lines, possibly due to conformational change 43 

induction in the kinase that is energetically more difficult to recover from leading to a more 44 

pronounced and longer inhibition of the TORC1 pathway (Liu et al., 2013). AZD8055 is an ATP-45 

competitive inhibitor of mTOR and all PI3K class I isoforms noted to inhibit the mTORC1 and 46 

mTORC2 substrate phosphorylation (Roohi & Hojjat-Farsangi, 2017). These drugs were used to 47 

inhibit TOR activity in plants where rapamycin treatment is not highly effective (Zhang et al., 48 

2011; Montane & Menand, 2013).  49 

The role of TOR in mammalian and fungal cell metabolism has been extensively investigated 50 

(Wullschleger et al., 2006; Dibble & Manning, 2013; Saxton & Sabatini, 2017), while its role in 51 

photosynthetic eukaryotes is less well established (Zhang et al., 2013; Xiong & Sheen, 2014; 52 

Dobrenel et al., 2016a). TOR has been shown to control growth, metabolism and life span in the 53 
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model plant Arabidopsis thaliana (Arabidopsis) (Dobrenel et al., 2011; Ren et al., 2012; Xiong, 54 

Y. & Sheen, J., 2012; Xiong et al., 2013) where the TOR gene is essential (Menand et al., 2002). 55 

The model green alga Chlamydomonas reinhardtii (Chlamydomonas) has key TORC1 complex 56 

proteins encoded by single-copy genes including TOR (Cre09.g400553.t1.1), regulatory associate 57 

protein target of rapamycin (RAPTOR) (Cre08.g371957.t1.1), and lethal with sec-13 protein 8 58 

(LST8) (Cre17.g713900.t1.2) (Diaz-Troya et al., 2008; van Dam et al., 2011). Treatment of 59 

Chlamydomonas cultures with rapamycin has been shown to slow but not completely arrest cell 60 

growth (Crespo et al., 2005), activate autophagy (Perez-Perez et al., 2010), and induce lipid droplet 61 

formation (Imamura et al., 2015; Rodrigues et al., 2015). Recent work reported a connection 62 

between TOR kinase and inositol polyphosphate signaling that governs carbon metabolism and 63 

lipid accumulation (Couso et al., 2016). Chlamydomonas cells are sensitive to Torin1  and 64 

AZD8055 that are potent inhibitors of cell growth at saturating doses (Couso et al., 2016) and 65 

induce triacylglycerol accumulation (Imamura et al., 2016). However, the TOR pathway in 66 

Chlamydomonas has yet to be extensively characterized and, to date, only a limited number of 67 

candidate TOR kinase substrates have been identified.  68 

We characterized the phosphoproteome of Chlamydomonas that produced a conservative estimate 69 

of 4,588 phosphoproteins / 15,862 unique phosphosites (Wang et al., 2014) through a qualitative 70 

strategy involving extensive fractionation and complementary enrichment strategies, and have 71 

now developed label-free quantification (LFQ) to allow simultaneous quantification of 2,547 72 

Chlamydomonas phosphosites (Werth et al., 2017). Herein we characterized the effects of TOR 73 

inhibition on the Chlamydomonas phosphoproteome. Cultures treated with saturating doses of 74 

different TOR inhibitors (rapamycin, AZD8055 and Torin1) revealed hundreds of affected 75 

phosphosites with a significant overlap observed between those seen with different inhibitors. 76 

Phosphosites from an AZD-resistant mutant were compared with wild type after AZD treatment 77 

revealing very few potential off target effects.  Hierarchical clustering was used to classify sites 78 

and motif analysis was used to assess consensus motifs in clusters.    79 
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Materials and Methods 80 

Cell culturing and drug treatment. 81 

Strain CC-1690 wild-type mt+ (Sager 21 gr) (Sager, 1955) was used for the wild-type 82 

Chlamydomonas analysis across all chemical inhibitors. For the control AZD-insensitive strain 83 

experiments, strain was obtained from the Umen laboratory (Donald Danforth Plant Science 84 

Center). All cultures were maintained on TAP (Tris acetate phosphate) agar plates and grown in 85 

350-mL TAP liquid cultures at 25ºC as previously described (Couso et al., 2016). Experiments 86 

were done using five replicate cultures grown to exponential phase (1-2x106 cells/mL) for each 87 

drug condition and control and quenched with 40% methanol prior to harvesting by centrifuging 88 

at 4000 g for 5 min and discarding supernatant. To limit batch effects, replicate “n” of each drug 89 

and control were harvested together (Figure 1) prior to downstream processing. Cell pellets were 90 

then flash frozen using liquid nitrogen and stored at -80ºC until use. For AZD8055-, Torin 1-, and 91 

rapamycin- treated (LC Laboratories) cultures, drug was added to a final concentration of 500 nM 92 

for rapamycin and Torin 1, and 700 nM for AZD8055 from 1mM stocks in DMSO for 15 min 93 

prior to harvesting. For control replicates, just drug vehicle (DMSO) without a chemical inhibitor 94 

was added to each replicate culture for 15 min prior to harvesting. 95 

Protein extraction. 96 

Cell pellets were resuspended in lysis buffer containing 100 mM Tris, pH 8.0 with 1x 97 

concentrations of cOmplete protease inhibitor and phosSTOP phosphatase inhibitor cocktails 98 

(Roche, Indianapolis, IN, USA). Cells were lysed via sonication using an E220 focused 99 

ultrasonicator (Covaris, Woburn, MA, USA) for 120 s at 200 cycles/burst, 100 W power and 13% 100 

duty cycle. Following ultrasonication, the supernatant was collected from cellular debris by 101 

centrifugation for 10 min at 15,000 g at 4ºC and proteins were precipitated using 5 volumes of 102 

cold 100 mM ammonium acetate in methanol. Following 3 hr incubation at -80ºC, protein was 103 

pelleted by centrifugation for 5 min at 2,000 g followed by two washes with fresh 100 mM 104 

ammonium acetate in methanol and a final wash with 70% ethanol. Cell pellets were resuspended 105 

in 8M urea and protein concentration was determined using the CB-X assay (G-Biosciences, St. 106 

Louis, MO, USA). 107 

  108 
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Protein digestion and reduction. 109 

Samples were reduced using 10 mM dithiothreitol for 30 min at RT and subsequently alkylated 110 

with 40 mM iodoacetamide for 45 min in darkness at RT prior to overnight digestion. Samples 111 

were diluted 5-fold in 100 mM Tris following alkylation and digestion was performed at 25C for 112 

16 h with Trypsin Gold (Promega) at a protease:protein ratio of 1:50. 113 

Solid-phase extraction. 114 

After digestion, samples were acidified to pH<3.0 with trifluoroacetic acid (TFA). Pelleted, 115 

undigested protein was cleared from the supernatant by centrifugation for 5 min at 5,000 g prior 116 

to solid-phase extraction. Desalting was performed using C18 50 mg Sep-Pak cartridges (Waters). 117 

Columns were prepared by washing with acetonitrile (MeCN) followed by 80% 118 

MeCN/20%H2O/0.1% TFA and 0.1% TFA. Digested protein lysates were applied to the columns 119 

and reloaded twice before being washed with 0.1% TFA and eluted using 80% 120 

MeCN/20%H2O/0.1% TFA. 121 

Phosphopeptide enrichment and clean-up. 122 

Following protein digestion and solid-phase extraction, replicates were dried down using vacuum 123 

centrifugation and phosphopeptide enrichment was performed on 2-mg aliquots of each sample 124 

using 3 mg Titansphere Phos-TiO2 kit spin columns (GL Sciences) as previously described (Werth 125 

et al., 2017). After enrichment, samples were dried down and desalted again using ZipTips 126 

(Millipore) as per manufacturers protocol prior to LC-MS/MS acquisition. 127 

LC-MS/MS acquisition and data processing. 128 

Following ZipTip clean-up, peptides were dried down and resuspended in 20 µL of 0.1% TFA, 129 

5% MeCN before separation via a 90-min linear gradient from 95% H2O/5% MeCN/0.1% formic 130 

acid (FA) to 65% H2O/35% MeCN/0.1% FA via a NanoAcquity UPLC (Waters) using a C18 131 

column (NanoAcquity UPLC 1.8 μm HSS T3, 75 μm × 250 mm). A TripleTOF 5600 (AB Sciex) 132 

Q-TOF was operated in positive-ionization nanoelectrospray and high-sensitivity mode for data 133 

acquisition as previously described (Slade et al., 2015). In addition to the Supporting Information 134 

tables for MS datasets, the mass spectrometry proteomics data have been deposited to the 135 

ProteomeXChange Consortium via PRIDE partner repository(Vizcaíno et al., 2013) identifier 136 
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PXD007221. Acquired spectra (*.wiff) files were imported into Progenesis QI for proteomics 137 

(v2.0, Nonlinear Dynamics) as previously described (Werth et al., 2017) with peptide sequence 138 

determination and protein inference done by Mascot (v.2.5.1; Matrix Science) using the C. 139 

reinhardtii Phytozome v.11 database (www.phytozome.net/; accessed May 2015) appended with 140 

the NCBI chloroplast and mitochondrial databases (19,603 entries) and sequences for common 141 

laboratory contaminants (http://thegpm.org/cRAP/; 116 entries). For database searching, trypsin 142 

protease specificity with up to two missed cleavages, peptide/fragment mass tolerances of 20 143 

ppm/0.1 Da, a fixed modification of carbamidomethylation at cysteine, and variable modifications 144 

of acetylation at the protein N-terminus, oxidation at methionine, deamidation at asparagine or 145 

glutamine, phosphorylation at serine or threonine and phosphorylation at tyrosine were used. 146 

Peptide false discovery rates (FDR) were adjusted to ≤1% using the Mascot Percolator algorithm 147 

(Käll et al., 2007) and only peptides with a Mascot ion score over 13 were considered.  148 

Custom scripts written in Python were implemented to parse results following data normalization 149 

and quantification in Progenesis QI for proteomics. Shared peptides between proteins were 150 

grouped together to satisfy the principle of parsimony and represented in Table S1 by the protein 151 

accession with the highest amount of unique peptides, otherwise the largest confidence score 152 

assigned by Progenesis QI for proteomics. Additionally, the script appended site localization of 153 

variable modifications using an implementation of the Mascot Delta Score (Savitski et al., 2011) 154 

to the peptide measurements (*.csv) export from Progenesis QI for proteomics with confident site 155 

localization considered a Mascot Delta score >90%. Following scoring, only peptides with 156 

phosphorylation at serine, threonine, or tyrosine were considered for further processing and 157 

analysis. 158 

Downstream bioinformatics analysis. 159 

Missing value imputation was performed on logarithmized normalized abundances in Perseus 160 

v1.6.0.0 (Cox & Mann, 2012; Tyanova et al., 2016) requiring at least three of the five replicates 161 

in all drug conditions and control to be nonzero to continue through the workflow. A coefficient 162 

of variation (CV) cutoff was applied requiring CV<25% in at least 2 of 4 conditions for each 163 

phosphosite. For t-test analyses, replicates were grouped and the statistical tests were performed 164 

with fold change threshold of ±2 and p≤0.05 significance threshold. KEGG pathway annotation 165 

(Kanehisa & Goto, 2000), Gene Ontology (GO) (Ashburner et al., 2000) term annotation, 166 
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hierarchical clustering, and motif analysis were performed following statistical testing to glean 167 

biological insight on modulated sites found in the study. For hierarchical clustering, visualization 168 

was performed in Perseus v1.6.0.0. Following data normalization and missing value imputation, 169 

intensity values were z-score normalized and grouped using k-means clustering with default 170 

parameters. For motif analysis, sequence logo visualizations were performed using pLOGO with 171 

serine or threonine residues fixed at position 0. Positions with significant residue presence are 172 

depicted as amino acid letters sized above the red line (O'shea et al., 2013).  173 

Carotenoid analysis. 174 

Chlamydomonas cells were collected by centrifugation (4000 g for 5 min) and resuspended in 80% 175 

acetone. Samples were heat up for 5 min in a water bath at 90ºC and then centrifuge at 10000g 176 

10min. The supernatant evaporated under N2, and then resuspended in 80% acetone. The 177 

separation and chromatographic analysis of pigments was performed in a HPLC using a Waters 178 

Spherisorb ODS2 column (4.6 x 250 mm, 5µm particle size). The chromatographic method 179 

described by Baroli et al., 2003 (Baroli et al., 2003). Pigments were eluted at a flow rate of 1.0 mL 180 

min-1 with a linear gradient from 100% solvent A (acetonitrile:methanol:0.1mM Tris-HCl pH 8.0 181 

[84:2:14]) to 100% solvent B (methanol:ethyl acetate [68:32]) for 20 min, followed by 7 min of 182 

solvent B, then 1 min with a linear gradient from 100% solvent B to 100% solvent A, and finally 183 

6 min with solvent A. The carotenoids were detected at 440 nm using a Waters 2996 photodiode-184 

array detector. The different carotenoids were identified using standards from Sigma (USA) and 185 

DHI (Germany). This analysis was normalized by dry cell weight. Dry weight was determined by 186 

filtering an exact volume of microalgae culture (30 mL) on pre-targeted glass-fiber filters (1µm 187 

pore size). The filter was washed with a solution of ammonium formate (0.5 M) to remove salts 188 

and dried at 100 °C for 24 h. The dried filters were weighed in an analytical balance and the dry 189 

weight calculated by difference. 190 

SDS-PAGE and Western Blotting. 191 

Chlamydomonas cells from liquid cultures were collected by centrifugation (4000 g for 5 min), 192 

washed in 50 mM Tris-HCl (pH 7.5), 10 mM NaF, 10 mM NaN3, 10 mM p-nitrophenylphosphate, 193 

10 mM sodium pyrophosphate, and 10 mM b-glycerophosphate), and resuspended in a minimal 194 

volume of the same solution supplemented with Protease Inhibitor Cocktail (Sigma). Cells were 195 

lysed by two cycles of slow freezing to –80 °C followed by thawing at room temperature. The 196 
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soluble cell extract was separated from the insoluble fraction by centrifugation (15 000 g for 20 197 

min) in a microcentrifuge at 4 °C.  For immunoblot analyses, total protein extracts (20 μg) were 198 

subjected to 12% SDS–PAGE and then transferred to PVDF membranes (Millipore). Anti-P-199 

RPS6(Ser242) and anti-RPS6 primary antibodies were generated as described in Dobrenel et al., 200 

2016 (Dobrenel et al., 2016b)  and produced by Proteogenix, (France). Phospho-p70 S6 kinase 201 

(Thr(P)-389) polyclonal antibody (Cell Signaling, 9205) was used as described in Xiong et al., 202 

2012 (Xiong, Yan & Sheen, Jen, 2012). Primary antibodies were diluted 1:2000 and 1:1000 203 

respectively. Secondary anti-rabbit (Sigma) antibodies were diluted 1:5000 and 1:10 000, 204 

respectively, in phosphate-buffered saline (PBS) containing 0.1% (v/v) Tween-20 (Applichem) 205 

and 5% (w/v) milk powder. The Luminata Crescendo Millipore immunoblotting detection system 206 

(Millipore) was used to detect the proteins. Proteins were quantified with the Coomassie dye 207 

binding method (BioRad).  208 

Results 209 

Parameter selection for TORC1-specific inhibition. 210 

Previous studies in Chlamydomonas have shown rapamycin drug saturation ranging from 500 nM-211 

1µM (Crespo et al., 2005). For this study, 500 nM rapamycin was selected and saturating doses 212 

for Torin1 and AZD8055 in wild-type Chlamydomonas strain CC-1690 were determined using 213 

serial dilutions with previously published target concentrations (Couso et al., 2016). Growth 214 

inhibition saturated at 500 nM for Torin1 and 700 nM for AZD8055 (Supplemental Figure 1). 215 

While reports have shown phosphorylation changes as early as 2 minutes after rapamycin 216 

treatment (Rigbolt et al., 2014), a 15-minute time point was chosen based on the high number of 217 

changes seen in mammalian cell lines at this time point (Demirkan et al., 2011; Harder et al., 2014; 218 

Rigbolt et al., 2014) and to ensure reproducibility in treatment and harvesting across 20 samples 219 

(control, AZD8055-, Torin1-, and rapamycin-treated with n=5) from the early logarithmic phase 220 

of growth. Growth for each replicate was staggered, and to limit batch-effects replicates were 221 

harvested in sets, each containing a control sample and the three different drug-tested samples 222 

(Figure 1) prior to downstream processing.  223 

Prior rapamycin phosphoproteomic experiments in mammalian studies have shown that 224 

phosphopeptide ratios in general were not affected by normalization to protein levels at a 15 min 225 
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time point (Harder et al., 2014). To confirm this in Chlamydomonas reinhardtii, a whole-cell 226 

proteomics experiment (n=4) was performed after 15 min of rapamycin inhibition. These results 227 

showed that protein abundance levels in general are not affected with only 18 of the 1,539 proteins 228 

quantified significantly changing (Supplemental Table S4) with no significant differences in 229 

protein abundances between control and treatment (Supplemental Figure 2). While 4 of the 18 230 

proteins changing at the protein level were identified in the phosphoproteomics study detailed 231 

below, they were not detected as phospho-modulated following chemical inhibition and thus not 232 

proteins of interest in this study. Thus, we have confidence that the statistically significant 233 

phosphorylation sites detected are from changes in the phosphorylation status and not an artefact 234 

of protein expression or turnover. 235 

Quantitative coverage of the TOR-inhibited phosphoproteome. 236 

Label-free quantitative phosphoproteomics was used to compare normalized abundance values of 237 

control samples (n=5) versus samples treated with each of the chemical inhibitors (n=5) using an 238 

area under the curve (AUC) MS1 intensity-based quantitation method. For this approach, the 239 

change in chromatographic peak area between control and chemically-inhibited replicates for each 240 

phosphopeptide was the basis for determining relative phosphopeptide abundance. Tip-based TiO2 241 

phosphopeptide enrichment that previously showed high reproducibility between samples (Werth 242 

et al., 2017) was used for sample preparation. As part of the LFQ pipeline, quantitative data was 243 

filtered for only peptides containing a phosphorylation site on Ser, Thr, or Tyr after peak picking 244 

and peptide sequence determination. At least 3 of the 5 replicates for each condition were required 245 

to have nonzero abundances to remain in the final dataset presented in Table S1 and missing value 246 

imputation was performed on log-transformed normalized abundances (Cox & Mann, 2012; 247 

Tyanova et al., 2016). Highly variable sites remaining in the dataset were then removed by filtering 248 

out those with a coefficient of variation of >25% in >2 experimental conditions. The resulting 249 

dataset contained 2,547 unique phosphosites from 1,432 different proteins (Table S1) in untreated 250 

control samples. To determine sites of interest following chemical inhibition with Torin1, 251 

AZD8055, or rapamycin, two sample Student’s T-tests were performed between samples from 252 

each chemical inhibitor compared and control samples. From this, 258 phosphosites from 219 253 

phosphopeptides showed at least a two-fold change and a p-value ≤ 0.05 (Figure 2a, Table S2). 254 

High confidence phosphorylation site assignments (90% site-localization based on Mascot Delta 255 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/310102doi: bioRxiv preprint first posted online Apr. 28, 2018; 

http://dx.doi.org/10.1101/310102


11 
 

scoring(Savitski et al., 2011)) were achieved for 48% of the dataset (1,123 of the 2,363 256 

phosphopeptides) listed in Table S1. AZD8055 treatment resulted in 97 phosphopeptides 257 

modulated in the wild-type strain (Figure 2a). A matched control experiment using an AZD-258 

insensitive strain which grow similar to wild-type (Supplemental Figure 3) showed only 13 low 259 

abundance phosphosites differentially changing (Table S3, Figure 2b). Of the 13, no overlap was 260 

found with the 258 modulated phosphosites in the main dataset. 261 

Torin1 treatment caused the largest number of significant changes with 103 up- and 57 down-262 

modulated phosphosites. AZD8055 treatment caused 75 up- and 19 down-modulated 263 

phosphosites, while rapamycin treatment caused 40 up- and 35 down-modulated phosphosites. 264 

Overlap analysis of the differential sites for each drug revealed 88% (57/66) of all the down-265 

modulated sites were in the Torin1 subset, while 42% (24/57) of the Torin1 down-modulated sites 266 

were not detected with AZD or rapamycin. Up-regulated sites were also compared for each 267 

condition and to determine if the conditions had significant overlap between down- and up- 268 

modulated sites, a hypergeometric test was performed with p-values of 3.76x10-25 and 2.87 x10-34, 269 

respectively, showing significant overlap. 270 

Cluster analysis and phosphosite motif identification. 271 

Kinase specificity can be dictated by amino acid residues immediately surrounding 272 

phosphorylation sites on substrates (Chou & Schwartz, 2011). Mammalian TOR has been shown 273 

to mainly (but not exclusively) phosphorylate (S/T)P motifs and motifs with hydrophobic residues 274 

surrounding the phosphorylation site making it a relatively promiscuous kinase whose substrate 275 

choices may also be influenced by additional interactions outside the phosphosite region 276 

(Robitaille et al., 2013). Hierarchical clustering of Chlamydomonas modulated phosphosites 277 

generated 2 distinct clusters (Figure 3a,b), and motif analysis (O'shea et al., 2013) was performed 278 

on decreasing (cluster 1) and increasing (cluster 2) clusters . Cluster 1 phosphosites, which 279 

contained 94% of sites that significantly decrease in phosphorylation upon TOR inhibition, had 280 

significant enrichment for a proline in the +1 position and arginine in the -3 position with respect 281 

to the phosphorylation site (position 0) that showed strong enrichment for serine over threonine 282 

(Figure 3c). Cluster 2 phosphosites also had significant enrichment for a proline in the +1 position 283 

and arginine in the -3 position in addition to enrichment for an aspartic acid at the +3 position. 284 

Thus, CrTOR may have a preference for phosphorylation of (S/T)P motifs on substrates, similar 285 
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to mTOR(Robitaille et al., 2013) and other diverse proline-directed kinases including cyclin-286 

dependent protein kinases (CDKs) and mitogen-activated protein kinases (MAPKs) (Lu et al., 287 

2002). Additionally, a phosphoproteomic study using mammalian cell line MCF7 identified the 288 

RXXS/TP motif identified in clusters 1 and 2 as a rapamycin-sensitive motif (Rigbolt et al., 2014). 289 

Other studies have also found RXRXXS/T and RXXS/T motifs (Demirkan et al., 2011; Harder et 290 

al., 2014) enriched among rapamycin-sensitive phosphosites that are recognized by mTOR-291 

regulated kinases Akt, S6K1 and SGK1 (Hsu et al., 2011). Cluster 2 additionally has an acidic 292 

motif also found in casein kinase- II substrates (Lv et al., 2014). 293 

Phosphosites in TORC1 complex proteins.  294 

Numerous phosphosites in mammalian homologs of TORC1 complex proteins are regulated by 295 

the TOR pathway and/or are phosphorylated autocatalytically (Foster et al., 2010). This includes 296 

sites on Raptor and mTOR homologs. Therefore, phosphosites found on CrTORC1 complex 297 

proteins could be affected by TOR inhibition. TORC1 complex proteins conserved in 298 

Chlamydomonas include TOR (Cre09.g400553.t1.1), Raptor (Cre08.g371957.t1.1), and LST8 299 

(Cre17.g713900.t1.2) (Merchant et al., 2007; Diaz-Troya et al., 2008; Perez-Perez et al., 2010; 300 

Couso et al., 2016). While there is a known LST8 homolog in Chlamydomonas, it is not known to 301 

be phosphorylated (Wang et al., 2014). Phosphosites on Raptor (Ser782/783:NL) (Not 302 

Localized:NL) and TOR (Ser2598) were detected in this study, however no statistically significant 303 

modulation in their abundance was detected. BLASTP alignment of human Raptor (Uniprot 304 

Q8N122) with CrRaptor revealed high sequence overlap on the N-terminal region of the protein 305 

(residues 9-627 with 57% identity), however known TORC1-sensitive phosphosites in the human 306 

Raptor homolog (i.e. Ser719, Ser721, Ser722, Ser859, and Ser863 (Carrière et al., 2008; Foster et 307 

al., 2010)) were not conserved in CrRaptor. Similarly, human mTOR (Uniprot P42345) 308 

phosphosites Ser2159/Thr2164 that are within the kinase domain promoting mTORC1-associated 309 

mTOR Ser2481 autophosphorylation (Ekim et al., 2011) are not conserved in CrTOR. The limited 310 

sequence conservation among CrTORC1 phosphosites with mammalian TOR phosphosites 311 

precludes any predictions about functions of CrTORC1 protein phosphorylation. Other 312 

phosphosites on CrTORC1 complex proteins that were detected in previous work on the global 313 

phosphoproteome in Chlamydomonas (Wang et al., 2014) might be significant for regulation but 314 

they were not observed in our data. Future experiments with additional fractionation to increase 315 
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the dynamic range of quantitative coverage could allow for deeper coverage and more 316 

comprehensive detection of phosphosites. 317 

Discussion 318 

Sites modulated by TORC1 inhibition – known and putative substrates. 319 

In animal cells TORC1-inhibition blocks phosphorylation of multiple substrates including S6 320 

kinases and eukaryotic translation initiation factors, leading to a reduction in translation initiation 321 

rates for a subset of mRNAs (Jefferies et al., 1994; Terada et al., 1994; Wang & Proud, 2009). 322 

Phosphorylation of Ser371 and Thr389 in human p70S6K1 (Uniprot P23443-2) are reduced by 323 

treatment of cells with TOR inhibitors (Dennis et al., 1996; Burnett et al., 1998). While we 324 

identified one potential site (site was not localized) (Thr771/Ser773/Thr777:NL) on a 325 

Chlamydomonas homolog of ribosomal protein S6 kinase (S6K; Cre13.g579200.t1.2), its 326 

phosphorylation state was not significantly altered by TOR inhibitors (Table 1). No coverage was 327 

obtained on predicted conserved sites Ser915 and Thr932, which align to human p70S6K1 Ser371 328 

and Thr389, respectively, although these sites have been detected previously in Chlamydomonas 329 

(Wang et al., 2014). Moreover, while commercial anti-phospho S6K antibodies have been shown 330 

to detect phospho-S6K in plants (Xiong, Yan & Sheen, Jen, 2012; Ahn et al., 2014) they have not 331 

detected a signal in Chlamydomonas in our hands (Supplemental Figure 4) and in another study 332 

(Couso et al., 2016), thus limiting our ability to independently validate Chlamydomonas TOR 333 

substrate phosphopeptides. On the other hand, Chlamydomonas ribosomal protein S6 (RPS6, 334 

Cre09.g400650.t1.2), a predicted target of S6K, showed a 2.1-fold decrease in phosphorylation on 335 

Thr127 following Torin1 treatment (Figure 5, Table 1). While this site is potentially TORC1-336 

regulated, antibodies specific for this phosphosite needed for validation are not available. In 337 

Arabidopsis, a phosphosite on the C-terminal extremity peptide of RPS6, Ser240,  had decreased 338 

phosphorylation following TOR inactivation (Dobrenel et al., 2016b). While this exact site is not 339 

conserved in Chlamydomonas, the phosphoserine next to it, Ser241 in Arabidopsis (aligning to 340 

Ser242 in Chlamydomonas) has been detected in prior work (Wang et al., 2014); however it was 341 

not detected in this study (Figure 4a). To determine if Ser242 in Chlamydomonas is TORC1-342 

regulated, a western blot of proteins fractionated from wild-type cells under different drug 343 

treatments for 0, 5, 15, 30, and 60 min was performed with antibodies raised for phosphorylated 344 

and non-phosphorylated Ser242 (Figure 4b), the latter used as a control for monitoring protein 345 
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level. Interestingly, this site does not seem to change drastically with Torin1, AZD8055, or 346 

rapamycin treatment contrary to results on the C-terminal phosphosite in Arabidopsis. 347 

Sites modulated by TORC1 inhibition – known TOR pathway association. 348 

Of the 258 phosphosites detected as significantly modulated in this study, 10 are in homologs of 349 

proteins associated with the TOR signaling pathway (Figure 5, Table 1). In addition to four sites 350 

of decreasing phosphorylation, six proteins related to the TOR pathway had an increase in protein 351 

phosphorylation following chemical inhibition. While initially an unexpected observation, similar 352 

increases were previously reported for some phosphosites in a phosphoproteomic study of TOR 353 

inhibition in mouse liver (Demirkan et al., 2011). In our study, sites with increasing 354 

phosphorylation after TOR inhibition include elongation factor 2 (EEF2, Cre12.g516200.t1.2) 355 

whose animal homologs showed reduced activity upon phosphorylation. In human cells, 356 

phosphorylation of  EEF2 Thr57 by elongation factor 2 kinase (EEF2K, Cre17.g721850.t1.2) 357 

inactivates EEF2 activity, an essential factor for protein synthesis (Hizli et al., 2013). This site is 358 

conserved in Chlamydomonas EEF2 (Thr57/Thr59:NL) where we detect a 4.75-fold increase in 359 

phosphorylation with AZD8055 treatment with a predicted effect of reduced translation initiation 360 

rates. From these data we predict that CrTOR signaling may inhibit EEF2 kinase activity, and that 361 

this inhibition is relieved in the presence of TOR inhibitors. 362 

LA RNA-binding protein (LARP1, Cre10.g441200.t1.2) had two phosphosites that both 363 

underwent large decreases in phosphorylation upon treatment with the three chemical inhibitors. 364 

Ser817 was decreased 0.06AZD8055, 0.05Torin1, and 0.13RAP and Ser 737/738:NL was decreased 365 

0.08AZD8055 and 0.01Torin 1 but no change in rapamycin (0.99RAP) (Figure 5). In mammals, LARP1 366 

phosphorylation also requires mTORC1 (Hsu et al., 2011; Yu et al., 2011; Kang et al., 2013) with 367 

studies in human cell lines establishing LARP1 as a target of mTORC1 and S6K with non-368 

phosphorylated LARP1 interacting with both 5’ and 3’ UTRs of RP mRNAs and inhibiting their 369 

translation (Hong et al., 2017). Additional reports have shown LARP1 as a direct substrate of 370 

mTORC1 in mammalian cells with mTORC1 controlling Terminal Oligopyrimidine (TOP) 371 

mRNA translation via LARP1 (Fonseca et al., 2015; Hong et al., 2017). The dramatic modulation 372 

of LARP1 phosphorylation detected in our study indicates that LARP1 may have a parallel role in 373 

Chlamydomonas. The human LARP1 phosphosites are not conserved with those we found in 374 

Chlamydomonas. However, based on the NCBI conserved domain searching (Marchler-Bauer & 375 
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Bryant, 2004), the DM15 domain required for the interaction of LARP1 with mTORC1 in human 376 

cell lines is conserved in Chlamydomonas LARP1, and the phospho-Ser817 detected in our study 377 

is adjacent to the DM15 domain (877-915) in Chlamydomonas, a region in mammalian 378 

LARP1shown to be required for interaction with mTORC1 (Hong et al., 2017).  379 

Additional proteins with phosphosites altered by TORC1 inhibition 380 

The majority of differential phosphosites we identified were not previously linked to TOR 381 

signaling, including in Chlamydomonas. These include sites on a translation-related protein 382 

(Cre17.g696250.t1.1) and RNA-binding proteins (Cre10.g441200.t1.2, Cre10.g466450.t1.1, 383 

Cre16.g659150.t1.1, Cre16.g662702.t1.1 Cre17.g729150.t1.2). One of the most down-modulated 384 

proteins annotated as CTC-interacting domain 4 (CID4, Cre01.g063997.t1.1), has been shown to 385 

have an important function in regulation of translation and mRNA stability in eukaryotes (Bravo 386 

et al., 2005; Jiménez-López et al., 2015). CID4 had 2 sites, Ser441 (FC=0.2AZD8055, FC=0.14TORIN1) 387 

and Ser439/Ser441/Ser446:NL (FC=0.03AZD8055, FC=0.05TORIN1) with a large decrease in 388 

phosphorylation upon inhibitor treatment. While little is known about the relationship between this 389 

protein and TORC1 signaling, the CTC domain, more recently referred to as the MLLE domain 390 

(Jiménez-López & Guzmán, 2014), is also found in evolutionarily conserved Poly (A)-binding 391 

proteins (PABPs). The large decrease in CID4 phosphorylation seen upon inhibition of the 392 

CrTORC1 pathway in our study implies a potential role for TORC1 mediated control of 393 

translation, similar to other well-known TOR substrates.  394 

Another differential phosphosite of interest following TORC1 inhibition that was not previously 395 

linked to TOR regulation is a site on lycopene beta/epsilon cyclase protein (Cre04.g221550.t1.2--396 

Thr800/Ser802:NL). This phosphosite is significantly increased upon Torin1 treatment (FC=4.02) 397 

and the total protein level remained constant upon rapamycin treatment (Supplementary Table S4, 398 

FC=0.88). Lycopene beta/epsilon cyclases are required for carotenoid biosynthesis, carrying out 399 

cyclation of lycopene to yield α- and β- carotenes (Cunningham et al., 1996; Cunningham & Gantt, 400 

2001; Cordero et al., 2010) which have been shown to be high-value compounds participating in 401 

light harvesting and in the protection of the photosynthetic apparatus against photo-oxidation 402 

damage (Frank & Cogdell, 1996; Cunningham Jr & Gantt, 1998). Recently in rice, carotenoid 403 

content was shown to be significantly lower in an s6k1 mutant compared to wild-type (Sun et al., 404 

2016) revealing a potential connection between the TOR pathway and carotenoid production. To 405 
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further investigate the effect of TORC1 inhibition on carotenoid biosynthesis in Chlamydomonas 406 

based on our phosphoproteomic finding, carotenoid levels in AZD-, Torin1- and rapamycin-treated 407 

cells were assessed after eight hours of treatment with three biological and two technical replicates 408 

(Figure 6, Table 2). After eight hours of treatment, there was a significant increase in various 409 

carotenoids measured in TOR-inhibited samples including β-carotene, which is directly 410 

downstream of cyclase activity (Figure 6, Table 2). While the effects on carotenoid biosynthesis 411 

and secondary metabolism following TORC1 inhibition required eight hours to become detectable, 412 

this is the first evidence that carotenoid production is modulated by TOR signaling in algae. 413 

Additionally, altered cyclase protein levels are not likely responsible for this finding since previous 414 

studies showed no change in lycopene beta/epsilon cyclase protein level after up to 24 hours of 415 

nitrogen stress (Cunningham Jr & Gantt, 1998; Valledor et al., 2014), a condition that is 416 

metabolically similar to TOR inhibition (Perez-Perez et al., 2010; Roustan et al., 2017).  417 

Numerous phosphosites from proteins without Phytozome database descriptions were also found 418 

to be down-regulated upon CrTORC1 inhibition, including some sites with large decreases (>five-419 

fold). For all unannotated proteins, we searched for pfam, Panther, KOG, KEGG, KO, and GO 420 

pathway terms and domain conservation using Phytozome and NCBI annotations (Table S4). 421 

Numerous proteins had conserved domains including structural maintenance of chromosomes 422 

(Accession: cl25732), autophagy protein (Accession: cl27196), transmembrane proteins 423 

(Accession: cl24526), and small acidic protein (Accession: pfam15477). While the large changes 424 

upon chemical inhibition are potentially interesting, especially the five proteins containing sites 425 

with at least a five-fold decrease in phosphorylation (Cre03.g152150.t1.2, Cre06.g263250.t1.1, 426 

Cre11.g469150.t1.2, Cre05.g236650.t1.1, Cre13.g582800.t1.2), future targeted work would be 427 

required to infer biological significance to this observation. To aid in this, the fifty-eight modulated 428 

sites without Phytozome database annotation were also homology searched for best BLAST hit 429 

IDs in Volvox, Gonium, and Arabidopsis to find homologs among green lineage (Table S5) and 430 

Table S2 displays all of the experimentally derived sites modulated by AZD8055, Torin1, and/or 431 

rapamycin and will serve as a guide in follow-up studies.  432 

In summary, we obtained a candidate list of phosphosites modulated following TORC1 433 

inhibition. We achieved extensive coverage of the TOR-modulated phosphoproteome in 434 

Chlamydomonas using a quantitative label-free approach. Our approach was validated by the 435 
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overlap of phosphosites altered using different TOR inhibitors and by our identification of 436 

Chlamydomonas homologs of TOR signaling-related proteins such as RPS6 and LARP1 that had 437 

decreased phosphorylation upon TORC1 inhibition. Follow-up experiments guided by our 438 

phosphoproteomic findings in lycopene beta/epsilon cyclase showed that carotenoid levels are 439 

affected by TORC1 inhibition, the first evidence that carotenoid production is under TOR control 440 

in algae. Conserved TOR substrate motifs were also identified such as RXXS/TP and RXXS/TP. 441 

Our study provides a new resource for investigating the phosphorylation networks governed by 442 

the TOR kinase pathway in Chlamydomonas. 443 

Acknowledgements 444 

This research was supported by a National Science Foundation CAREER award (MCB-445 

1552522) awarded to L.M.H.  446 

Author contributions: 447 

E.G.W., L.M.H., I.C.L., J.G.U., J.L.C. contributed to planning and experimental design. E.G.W., 448 

I.C.L., and Z.P. performed experiments. E.G.W., E.W.M. performed data analysis. E.G.W., 449 

L.M.H., J.G.U wrote the manuscript.  450 

  451 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/310102doi: bioRxiv preprint first posted online Apr. 28, 2018; 

http://dx.doi.org/10.1101/310102


18 
 

References 452 
 453 
Ahn CS, Ahn H-K, Pai H-S. 2014. Overexpression of the PP2A regulatory subunit Tap46 leads to 454 

enhanced plant growth through stimulation of the TOR signalling pathway. Journal of 455 
experimental botany 66(3): 827-840. 456 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight 457 
SS, Eppig JT. 2000. Gene Ontology: tool for the unification of biology. Nature genetics 25(1): 458 
25-29. 459 

Baroli I, Do AD, Yamane T, Niyogi KK. 2003. Zeaxanthin accumulation in the absence of a functional 460 
xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. The Plant Cell 461 
15(4): 992-1008. 462 

Benjamin D, Colombi M, Moroni C, Hall MN. 2011. Rapamycin passes the torch: a new generation of 463 
mTOR inhibitors. Nature reviews Drug discovery 10(11): 868. 464 

Bravo J, Aguilar-Henonin L, Olmedo G, Guzman P. 2005. Four distinct classes of proteins as 465 
interaction partners of the PABC domain of Arabidopsis thaliana Poly (A)-binding proteins. 466 
Molecular genetics and genomics 272(6): 651-665. 467 

Brown EJ, Albers MW, Shin TB, Keith CT, Lane WS, Schreiber SL. 1994. A mammalian protein 468 
targeted by G1-arresting rapamycin–receptor complex. Nature 369(6483): 756-758. 469 

Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. 1998. RAFT1 phosphorylation of the 470 
translational regulators p70 S6 kinase and 4E-BP1. Proceedings of the national academy of 471 
sciences 95(4): 1432-1437. 472 

Carrière A, Cargnello M, Julien L-A, Gao H, Bonneil É, Thibault P, Roux PP. 2008. Oncogenic 473 
MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor 474 
phosphorylation. Current biology 18(17): 1269-1277. 475 

Chou MF, Schwartz D. 2011. Biological sequence motif discovery using motif‐x. Current Protocols in 476 
Bioinformatics: 13.15. 11-13.15. 24. 477 

Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, Vincent JP, Ellston R, 478 
Jones D, Sini P, et al. 2010. AZD8055 is a potent, selective, and orally bioavailable ATP-479 
competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor 480 
activity. Cancer Res 70(1): 288-298. 481 

Cordero BF, Obraztsova I, Martín L, Couso I, León R, Ángeles Vargas M, Rodríguez H. 2010. 482 
ISOLATION AND CHARACTERIZATION OF A LYCOPENE β‐CYCLASE GENE FROM 483 
THE ASTAXANTHIN‐PRODUCING GREEN ALGA CHLORELLA ZOFINGIENSIS 484 
(CHLOROPHYTA). Journal of phycology 46(6): 1229-1238. 485 

Couso I, Evans BS, Li J, Liu Y, Ma F, Diamond S, Allen DK, Umen JG. 2016. Synergism between 486 
Inositol Polyphosphates and TOR Kinase Signaling in Nutrient Sensing, Growth Control, and 487 
Lipid Metabolism in Chlamydomonas. The Plant Cell 28(9): 2026-2042. 488 

Cox J, Mann M. 2012. 1D and 2D annotation enrichment: a statistical method integrating quantitative 489 
proteomics with complementary high-throughput data. BMC bioinformatics 13(16): S12. 490 

Crespo JL, Diaz-Troya S, Florencio FJ. 2005. Inhibition of target of rapamycin signaling by rapamycin 491 
in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol 139(4): 1736-1749. 492 

Cunningham FX, Gantt E. 2001. One ring or two? Determination of ring number in carotenoids by 493 
lycopene ɛ-cyclases. Proceedings of the national academy of sciences 98(5): 2905-2910. 494 

Cunningham FX, Pogson B, Sun Z, McDonald KA, DellaPenna D, Gantt E. 1996. Functional analysis 495 
of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control 496 
of cyclic carotenoid formation. The Plant Cell 8(9): 1613-1626. 497 

Cunningham Jr F, Gantt E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annual 498 
review of plant biology 49(1): 557-583. 499 

Demirkan G, Yu K, Boylan JM, Salomon AR, Gruppuso PA. 2011. Phosphoproteomic profiling of in 500 
vivo signaling in liver by the mammalian target of rapamycin complex 1 (mTORC1). PLoS One 501 
6(6): e21729. 502 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/310102doi: bioRxiv preprint first posted online Apr. 28, 2018; 

http://dx.doi.org/10.1101/310102


19 
 

Dennis PB, Pullen N, Kozma SC, Thomas G. 1996. The principal rapamycin-sensitive p70 (s6k) 503 
phosphorylation sites, T-229 and T-389, are differentially regulated by rapamycin-insensitive 504 
kinase kinases. Molecular and cellular biology 16(11): 6242-6251. 505 

Diaz-Troya S, Florencio FJ, Crespo JL. 2008. Target of rapamycin and LST8 proteins associate with 506 
membranes from the endoplasmic reticulum in the unicellular green alga Chlamydomonas 507 
reinhardtii. Eukaryot Cell 7(2): 212-222. 508 

Dibble CC, Manning BD. 2013. Signal integration by mTORC1 coordinates nutrient input with 509 
biosynthetic output. Nat Cell Biol 15(6): 555-564. 510 

Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C. 2016a. TOR Signaling 511 
and Nutrient Sensing. Annual review of plant biology 67: 261-285. 512 

Dobrenel T, Mancera-Martínez E, Forzani C, Azzopardi M, Davanture M, Moreau M, 513 
Schepetilnikov M, Chicher J, Langella O, Zivy M. 2016b. The Arabidopsis TOR kinase 514 
specifically regulates the expression of nuclear genes coding for plastidic ribosomal proteins and 515 
the phosphorylation of the cytosolic ribosomal protein S6. Frontiers in plant science 7: 1611. 516 

Dobrenel T, Marchive C, Sormani R, Moreau M, Mozzo M, Montane MH, Menand B, Robaglia C, 517 
Meyer C. 2011. Regulation of plant growth and metabolism by the TOR kinase. Biochem Soc 518 
Trans 39(2): 477-481. 519 

Ekim B, Magnuson B, Acosta-Jaquez HA, Keller JA, Feener EP, Fingar DC. 2011. mTOR kinase 520 
domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression. 521 
Molecular and cellular biology 31(14): 2787-2801. 522 

Fingar DC, Blenis J. 2004. Target of rapamycin (TOR): an integrator of nutrient and growth factor 523 
signals and coordinator of cell growth and cell cycle progression. Oncogene 23(18): 3151-3171. 524 

Fonseca BD, Zakaria C, Jia J-J, Graber TE, Svitkin Y, Tahmasebi S, Healy D, Hoang H-D, Jensen 525 
JM, Diao IT. 2015. La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) 526 
mRNA translation downstream of mTOR complex 1 (mTORC1). Journal of Biological 527 
Chemistry 290(26): 15996-16020. 528 

Foster KG, Acosta-Jaquez HA, Romeo Y, Ekim B, Soliman GA, Carriere A, Roux PP, Ballif BA, 529 
Fingar DC. 2010. Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite 530 
phosphorylation. J Biol Chem 285(1): 80-94. 531 

Frank HA, Cogdell RJ. 1996. Carotenoids in photosynthesis. Photochemistry and photobiology 63(3): 532 
257-264. 533 

González A, Hall MN. 2017. Nutrient sensing and TOR signaling in yeast and mammals. The EMBO 534 
journal: e201696010. 535 

Harder LM, Bunkenborg J, Andersen JS. 2014. Inducing autophagy: a comparative phosphoproteomic 536 
study of the cellular response to ammonia and rapamycin. Autophagy 10(2): 339-355. 537 

Heitman J, Movva NR, Hall MN. 1991. Targets for cell cycle arrest by the immunosuppressant 538 
rapamycin in yeast. Science 253(5022): 905-909. 539 

Hizli AA, Chi Y, Swanger J, Carter JH, Liao Y, Welcker M, Ryazanov AG, Clurman BE. 2013. 540 
Phosphorylation of eukaryotic elongation factor 2 (eEF2) by cyclin A–cyclin-dependent kinase 2 541 
regulates its inhibition by eEF2 kinase. Molecular and cellular biology 33(3): 596-604. 542 

Hong S, Freeberg MA, Han T, Kamath A, Yao Y, Fukuda T, Suzuki T, Kim JK, Inoki K. 2017. 543 
LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of 544 
mRNAs. eLife 6. 545 

Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, Peterson TR, Choi Y, Gray NS, 546 
Yaffe MB, et al. 2011. The mTOR-regulated phosphoproteome reveals a mechanism of 547 
mTORC1-mediated inhibition of growth factor signaling. Science 332(6035): 1317-1322. 548 

Imamura S, Kawase Y, Kobayashi I, Shimojima M, Ohta H, Tanaka K. 2016. TOR (target of 549 
rapamycin) is a key regulator of triacylglycerol accumulation in microalgae. Plant signaling & 550 
behavior 11(3): e1149285. 551 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/310102doi: bioRxiv preprint first posted online Apr. 28, 2018; 

http://dx.doi.org/10.1101/310102


20 
 

Imamura S, Kawase Y, Kobayashi I, Sone T, Era A, Miyagishima S-y, Shimojima M, Ohta H, 552 
Tanaka K. 2015. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation 553 
in microalgae. Plant molecular biology 89(3): 309-318. 554 

Jefferies H, Reinhard C, Kozma S, Thomas G. 1994. Rapamycin selectively represses translation of 555 
the" polypyrimidine tract" mRNA family. Proceedings of the national academy of sciences 556 
91(10): 4441-4445. 557 

Jiménez-López D, Bravo J, Guzmán P. 2015. Evolutionary history exposes radical diversification 558 
among classes of interaction partners of the MLLE domain of plant poly (A)-binding proteins. 559 
BMC evolutionary biology 15(1): 195. 560 

Jiménez-López D, Guzmán P. 2014. Insights into the evolution and domain structure of Ataxin-2 561 
proteins across eukaryotes. BMC research notes 7(1): 453. 562 

Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ. 2007. Semi-supervised learning for 563 
peptide identification from shotgun proteomics datasets. Nature Methods 4(11): 923-925. 564 

Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research 565 
28(1): 27-30. 566 

Kang SA, Pacold ME, Cervantes CL, Lim D, Lou HJ, Ottina K, Gray NS, Turk BE, Yaffe MB, 567 
Sabatini DM. 2013. mTORC1 phosphorylation sites encode their sensitivity to starvation and 568 
rapamycin. Science 341(6144): 1236566. 569 

Liu Q, Xu C, Kirubakaran S, Zhang X, Hur W, Liu Y, Kwiatkowski NP, Wang J, Westover KD, 570 
Gao P. 2013. Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM, and 571 
ATR. Cancer research 73(8): 2574-2586. 572 

Loewith R, Hall MN. 2011. Target of rapamycin (TOR) in nutrient signaling and growth control. 573 
Genetics 189(4): 1177-1201. 574 

Lu KP, Liou Y-C, Zhou XZ. 2002. Pinning down proline-directed phosphorylation signaling. Trends in 575 
cell biology 12(4): 164-172. 576 

Lv D-W, Ge P, Zhang M, Cheng Z-W, Li X-H, Yan Y-M. 2014. Integrative network analysis of the 577 
signaling cascades in seedling leaves of bread wheat by large-scale phosphoproteomic profiling. 578 
Journal of proteome research 13(5): 2381-2395. 579 

Marchler-Bauer A, Bryant SH. 2004. CD-Search: protein domain annotations on the fly. Nucleic acids 580 
research 32(suppl_2): W327-W331. 581 

Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C. 2002. Expression 582 
and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci U S A 583 
99(9): 6422-6427. 584 

Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, 585 
Fritz-Laylin LK, Maréchal-Drouard L. 2007. The Chlamydomonas genome reveals the 586 
evolution of key animal and plant functions. Science 318(5848): 245-250. 587 

Montane MH, Menand B. 2013. ATP-competitive mTOR kinase inhibitors delay plant growth by 588 
triggering early differentiation of meristematic cells but no developmental patterning change. J 589 
Exp Bot 64(14): 4361-4374. 590 

O'shea JP, Chou MF, Quader SA, Ryan JK, Church GM, Schwartz D. 2013. pLogo: a probabilistic 591 
approach to visualizing sequence motifs. Nature Methods 10(12): 1211. 592 

Pérez-Pérez ME, Couso I, Crespo JL. 2017. The TOR Signaling Network in the Model Unicellular 593 
Green Alga Chlamydomonas reinhardtii. Biomolecules 7(3): 54. 594 

Perez-Perez ME, Florencio FJ, Crespo JL. 2010. Inhibition of target of rapamycin signaling and stress 595 
activate autophagy in Chlamydomonas reinhardtii. Plant Physiol 152(4): 1874-1888. 596 

Raught B, Gingras AC, Sonenberg N. 2001. The target of rapamycin (TOR) proteins. Proc Natl Acad 597 
Sci U S A 98(13): 7037-7044. 598 

Ren M, Venglat P, Qiu S, Feng L, Cao Y, Wang E, Xiang D, Wang J, Alexander D, Chalivendra S, 599 
et al. 2012. Target of rapamycin signaling regulates metabolism, growth, and life span in 600 
Arabidopsis. Plant Cell 24(12): 4850-4874. 601 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/310102doi: bioRxiv preprint first posted online Apr. 28, 2018; 

http://dx.doi.org/10.1101/310102


21 
 

Rigbolt KT, Zarei M, Sprenger A, Becker AC, Diedrich B, Huang X, Eiselein S, Kristensen AR, 602 
Gretzmeier C, Andersen JS, et al. 2014. Characterization of early autophagy signaling by 603 
quantitative phosphoproteomics. Autophagy 10(2): 356-371. 604 

Robitaille AM, Christen S, Shimobayashi M, Cornu M, Fava LL, Moes S, Prescianotto-Baschong 605 
C, Sauer U, Jenoe P, Hall MN. 2013. Quantitative phosphoproteomics reveal mTORC1 606 
activates de novo pyrimidine synthesis. Science 339(6125): 1320-1323. 607 

Rodrigues SP, Alvarez S, Werth EG, Slade WO, Gau B, Cahoon EB, Hicks LM. 2015. Multiplexing 608 
strategy for simultaneous detection of redox-, phospho- and total proteome – understanding TOR 609 
regulating pathways in Chlamydomonas reinhardtii. Anal. Methods 7(17): 7336-7344. 610 

Roohi A, Hojjat-Farsangi M. 2017. Recent advances in targeting mTOR signaling pathway using small 611 
molecule inhibitors. Journal of drug targeting 25(3): 189-201. 612 

Roustan V, Bakhtiari S, Roustan P-J, Weckwerth W. 2017. Quantitative in vivo phosphoproteomics 613 
reveals reversible signaling processes during nitrogen starvation and recovery in the biofuel 614 
model organism Chlamydomonas reinhardtii. Biotechnology for biofuels 10(1): 280. 615 

Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. 1994. RAFT1: a mammalian 616 
protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast 617 
TORs. Cell 78(1): 35-43. 618 

Savitski MM, Lemeer S, Boesche M, Lang M, Mathieson T, Bantscheff M, Kuster B. 2011. 619 
Confident phosphorylation site localization using the Mascot Delta Score. Molecular & Cellular 620 
Proteomics 10(2): M110. 003830. 621 

Saxton RA, Sabatini DM. 2017. mTOR signaling in growth, metabolism, and disease. Cell 168(6): 960-622 
976. 623 

Slade WO, Werth EG, McConnell EW, Alvarez S, Hicks LM. 2015. Quantifying reversible oxidation 624 
of protein thiols in photosynthetic organisms. J Am Soc Mass Spectrom 26(4): 631-640. 625 

Sun L, Yu Y, Hu W, Min Q, Kang H, Li Y, Hong Y, Wang X, Hong Y. 2016. Ribosomal protein S6 626 
kinase1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice. 627 
Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1861(7): 639-649. 628 

Terada N, Patel HR, Takase K, Kohno K, Nairn AC, Gelfand EW. 1994. Rapamycin selectively 629 
inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proceedings 630 
of the national academy of sciences 91(24): 11477-11481. 631 

Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, 632 
Gray NS. 2009. An ATP-competitive mammalian target of rapamycin inhibitor reveals 633 
rapamycin-resistant functions of mTORC1. J Biol Chem 284(12): 8023-8032. 634 

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. 2016. The Perseus 635 
computational platform for comprehensive analysis of (prote) omics data. Nature Methods 13(9): 636 
731-740. 637 

Valledor L, Furuhashi T, Recuenco-Muñoz L, Wienkoop S, Weckwerth W. 2014. System-level 638 
network analysis of nitrogen starvation and recovery in Chlamydomonas reinhardtii reveals 639 
potential new targets for increased lipid accumulation. Biotechnology for biofuels 7(1): 171. 640 

van Dam TJ, Zwartkruis FJ, Bos JL, Snel B. 2011. Evolution of the TOR pathway. J Mol Evol 73(3-641 
4): 209-220. 642 

Vizcaíno JA, Côté RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, 643 
Contell J. 2013. The PRoteomics IDEntifications (PRIDE) database and associated tools: status 644 
in 2013. Nucleic acids research 41(D1): D1063-D1069. 645 

Wang H, Gau B, Slade WO, Juergens M, Li P, Hicks LM. 2014. The global phosphoproteome of 646 
Chlamydomonas reinhardtii reveals complex organellar phosphorylation in the flagella and 647 
thylakoid membrane. Molecular & Cellular Proteomics 13(9): 2337-2353. 648 

Wang X, Proud CG. 2009. Nutrient control of TORC1, a cell-cycle regulator. Trends in cell biology 649 
19(6): 260-267. 650 

Werth EG, McConnell EW, Gilbert TSK, Couso Lianez I, Perez CA, Manley CK, Graves LM, 651 
Umen JG, Hicks LM. 2017. Probing the global kinome and phosphoproteome in 652 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/310102doi: bioRxiv preprint first posted online Apr. 28, 2018; 

http://dx.doi.org/10.1101/310102


22 
 

Chlamydomonas reinhardtii via sequential enrichment and quantitative proteomics. The Plant 653 
Journal 89(2): 416-426. 654 

Wullschleger S, Loewith R, Hall MN. 2006. TOR signaling in growth and metabolism. Cell 124(3): 655 
471-484. 656 

Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J. 2013. Glucose-TOR signalling reprograms 657 
the transcriptome and activates meristems. Nature 496(7444): 181-186. 658 

Xiong Y, Sheen J. 2012. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. 659 
Journal of Biological Chemistry 287(4): 2836-2842. 660 

Xiong Y, Sheen J. 2012. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. 661 
J Biol Chem 287(4): 2836-2842. 662 

Xiong Y, Sheen J. 2014. The role of target of rapamycin signaling networks in plant growth and 663 
metabolism. Plant Physiol 164(2): 499-512. 664 

Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, Kubica N, Hoffman GR, Cantley LC, 665 
Gygi SP, et al. 2011. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that 666 
negatively regulates insulin signaling. Science 332(6035): 1322-1326. 667 

Zhang Y, Persson S, Giavalisco P. 2013. Differential regulation of carbon partitioning by the central 668 
growth regulator target of rapamycin (TOR). Mol Plant 6(6): 1731-1733. 669 

Zhang YJ, Duan Y, Zheng XF. 2011. Targeting the mTOR kinase domain: the second generation of 670 
mTOR inhibitors. Drug Discov Today 16(7-8): 325-331. 671 

 672 

  673 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/310102doi: bioRxiv preprint first posted online Apr. 28, 2018; 

http://dx.doi.org/10.1101/310102


23 
 

Tables 674 

Table 1: TOR targets identified with fold change values for drug condition versus control.  675 

 676 

Fold change values shaded red indicate a statistically significant increase in phosphopeptide 677 

abundance for specified drug treatment versus control. Fold change values shaded blue indicate a 678 

statistically significant decrease in phosphopeptide abudance for specified drug treatment versus 679 

control. Level of p-value statistical significance is denoted by p-value ≤ 0.05 (*) and ≤ 0.01 (**) 680 

    Fold-change 
 Accession Common Name Sites AZD8055 Torin1 Rapamycin 
CrTORC1 proteins 
 Cre09.g400553.t1.1 TOR S2598 0.99 0.90 1.12 
 Cre08.g371957.t1.1 RAPTOR S782/S783:NL 1.56 1.94 1.54 

homologs of known substrates 
 Cre13.g579200.t1.2 RPS6KB T771/S773/T777:NL 1.17 1.35 1.05 
 Cre09.g400650.t1.2 RPS6 T127 0.90 0.48** 0.61* 
homologs of TOR pathway-associated proteins 
 Cre10.g441200.t1.2 LARP1 T668/S670:NL 1.50 1.91* 1.96* 
   S737/738:NL 0.08** 0.01** 0.99 
   T809/S810:NL 0.41 0.46 0.81 
   S817 0.06** 0.05** 0.13** 
 Cre17.g721850.t1.2 EEF2K S306 0.75 0.42** 0.58 
   S589/S591:NL 1.13 1.24 1.20 
   S853/S857 2.00* 2.73** 1.69 
 Cre12.g516200.t1.2 EEF2 T57/T59:NL 4.75* 1.88 2.76 
 Cre12.g511850.t1.2 GSK3B S322 1.27 1.15 1.25* 
 Cre09.g391245.t1.1 ATG1 T802/S803:NL 1.80 1.65 1.53 
 Cre06.g251050.t1.1 PRKAA S699/S702:NL 0.64 0.29 0.97 
 Cre10.g457500.t1.1 PRKAB S25/S29:NL 1.67* 1.75 2.27** 
 Cre02.g100300.t1.1 PI-3K/PI-4-like T149/S150:NL 1.11 0.82 0.92 
 Cre05.g245550.t1.1 PI3KA S794 1.04 0.91 1.51 
 Cre06.g304650.t1.1 PI3KB2 S403 1.25 1.39 0.88 
   T478/S479/S482:NL 0.94 1.19 1.06 
 Cre03.g192000.t1.2 SEH1 S337 4.22 2.64 1.43 
 Cre02.g076900.t1.1 PRKG1 S71 2.20 1.54 1.59** 
   S71/S78:NL 1.44 1.76* 1.41 
   S126, S128 1.84 1.23 0.82 
   T857/T859:NL 1.12 0.97 0.98 
   T857/T859:NL 0.89 0.97 0.92 
   T857/T859/T863:NL 1.45 1.17 1.22* 
 Cre10.g461050.t1.2 ATP synthase A S378 1.25 0.79 0.94 
 Cre02.g076350.t1.2 ATP6B, ATPase S7/S8:NL 2.24 1.12 2.09** 
 Cre11.g468550.t1.2 ATP synthase G2 S7 2.52* 1.62* 2.33 
   S77 1.60 1.24 1.33 

*p-value ≤ 0.05 **p-value ≤ 0.01 
 
Up- 
 

 
Down- 
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Table 2: Carotenoid content in WT Chlamydomonas after 8 hours of treatment with Rapamycin, 681 

Torin1, or AZD8055 compared to control. 682 

  683 
Carotenoids Content (mg g

-1 
DW) 
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Figure Legends: 684 

Figure 1. Drug treatment and cell harvesting workflow in Chlamydomonas cells. Replicate “n” 685 

(1-5) of each drug condition and control were harvested together prior to downstream processing. 686 

To minimize inter-condition batch effects, “n” replicate of each condition was harvested together 687 

and frozen until protein extraction. 688 

Figure 2: Sites modulated by TOR inhibition. Results of differential analysis between each 689 

chemical inhibitor drug treatment compared to control for both wild-type (a) and AZD-690 

insensitive (b) Chlamydomonas strains. For comparison of overlap between the drug conditions 691 

in the WT dataset, a Pearson’s correlation was performed comparing all condition types. From 692 

this, the highest correlation among conditions was between AZD8055 and Torin1 at 0.986 and 693 

the lowest 3 were all drug inhibitor vs. controls.  694 

Figure 3. Hierarchical clustering of differentially changing sites into 2 clusters (a). Visualization 695 

was performed in Perseus v1.6.0.0. Following data normalization and missing value imputation, 696 

intensity values were z-score normalized and grouped using k-means clustering with default 697 

parameters. Overall trends in site intensity were graphed and colored based on intensity (b). For 698 

each of the two clusters, motif analysis was performed (c). Sequence logo visualizations were 699 

performed using pLOGO with serine or threonine residues fixed at position 0. Positions with 700 

significant residue presence are depicted as amino acid letters sized above the red line. For 701 

cluster 1, there was significant enrichment for a proline in the +1 position and arginine in the -3 702 

position, RXXS/TP. For cluster 2, there was again significant enrichment for a proline in the +1 703 

position and arginine in the -3 position in addition to an aspartic acid in the +3 position, 704 

RXXS/TPXD. 705 

Figure 4 Comparison of RPS6 protein sequence between Arabidopsis and Chlamydomonas (a). a 706 

western blot in wild-type under different drug treatments for 0, 5, 15, 30, and 60 min with 707 

antibodies raised for Ser242 (b).  708 
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Figure 5: Bar charts of 10 modulated phosphosites on TOR pathway-associated proteins based 709 

on homology. Level of p-value statistical significance is denoted by p-value ≤ 0.05 (*) and ≤ 710 

0.01 (**) 711 

Figure 6: Bar chart of carotenoid content in WT Chlamydomonas after 8 hours of treatment with 712 

Rapamycin, Torin1, or AZD8055 compared to control 713 
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