
A General, Sound and Efficient Natural Language

Parsing Algorithm based on Syntactic Constraints

Propagation∗

José F. Quesada

CICA (Centro de Informática Cient́ıfica de Andalućıa)
Sevilla, Spain

e-mail: josefran@cica.es

Abstract

This paper presents a new context-free parsing algorithm based on a bidirectional
strictly horizontal strategy which incorporates strong top–down predictions (deriva-
tions and adjacencies). From a functional point of view, the parser is able to propagate
syntactic constraints reducing parsing ambiguity. From a computational perspective,
the algorithm includes different techniques aimed at the improvement of the manipu-
lation and representation of the structures used.

1 Parsing Ambiguity and Parsing Efficiency

In Formal Language Theory [Aho & Ullman 1972, Drobot 1989] a language is a set,
and in Set Theory an element belongs or not to a set. That is to say, a set (and
therefore a language) is an unambiguous structure. A grammar may be considered as
an intensive definition of a language. Thus, the notion of grammaticality corresponds
to the relation of membership over a language (set). But a grammar incorporates
more information than the simple report of the elements of the language (the extensive
specification). A grammar defines a structure: the parse tree or forest. The distance
between grammaticality and grammatical structure is a first level of ambiguity: gram-
matical ambiguity.

The next notion to take into account is the process of analysis of a string of words
with a grammar, that is, the parser [Kay 1980, Bolc 1987, Sikkel & Nijholt 1997]. A
parser must be able to determine the relation of grammaticality and to obtain the
grammatical structure, by mean of a set of operations, that we will call the parsing
structure. The distance between the grammatical structure and the parsing structure
defines a second level of ambiguity: parsing ambiguity, usually referred as temporal
ambiguity.

Parsing ambiguity depends on two factors: the grammar and the parsing strategy.
A very important design requirement of natural language parsers is to eliminate parsing

∗Jose F. Quesada: A General, Sound and Efficient Natural Language Parsing Algorithm based on Syn-
tactic Constraints Propagation. Proceedings of CAEPIA’97, M/’alaga, Spain. 775–786

http://arxiv.org/abs/cmp-lg/9801005v1

ambiguity, that is, to reduce the work done by the parser to the amount of grammatical
structures allowed by the grammar. The work presented here is a step more in this
direction [Earley 1970, Kay 1980, Tomita 1987, Tomita 1991, Dowding et al. 1994, ?].

The second goal of this paper is to present a computational model aimed at the im-
provement of the efficiency of the algorithm [Carroll 1994, Quesada & Amores Forthcoming].
In this sense, our proposal may be understood as the incorporation of strong top–down
predictions (partial derivations and adjacencies) over a bottom–up framework.

And the two strategies (bottom–up and top–down) are mixed by a mechanism
able to propagate syntactic constraints over a bidirectional model based on a strictly
horizontal strategy [Quesada 1996].

Section 2 presents an informal introduction to the problem of parsing ambigu-
ity with chart parsing [Kay 1980], but similar situations may be described for other
strategies like Earley’s algorithm [Earley 1970], DCG [Pereira & Warren 1980], GLR
[Chapman 1987, Tomita 1991], etc. Section 3 defines formally the relations that sup-
port the mechanism of bottom–up bidirectional analysis, top–down predictions and
constraints propagation. Section 4 presents in detail the parsing algorithm and finally
Section 5 shows some experimental results.

2 An Informal Introduction

Let us consider the following grammar:

S -> A1 b

S -> A2 c

A1 -> a

A1 -> a A1

A2 -> a

A2 -> a A2

and the string of words a a a b. Figure 1 shows the arcs genereted by a bidirectional
chart parser in a first stage where we have created only the arcs with at least one pre–
terminal symbol. Each arc has been identified by a number, and indicates the symbol
that the arc will generate and the expected symbol (only for active arcs).

1

A1

A1
A1

3

4

A2
A2

2

A2

a0

A2

A1

a

A2
A2

A1
A1

A2
A2

A1
A1

a

A1

A2

b1 2 3 4

5

6

7

8

9

10

11

12 S
A1

13

Figure 1

Let us consider what happens at position 3 . There exists an obvious relation
between arcs 13 and 9, but arcs 10, 11 and 12 don’t have a correspondent link at this
position. Figure 2 shows the parsing state once we have deleted these three arcs.

1

A1

A1
A1

3

4

A2
A2

2

A2

a0

A1

a

A2
A2

A1
A1

a

A1

A2

b1 2 3 4

5

6

7

8

9

S
A1

13

Figure 2

At position 2 there exists a relation between arcs 7 and 9, and arcs 5, 6 and 8 may

be deleted. Once we have deleted these three arcs, if we analyze position 1 we can
delete now arcs 1, 2 and 4 obtaining Figure 3.

A1
A1

3

a0

A1

a

A1
A1

a b1 2 3 4

7

9

S
A1

13

Figure 3

Therefore, our next goal will be to define formally the relations between arcs that
guarantee their success during parsing.

3 The Mathematical Kernel

3.1 Bottom-Up Derivation

Given a context-free grammar G =< GT , GN , GP , GR > where we have distinguished
their set of productions GP , roots GR, terminal symbols GT , non-terminal symbols GN

and vocabulary GV = GT ∪ GN , we will define the bottom-up derivation as follows.
Let be δ ∈ GV and ∆,Γ,Ω ∈ G∗

V . The direct bottom–up derivation in G, −→G, is
defined as:

Γ∆Ω −→G ΓδΩ iff δ −→ ∆ ∈ GP

The bottom–up derivation in G, =⇒G, will be defined as the reflexive and transitive
closure of the direct bottom–up derivation:

Γ =⇒G Ω iff ∃∆1, . . . ,∆n ∈ G∗
V such that ∀i(1≤i<n)∆i −→G ∆i+1

where ∆1 ≡ Γ and ∆n ≡ Ω

3.2 Partial Derivability and Adjacency

Root Symbols. α is a root symbol: R(α) iff α ∈ GR

Epsilon Symbols. α is an epsilon symbol: E(α) iff ε =⇒G α 1

1ε is the empty string.

String of Epsilon Symbols. ∆ is a string of epsilon symbols: E(∆) iff ∀δ ∈
∆(E(δ))

Left Partial Derivability. β is a left partial derivation of α:

α 7−→∗
l β iff ∃Γ,∆,Ω ∈ G∗

V such that (Γα∆ =⇒G ΓβΩ).

We define LPD(α) = {β ∈ GV : α 7−→∗
l β} ∪ {α} 2

Right Partial Derivability. β is a right partial derivation of α:

α 7−→∗
r β iff ∃Γ,∆,Ω ∈ G∗

V such that (Γα∆ =⇒G Ωβ∆)

We define RPD(α) = {β ∈ GV : α 7−→∗
r β} ∪ {α} 3

Primary Adjacency. β is a primary adjacent of α:

α ⇑ β iff ∃δ ∈ GV and ∃Γ,Ω,∆ ∈ G∗
V such that (δ −→ Γα∆βΩ ∈ GP ∧ E(∆))

Left Adjacency. β is a left adjacent of α:

α ⇑∗
l β iff ∃γ ∈ LPD(α) and ∃δ ∈ RPD(β) such that (δ ⇑ γ)

We define LA(α) = {β ∈ GV : α ⇑∗
l β}.

Right Adjacency. β is a right adjacent of α:

α ⇑∗
r β iff ∃γ ∈ RPD(α) and ∃δ ∈ LPD(β) such that (γ ⇑ δ)

We define RA(α) = {β ∈ GV : α ⇑∗
r β}.

Left–Most Symbol. α is a left–most symbol:

LM(α) iff ∃δ ∈ GV such that (α 7−→∗
l δ ∧R(δ))

Right–Most Symbol. α is a right–most symbol:

RM(α) iff ∃δ ∈ GV such that (α 7−→∗
r δ ∧R(δ))

3.3 Coverage Tables

Finally we present the formal definition of the coverage tables which are in charge of
triggering the events of the bidirectional parser.

For each symbol of a grammar, α ∈ GV , their left, LC1(α) and LC2(α), medium,
MC(α), and right, RC(α), coverages are defined as sets of productions in the following
way:

LC1(α) = {(δ −→ α ∈ GP) : δ ∈ GN}
LC2(α) = {(δ −→ αΩ ∈ GP) : δ ∈ GN ∧Ω ∈ G∗

V ∧ ¬E(Ω)}
MC(α) = {(δ −→ ∆αΩ ∈ GP) : δ ∈ GN ∧Ω,∆ ∈ G∗

V ∧ ¬E(∆) ∧ ¬E(Ω)}
RC(α) = {(δ −→ ∆α ∈ GP) : δ ∈ GN ∧∆ ∈ G∗

V ∧ ¬E(∆)}

2We will consider that a symbol is a left partial derivation of itself.
3We will consider that a symbol is a right partial derivation of itself.

4 The Parsing Algorithm

4.1 Parsing Input.

The main task of the lexical analyzer is to separate the input string in a set of items,
each one associated with one or more (lexical ambiguity) pre-terminal symbols (syntac-
tic categories). Our parsing algorithm is also able to deal with “multi-word expressions”
and “multi-expression words”4.

In any case, the parsing input will be a list of breaking points and a set of pre-
terminal symbols, each one associated with a lexical unit (a portion of the input string)
and two breaking points. For instance, we can consider the input string a a a b. This
string will be lexically analyzed obtaining 5 breaking points and 4 pre-terminal symbols:

0 a 1 a 2 a 3 b 4

4.2 Step 1: CaD creation.

For each breaking point we will generate a CaD (collection and diffusion of information)
structure, which has 6 fields: the first four fields are lists of Events and the two last
ones are lists of Nodes: tole (events arriving at the CaD from the right side), frle
(events going to the left from the CaD), tori (events arriving at the CaD from the
left side), frri (events going to the right from the CaD), ndle (nodes at the left of the
CaD) and ndri (nodes at the right of the CaD).

If the lexical analyzer has obtained n breaking points, then we will store the CaD
structures as a matrix of n pointers to CaD structures. We will call this matrix
CaDroot.

4.3 Step 2: Node creation.

For each element <lexical_unit,pre-terminal_symbol,fbp5 ,lbp6 > we will gener-
ate a Node structure, which has the following fields: grsymbol (grammar symbol) and
cmanalysis (complex analysis, a list of Analysis structures). The new node newNode
will be associated with the corresponding CaD structures:

CaDroot[fbp]->ndri = AddNode(newNode)
CaDroot[lbp]->ndle = AddNode(newNode)

4.4 Step 3: Event creation.

For each node created at step 2, we will generate their correspondent events using the
coverage tables. An Event has the following fields: grprod (production or grammar
rule), leftdot (left dot), rightdot (right dot), leftlinks (list of Link structures associated
with the left extreme), rightlinks (list of Link structures associated with the right
extreme) and status (logical status). Let us suppose that the node created (newNode)
has been associated with the grammar symbol α. Then:

For each production p ∈ LC1(α) we will create the appropriate new event (newEvent)
and:

4Words that contain more than one lexical unit, such as clitics in Spanish or compounds in German.
5The first or left breaking point of the lexical unit.
6The last or right breaking point of the lexical unit.

CaDroot[fbp]->frri = AddEvent(newEvent)
CaDroot[lbp]->frle = AddEvent(newEvent)

For each production p ∈ LC2(α) we will create the appropriate new event (newEvent)
and:

CaDroot[fbp]->frri = AddEvent(newEvent)
CaDroot[lbp]->tole = AddEvent(newEvent)

For each production p ∈ MC(α) we will create the appropriate new event (newEvent)
and:

CaDroot[fbp]->tori = AddEvent(newEvent)
CaDroot[lbp]->tole = AddEvent(newEvent)

For each production p ∈ RC(α) we will create the appropriate new event (newEvent)
and:

CaDroot[fbp]->tori = AddEvent(newEvent)
CaDroot[lbp]->frle = AddEvent(newEvent)

4.5 Step 4: Link creation.

For each event created we have to analyze their possible links with other events. This
operation is internal to the CaD structure according to the following criteria:

tole

frle frri

tori

ADJACENCY

FUSION

DERIVATION

Figure 4. Links inside a CaD structure.

4.5.1 Analyses of Partial Derivations

These analyses are applied over the open extremes of an event. Basically, we have to
check if the symbol needed is partially derivable from the real symbol.

We will distinguish two types of analyses of derivations depending on the direction
of the open extreme of the event.

Left–Derivation Analysis: TOLE − FRRI. Let us suppose that an event
evtole is applying the production δ −→ δ1 . . . δn over the surface Γδh . . . δiγ1 . . . γjΩ
where 1 ≤ h ≤ i < n and 1 ≤ j ≤ m. In fact, this event is making a prediction of
the (required) symbol δi+1 over the (real) symbol γ1. The right extreme of this event
will be associated with the component tole of a CaD structure. In this case, we have
to check if there exists a second event, evfrri, which left extreme belongs to the frri
field of the same CaD, such that δi+1 ∈ LPD(γ), where γ is the left-hand side of the
production associated with evfrri: γ −→ γ1 . . . γm.

Right–Derivation Analysis: TORI − FRLE. Let us suppose that an event
evtori is applying the production δ −→ δ1 . . . δn over the surface Γγj . . . γmδh . . . δiΩ
where 1 < h ≤ i ≤ n and 1 ≤ j ≤ m. In fact, this event is making a prediction of the
(required) symbol δh−1 over the (real) symbol γm. The left extreme of this event will
be associated with the component tori of a CaD structure. In this case, we have to
check if there exists a second event, evfrle, which right extreme belongs to the frle
field of the same CaD, such that δh−1 ∈ RPD(γ), where γ is the left-hand side of the
production associated with evfrle: γ −→ γ1 . . . γm.

4.5.2 Analyses of Adjacencies

These analyses are applied over the closed extremes of an event. Basically, we have to
check the adjacency relation between the symbol that the event will generate (the left–
hand side of the production) and the symbol that appears next to the closed extreme
of the event.

We will distinguish two types of analyses of adjacencies depending on the direction
of the closed extreme of the event.

Left–Adjacency Analysis: FRRI − FRLE. Let us suppose that an event
evfrri is applying the production δ −→ δ1 . . . δn over the surface Γγj . . . γmδ1 . . . δiΩ
where 1 ≤ i ≤ n and 1 ≤ j ≤ m. The left extreme of this event belongs to the frri
field of a CaD structure. Then we have to analyze if there exists an evfrle event which
right extreme belongs to the frle field of the same CaD such that γ ∈ LA(δ), where
γ is the lhs of the production of evfrle: γ −→ γ1 . . . γm.

If Γγj . . . γm is empty, that is, the CaD associated with the left extreme of evfrri
is the first one, then we have to check if LM(δ).

Right–Adjacency Analysis: FRLE − FRRI. Let us suppose that an event
evfrle is applying the production δ −→ δ1 . . . δn over the surface Γδi . . . δnγ1 . . . γj∆
where 1 ≤ i ≤ n and 1 ≤ j ≤ m. The right extreme of this event belongs to the frle
field of a CaD structure. Then we have to analyze if there exists an evfrri event which
left extreme belongs to the frri field of the same CaD such that γ ∈ RA(δ), where γ
is the lhs of the production of evfrri: γ −→ γ1 . . . γm.

If γ1 . . . γj∆ is empty, that is, the CaD associated with the left extreme of evfrle
is the last one, then we have to check if RM(δ).

4.5.3 Analyses of Fusions

Left–Fusion Analysis: TORI − TOLE. Let us suppose that an event evtori is
applying the production δ −→ δ1 . . . δn over the surface Γγδi . . . δj∆ where 1 < i ≤ j ≤
n. The left extreme of this event belongs to the tori field of a CaD structure. Then
we have to analyze if there exists an evtole event in the tole field of the same CaD
such that evtole is applying the same production that evtori over the surface δh . . . δi−1

where 1 ≤ h.

Right–Fusion Analysis: TOLE − TORI. Let us suppose that an event evtole
is applying the production δ −→ δ1 . . . δn over the surface Γδi . . . δjγ∆ where 1 ≤ i ≤
j < n. The right extreme of this event belongs to the tole field of a CaD structure.
Then we have to analyze if there exists an evtori event in the tori field of the same

CaD such that evtori is applying the same production that evtole over the surface
δj+1 . . . δk where k ≤ n.

Link creation. Each time an analysis is successfull, we will generate a Link struc-
ture between the two events involved. For LM and RM analysis the Link will have
only one event.

4.6 Step 5: Event’s Logical Status.

Each time a Link is created we have to study the logical status of the events involved.
Also, at the end of the analysis of the links of an event (step 4) we will analyze its
logical status.

Let be e an event applying the production δ −→ δ1 . . . δi−1 • δi . . . δj • δj+1 . . . δn

4.6.1 Closed-Closed events (FRRI + FRLE): i = 1 and j = n.

if ((!e->leftlinks) || (!e->rightlinks))

nstatus = DELETE

else

nstatus = RUN

4.6.2 Closed-Open events (FRRI + TORI): i = 1 and j < n.

if (!e->leftlinks)

nstatus = DELETE

else if (e->rightlinks)

nstatus = DERIVATION

else if (E(δj+1))
nstatus = EPSILON

else

nstatus = DELETE

4.6.3 Open-Closed events (TOLE + FRLE): i > 1 and j = n.

if (!e->rightlinks)

nstatus = DELETE

else if (e->leftlinks)

nstatus = DERIVATION

else if (E(δi−1))
nstatus = EPSILON

else

nstatus = DELETE

4.6.4 Open-Open events (TOLE + TORI): i > 1 and j < n.

if ((e->leftlinks) && (e->rightlinks))

nstatus = DERIVATION

else if ((e->leftlinks) && (E(δj+1)))
nstatus = EPSILON

else if ((e->rightlinks) && (E(δi−1)))

nstatus = EPSILON

else

nstatus = DELETE

If nstatus is different that e->status we will change the logical status of the event.
To improve the efficiency it is possible to maintain four lists of events (DERIVATION,
RUN, DELETE and EPSILON). To change the status of an event implies to move the
event from one list to another, but this may be done in constant time.

4.6.5 Step 6: Parsing Cycle.

This is the kernel of the algorithm:
cycle = 1

while (cycle)

cycle = 0

if (event = GetEpsilonEvent())

cycle = 1

EpsilonExpansion(event)

else if (event = GetDeleteEvent())

cycle = 1

DeleteEvent(event)

else if (event = GetRunEvent())

cycle = 1

RunEvent(event)

else if (link = GetFusionLink())

cycle = 1

FusionLink(link)

The functions Get* return the first element of the correspondent list and change
the head of the list to the following element, which are constant operations.

6.1.- Epsilon Expansion. This operation moves the left dot one position to the
left or the right dot one position to the right, depending on the open extreme marked
as EPSILON.

6.2.- Delete Event. To delete an event implies to delete it and their links.

6.3.- Run Event. To run a closed-closed event involves the application of a gram-
mar rule, incorporating a new node (step 2). But if this node has been previously
created between the same CaD structures, we can obtain a representation model based
on subtree-sharing and local ambiguity packing, associating the analysis correspondent
to the last one with the previously created node. This way, a node will have a list of
Analysis structures, and this structure is defined as a list of Node structures. The
result of this mechanism is a representation based on virtual relations between the
skeleton of the parse forest and the nodes included in it.

6.4.- Fusion Events. Let us consider the production δ −→ δ1 . . . δh . . . δiδi+1 . . . δj . . . δn
and two events e1 : δ −→ δ1 . . . • δh . . . δi • δi+1 . . . δn and e2 : δ −→ δ1 . . . δi • δi+1 . . . δj •
. . . δn.

If there exists a fusion link (e1e2link) between e1 (rightlinks) and e2 (leftlinks) in
the context δiδi+1 the application of their fusion will generate the following actions:

Case 6.4.1: Fusion with Double Derivation:
if ((e1->rightlinks) && (e2->leftlinks))

Create a new event en : δ −→ δ1 . . . • δh . . . δiδi+1 . . . δj • . . . δn

Case 6.4.2: Fusion with Single Right Derivation:
else if (e1->rightlinks)

Modify e2 : δ −→ δ1 . . . • δh . . . δiδi+1 . . . δj • . . . δn

Case 6.4.3: Fusion with Single Left Derivation:
else if (e2->leftlinks)

Modify e1 : δ −→ δ1 . . . • δh . . . δiδi+1 . . . δj • . . . δn

Case 6.4.4: Fusion without Derivation:
else

Modify e1 : δ −→ δ1 . . . • δh . . . δiδi+1 . . . δj • . . . δn
Delete e2

5 Implementation and Experimental Results

This algorithm has been implemented in C including a specific layer for the memory
management that improves the classical operations of malloc and free.

Our experimental results show that this algorithm fully eliminates parsing ambi-
guity for recursive, local and non-local dependency constructions. For this kind of
phenomena, the experimental results show a real complexity of the order O(nlog(n))
where n is the length of the input string. 7

Next, we show the predicted model obtained for each type of grammar. The depen-
dent variable T is the time used for the complete analysis (in seconds) and the factor
used, W, has been the length of the input string (number of words).

We show the results obtained with a Simple Lineal Regression Test for two cases.
The first one uses T as the response and W log(W) as the factor. The second one uses
T/W as the response and the same factor W log(W). In addition, we have included
Pearson Correlation Coefficients for both cases.

• Recursive Constructions:

T = −5.183 + 219E − 7 ∗ (Wlg(W));PCC(T,Wlg(W)) = 0.999
T/W = 0.0001 + 46E − 13 ∗ (Wlg(W));PCC(T/W,Wlg(W)) = 0.974

• Local Dependencies

T = −17.82 + 352E − 7 ∗ (Wlg(W));PCC(T,Wlg(W)) = 0.993
T/W = 0.0002 + 38E − 12 ∗ (Wlg(W));PCC(T/W,Wlg(W)) = 0.998

• Non-local Dependencies

7[Quesada 1997] contains a full description of the algorithm as well as a more detailed analysis of the
experiments, including the grammars, string of words and results.

T = −1.031 + 851− 8 ∗ (Wlg(W));PCC(T,Wlg(W)) = 0.998
T/W = 0.0002 + 14E − 12 ∗ (Wlg(W));PCC(T/W,Wlg(W)) = 0.998

6 Conclusion

The problem of parsing natural languages must be studied from three perspectives:
computational, linguistic and formal. In this paper we have presented a general, sound
and efficient natural language parsing algorithm which accomplishes the main require-
ments of the three levels.

The computational layer includes a specific memory management model and a
strategy for grammar compilation. This module has been designed with the goal of
efficiency. The linguistic layer is in charge of general applicability, and includes basically
a mecanism for the integration of the algorithm with unification grammar. Finally, at
the formal level, the mathematical kernel proposed permits the demostration of the
correctness and soundness of the algorithm [Quesada 1997].

This paper has concentrated on the description of the algorithm itself, describing
the data model and the parsing strategy.

References

[Aho & Ullman 1972] Alfred V. Aho & Jeffrey D. Ullman. 1972. The Theory of Pars-
ing, Translation and Compiling. Vol. I: Parsing. Englewood Cliffs, N.J.: Prentice
Hall.

[Bolc 1987] Leonard Bolc. ed. 1987. Natural Language Parsing Systems. Heidelberg:
Springer–Verlag.

[Bunt & Tomita 1996] Harry Bunt & Masaru Tomita. eds. 1996. Recent Advances in
Parsing Technology. Kluwer Academic Publishers.

[Carroll 1994] J. Carroll. 1994. Relating Complexity to Practical Performance to
Natural–Language Processing. In 32rd Annual Meeting of the Association for Com-
putational Linguistics, pages 287–94.

[Chapman 1987] Nigel P. Chapman. 1987. LR Parsing. Theory and Practice. Cam-
bridge: Cambridge University Press.

[Dowding et al. 1994] J. Dowding, R. Moore, F. Andry & D. Moran. 1994. Interleaving
Syntax and Semantics in an Efficient Bottom–Up Parser. In 32rd Annual Meeting
of the Association for Computational Linguistics, pages 110–16.

[Drobot 1989] Vladimir Drobot. 1989. Formal Languages and Automata Theory.
Rockville, MD: Computer Science Press.

[Earley 1970] Jay Earley. 1970. An Efficient Context–Free Parsing Algorithm. Com-

munications of the ACM, 13(2), 94-102.

[Kay 1980] Martin Kay. 1980. Algorithm Schemata and Data Structures in Syntactic
Processing. CSL-80-12 Xerox Palo Alto Research Center.

[Pereira & Warren 1980] Fernando C. N. Pereira & David H. D. Warren. 1980. Definite
clause grammars for language analysis – a survey of the formalism and a comparison
with augmented transition networks. Artificial Intelligence, 13, 231–78.

[Quesada 1996] José F. Quesada. 1996. Bidirectional and Event–Driven Parsing with
Multi Virtual Trees. II International Conference on Mathematical Linguistics, Tar-
ragona, May 1996.

[Quesada 1997] José F. Quesada. 1997. El algoritmo SCP de Anlisis Sintctico me-
diante Propagacin de Restricciones [The SCP parsing algorithm based on Syntactic
Constraints Propagation]. PhD dissertation. Universidad de Sevilla, Junio 1997.

[Quesada & Amores Forthcoming] José F. Quesada & J. Gabriel Amores. (Forthcom-
ing). C for Natural Language Processing. London: UCL Press.

[Rozenberg & Salomaa 1997] G. Rozenberg & A. Salomaa. eds. 1997. The Handbook
of Formal Languages. Vol. II. Berlin: Springer Verlag.

[Sikkel & Nijholt 1997] Klaas Sikkel & Anton Nijholt. 1997. Parsing of Context–Free
Languages. In [Rozenberg & Salomaa 1997].

[Tomita 1987] Masaru Tomita. 1987. An Efficient Augmented Context–Free Parsing
Algorithm. Computational Linguistics 13 (1-2), 31-46.

[Tomita 1991] Masaru Tomita. 1991. Generalized LR Parsing. London: Kluwer Aca-
demic Publishers.

