
                                       Computing with viruses

            Xu Chen a, Mario J. Pérez-Jiménez b, Luis Valencia-Cabrera b, Beizhan Wang a,
            Xiangxiang Zeng c

                   a School of Software, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China

                           b Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville 41012, Spain

                           c Department of Computer Science, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China

         a b s t r a c t

In recent years, different computing models have emerged within the area of Unconven-tional Computation, 
and more specifically within Natural Computing, getting inspiration from mechanisms present in Nature. In 
this work, we incorporate concepts in virology and theoretical computer science to propose a novel 
computational model, called Virus Ma-chine. Inspired by the manner in which viruses transmit from one host 
to another, a virus machine is a computational paradigm represented as a heterogeneous network that con-
sists of three subnetworks: virus transmission, instruction transfer, and instruction-channel control networks. 
Virus machines provide non-deterministic sequential devices. As num-ber computing devices, virus machines 
are proved to be computationally complete, that is, equivalent in power to Turing machines. Nevertheless, 
when some limitations are imposed with respect to the number of viruses present in the system, then a 
characterization for semi-linear sets is obtained.

1. Introduction

The present study can be considered as a contribution to the area of natural computing, which is a field of research that 
investigates both human-designed computing inspired by nature and computing that occurs in nature. That is, this field 
investigates models and computational techniques based on nature, which enables the development of new computational 
tools (in software, hardware, or wetware) for problem solving. Such tools can synthesize natural patterns, behaviours and 
organisms, which may result in designing novel computing systems that use natural media for computation [15,20].

Biological systems are rich sources of ideas for designing computing devices and algorithms. In fact, they have inspired 
numerous classical computing devices, such as neural nets [11,21,22,24] and evolutionary algorithms [25,26]. In recent years, 
computing devices inspired by cells (or molecules inside cells, such as DNA) have been thoroughly investigated [1,3,8,19]. 
Most cell-inspired computing systems have been proved to be universal [4,10,18,23,27] and computationally efficient [6,12,
14,16,17].

In virology, a virus is a parasitic biological agent that can only reproduce after infecting a host cell. Every animal, plant, 
and protist species on this planet has been infected by viruses. The process of viral multiplication (replication) starts for the 

http://dx.doi.org/10.1016/j.tcs.2015.12.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:chenxu31@sina.com
mailto:marper@us.es
mailto:lvalencia@us.es
mailto:wangbz@xmu.edu.cn
mailto:xzeng@xmu.edu.cn
http://dx.doi.org/10.1016/j.tcs.2015.12.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.12.006&domain=pdf


attachment stage (a virus attaches to the potential host), then the virus must effect entry to be able to replicate (penetration 
stage) and the replication steps (genome replication, transcription and translation, using ribosomes provided by the host cell) 
occur next. When the new genomes are produced they come together with the newly synthesized virus proteins to form 
virus particles (assembly stage). Finally, the particles escape from the cell to infect other cells.

Viruses can transmit from one host cell to another in various ways. For instance, viruses in plants are usually transmitted 
from a plant to another by insects (e.g., aphids), which feed on plant sap. Viruses in animals can spread by blood-sucking 
insects (e.g., mosquitoes). Coughing and sneezing may spread influenza viruses. HIV, a well-known virus, can transmit 
through sexual contact or by exposure to infected blood. Viruses can only reproduce in living cells. After infecting a host 
cell, viruses use the machinery and metabolism of the host cell to produce multiple copies of themselves, while the original 
infecting virus is dismantled. For additional details on viruses, refer to [7].

Besides biological viruses, there is a special kind of “virus”, called computer virus, which is similar to the natural virus. 
A computer virus is a malicious software that can spread to other computers through networks. Furthermore, it can replicate 
by inserting copies of itself into other computer programs, data files, and so on. For additional details on computer viruses, 
refer to [2].

In this study, we introduce a new computing model, called Virus Machine, which is inspired from the transmissions and 
replications of viruses. This system consists of several hosts (processing units), connected to each other by channels. Each 
host can be viewed as a group of cells (being part of a colony, organism, system, organ or tissue). Viruses are placed in the 
hosts and are assumed to evolve. Each virus can transmit from one host to another by passing through a channel, and can 
replicate itself while transmitting. Such transmissions and replications in the system are controlled by several instruction 
units, which are attached to the channels. A virus machine can be viewed as a heterogeneous network that consists of the 
following three subnetworks:

• A virus transmission network, which is a weighted directed network wherein each node represents a host and each arc
represents a transmission channel through which viruses can transmit from one host to another or to the environment.
In addition, a natural number (the weight of the channel) is associated with each channel, indicating the number of
viruses that will be transmitted to the tail host of the channel after transmission (i.e., a virus may replicate itself while
transmitting).

• An instruction transfer network, which is a weighted directed network wherein each node represents a control instruction
unit and each arc represents an optional instruction transfer path with a natural number (the weight of the instruction
transfer) associated to it.

• An instruction-channel control network, which is an undirected bipartite network, wherein each node represents either a
control instruction or a channel and each edge represents a control relationship between an instruction and a channel.

Each transmission channel in a virus transmission network is closed by default. It can be opened by a control instruction
unit, which is connected to the channel through an edge of the instruction-channel control network, when the instruction 
is activated. When it is open, the channel allows a virus (only one virus) to transmit through it. The virus may replicate 
itself while transmitting, which indicates that the number of viruses in the head host of the channel is decreased by one, 
whereas the number of viruses in the tail host of the channel is increased by n (being n the weight of the opened channel). 
Instructions are activated individually along the paths in the instruction transfer network, so that only one instruction 
is enabled in each computation step. That is, an instruction activation signal is transferred to the network to activate 
instructions in sequence.

In this paper we deal with virus machines having input hosts, allowing us to introduce some additional numbers of 
viruses (encoding the information) in certain distinguished hosts. Then, instructions are allowed to activate one after another 
and the system halts when no path is available to transfer the instruction activation signal. We consider virus machines 
working in the computing mode: if the virus machine halts, then the computation is finished and the result is the total 
number of viruses sent to a distinguished region (a host or the environment) during the computation; otherwise (i.e., if the 
instruction activation signal is transferred continuously), the computation fails to produce an output.

In this work, the computational completeness of virus machines working in the computing mode is established by 
showing that they simulate register machines. Nevertheless, by considering a more realistic condition concerning with a 
limit (an upper bound) on the number of viruses present in any host during a computation (bounded virus machines), this 
restriction diminishes in fact the computational power of the systems. In this case, a characterization of semi-linear sets of 
numbers is obtained.

As far as we know, this paper is a pioneer work in this area, and we believe that further investigations on this subject 
are worth conducting. In this regard, some new exciting lines of research for future works are presented at the end of this 
paper.

The paper is organized as follows. First, some preliminaries are briefly introduced in order to make the work self-
contained. Then, in Section 3, we formally define the computing model of Virus Machines and the structure of the model is 
graphically illustrated. In Section 4, an example is given to illustrate how such systems work. Then, we discuss the power of 
virus machines in Section 5 and the computational completeness (via simulating register machines) is stated. In Section 6
we also investigate the power of bounded virus machines by giving a characterization of semi-linear sets. Finally, in Sec-



tion 7, the main conclusions of this work are summarized and some suggestions for possible lines of future research are 
outlined.

2. Preliminaries

In this Section some basic concepts needed throughout this paper are introduced in order to make it self-contained.

2.1. Sets

Given a set A we denote by P(A) the power set of A, that is, P(A) is the set of all subsets of A. Given a nonempty 
finite set A, a weight mapping w over A is an additive mapping from A onto N (the set of natural numbers). That is, w is 
a mapping from A onto N such that it can be extended to the power set of A (the set of all subsets of A) as follows: 
w(A′) = ∑

x∈A′ w(x), for each subset A′ ⊆ A.
A set A ⊆N

k is a linear set if there exist tuples v0, v1, . . . , vt ∈N
k such that the set A can be described as follows:

{v ∈N
k | there exist m1, . . . ,mt ∈N such that v = v0 + m1 v1 + · · · + mt vt}

A set A ⊆ N
k is a semi-linear set if it is a finite union of linear sets. The family of semi-linear sets of natural numbers is 

denoted by SLIN.

2.2. Alphabets and languages

An alphabet � is a finite non-empty set, and its elements are called symbols. A string u over � is a mapping from a 
natural number n ∈ N onto �. Number n is called length of the string u, denoted by |u|. The empty string (with length 0) 
is denoted by λ. If u and v are strings over �, then so is their concatenation uv , obtained by juxtaposition, that is, writing 
u and v one after the other. For each string u ∈ �∗ and a ∈ � we denote by |u|a the number of occurrences of symbol a in 
the string u.

A language over � is a set of strings over �. For a language L over �, the set length(L) = {|u| | u ∈ L} is called the length set 
of L. The concatenation of languages L1, L2 over � is L1 L2 = {uv | u ∈ L1, v ∈ L2}. Given an ordered alphabet � = {a1, . . . , ak}, 
a language L over � is semi-linear if {(|u|a1 , . . . , |u|ak ) | u ∈ L} is a semi-linear set. The set SLIN is equal to the length set of 
semi-linear languages.

2.3. Grammars

A grammar G is a tuple (N, T , A, R), where N is the alphabet of non-terminal symbols, T is the alphabet of terminal 
symbols, N ∩ T = ∅, A ∈ N is the axiom and R is a finite set of rewriting rules of the form u → v , with u, v ∈ (N ∪ T )∗
and u containing at least a non-terminal symbol. When applying such a rule, the string w = w1uw2 can be rewrit-
ten as w ′ = w1 v w2, and we denote it by w ⇒G w ′ . The language generated by the grammar G is L(G) = {z ∈ T ∗ |
there exist z1, . . . , zk such that A ⇒G z1 ⇒G . . . zk = z}. RE is the family of languages generated by arbitrary grammars. NRE
is the family of length sets of languages in RE.

A grammar G is right-linear if each rule u → v has u ∈ N and v ∈ T ∗ ∪ T ∗ N . SLIN is the family of languages generated 
by right-linear grammars.

2.4. Graphs

An undirected graph G is a pair (V , E), where V is a finite set and E is a subset of {{x, y} | x ∈ V , y ∈ V , x �= y}. The 
set V is called the vertex set of G , and its elements are called vertices. The set E is called the edge set of G , and its 
elements are called edges. If e = {u, v} ∈ E is an edge of G , then we say that edge e is incident on vertices u and v . In an 
undirected graph, the degree of a vertex u is the number of edges incident on it. A path of length k ≥ 2 from a vertex u to a 
vertex v in an undirected graph G = (V , E) is a finite sequence (w0, w1, . . . , wk) of vertices such that w0 = u, wk = v and 
{w j, w j+1} ∈ E for j = 0, . . . , k − 1. If w0 = wk then we say that the path is a cycle. An undirected graph is cyclic if there is 
at least a cycle in the graph. We say that vertices u, v are connected if there exists a path from u to v . An undirected graph 
G is connected if every pair of vertices is connected by a path.

A directed graph G is a pair (V , E), where V is a finite set and E is a subset of V × V . The set V is called the vertex 
set of G , and its elements are called vertices. The set E is called the arc set of G , and its elements are called arcs. In a 
directed graph, the out-degree of a vertex is the number of arcs leaving it, and the in-degree of a vertex is the number of 
arcs entering it. A bipartite graph G is an undirected graph (V , E) in which V can be partitioned into two sets V 1, V 2 such 
that {u, v} ∈ E implies either u ∈ V 1 and v ∈ V 2 or u ∈ V 2 and v ∈ V 1; that is, all edges are set between the two sets V 1
and V 2 (see [5] for details).



Fig. 1. Structure of a Virus Machine.

3. Virus machines

In what follows we formally define the syntax of the Virus Machines.

Definition 1. A Virus Machine (VM, for short) of degree (p, q), p ≥ 1, q ≥ 1 is a tuple:

� = (�, H, I, D H , D I , GC ,n1, . . . ,np, i1,hout)

where:

• � = {v} is the singleton alphabet:
• H = {h1, . . . , hp} and I = {i1, . . . , iq} are ordered sets such that v /∈ H ∪ I and H ∩ I = ∅;
• D H = (H ∪ {hout}, E H , w H ) is a weighted directed graph, where E H ⊆ H × (H ∪ {hout}), (h, h) /∈ E H for each h ∈ H ,

out-degree (hout) = 0, and w H is a mapping from E H onto N \ {0} (the set of positive integer numbers);
• D I = (I, E I , w I ) is a weighted directed graph, where E I ⊆ I × I , w I is a mapping from E I onto N \ {0} and, for each

vertex i j ∈ I , the out-degree of i j is less than or equal to 2;
• GC = (V C , EC ) is an undirected bipartite graph, where V C = I ∪ E H , being {I, E H } the partition associated with it (i.e.,

all edges go between the two sets I and E H ). In addition, for each vertex i j ∈ I , the degree of i j is less than or equal
to 1;

• n j ∈ N (1 ≤ j ≤ p);
• hout /∈ I ∪ {v} and hout is denoted by h0 in the case that hout /∈ H .

A Virus Machine of degree (p, q)

� = (�, H, I, D H , D I , GC ,n1, . . . ,np, i1,hout)

can be viewed as an ordered set of p hosts labelled with h1, . . . , hp (where each host h j , 1 ≤ j ≤ p, initially contains exactly 
n j viruses – copies of symbol v –), and an ordered set of q control instruction units labelled with i1, . . . , iq . Symbol hout

represents the output region of the system (we use the term region to refer to host hout in the case that hout ∈ H and 
to refer to the environment in the case that hout = h0). Arcs from the directed graph D H represent transmission channels
through which viruses can transmit from one host hs to another hs′ (we assume that hs �= hs′ ). Thus, if (hs, hs′) ∈ E H , 
then hs �= hout and viruses may transmit from host hs to host hs′ (if s′ = 0, viruses may exit to the environment). Each 
channel is closed by default until it is opened by a control instruction (which is attached to the channel by means of an 
edge in graph GC ) when that instruction is activated. Furthermore, each channel (hs, hs′) is assigned with a positive natural 
number weight denoted by ws,s′ or w(hs, hs′), which indicates the number of viruses that will be transmitted/replicated to 
the tail host of the channel (the virus may replicate itself while transmitting). Arcs from the directed graph D I represent 
instruction transfer paths, being each arc (i j, i j′ ) ∈ E I assigned with a weight denoted by w j, j′ . Finally, the undirected bipartite 
graph GC represents the instruction-channel network by which an edge {i j, (hs, hs′)} indicates a control relationship between 
instruction i j and channel (hs, hs′): when instruction i j is activated, the channel (hs, hs′) is opened and then one virus can 
be transmitted from host hs to hs′ , possibly being replicated ws,s′ times in the target host. Let us note that, according to 
our definition, each control instruction is attached to, at most, one transmission channel.

Graphically, a virus machine of degree (4, 6), with 4 hosts and 6 control instructions, can be represented as a heteroge-
neous network consisting of three graphs, as illustrated in Fig. 1. Each host is depicted as a rectangle and each instruction 
is depicted as a circle. Each arrow is either a virus transmission channel linking the hosts (or pointing to the environment), 
or an instruction transfer path linking the instructions; in both cases, each arrow is assigned with a positive integral weight 
(the weight 1 is not marked for simplicity). The control relationships between instructions and channels are represented as 
dotted lines.

In what follows the semantics associated with the computing model of virus machines is described. An instantaneous 
description or a configuration Ct at an instant t of a virus machine is described by a tuple (a1,t , . . . , ap,t, ut, et) where 
a1,t, . . . , ap,t, et are natural numbers, ut ∈ I ∪{ # }, where # /∈ H ∪{h0} ∪ I . The meaning of a configuration Ct is the following: 



at instant t the host hs of the system contains exactly as,t viruses, the output region hout contains exactly et viruses and, 
if ut ∈ I , then the control instruction unit ut will be activated at step t + 1 (otherwise, if ut = #, then no instruction will 
be activated). The initial configuration of the system � = (�, H, I, D H , D I , GC , n1, . . . , np, i1, hout) is C0 = (n1, . . . , np, i1, 0), 
that is, we assume that initially no viruses appear in the output region hout . A configuration Ct = (a1,t, . . . , ap,t, ut, et) is a 
halting configuration if and only if ut is the object #. We say that a non halting configuration Ct = (a1,t, . . . , ap,t, ut, et) yields 
configuration Ct+1 = (a1,t+1, . . . , ap,t+1, ut+1, et+1) in one transition step, denoted by Ct ⇒� Ct+1, if we can pass from Ct to 
Ct+1 in the following form.

(a) First, given that Ct is a non halting configuration we have ut ∈ I . Then the control instruction unit ut is activated.
(b) Let us assume that instruction ut is attached to a channel (hs, hs′). Then this channel will be opened and:

– If as,t ≥ 1, then a virus (only one virus) is consumed from host hs and ws,s′ copies of v are produced in host hs′ (if
s′ �= out) or in the output region hout . That is, the virus is replicated ws,s′ times during the transmission.

– If as,t = 0, then there is no transmission of viruses: no virus is consumed from host hs and no virus is produced in
host hs′ (if s′ �= out) or in the output region (if s′ = out).

(c) Let us assume that instruction ut is not attached to any channel (hs, hs′). Then there is no transmission of viruses.
(d) Object ut+1 ∈ I ∪ {#} is obtained as follows:

– Let us suppose that out-degree(ut) = 2, that is, there are two different instructions ut′ and ut′′ such that (ut , ut′) ∈ E I
and (ut , ut′′) ∈ E I .
∗ If instruction ut is attached to a channel (hs, hs′):

· If as,t ≥ 1 (there are some viruses in host hs in Ct ) then ut+1 is ut′ or ut′′ , the instruction corresponding to the
highest weight path (max{wt,t′ , wt,t′′ }); if wt,t′ = wt,t′′ , the next instruction is selected in a non-deterministic
way.

· If as,t = 0 (no virus exists in host hs in Ct ), ut+1 is the instruction corresponding to the lowest weight path
(min{wt,t′ , wt,t′′ }); if wt,t′ = wt,t′′ the next instruction is selected in a non-deterministic way.

∗ If instruction ut is not attached to a channel, then the next instruction ut+1 (ut′ or ut′′ ) is selected in a non-deter-
ministic way.

– Let us suppose that out-degree(ut) = 1. In this case the system behaves deterministically and ut+1 is the instruction
that verifies (ut , ut+1) ∈ E I .

– Let us suppose that out-degree(ut) = 0. Then ut+1 is the object #, and configuration Ct+1 is a halting configuration.

A computation of a virus machine � is a (finite or infinite) sequence of configurations such that: (a) the first term is the 
initial configuration C0 of the system; (b) for each n ≥ 2, the n-th term of the sequence is obtained from the previous 
term in one transition step; and (c) if the sequence is finite (called halting computation) then the last term is a halting 
configuration.

All the computations start from an initial configuration and proceed as stated above; only halting computations give a 
result, which is encoded in the contents of the output region associated with the halting configuration. If C = {Ct}t≤l of �
(l ∈N) is a halting computation, then the length of C , denoted by |C|, is l.

Let us note that in virus machines the output region (the environment in the case that hout = h0) plays a passive role, in 
the following sense: along any computation, the output region can receive viruses from the system but no virus can enter 
the system from that region.

Definition 2. A Virus Machine with input of degree (p, q, r), p ≥ 1, q ≥ 1, r ≥ 1, is a tuple

� = (�, H, Hr, I, D H , D I , GC ,n1, . . . ,np, i1,hout),

where:

• (�, H, I, D H , D I , GC , n1, . . . , np, i1, hout) is a Virus Machine of degree (p, q).
• Hr = {hi1 , . . . , hir } ⊆ H is the ordered set of r input hosts and hout /∈ Hr .

Given a virus machine � with input of degree (p, q, r), for each r-tuple (α1, . . . , αr) of natural numbers, the initial 
configuration of � with input (α1, . . . , αr) is

(n1, . . . ,ni1 + α1, . . . ,nir + αr, . . . ,np, it ,0)

That is, the number α j is added to the initial number ni j of viruses in the input host hi j , for 1 ≤ j ≤ r. Therefore, in a virus 
machine with input we have an initial configuration associated with each input r-tuple (α1, . . . , αr) of natural numbers. 
A computation of a virus machine � with input (α1, . . . , αr) starts with the initial configuration, and proceeds as stated 
above. The result of a halting computation of a virus machine � with input (α1, . . . , αr) working in the computing mode is 
the total number n of viruses sent to the output region during that computation. We say that number n is computed by the 
virus machine � with input (α1, . . . , αr), denoted by � + (α1, . . . , αr).

We also denote by N(� + (α1, . . . , αr)) the set of all natural numbers computed by � + (α1, . . . , αr). Throughout this 
paper, hout = h0, that is, the environment will be the output region.



Fig. 2. A VM Adder.

4. An example of virus machine

In this Section, we give an example to further illustrate the way virus machines work. Let us consider the virus machine 
with input of degree (2,3,2)

VMSum = (�, H, H2, I, D H , D I , GC ,0,0, i1,hout)

working in the computing mode, defined as follows:

• � = {v}, H = H2 = {h1, h2},
I = {i1, i2, i3}, hout = h0.

• D H = ({h0, h1, h2}, E H , w H ), where
E H = {(h1, h0), (h2, h0)} and w H (h1, h0) = w H (h2, h0) = 1.

• D I = (I, E I , w I ), where
E I = {(i1, i1), (i1, i2), (i2, i2), (i2, i3)} and
w I (i1, i1) = w I (i2, i2) = 2, w I (i1, i2) = w I (i2, i3) = 1.

• GC = (I ∪ E H , EC ), where
EC = {{i1, (h1, h0)}, {i2, (h2, h0)}}.

The Virus machine VMSum computing the sum of two natural numbers is depicted in Fig. 2.
For each n1, n2 ∈ N, the initial configuration of the system VMSum with input (n1, n2) is C0 = (n1, n2, i1, 0), and it com-

putes as follows.

• In the first step, the instruction i1 is activated, thus making the channel h1 → h0 open to transmit exactly one virus
from h1 to the environment. Note that the virus does not replicate itself while transmitting because the weight of the
channel is 1. Then, the instruction activation signal transfers along the higher weight path i1

2−→ i1 (i.e., the instruction
i1 will be activated again in the next step). Thus, C1 = (n1 − 1, n2, i1, 1).

• Then, the instruction i1 will be activated repeatedly n1 times, making all n1 viruses in h1 be sent to the environment
via the channel h1 → h0. Thus, the configuration of the system becomes Cn1 = (0, n2, i1, n1).

• In the step n1 + 1, the instruction i1 is activated, but the host h1 is empty now, which means that no transmission
occurs in the channel h1 → h0, making the instruction activation signal transfer along the lower weight path i1 → i2
(i.e., the instruction i2 will be activated in the next step). Thus, Cn1+1 = (0, n2, i2, n1).

• In the step n1 + 2, the instruction i2 is activated, making the channel h2 → h0 open to transmit exactly one virus from
the host h2 to the environment. Thus, Cn1+2 = (0, n2 − 1, i2, n1 + 1).

• Similarly, the instruction i2 will be activated repeatedly n2 times, sending all n2 viruses in h2 to the environment via
the channel h2 → h0, hence the configuration of the system becomes Cn1+n2+1 = (0, 0, i2, n1 + n2).

• In the step n1 + n2 + 2, the instruction i2 is activated. Because no transmission occurs in the channel h2 → h0, the
instruction activation signal transfers along the lower weight path i2 → i3, making the instruction i3 activate in the
next step. Thus, Cn1+n2+2 = (0, 0, i3, n1 + n2).

• In the step n1 +n2 +3, the instruction i3 is activated. In this step, no transmission occurs because no channel is attached
to i3. Given that out-degree(i3) = 0, no next instruction exists receiving activation signal, so Cn1+n2+3 = (0, 0, #, n1 +n2),
which is a halting configuration. Hence, the output of the system VMSum with input (n1, n2) is n1 + n2 (i.e., the number
of viruses sent to the environment along the computation is n1 + n2).



Table 1
The computation in VM Adder.

Step t Ins. a1,t a2,t ut et Config.

n1 n2 i1 0 C0

1 i1 n1 − 1 n2 i1 1 C1

. . . . . . . . . . . . . . . . . . . . .

n1 i1 0 n2 i1 n1 Cn1

n1 + 1 i1 0 n2 i2 n1 Cn1+1

n1 + 2 i2 0 n2 − 1 i2 n1 + 1 Cn1+2

. . . . . . . . . . . . . . . . . . . . .

n1 + n2 + 1 i2 0 0 i2 n1 + n2 Cn1+n2+1

n1 + n2 + 2 i2 0 0 i3 n1 + n2 Cn1+n2+2

n1 + n2 + 3 i3 0 0 # n1 + n2 Cn1+n2+3

Table 1 presents the computation in the VM Adder mentioned above, where et denotes the number of viruses sent to the 
environment up to instant t .

5. The universality of virus machines

In this section, we examine the computational power of VMs working in the computing mode. For each p, q, n ≥ 1, we
denote by NVM(p, q, n) the family of all subsets of N computed by Virus machines with at most p hosts, q instructions, 
and each host having at most n viruses in any instant of each computation; that is, NVM(p, q, n) ⊆ P(N). If one of the 
parameters p, q, n is not bounded, then it is replaced with ∗. In particular, NVM(∗, ∗, ∗) denotes the family of all subsets 
of natural numbers computed by virus machines. A non-restricted Virus Machine is a virus machine such that there is no 
restriction on the number of hosts, the number of instructions and the number of viruses contained in any host along any 
computation.

First, we prove that non-restricted virus machines working in the computing mode, are computationally complete; that 
is, they are able to compute all subsets of natural numbers which are Turing computable. In the proof of this result, we will 
simulate register machines working in the non-deterministic and generative form by means of virus machines with input 
working in computing mode.

Let us recall that a register machine is a tuple M = (m, H, l0, lh, I), where m ≥ 1 is the number of registers, H is a finite 
set of labels, l0 ∈ H is the starting label, lh ∈ H is the halting label (assigned to instruction HALT), I is the set of instructions 
bijectively labelled by elements of H , so each element from H labels only one instruction from I , thus precisely identifying 
it. The instructions of M can be of the following forms:

• l1 : (ADD(r), l2, l3), with l1 ∈ H \ {lh}, l2, l3 ∈ H , 1 ≤ r ≤ m (add 1 to register r and non-deterministically jump to one of
the instructions l2, l3).

• l1 : (SUB(r), l2, l3), with l1 ∈ H \ {lh}, l2, l3 ∈ H , 1 ≤ r ≤ m (if register r is non-empty, then decrease the value of register
r by one and jump to instruction l2; otherwise go to instruction l3).

• lh : HALT, with lh ∈ H (the halt instruction).

A configuration Ct of a register machine at an instant t is the following (m + 1)-tuple: (a1,t , . . . , am,t, lt), where ar,t , 1 ≤
r ≤ m, are natural numbers and lt ∈ H . The meaning is the following: ar,t is the value of register r at instant t and lt is the 
current label, which indicates the next instruction to be executed. All the computations start from the initial configuration
C0 = (0, . . . , 0, l0) (each register is empty – i.e., stores the number zero – and the first instruction to be executed is l0) 
and end up when reaching the halt instruction (a halting configuration is characterized by the following condition: the last 
component is lh). Then, the number n stored in the first register at a halting computation is said to be computed by M . 
It is known (see, e.g., [13]) that register machines generate/compute all sets of Turing computable numbers, hence they 
characterize the family NRE of Turing computable sets of natural numbers.

We have the following result.

Theorem 1. NVM(∗, ∗, ∗) = NRE.

Proof. It is obvious that NVM(∗, ∗, ∗) ⊆ NRE due to the universality of Turing machines and given that we assume the 
Turing-Church thesis. So it suffices to prove NRE ⊆ NVM(∗, ∗, ∗). For this purpose, let M = (m, H, l0, lh, I) be a register 
machine. To simulate M , we associate with it a virus machine VMM whose output region is the environment, in such a way 
that a natural number n is computed by M if and only if it is computed by VMM .

Each register r, 1 ≤ r ≤ m, in M , will be represented as a host hr in VMM . Particularly, the first host h1 in VMM represents 
the first register in M . Hence, simulating M means simulating each ADD instruction by a module of type VMADD , each SUB
instruction by a module of type VMSUB and then assembling the modules associated with the instructions in M . In addition, 
a module of type VMOUTPUT will be used to send all viruses in h1 to the environment.



Fig. 3. Module VMADDl1
simulating l1 : (ADD(r), l2, l3).

Module VMADDl1
simulating the ADD instruction l1 : (ADD(r), l2, l3).

Let VMADDl1
= (�, H, H1, I, D H , D I , GC , 0, 1, il1 , hout) be the virus machine with input of degree (2, 4, 1) if l2 �= l3, and of 

the degree (2, 3, 1) if l2 = l3, working in computing mode, defined as follows:

• � = {v}, H = {hr, h′}, H1 = {hr},
I = {il1 , il2 , il3 , i

′
l1
}, hout = h0.

• D H = ({h0, hr, h′}, E H , w H ), where
E H = {(hr, h′), (h′, hr)} and
w H (hr, h′) = 1, w H (h′, hr) = 2.

• D I = (I, E I , w I ), where
E I = {(il1 , i

′
l1
), (i′l1 , il2), (i′l1 , il3)} and

w I (il1 , i
′
l1
) = w I (i′l1 , il2) = w I (i′l1 , il3) = 1.

• GC = (I ∪ E H , EC ), where
EC = {{il1 , (h

′, hr)}, {i′l1 , (hr, h′)}}.

The Virus machine VMADDl1
is depicted in Fig. 3.

Let us see how VMADDl1
simulates the instruction l1 : (ADD(r), l2, l3). For each n ∈ N, the initial configuration of the

system VMADDl1
with input n is C0 = (n, 1, il1 , 0). The module computes as follows.

Firstly, the instruction il1 is activated, making the channel h′ 2−→ hr open to transmit a virus from h′ to hr . Note that 
the weight of the channel is 2, which means that the virus replicates itself while transmitting, so C1 = (n + 2, 0, i′l1 , 0).
Then, the instruction i′l1 is activated, making the channel hr → h′ open to transmit exactly one virus back to h′ . Therefore,
after two transition steps the number of viruses in host hr is increased by 1, while the number of viruses in host h′ remains 
unchanged, thus simulating the action that adds 1 to register r in M . Meanwhile, note that out-degree(i′l1 ) = 2, so the system
behaves non-deterministically, choosing between two instructions (i.e., il2 and il3 ) to activate, thus simulating the action of 
going to one of the instructions with labels l2, l3 in M , hence leading to C′

2 = (n + 1, 1, il2 , 0) or C′′
2 = (n + 1, 1, il3 , 0), 

respectively. Thus, after two computation steps, we have correctly simulated the instruction of type ADD as mentioned.

Module VMSUBl1
simulating the SUB instruction l1 : (SUB(r), l2, l3).

Let VMSUBl1
= (�, H, H1, I, D H , D I , GC , 0, 0, il1 , hout) be the virus machine with input of degree (2, 3, 1) if l2 �= l3, and of 

the degree (2, 2, 1) if l2 = l3, working in computing mode, defined as follows:

• � = {v}, H = {hr, h′′}, H1 = {hr},
I = {il1 , il2 , il3}, hout = h0.

• D H = ({ho, hr, h′′}, E H , w H ), where
E H = {(hr, h′′)} and w H (hr, h′′) = 1.

• D I = (I, E I , w I ), where
E I = {(il1 , il2), (il1 , il3)} and
w I (il1 , il2) = 2, w I (il1 , il3) = 1.

• GC = (I ∪ E H , EC ), where
EC = {{il1 , (hr, h′′)}}.

The Virus machine VMSUB is depicted in Fig. 4.
l1



Fig. 4. Module VMSUBl1
simulating l1 : (SUB(r), l2, l3).

Fig. 5. Module VMOUTPUT .

Let us see how VMSUBl1
simulates the instruction l1 : (SUB(r), l2, l3). For each n ∈ N, the initial configuration of the 

system VMSUBl1
with input n is C0 = (n, 0, i1, 0). The module computes as follows.

• If the host hr is nonempty (i.e., n �= 0), a virus will be transmitted between hr and h′′ via the channel hr → h′′ , so
that the number of viruses in host hr will be decreased by 1. Then, the instruction activation signal will transfer
along the higher weight path il1

2−→ il2 , which means that the instruction il2 will be activated in the next step. Thus,
C1 = (n − 1, 1, il2 , 0).

• If the host hr is empty (i.e., n = 0), then no virus transmission occurs, so the instruction activation signal will transfer
along the lower weight path il1 → il3 , making the instruction il3 activate in the next step. Thus, C1 = (0, 0, il3 , 0).

In this way, after one computation step, we have correctly simulated the instruction of type SUB as mentioned.

Module VMOUTPUT simulating the OUTPUT of the system.
Let VMOUTPUT = (�, H, H1, I, D H , D I , GC , 0, ilh , hout) be the virus machine with input of degree (1, 2, 1), working in com-

puting mode, defined as follows:

• � = {v}, H = {h1}, H1 = {h1},
I = {ilh , i#}, hout = h0.

• D H = ({h0, h1}, E H , w H ), where E H = {(h1, h0)} and w H (h1, h0) = 1.
• D I = ({ilh , i#}, E I , w I ), where

E I = {(ilh , ilh ), (ilh , i#)}
and w I (ilh , ilh ) = 2, w I (ilh , i#) = 1.

• GC = (I ∪ E H , EC ), where
EC = {{ilh , (h1, h0)}}.

The Virus machine VMOUTPUT is depicted in Fig. 5.
Let us see how the VMOUTPUT module performs its computations. For each n ∈ N, the initial configuration of the system

VMOUTPUT with input n is C0 = (n, ilh , 0). The module computes as follows.

• Firstly, the instruction ilh is activated. Then,
– If the host h1 is nonempty (i.e., n �= 0), a virus will be transmitted between h1 and the environment via the channel

h1 → h0, so that the number of viruses in h1 will be decreased by 1. Then, the instruction activation signal will



transfer along the higher weight path ilh
2−→ ilh , which means that the instruction ilh will be activated in the next 

step.
– If the host h1 is empty (i.e., n = 0), then no virus transmission occurs and the instruction activation signal will transfer

along the lower weight path ilh → i#, which means that the instruction i# will be activated in the next step. Given
that out-degree(i#) = 0 the second component of the next configuration will be # and the system VMOUTPUT halts in
the next step.

• The instruction ilh is activated repeatedly until host h1 is empty. Once it is empty, the next instruction will be i#, so that
Cn+1 = (0, i#, n). Then, the system halts with all n viruses having been transferred from host h1 to the environment.
Therefore, the halting configuration will be Cn+2 = (0, #, n).

In this way, the output of the system has been correctly produced.
Note that the same auxiliary host h′ can be used for all VMADD modules, and the same auxiliary host h′′ can be used for

all VMSUB modules. Even more, just one auxiliary node can be used in the whole system, with no interferences due to the 
fact that at most one communication channel can be opened during each computation step.

Finally, the virus machine VMM associated to the register machine M is the union of all modules of types VMADDl , 
VMSUBl′ and VMOUTPUT , for each ADD instruction l and for each SUB instruction l′ . The output region of this VMM is the 
environment. An important remark is needed: in the module associated with the instruction labelled by l0, the instruction 
il0 must be equal to i1; that is, instruction il0 will be the first instruction activated in the virus machine VMM . At the end 
of any computation in the virus machine VMM simulating a register machine M , the number of viruses present in host h1
will be equal to the number stored in the first register in M . These viruses are then sent by the module VMOUTPUT to the 
environment, which is the output region of VMM . Therefore, the theorem is proved. �
6. Bounded virus machines

In this Section, we try to consider a more “realistic” case of virus machines in which the number of viruses present in 
each host during any computation is bounded. This way, we obtain a bounded system, called bounded virus machine. Not 
very surprisingly, the computational power of such virus machines falls drastically.

Let us recall that SLIN is the family of semi-linear sets of natural numbers, which is a subset of P(N). In what follows, 
the fact that bounded virus machines working in computing mode characterize SLIN is proved.

Theorem 2. NVM(∗, ∗, n) = SLIN, for all n ≥ 2.

Proof. The proof of Theorem 2 is a consequence of the following three lemmas presented for auxiliary purposes:

Lemma 1. NVM(∗, ∗, n) ⊆ SLIN.

Lemma 2. For each a ≥ 0, d ≥ 1, the arithmetic progression with first term a and common difference d, {a + k · d | k ≥ 1}, is in 
NVM(3, 6, 2).

Lemma 3. Let p, q ≥ 1 and n ≥ 2, such that A1, A2 ∈ NVM(p, q, n). Then, A1 ∪ A2 ∈ NVM(p, q + 1, n).

Indeed, by Lemmas 2, 3, we can conclude that SLIN ⊆ NVM(∗, ∗, n). Combining with Lemma 1, Theorem 2 is proved. �
Proof of Lemma 1. Let � be a virus machine with a bound n on the number of viruses present in each host dur-
ing any computation. Let p be the number of hosts, and q the number of instructions. For each configuration Ct =
(a1,t, . . . , ap,t , ut, et), we denote by C�

t the tuple (a1,t, . . . , ap,t, ut). Given that a1,t , . . . , ap,t ≤ n and the number of in-
structions ut is less than or equal to q, we deduce that the number of possible tuples C�

t associated with config-
urations Ct reachable by � from an initial configuration C0 is finite. We denote by Reach(C0) the finite set {C�

t |
Ct is a configuration that is reachable from an initial configuration C0 in �}, and denote by Wout the set of weights of the 
channels which point to the environment (the output region).

We associate with each initial configuration C0 of � the right-linear grammar G = (N, T , A, R) defined as follows:

• N = Reach(C0).
• T = {v}.
• A = C0.
• R is the finite set of rules of the form:

– C�
t → C�

t+1, for C�
t , C�

t+1 ∈ Reach(C0) such that there is a transition Ct ⇒ Ct+1 in � during which no virus is sent to 
the environment.



Fig. 6. A VM generating an arithmetical progression.

– C�
t → vk C�

t+1, for k ∈ Wout and C�
t , C�

t+1 ∈ Reach(C0) such that there is a transition Ct ⇒ Ct+1 in � during which k
viruses are sent to the environment.

– C�
t → vk , for k ∈ Wout and C�

t ∈ Reach(C0) such that Ct is a halting configuration and there is a transition C ⇒ Ct in 
� during which k viruses are sent to the environment.

– C�
t → λ, for C�

t ∈ Reach(C0) such Ct is a halting configuration and there is a transition C ⇒ Ct in � during which no 
virus is sent to the environment.

The way of controlling the derivation guarantees that the set N(�) of natural numbers computed by the virus machine � is 
the length set of the regular language L(G). Hence, the set N(�) is semi-linear. Therefore, we conclude that NVM(∗, ∗, n) ⊆
SLIN. �
Proof of Lemma 2. Let �(a, d) = (�, H, I, D H , D I , GC , 1, 1, 0, i1, hout) be the virus machine of degree (3, 6), working in 
computing mode, defined as follows:

• � = {v}, H = {h1, h2, h3},
I = {i1, i2, i3, i4, i5, i6}, hout = h0.

• D H = ({h1, h2, h3, h0}, E H , w H ), where
E H = {(h1, h0), (h2, h3), (h3, h2), (h3, h0)},
w H (h1, h0) = a, w H (h3, h0) = d, w H (h2, h3) = 2, w H (h3, h2) = 1.

• D I = (I, E I , w I ), where
E I = {(i1, i2), (i2, i3), (i3, i2), (i5, i2), (i2, i4), (i4, i5), (i4, i6)},
w I (i1, i2) = w I (i3, i2) = w I (i5, i2) = w I (i2, i4) = w I (i4, i5) = w I (i4, i6) = 1, w I (i2, i3) = 2.

• GC = (V C , EC ), where V C = I ∪ E H and the set of edges is:
EC = {{i1, (h1, h0)}, {i2, (h2, h3)}, {i3, (h3, h0)}, {i5, (h3, h2)}}.

If a = 0, then we assume that (h1, h0) /∈ E H and {i1, (h1, h0)} /∈ EC .
The virus machine �(a, d), consisting of three hosts and six instructions, is depicted in Fig. 6.
The initial configuration of the system is C0 = (1, 1, 0, i1, 0), which means that both h1 and h2 contain exactly one virus, 

and h3 is empty. The system computes as follows:

(1) In the first step, the instruction i1 is activated, making the channel h1
a−→ h0 open to transmit the only virus in h1

to the environment. Note that the weight of the channel is a, which means that the virus will replicate itself while
transmitting, thus resulting in a viruses sent to the environment. Then, the instruction activation signal transfers along
the single path i1 → i2. Thus, the configuration of the system becomes C1 = (0, 1, 0, i2, a).

(2) In the second step, the instruction i2 is activated, making the only virus in h2 be transmitted to h3 via the channel
h2

2−→ h3. Note that the weight of the channel is 2, so h3 now contains 2 viruses and the instruction activation signal
transfers to i3 along the higher weight path i2

2−→ i3. Thus, C2 = (0, 0, 2, i3, a).
(3) In the third step, the instruction i3 is activated, making a virus from h3 be transmitted to the environment and replicate

itself while transmitting, making the number of viruses in h3 be decreased by one. Then, the instruction activation
signal transfers back to i2 along the single path i3 → i2, making i2 activate again. Thus, the configuration of the system
becomes C3 = (0, 0, 1, i2, a + d).



Fig. 7. The idea of the union construction.

(4) In the fourth step, the instruction i2 is activated, but now host h2 is empty, which means that no transmission occurs,
so the instruction activation signal transfers along the lower weight path i2 → i4. Thus, C4 = (0, 0, 1, i4, a + d).

(5) In the fifth step, the instruction i4 is activated, and no virus transmission occurs because no channel is attached to i4 .
Note that out-degree(i4) = 2, so the system behaves non-deterministically, choosing between two instructions (i.e., i5
and i6) to activate in the next step.
a. If the instruction activation signal transfers along the path i4 → i5, then C′

5 = (0, 0, 1, i5, a +d). Then, in the next step
i5 is activated, making the only virus in h3 be transmitted to h2. Thus, C′

6 = (0, 1, 0, i2, a + d). Then, the computation
proceeds in a similar way was in (2):
∗ C′

6 = (0, 1, 0, i2, a + d).
∗ C′

7 = (0, 0, 2, i3, a + d).
∗ C′

8 = (0, 0, 1, i2, a + 2d).
∗ C′

9 = (0, 0, 1, i4, a + 2d).
b. If the instruction activation signal transfers along the path i4 → i6, then C′′

5 = (0, 0, 1, i6, a +d). As out-degree(i6) = 0,
no next instruction exists receiving the activation signal, so the next configuration is C′′

6 = (0, 0, 1, #, a + d), a halting
configuration. The system has computed the number a + d.

In general at step 5 · k, for each k ≥ 1, we have the following:
– C′

5k−1 = (0, 0, 1, i4, a + k · d).
– C′

5k = (0, 0, 1, i5, a + k · d) or
C′′

5k = (0, 0, 1, i6, a + k · d).
– C′

5k+1 = (0, 1, 0, i2, a + k · d) or
C′′

5k+1 = (0, 0, 1, #, a + k · d)

(halting computation, the number computed is a + k · d).
– C′

5k+2 = (0, 0, 2, i3, a + k · d).
– C′

5k+3 = (0, 0, 1, i2, a + (k + 1) · d).
– C′

5k+4 = (0, 0, 1, i4, a + (k + 1) · d).

Therefore, the virus machine presented in Fig. 6 computes the arithmetic progression having first term a and common 
difference d, {a + k · d | k ≥ 1}. Besides, the number of viruses in each host during every instant of any computation is less 
than or equal to 2. �
Proof of Lemma 3. Let �1, �2 be two virus machines in NVM(p, q, n) generating sets of natural numbers A1, A2, respec-
tively. We construct a new virus machine � as presented in Fig. 7, where one more instruction is added for an auxiliary 
purpose.

The computation of the system starts with the activation of instruction i1. In the next step, instruction i(1)
1 or i(2)

1 will

be selected in a non-deterministic way. If instruction i(1)
1 is selected, then the subsystem �1 is enabled and, when this

subsystem halts, the result computed by the subsystem �1 will be sent to the environment. If instruction i(2)
1 is selected,

then the subsystem �2 is enabled and, when this subsystem halts, the result computed by the subsystem �2 will be sent 



to the environment. Therefore, a number is computed by the system presented in Fig. 7 if and only if that number belongs 
to the set A1 ∪ A2. �

Note that Lemma 3 holds true for arbitrary systems, not only for the bounded ones.

7. Conclusions and discussions

In this work, a new computational model called Virus Machine, based on the controlled transmissions and replications of
viruses, has been introduced. The dynamics of this system along time is inspired by the manner in which viruses transmit 
between hosts and replicate themselves. A virus machine can be represented as a heterogeneous network with three subnet-
works (virus transmission, instruction transfer, and instruction-channel control networks). The computational completeness 
of these systems has been studied. Specifically, it has been shown that they are equivalent in power to Turing machines 
when no restriction is imposed over the number of hosts, instructions or viruses present in each host at any instant of 
the computation. Nevertheless, if the number of viruses present in each host during any computation is limited, then these 
systems characterize the family of semi-linear sets of natural numbers.

To our knowledge, this work is a pioneer in this area. We conclude by proposing new open problems and lines of 
research in this computational paradigm.

First of all, considering the usual small universal register machines [9] studied by Korec (with 8 registers and 23 
instructions), one can immediately give an upper bound to the number of hosts and instructions required to compute 
non-semilinear sets of numbers. The question is, what is the lower bound?

Then, it is interesting to explore the ability of VMs to provide solutions, being efficient in some sense, for computationally 
hard problems. In particular, it would be important to be able to set frontiers of the tractability of problems in terms of 
syntactical ingredients of Virus Machines.

Thirdly, viruses, as we know, have various characteristics in reality. Some features were used in the VM model, while 
others were not, such as mutation. Taking more features of viruses into consideration may lead to new variants of VMs, and 
would be worth being discussed.

Last but not least, it would be interesting to incorporate the parallelism in virus machines through different possible 
mechanisms.

• In this work, it is assumed that each instruction is attached to at most one transmission channel. We might consider
the case in which an instruction could be attached to many different channels. In that case, when the instruction was
activated, there would be two possibilities: (a) only one channel might be chosen, in a non-deterministic way, to be
opened; (b) all channels connected with the instruction might be opened.

• In our approach, only one instruction is enabled in each computation step. A new variant may be considered as follows:
in each step, a nonempty set of control instructions could be chosen, so that all the instructions from this set would be
activated simultaneously, and then many channels could be opened at that instant. Then, viruses from different hosts
can be simultaneously transmitted.

Acknowledgements

The work is supported by National Natural Science Foundation of China (Grant nos. 61472333, 61370010, 61272152, 
61202011, 51405408 and 71103154), Ph.D. Programs Foundation of Ministry of Education of China (20120121120039).

References

[1] Leonard M. Adleman, Molecular computation of solutions to combinatorial problems, Science 266 (5187) (1994) 1021–1024.
[2] John Aycock, Computer Viruses and Malware, Springer, 2006.
[3] Yaakov Benenson, Tamar Paz-Elizur, Rivka Adar, Ehud Keinan, Zvi Livneh, Ehud Shapiro, Programmable and autonomous computing machine made of

biomolecules, Nature 414 (6862) (2001) 430–434.
[4] Francesco Bernardini, Marian Gheorghe, Cell communication in tissue P systems: universality results, Soft Comput. 9 (9) (2005) 640–649.
[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, An Introduction to Algorithms, The MIT Press, Cambridge, Massachusetts, 1994.
[6] Jürgen Dassow, Gheorghe Păun, On the power of membrane computing, J. UCS 5 (2) (1999) 33–49.
[7] Nigel J. Dimmock, Andrew J. Easton, Keith Leppard, Introduction to Modern Virology, Blackwell Pub., Malden, MA (USA), 2007.
[8] Mihai Ionescu, Gheorghe Păun, Takashi Yokomori, Spiking neural P systems, Fund. Inform. 71 (2) (2006) 279–308.
[9] Ivan Korec, Small universal register machines, Theoret. Comput. Sci. 168 (2) (1996) 267–301.

[10] Lila Kari, Gheorghe Păun, Grzegorz Rozenberg, Arto Salomaa, Sheng Yu, DNA computing, sticker systems, and universality, Acta Inform. 35 (5) (1998)
401–420.

[11] Xiangrong Liu, Zimin Li, Juan Liu, Logan Liu, Xiangxiang Zeng, Implementation of arithmetic operations with time-free spiking neural P systems, IEEE
Trans. NanoBiosci. 14 (6) (2015) 617–624.

[12] Xiangrong Liu, Juan Suo, Stephen C.H. Leung, Juan Liu, Xiangxiang Zeng, The power of time-free tissue P systems: attacking NP-complete problems,
NeuroComputing 159 (2015) 151–156.

[13] Marvin L. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, Inc., 1967.
[14] Yunyun Niu, Linqiang Pan, Mario J. Pérez-Jiménez, Miquel Rius Font, A tissue P systems based uniform solution to tripartite matching problem, Fund.

Inform. 109 (2) (2011) 179–188.

http://refhub.elsevier.com/S0304-3975(15)01145-7/bib61646C656D616E313939346D6F6C6563756C6172s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib636F6D70757465725F76697275735F6D616C77617265s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib62656E656E736F6E3230303170726F6772616D6D61626C65s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib62656E656E736F6E3230303170726F6772616D6D61626C65s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib6265726E617264696E693230303563656C6Cs1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib636F726D656Es1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib706F7765725F6F665F6D656D6272616E655F636F6D707574696E67s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib6D6F6465726E5F7669726F6C6F6779s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib736E70s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib736D616C6C5F756E6976657273616C5F72656769737465725F6D616368696E6573s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib6B61726931393938646E61s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib6B61726931393938646E61s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib6C697532303135746E6273s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib6C697532303135746E6273s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib6C6975323031356E6575726Fs1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib6C6975323031356E6575726Fs1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib626F6F6B5F636F6D7075746174696F6E5F66696E665F6D616368696E6573s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib6E697532303131746973737565s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib6E697532303131746973737565s1


[15] Leandro Nunes de Castro, Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications, CRC, 2006.
[16] Linqiang Pan, Carlos Martín-Vide, Solving multidimensional 0–1 knapsack problem by P systems with input and active membranes, J. Parallel Distrib.

Comput. 65 (12) (2005) 1578–1584.
[17] Linqiang Pan, Mario J. Pérez-Jiménez, Computational complexity of tissue-like P systems, J. Complexity 26 (3) (2010) 296–315.
[18] Gheorghe Păun, DNA computing based on splicing: universality results, Theoret. Comput. Sci. 231 (2) (2000) 275–296.
[19] Gheorghe Păun, Computing with membranes, J. Comput. System Sci. 61 (1) (2000) 108–143.
[20] Grzegorz Rozenberg, Thomas Bäck, Joost N. Kok, Handbook of Natural Computing, Springer, 2012.
[21] Xiangxiang Zeng, Linqiang Pan, Mario J. Pérez-Jiménez, Small universal simple spiking neural P systems with weights, Sci. China Inf. Sci. 57 (9) (2014)

1–11.
[22] Xiangxiang Zeng, Lei Xu, Xiangrong Liu, Linqiang Pan, On languages generated by spiking neural P systems with weights, Inform. Sci. 278 (2014)

423–433.
[23] Xiangxiang Zeng, Xingyi Zhang, Tao Song, Linqiang Pan, Spiking neural P systems with thresholds, Neural Comput. 26 (7) (2014) 1340–1361.
[24] Xingyi Zhang, Linqiang Pan, Andrei Păun, On universality of axon P systems, IEEE Trans. Neural Netw. Learn. Syst. 26 (11) (2015) 2816–2829.
[25] Xingyi Zhang, Ye Tian, Yaochu Jin, A knee point driven evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput. 19 (6) (2015)

761–776.
[26] Xingyi Zhang, Ye Tian, Ran Cheng, Yaochu Jin, An efficient approach to non-dominated sorting for evolutionary multi-objective optimization, IEEE Trans.

Evol. Comput. 19 (2) (2015) 201–213.
[27] Xingyi Zhang, Xiangxiang Zeng, Bin Luo, Linqiang Pan, On some classes of sequential spiking neural P systems, Neural Comput. 26 (5) (2014) 974–997.

http://refhub.elsevier.com/S0304-3975(15)01145-7/bib626F6F6B5F66756E64616D656E74616C5F6E61747572616C5F636F6D707574696E67s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib6D756C746964696D656E73696F6E616C5F30315F6B6E61707361636Bs1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib6D756C746964696D656E73696F6E616C5F30315F6B6E61707361636Bs1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib7469737375655F6C696B655F705F73797374656Ds1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib707561756E32303030646E61s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib707561756E32303030636F6D707574696E67s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib626F6F6B5F68616E64626F6F6B5F6E61747572616C5F636F6D707574696E67s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib7A656E6732303134736D616C6Cs1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib7A656E6732303134736D616C6Cs1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib7A656E6732303134696E666Fs1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib7A656E6732303134696E666Fs1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib7A656E67323031346E65636Fs1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib7A68616E6732303135746E6E6C73s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib7A68616E67323031357465766331s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib7A68616E67323031357465766331s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib7A68616E67323031357465766332s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib7A68616E67323031357465766332s1
http://refhub.elsevier.com/S0304-3975(15)01145-7/bib7A68616E67323031346E65636Fs1

	Computing with viruses
	1 Introduction
	2 Preliminaries
	2.1 Sets
	2.2 Alphabets and languages
	2.3 Grammars
	2.4 Graphs

	3 Virus machines
	4 An example of virus machine
	5 The universality of virus machines
	6 Bounded virus machines
	7 Conclusions and discussions
	Acknowledgements
	References




