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Abstract. Fuzzy Reasoning Spiking Neural P systems (FRSN P sys-
tems, for short) is a variant of Spiking Neural P systems incorporating
fuzzy logic elements that make it suitable to model fuzzy diagnosis knowl-
edge and reasoning required for fault diagnosis applications. In this sense,
several FRSN P system variants have been proposed, dealing with real
numbers, trapezoidal numbers, weights, etc. The model incorporating
real numbers was the first introduced [13], presenting promising applica-
tions in the field of fault diagnosis of electrical systems. For this variant,
a matrix-based algorithm was provided which, when executed on par-
allel computing platforms, fully exploits the model maximally parallel
capacities. In this paper we introduce a P-Lingua framework extension
to parse and simulate FRSN P systems with real numbers. Two simu-
lators, implementing a variant of the original matrix-based simulation
algorithm, are provided: a sequential one (written in Java), intended to
run on traditional CPUs, and a parallel one, intended to run on CUDA-
enabled devices.
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1 Introduction

Membrane computing is a branch of natural computing, which takes inspira-
tion from the structure and functioning of living cells to provide parallel and 
distributed computational models, called membrane systems or P systems.

P systems were first introduced in [15], and many variants were subsequently 
developed, which can be divided into three categories: cell-like systems, inspired 
by the hierarchical membrane structure of eukaryotic cells [15]; tissue-like sys-
tems, inspired by the way in which cells organize and communicate within a 
net-like structure in tissues [8]; and neural-like systems, inspired by the way in



which the neurons in the brain exchange information by means of the propa-
gation of spikes [5]. Models belonging to this last variant are collectively called
Spiking Neural P systems (SN P systems, for short).

An SN P system consists of a set of neurons placed as nodes of a directed
graph (called the synapse graph). Each neuron contains a number of copies of a
single object type, the spike. Rules are assigned to neurons to control the way
information flows between connected neurons. Two kinds of rules are considered:
firing/spiking rules and forgetting rules. By applying a firing/spiking rule, some
spikes are consumed and new spikes are produced. Produced spikes are sent to all
neurons linked to the neuron executing the rule. By applying a forgetting rule,
spikes are removed from neurons. SN P systems usually work in synchronous
mode, where a global clock is assumed. In each time unit, for each neuron,
only one of the applicable rules is non-deterministically selected to be executed.
Execution of rules takes place in parallel amongst all neurons of the system.

SN P systems have become really popular within the Membrane Computing
community and extensive work has been conducted to study their properties and
produce new variants. For instance, it has been proved that these systems are
computational complete (equivalent in power to Turing machines) when consid-
ered as number computing devices [5], used as language generators [2,3], or to
compute functions [14]. Different kinds of asynchronous “working modes” have
been also addressed [12,16,17]. In what concerns to produce new variants of the
model, this has involved incorporating new elements such as weights [19], anti-
spikes [9], extended rules [16], budding and division rules [10] and astrocytes
[1,7,11], among other examples.

In [13] a new SN P systems variant, called FRSN P systems, was intro-
duced, incorporating fuzzy logic elements. The motivation of this variant was
to bring together desirable features (understandable, dynamical, synchronized,
non-linear, non-deterministic, able to handle incomplete and uncertain informa-
tion) to model diagnosis knowledge and reasoning in the field of fault diagnosis.
To accomplish this, new ingredients were added to extend original SN P sys-
tems: three types of neurons (proposition neurons, AND-type and OR-type rule
neurons), fuzzy truth values (modelled by means of real numbers) and a new
firing mechanism. Also, a matrix-based algorithm was provided, suitable to be
executed on parallel computing platforms, and thus able to fully exploit the
model maximally parallel capacities. Applications of this new model have been
related to fault diagnosis on electrical systems so far [13,21]. Variants have also
appeared since the model introduction, for instance dealing with trapezoidal
numbers [22,23] and weights [20], with applications to power systems fault diag-
nosis.

Due to the promising applications of FRSN P systems, it becomes inter-
esting to provide the corresponding simulators, thus favouring research on this
model within Membrane Computing community as well as in applied fields. In
this paper we introduce support for FRSN P systems with real numbers into
P-Lingua [4,28] framework. P-Lingua consist of a general programming lan-
guage for P systems called P-Lingua itself and a Java [26] based open source



library called pLinguaCore. In particular, P-Lingua language provides a com-
mon syntax for specifying P systems variants, with pLinguaCore provides both
parsers and simulators for such variants. The notable variety of supported mod-
els (see [28] for a list of related publications) contributed to make P-Lingua
widely used among members of the Membrane Computing community, turning
its specification language into a sort of standard.

Developing FRSN P systems support has involved designing a specific parser
(since with respect to P-Lingua, FRSN P systems are considered a “separated”
variant of SN P systems), a simulation algorithm (which is a variation of the one
introduced in [13]) and the corresponding simulators. The provided simulation
algorithm is a matrix-based one. As such is susceptible to being executed on
parallel platforms, specially intended to work in simultaneously with hundreds
to millions of data stored in matrices. In this way, it can take advantage of the
corresponding execution speedup. Indeed, GPUs have been successfully used to
accelerate well-known linear algebra libraries, such as MKL BLAS and LAPACK.
Specifically, NVIDIA GPUs are able to execute scientific applications through
CUDA [6], harnessing the highly parallel architecture within them (featuring up to
3000 computing cores). In this sense, CUDA offers special linear algebra libraries
such as cuBLAS and CULA tools, delivering up to 17× of speedups for some appli-
cations [24]. Therefore, along with a Java sequential simulator, a parallel one has
been developed intended to be able to run on the majority of CUDA-compatible
[24] devices. This last simulator works by means of a JAVA-CUDA binding provided
by the open source JCUDA [27] library, available for Windows, Linux, MacOS and
other operating systems.

This paper is structured as follows. Section 2 is devoted to recall the basic
ingredients of FRSN P systems with real numbers. In Sect. 3, a P-Lingua syntax
for such variant is introduced. Section 4 is devoted to simulation aspects: the new
matrix-based simulation algorithm is introduced, and invoking the sequential
and parallel simulators is discussed. Also, compatibility and performance of the
parallel simulator is addressed. Section 5 covers conclusions and future work.

2 Fuzzy Reasoning Spiking Neural P Systems with Real
Numbers

In what follows, we recall FRSN P systems with real numbers, which consti-
tute an extension of SN P systems. As new ingredients, three types of neurons
(proposition neurons, AND-type and OR-type rule neurons), and elements from
the fuzzy logic such as fuzzy truth values are incorporated, as well as a new firing
mechanism defined after such fuzzy logic elements. FRSN P systems with real
numbers can model and visualize fuzzy production rules in a diagnosis knowl-
edge base due to their graphical nature. Combination of neuron’s new firing
mechanism and fuzzy logic ensures to automatically accomplish dynamic fuzzy
reasoning. FRSN P systems with real numbers can be defined as follows (an
extensive description of this model can be found at [13]):



Definition 1. A FRSN P system Π with real numbers of degree (l, q, n, k), with
l, k ≥ 1, q ≥ 0 and n ≥ l+q+1, is a tuple of the form (A, σ1, . . . , σn+k, syn, I,O),
where

(1) A={a} is the singleton alphabet (the object a is called spike);
(2) σ1, . . . , σn+k are neurons, of the form σi=(αi, τi, ri), 1 ≤ i ≤ n + k, where

(�) αi ∈ [0, 1] and it is called the (potential) value of spike contained in
neuron σi (also called pulse value);

(�) τi ∈ [0, 1] is the truth value associated with neuron σi;
(�) ri is a firing/spiking rule contained in neuron σi, of the form E/aα → aβ,

where α, β ∈ [0, 1].
(3) syn ⊆ {1, . . . , n + k} × {1, . . . , n + k} with i �= j for all (i, j) ∈ syn, 1 ≤

i, j ≤ n + k (synapses between neurons);
(4) I = {σ1, . . . , σl} is the set of the input neurons that verifies the following:

for each σ ∈ I, indegree(σ) = 0.
(5) O = {σl+q+1, . . . , σn} is the set of the output neurons that verifies the fol-

lowing: for each σ ∈ O, outdegree(σ) = 0.
(6) Neurons σl+1, . . . , σl+q are called internal neurons.

FRSN P systems with real numbers constitute an extension of SN P systems
in the following way (we refer to [13] for more details):

– There are two types of neurons: proposition neurons (associated with propo-
sitions in a fuzzy knowledge base) and rule neurons (associated with fuzzy
production rules with AND/OR-type antecedent part). Specifically, system
Π has n proposition neurons σ1, . . . , σn and k rule neurons σn+1, . . . , σn+k.
Rule neurons are classified into two classes: AND-type rule neuron and OR-
type rule neuron.

proposition neurons

σ1, . . . , σl
︸ ︷︷ ︸

input neurons

, σl+1, . . . , σl+q
︸ ︷︷ ︸

internal neurons

, σl+q+1, . . . , σn
︸ ︷︷ ︸

output neurons

,
rule neurons

σn+1, . . . , σn+k

– Content of neuron σi is denoted by a fuzzy truth value αi ∈ [0, 1] which can be
interpreted as the (potential) value of spike from the view point of biological
neurons. For a neuron σi, if αi > 0, we say the neuron contains a spike with
(potential) value αi; otherwise, the neuron contains no spike.

– Given that each neuron is associated with either a fuzzy proposition or a fuzzy
production rule, the value τi ∈ [0, 1] will be used to express the truth value of
the fuzzy proposition or confidence factor of the fuzzy production rule.

– Each neuron σi contains only one firing/spiking rule ri, which has the form
E/aα → aβ , where E = an and n ∈ IN is the number of input synapses
from other neurons to the neuron. The condition E = an indicates that if σi

receives n spikes the firing/spiking rule can be applied; otherwise the rule is
not enabled. When the number of spikes received by a neuron is less than n,
value of the spikes received will be updated according to logical AND or OR
operations.



– The firing mechanism of neurons can be described as follows. For neuron σi,
if its firing rule E/aα → aβ can be applied, this means that its pulse value
α > 0 is consumed, the neuron fires, and then it produces a spike with value
β: all neurons σj with (i, j) ∈ syn will immediately receive the spike. Each
kind of neurons use different ways to handle both α and β.

It is worth pointing out that fuzzy production rules of a fuzzy diagnosis
knowledge base can be mapped into a FRSN P system model (again, we refer
the reader to [13] for more details).

3 P–Lingua Syntax for FRSN P Systems with Real
Numbers

In what follows we discuss an extension of the P-Lingua syntax to specify
FRSN P systems with real numbers. Let us stress the fact that, with respect
to P-Lingua, this variant is considered as separate model from SN P systems.

Definition of P system model

In order to define a FRSN P systems with real numbers, the first line of the
P-Lingua file should be as follows:

@model<fuzzy psystems> .

Main module specification

In P-Lingua, instructions are organized into modules, except for global variables
definitions, that are placed outside any module. At least a module is required,
which is called main, at is the entry point to the P-Lingua model specification.
The syntax to define this module is the following:

def main { /* instructions are placed here */ } ,

Specification of the fuzzy variant

In order to specify the kind of FRSNPS, the following sentence must be written
(it has to be the first sentence in the model specification):

@fvariant = v; ,
where v is a positive integer specifying the variant. In the case of FRSN P
systems with real numbers, v must set to 1, hence @fvariant = 1;.

Specification of the sequential/parallel execution (experimental)

If the model is to be simulated on a CUDA parallel platform, the following sentence
must be written below the @fvariant sentence:

@parallel; .
If this sentence is not included, a sequential simulation is performed. This way
of specifying the sequential/parallel execution is experimental, and may change
in future versions of P-Lingua.



Specification of proposition neurons

In order to specify the proposition neurons present in the system, the following
sentence must be written:

@mu = p1,...,pi,...,pn; ,
where pi is the label of the ith proposition neuron.

Specification of input proposition neurons
In order to specify the input proposition neurons present in the system, the
following sentence must be written:

@min = pi1,...,piq,...,pis; ,
where piq is the label of the qth input proposition neuron, and must correspond
to a proposition neuron defined in the @mu instruction.

Specification of output proposition neurons

In order to specify the output proposition neurons present in the system, the
following sentence must be written:

@mout = po1,...,pow,...,pod; ,
where pow is the label of the wth output proposition neuron, and must corre-
spond to a proposition neuron defined in the @mu instruction.

Specification of rule neurons

In order to specify the rule neurons present in the system, the following sentence
must be written: @frule(...); . This sentence format depends on the kind of
fuzzy production rule being modelled. The following cases are possible:

– Simple rules of the form Ri : IF pj THEN pk (CF = τi) are written as

@frule(Ri,taui,pj,pk); .

– Type-1 composite rules (AND rules) of the form Ri : IF p1 AND p2 AND ...
AND pk−1 THEN pk (CF = τi) are written as

@frule(Ri,taui,@fand(p1,p2,...,pk-1),pk); .

– Type-2 composite rules of the form Ri : IF p1 THEN p2 AND p3 AND ...
AND pk (CF = τi) are written as

@frule(Ri,taui,p1,(p2,p3,...,pk)); .

– Type-3 composite rules (OR rules) of the form Ri : IF p1 OR p2 OR ... OR
pk−1 THEN pk (CF = τi) are written as

@frule(Ri,taui,@for(p1,p2,...,pk-1),pk); .

Next we illustrate the syntax presented above with the specification the FRSN
P systems with real numbers exemplified in [13].



@model<fuzzy_psystems>

def main()
{
@fvariant = 1;
@parallel;

@mu = p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14;

@fpin = (p1,0.8),(p2,0.2),(p3,0.8),(p4,0.8),(p5,0.9),
(p6,0.8),(p7,0.2),(p8,0.9),(p9,0.1),(p10,0.2);

@fpout = p11,p12,p13,p14;

@frule(r1,0.8,@fand(p1,p2),p11);
@frule(r2,0.8,@fand(p3,p4,p5,p6),p12);
@frule(r3,0.8,@fand(p5,p7,p8,p9),p13);
@frule(r4,0.8,@fand(p4,p5,p10),p14);
}

In this example, a parallel simulation is performed.

4 Simulating FRSN P Systems with Real Numbers

In this Section we present a matrix-based simulation algorithm for simulating
FRSN P systems with real numbers (a modified version from the one shown in
[13]) and we discuss on simulation of such systems into P-Lingua framework.
Two simulators are provided, a sequential one (written in Java), intended to run
on traditional CPUs, and a parallel one, able to be executed on CUDA-enabled
GPUs. This last simulator works by means of a JAVA-CUDA binding provided by
the open source JCUDA library, available for Windows, Linux, MacOS and other
operating systems.

4.1 Simulation Algorithm

In what follows, we introduce a simulation algorithm for FRSN P systems with
real numbers. In general, simulation algorithms capture semantics of the simu-
lated models, reproducing one or many of the associated computations. In the
case of FRSN P systems with real numbers, since these systems are deterministic
(and thus confluent), providing an algorithm reproducing a single computation
is enough. The algorithm that we are presenting is a revised version of the one
introduced in [13], which re-defines the matrix-based functions and operations
as well as provides an alternative way to compute fuzzy truth values for rule
neurons. As it is a matrix-based algorithm, it is specially suitable to run on
parallel platforms such a CUDA systems.



Before presenting the simulation algorithm, let us introduce some required
notations, operations and functions, which closely follows from [13].

Let Π = (A, σ1, . . . , σn+k, syn, I,O) be a FRSN P system with real numbers
modelling all fuzzy production rules in a fuzzy knowledge base. Then, we can
consider the following:

1. The set of neurons σ = (σ1, . . . , σn+k), composed of n proposition neurons
and k rule neurons;

2. The set of n proposition neurons σp = (σp1, . . . , σpn);
3. The set of k rule neurons σr = (σr1, . . . , σrk), with each of them being either

an AND-type or OR-type rule neuron;
4. The set I = {σpi1 , . . . , σpis

}, of input proposition neurons, corresponding to
fuzzy proposition neurons which fuzzy truth values are known;

5. The set O = {σro1 , . . . , σrod
}, of output proposition neurons, corresponding

to fuzzy proposition neurons which fuzzy truth values are unknown and to
be determined;

Let us consider the following vector and matrix notations:

1. U = (ui,j)n×k is a binary matrix, where ui,j ∈ {0, 1}, defined as follows:

ui,j =
{

1 if there is a directed arc from σpi to σrj ;
0 otherwise;

2. V = (vi,j)n×k is a binary matrix, where vi,j ∈ {0, 1}, defined as follows:

vi,j =
{

1 if there is a directed arc from σrj to σpi;
0 otherwise;

3. Λ = diag(τr1, . . . , τrk) is a diagonal real matrix, where τrj represents the
confidence factor of the j th production rule, which is associated with rule
neuron σrj ;

4. H1 = diag(h1, . . . , hk) is a diagonal binary matrix, defined as follows:

hj =
{

1 if the jth rule neuron σrj is an AND-type neuron;
0 otherwise;

5. H2 = diag(h1, . . . , hk) is a diagonal binary matrix, defined as follows:

hj =
{

1 if the jth rule neuron σrj is an OR-type neuron;
0 otherwise;

6. αp = (αp1, . . . , αpn)T is a truth value vector, where αpi ∈ [0, 1] represents
the truth value of ith proposition neuron σpi;

7. αr = (αr1, . . . , αrk)T is a truth value vector, where αrj ∈ [0, 1] represents
the truth value of j th rule neuron σrj ;

8. ap = (ap1, . . . , apn)T is an integer vector, where api represents the number
of spikes received by the ith proposition neuron σpi;



9. ar = (ar1, . . . , ark)T is an integer vector, where arj represents the number
of spikes received by the j th rule neuron σrj ;

10. λp = (λp1, . . . , λpn)T is an integer vector, where λpi represents the number
of spikes required to fire the ith proposition neuron σpi;

11. λr = (λr1, . . . , λrk)T is an integer vector, where λrj represents the number
of spikes required to fire the j th rule neuron σrj ;

12. βp = (βp1, . . . , βpn)T is a truth value vector, where βpi ∈ [0, 1] represents the
truth value exported by the ith proposition neuron σpi after firing;

13. βr = (βr1, . . . , βrk)T is a truth value vector, where βrj ∈ [0, 1] represents the
truth value exported by the j th rule neuron σrj after firing;

14. bp = (bp1, . . . , bpn)T is an integer vector, where bpi ∈ {0, 1} represents the
number of spikes exported by the ith proposition neuron σpi after firing;

15. br = (br1, . . . , brk)T is an integer vector, where brj ∈ {0, 1} represents the
number of spikes exported by the j th rule neuron σrj after firing;

16. op = (op1, . . . , opn)T is a binary vector, where opi ∈ {0, 1}, defined as follows:

opi =
{

1 if outdegree(σpi) > 0;
0 otherwise;

17. or = (or1, . . . , ork)T is a binary vector, where orj ∈ {0, 1}, defined as follows:

orj =
{

1 if outdegree(σrj) > 0;
0 otherwise;

Let us consider the following matrix functions:

1. diag: D = diag(b), where D = (di,j) is a f × f diagonal real matrix and
b = (b1, . . . , bf ) a real vector, such that

di,j =
{

bi if i = j
0 if i �= j

, 1 ≤ i, j ≤ f ;

2. fire: β = fire(α, a, λ, o), where β = (β1, . . . , βf )T , α = (α1, . . . , αf )T , a =
(a1, . . . , af )T , λ = (λ1, . . . , λf )T , o = (o1, . . . , of )T , such that

βi =

⎧

⎨

⎩

0 if ai < λi

αi if ai = λi ∧ oi = 0
0 if ai = λi ∧ oi = 1

, 1 ≤ i ≤ f ;

3. update: β = update(α, a, λ, o), where β = (β1, . . . , βf )T , α = (α1, . . . , αf )T ,
a = (a1, . . . , af )T , λ = (λ1, . . . , λf )T , o = (o1, . . . , of )T , such that

βi =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

0 if ai = 0
αi if 0 < ai < λi

0 if ai = λi ∧ oi = 0
αi if ai = λi ∧ oi = 1

, 1 ≤ i ≤ f ;



Let us consider the following matrix operations:

1. ⊕ : C = A ⊕ B, where A,B,C are f × g matrices whose elements are non-
negative real numbers, such that

ci,j =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

0 if ai,j = 0 ∧ bi,j = 0
bi if ai,j = 0 ∧ bi,j > 0
ai if ai,j > 0 ∧ bi,j = 0
max{ai,j , bi,j} if ai,j > 0 ∧ bi,j > 0

, 1 ≤ i ≤ f, 1 ≤ j ≤ g;

2. 
 : C = A 
 B, where A,B,C are f × g matrices whose elements are non-
negative real numbers, such that

ci,j =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

0 if ai,j = 0 ∧ bi,j = 0
bi if ai,j = 0 ∧ bi,j > 0
ai if ai,j > 0 ∧ bi,j = 0
min{ai,j , bi,j} if ai,j > 0 ∧ bi,j > 0

, 1 ≤ i ≤ f, 1 ≤ j ≤ g;

3. ⊗ : C = A ⊗ B, where A,B,C are f × g, g × h, f × h, matrices respectively,
whose elements are non-negative real numbers, such that

Si,j = {ai,l · bl,j , 1 ≤ l ≤ g} \ {0}, 1 ≤ i ≤ f, 1 ≤ j ≤ h;

ci,j =
{

0 if |Si,j | = 0
max Si,j if |Si,j | > 0 , 1 ≤ i ≤ f, 1 ≤ j ≤ h;

4. � : C = A � B, where A,B,C are f × g, g × h, f × h, matrices respectively,
whose elements are non-negative real numbers, such that

Si,j = {ai,l · bl,j , 1 ≤ l ≤ g} \ {0}, 1 ≤ i ≤ f, 1 ≤ j ≤ h;

ci,j =
{

0 if |Si,j | = 0
minSi,j if |Si,j | > 0 , 1 ≤ i ≤ f, 1 ≤ j ≤ h;

Finally, we introduce the matrix-based simulation algorithm for FRSN P
systems with real numbers.

FRSN P systems with real numbers simulation algorithm

– INPUT:
• U, V, Λ,H1,H2, λp, λr;

• α0
p = (α0

p1, . . . , α
0
pn), with α0

pi =
{

τpi if σpi ∈ I, τpi is the CF of σpi;
0 otherwise;

• a0
p = (a0

p1, . . . , a
0
pn), with a0

pi =
{

1 ifσpi ∈ I;
0 otherwise;

– OUTPUT:
• αpout = (αpi1 , . . . , αpis

)T , the vector containing the fuzzy truth values of
proposition neurons in O.



Step 1. Let α0
r = (0, . . . , 0)T , a0

r = (0, . . . , 0)T .

Step 2. Let t = 0.

Step 3. Do:
(1) Prepare firing of proposition neurons.

∗ βt
p = fire

(

αt
p, a

t
p, λp, op

)

.
∗ bt

p = fire
(

1, at
p, λp, op

)

.
∗ αt

p = update
(

αt
p, a

t
p, λp, op

)

.
∗ at

p = update
(

at
p, a

t
p, λp, op

)

.
∗ Bt

p = diag
(

bt
p

)

.
(2) Prepare firing of rule neurons.

∗ βt
r = fire

(

αt
r, a

t
r, λr, or

)

.
∗ bt

r = fire
(

1, at
r, λr, or

)

.
∗ αt

r = update
(

αt
r, a

t
r, λr, or

)

.
∗ at

r = update
(

at
r, a

t
r, λr, or

)

.
∗ Bt

r = diag
(

bt
p

)

.
(3) Update truth values and received spikes for proposition neurons.

∗ αt+1
p = αt

p ⊕
(

(V · Bt
r) ⊗ βt

r

)

.

∗ at+1
p = at

p +
(

(V · Bt
r) · bt

r

)

.
(4) Update truth values and received spikes for rule neurons.

∗ αt+1
r = H1 ·

[

αt
r 


(

(Bt
p ·U)T �βt

p

)]

+H2 ·
[

αt
r ⊕

(

(Bt
p ·U)T ⊗βt

p

)]

.

∗ at+1
r = at

r +
(

(Bt
p · U)T · bt

p

)

.

Step 4. Check termination condition. If the following conditions hold:
(a) at+1

r = (0, 0, . . . , 0)T ;

(b) ap = (ap1, . . . , apn)T , with: api =
{

1 if opi = 1
0 otherwise , 1 ≤ i ≤ n;

then HALT, otherwise go to Step 3.

4.2 P-Lingua Simulators for FRSN P Systems with Real Numbers

In [4], a Java library called pLinguaCore was presented, with this package being
released under GPL [25] license. The library provides parsers to handle input
files, built–in simulators to generate P system computations and is able to export
several output file formats that represent P systems. In what follows, we detail
how to invoke the brand new built–in simulators for FRSN P systems with
real numbers. Two simulators are provided, a sequential one (written in Java),
running on traditional CPUs, and a parallel one, able to run on CUDA-enabled
devices. The parallel simulator uses a CUDA kernel in which threads compute
the results of the different matrix-based operations executed in the simulation
algorithm described above. This paper version of pLinguaCore library can be
found at www.p-lingua.org/mecosim/.

http://www.p-lingua.org/mecosim/


Invoking the Sequential Simulator. Invoking the sequential simulator
requires for the system to host a Java runtime environment properly installed and
configured. The Java runtime can be found at https://java.com/es/download/.
Also, the following directory structure must be created:

plingua/
plinguacore.jar
input.pli

The plingua directory contains all the required files to run the simulation.
Files description follows:

– plinguacore.jar file hosts the pLinguaCore library.
– input.pli file hosts the FRSN P systems with real numbers model to simu-

late.

Once the files are ready, to invoke the simulator a system console must be
opened and the following command has to be executed from the plingua direc-
tory:

java -jar plinguacore.jar plingua_sim -pli input.pli -o output.txt

This will produce an output file named output.txt in plingua directory
where information about the parser process and the generated computation is
stored.

Invoking the Parallel Simulator. Invoking the parallel simulator requires for
the system to host both a Java runtime environment and a CUDA-enabled GPU
device, with the corresponding NVIDIA driver with CUDA support and the CUDA
Toolkit properly installed and configured. The NVIDIA software can be found
at https://developer.nvidia.com/cuda-downloads. In order to interface the Java
pLinguaCore library with the CUDA platform, a JAVA-CUDA binding is required,
which is provided by the JCUDA library. In the present paper, version 0.6.5 of such
library is used, as well as version 0.0.4 of JCudaUtils library, which contains a
series of utility methods used by JCUDA library. Both of them can be found at
http://www.jcuda.org/. Also, the following directory structure must be created:

plingua/
plinguacore.jar
input.pli
kernelReal.cu
jcudaUtils-0.0.4.jar
jcuda-0.6.5/

*** jcuda-0.6.5 library files ***

The plingua directory contains all the required files to run the simulation.
Files description follows:

https://java.com/es/download/
https://developer.nvidia.com/cuda-downloads
http://www.jcuda.org/


– plinguacore.jar file hosts the pLinguaCore library.
– input.pli file hosts the FRSN P systems with real numbers model to simu-

late.
– kernelReal.cu file hosts the CUDA kernel corresponding to the parallel

implementation.
– jcudaUtils-0.0.4.jar file hosts JCudaUtils library.
– jcuda-0.6.5 folder hosts the contents of the zip file corresponding to the

0.6.5 version of JCUDA library.

Once the files are ready, to invoke the simulator a system console must be
opened and the following command has to be executed from the plingua direc-
tory:

java -Djava.library.path=jcuda/

-cp"pLinguaCore.jar;jcudaUtils-0.0.4.jar;jcuda/jcuda-0.6.5.jar"

org.gcn.plinguacore.applications.AppMain

plingua_sim -pli input.pli -o output.txt

This will produce an output file named output.txt in plingua directory
where information about the parser process and the generated computation is
stored. Note: the -cp parameter uses the symbol “;” as element separator in
Windows platforms. Other platforms use different separators. For example, Unix
platforms use the symbol “:”.

Parallel Simulator CUDA Compatibility and Performance Considera-
tions. When developing the parallel simulator, the main goal was to make
it able to handle arbitrary matrix size instances and to run on the majority
of CUDA-compatible devices. This has involved making conservative choices in
the implementation. A standard block size equal to 256 (16*16) has been cho-
sen and the tiling/memory coalescing optimization technique has been applied,
which requires a relatively low amount of shared memory for blocks (see [6] for
more details). Fixing matrix size instances and minimum requirements for the
CUDA-compatible device would enable implementing more complex optimization
techniques, such as loop unrolling, data prefetching and thread granularity as
well as a fine grained performance analysis. The appropriate combinations of
performance tuning techniques can make tremendous difference in the perfor-
mance achieved by the simulator; however the programming efforts to manually
search through these combinations is quite large [6]. Automation tools to reduce
such efforts such as CUDA-lite [18] and others become indispensable.

5 Conclusions and Future Work

In this paper we introduce P-Lingua framework support for a new P system
variant, specifically FRSN P systems with real numbers, which incorporate fuzzy
logic elements into SN P systems. The motivation of this variant is to produce a



framework bringing together desirable features (understandable, dynamical, syn-
chronized, non-linear, non-deterministic, able to handle incomplete and uncer-
tain information) to model diagnosis knowledge and reasoning in the field of fault
diagnosis. Applications of this variant are very promising, which are related to
fault diagnosis of electrical systems [13,21]. In consequence, providing the corre-
sponding P-Lingua support favours the research on this model within Membrane
Computing community as well as in applied fields. Developing such support has
involved designing a specific parser (since with respect to P-Lingua, FRSN P
systems are considered a “separated” variant of SN P systems), a simulation
algorithm (which is a variant of the one introduced in [13]) and the correspond-
ing simulators. As the provided simulation algorithm is a matrix-based one,
which can take advantage of parallel computing platforms, along with a Java
sequential simulator, a parallel one has been developed intended to be able to
run on the majority of CUDA-compatible devices.

As open research lines, we can identify addressing others FRSN P systems
variants, dealing with trapezoidal numbers, weights, etc. and considering the
implementation of more complex optimization techniques, possibly assisted by
automation optimization tools.
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