
Sample-Parallel Execution of EBCOT in Fast Mode

Volker Bruns, Miguel Á. Martínez-del-Amor
Fraunhofer Institute for Integrated Circuits

Erlangen, Germany
{volker.bruns, miguel.martinez}@iis.fraunhofer.de

Abstract— JPEG 2000’s most computationally expensive building
block is the Embedded Block Coder with Optimized Truncation
(EBCOT). This paper evaluates how encoders targeting a parallel
architecture such as a GPU can increase their throughput in use
cases where very high data rates are used. The compression
efficiency in the less significant bit-planes is then often poor and
it is beneficial to enable the Selective Arithmetic Coding Bypass
style (fast mode) in order to trade a small loss in compression
efficiency for a reduction of the computational complexity. More
importantly, this style exposes a more finely grained parallelism
that can be exploited to execute the raw coding passes, including
bit-stuffing, in a sample-parallel fashion. For a latency- or
memory critical application that encodes one frame at a time,
EBCOT’s tier-1 is sped up between 1.1x and 2.4x compared to an
optimized GPU-based implementation. When a low GPU
occupancy has already been addressed by encoding multiple
frames in parallel, the throughput can still be improved by 5%
for high-entropy images and 27% for low-entropy images. Best
results are obtained when enabling the fast mode after the fourth
significant bit-plane. For most of the test images the compression
rate is within 1% of the original.

I. INTRODUCTION

JPEG 2000 is an immensely flexible still image
compression standard released jointly by ITU and ISO [1].
Perhaps the most dominant field of use is in media
entertainment where JPEG 2000 was chosen by the Society of
Motion Picture Technology Experts (SMPTE) to be employed
in both the Digital Cinema Package (DCP) format [2] and the
more recent Interoperable Master Format (IMF) [3]. In this
context, JPEG 2000 is employed to compress resolutions
between 2K and 4K with very high data rates (DCP: up to 250
Mbit/s, IMF: up to 800 Mbit/s). Due to its high complexity,
JPEG 2000 compression is a very computationally expensive
task and doing so fast is a challenge. The color- and wavelet-
transforms as well as the quantization are perfectly suited to the
parallel architecture of a GPU. However, the situation is quite
different for the entropy coder, named Embedded Block Coder
with Optimized Truncation (EBCOT) [4], which operates on
blocks of quantized wavelet coefficients and processes them
bit-plane by bit-plane.

Keeping in mind the high bit rates employed in DCPs or
IMF packages, the reality is that only frames comprising a lot
of details actually reach the maximum data rate limit. Looking
at the effectiveness of EBCOT, especially in the less significant
bit-planes, the cost of arithmetically coding every single bit-
plane in terms of increased run-time will in many use-cases
outweigh the benefit, which is a marginally higher compression
ratio. The JPEG 2000 standard addresses exactly this issue by

defining the Selective Arithmetic Coding Bypass style,
sometimes also referred to as the Fast Mode or Lazy Mode [4].

Different parties, including the authors of this paper, have
set out to outsource many or all processing steps to the GPU
using programming interfaces such as OpenCL or CUDA [5]-
[7]. With their focus on DCI or IMF profiles, these works don’t
support the fast mode, though. The authors of [8] propose a
drop-in replacement for EBCOT that exposes more parallelism,
but sacrifices context adaptiveness as well as compliance with
the standard. To the same end, but without parallel
architectures in mind, [9] proposes an ultrafast mode, where
EBCOT is replaced with a fixed codebook Huffman coder
preceded by an optional prediction step.

In contrast, this work will stay within the bounds of the
standard and evaluate the potential of the selective arithmetic
coding bypass style. Even if its use is prohibited in the DCP or
IMF profiles, a faster codec would still be useful in scenarios
where a DCP or IMF package will be created downstream,
especially when the codestreams are partially identical and can
be efficiently transcoded. The research question posed here is:
can an implementation of EBCOT that targets parallel
architectures such as GPUs benefit from the more finely
grained parallelism exposed by this coding style and thereby
increase its throughput?

Chapter 2 will present a brief overview of JPEG 2000 with
focus on EBCOT and its fast mode. In chapter 3 a sample-
parallel algorithm will be proposed. A large part will focus on
how to execute the required bit-stuffing in parallel. Chapter 4
will discuss implementation strategies and experimental results.
Finally, the findings are summarized.

II. THE JPEG 2000 STANDARD

A. Encoder Overview
The first step is an RGB-to-YUV color transform that

decorrelates colors from brightness levels. In lossy mode, it is
denoted as Irreversible Color Transform (ICT) whereas in the
lossless mode an integer-approximation named Reversible
Color Transform (RCT) is used. Due to its pixel-parallel
nature, this step is very suited for execution on a GPU. Each
thread can transform one or more pixels.

Next, the individual color channels are each decomposed
with a Discrete Wavelet Transform (DWT) in a Mallat pyramid
fashion. Subsequently, all coefficients are quantized, with a
step-size that may vary for each subband. Again, both steps are
sample- parallel and well suited to be executed by a GPU.

0,0

0,5

1,0

1,5
M

SB

x x x x x x x x
M

SB

x x x x x x x
M

SB

x x x x x x
M

SB

x x x x x x
M

SB

x x x x x
M

SB

x x x x

Resolution
Level 0

Resolution
Level 1

Resolution
Level 2

Resolution
Level 3

Resolution
Level 4

Resolution
Level 5

SPP MRP CUP

Figure 1. Compression efficiency for a frame from the DCI SteM sequence (“MM_2K_XYZ_01571”, Y channel, DCI 2K profile).
Values below 1 indicate compression, values above 1 expansion. If fast mode starting after fourth bit-plane were enabled, symbols
from SPP and MRP in bit-planes marked with an “x” would bypass the MQ-encoder, reaching a value of 1.

B. EBCOT
Each quantized subband is split into code-blocks that are

independently entropy-coded. Both the DCP and IMF
specifications define a code-block size of 32 by 32 pixels. A
smaller code-block size would be preferable in order to
increase the available parallelism, but this came at the cost of a
reduced compression efficiency, since the adaptive coder then
had less opportunity to adjust to the signal. The impact of code-
block sizes is further discussed in [8].

EBCOT comprises two tiers. In the first one, a code-block
is compressed into an embedded bitstream. While the bitstream
is constructed, the coder creates truncation points and records
them on a rate-distortion plot. In case the total accumulated
size of all code-blocks’ bit streams exceeds the given
codestream size budget, the post-compression rate distortion
optimization (PCRD-opt.), carried out in EBCOT’s second tier,
can make an informed decision on which code-blocks’ bit
streams to truncate and where.

A code-block’s bit stream is created by traversing from the
most significant magnitude bit-plane (planes with only zero bits
are skipped) to the least significant bit-plane. Each plane is
scanned in three passes in a column-wise order by columns of
four coefficients (stripe column). The first pass, denoted
Significance Propagation Pass (SPP), codes symbols from
those samples that are not yet significant (no one bit in a
previous bit-plane), but are likely to become significant in this
plane based on their neighborhood. The next pass, denoted
Magnitude Refinement Pass (MRP), codes symbols from all
those samples that have already turned significant. Finally, the
last pass, denoted Clean-up Pass (CUP), codes all remaining
symbols. A sample’s sign-bit is coded immediately following
its first significant bit. The spatial correlation among samples is
modelled by assigning each coded symbol to one of 19
contexts, depending on the significance state of the sample
itself and its immediate neighborhood.

EBCOT employs a context-adaptive binary arithmetic
coder (AC), named MQ-coder. All symbols of a code-block are
sequentially fed to the AC in combination with a context. The
AC adjusts the probability whether the next symbol is expected
to be a one or zero independently for each context. Within a
bit-plane, context modelling and arithmetic coding can be
regarded as separate processes in the encoder. While arithmetic
coding does not present any parallelism within a code-block,
contexts can be modelled in a sample-parallel fashion as
presented in [6].

C. Selective Arithmetic Coding Bypass Style
The compression efficiency of any given code-pass can be

defined as the inverse ratio of the number of symbols that are
fed into the MQ-encoder to the number of bits that are emitted
by the coder. Ratios smaller than one indicate that the MQ-
encoder has compressed the signal while ratios larger than one
indicate an expansion. Especially for the SP- and MR-passes in
the less significant bit-planes of high-energy bands the ratio is
often close to or even above one (see Figure 1). The reason is
that the Laplacian distribution assumed by the coder is not
actually present anymore, but instead the signal is distributed
uniformly [10]. To address this issue, JPEG 2000 defines the
Selective Arithmetic Coding Bypass style. When enabled,
symbols from the SP- and MR-passes starting from a code-
block’s fifth significant bit-plane are directly appended to the
bitstream, bypassing the MQ-encoder. Symbols from CU-
passes must still be fed into the MQ-encoder as usual. A
bitstream needs to be terminated whenever switching between
non-bypassed and bypassed mode so that in the end it consists
of multiple segments. This coding style is signaled globally for
either the entire image or image component – it cannot be set
on a code-block by code-block basis. Part 2 of the standard
enhances the mode by enabling the user to select whether the
AC in the SP- and MR-passes should already be bypassed as
early as in the second, third or fourth bit-plane.

III. SAMPLE-PARALLEL ALGORITHM

A. Parallel Context Modelling and Raw Coding
A high-level presentation of a parallel EBCOT'’s tier 1 in

fast mode is presented in Algorithm 1. It comprises three
stages: context modelling (1), the raw-coded SPP and MRP (2)
and the MQ-encoded CUP (3). The first two stages can be
carried out by a kernel where each thread is in charge of a
stripe column. Thus, a 32 by 8 thread-block is mapped to a 32
by 32 code-block. The MQ-encoded CUP does not allow to
process samples in parallel, so a one-to-one thread-to-code-
block mapping is an obvious choice. In Algorithm 1 all three
stages are combined into a single kernel, but this is an
implementation choice. Different strategies are discussed later
on.

The context-modelling related routines are summarized in
the algorithm’s first line. A detailed description of this
approach is laid out in [6]. In short, threads execute a
collaborative pre-processing stage in order to collect
information that will allow them to perform the passes in

Algorithm 1 - EBCOT tier-1 with bypassed SPP and MRP
one thread per stripe-column

1. contextModelling() // SPP+MRP+CUP

2.

3. numLocalSyms[] = countLocalSymbols()

4. shared sharedMem[] // byte buffer

5.

6. // ---- SPP ----

7. startIdx = exclScan(numLocalSyms[SPP])

8. putBitsAtomic(sharedMem, startIdx,

9. getLocalSppSyms(), numLocalSyms[SPP])

10.

11. // ---- MRP ----

12. startIdx = exclScan(numLocalSyms[MRP])

13. putBitsAtomic(sharedMem, startIdx,

14. getLocalMrpSyms(), numLocalSyms[MRP])

15.

16. // ---- SPP + MRP bitstuff & copy ----

17. totalNumSyms = scanTotalNumSyms(numLocalSyms)

18. numBytes = bitstuff(sharedMem,

19. totalNumSyms[SPP] + totalNumSyms[MRP])

20. if (tid == 0) // is block leader?

21. terminateRawSegm(sharedMem)

22. if (id < numBytes)

23. bitstream[tid] = sharedMem[tid]

24.

25. // ---- CUP ----

26. startIdx = exclScan(numLocalSyms[CUP])

27. putBits(sharedMem, startIdx,

28. getLocalCupCtxds(), numLocalSyms[CUP])

29.

30. shared mqenc;

31. if (tid == 0) { // is block leader?

32. startMqSegm(mqenc)

33. for (i = 0; i < numLocalSyms[CUP]; i++)

34. mqEncode(mqenc, bitstream, sharedMem[i])

35. terminateMqSegm(mqenc, bitstream);

36. }

parallel for each stripe column. After this first stage, each
thread computes all the context-decision pairs generated by the
three passes (SPP, MRP and CUP) for its stripe. These symbols
are stored into registers to be used later.

Following the context-modelling stage, the collected
symbols need to be fed into the MQ- or raw-coder in the proper
order: first symbols from the SPP, then those from the MRP,
and finally all remaining symbols from the CUP. Symbols
from the first two passes bypass the MQ-coder so that the
threads can collaboratively create the bitstream segment in
parallel. Each thread knows how many symbols it must code
for the current pass (line 3). For the SPP, it can be anywhere
from zero (none of the four positions belong to the SPP) to
eight symbols (all four positions are zero-coded and require
sign-coding); for the MRP between zero and four symbols
(each of the four positions’ magnitude is refined); and for the
CUP the worst case scenario is that ten context-decision pairs
get produced for a single-stripe column (run-mode is entered,
but gets immediately interrupted and all remaining symbols
turn their sample significant so that the sign bits have to be
coded as well). The offset from the start of the bitstream
segment to which a thread needs to put the current pass’s
symbols is defined by the sum of all previous threads’ symbols.
It can be efficiently calculated by executing a block-wise
exclusive prefix scan (lines 7, 12) [11][12]. Next, each thread
can copy its symbols to the bitstream. Since multiple threads
will have to write to the same byte, they must use an atomic
bitwise or operation. An implementation is described in detail

Algorithm 2 - Parallel Bit-stuffing
one thread per byte

1. insert = false

2. numPrevInserts = 0

3. forever {

4. lftFF = read8Bits(bitstream, (tid-1)*8-

5. numPrevInserts) == 0xFF

6. headOfSegm = !lftFF

7. n = segmExclScan(lftFF, headOfSegm)

8. insertNew = lftFF && isEven(n)

9. myVote = insertNew != insert

10. anyChanges = blockVote_any(myVote)

11. if (!anyChanges)

12. break

13. numPrevInserts = exclScan(insertNew?1:0)

14. }

15. val = read8Bits(bitstream, tid*8-numPrevInserts)

16. if (insert)

17. val = (val>>1)&0x8F // insert 0-bit in MSB

18. bitstream[tid] = val

in [13]. The proposed algorithm first creates the bitstream in an
intermediate buffer in shared memory. This is advantageous
because bit-stuffing is separated into a subsequent separate
function that will have to read and write the bitstream at least
one more time. A side-effect is that the implementation benefits
from the native support for shared atomics introduced in
Nvidia’s Maxwell architecture [14].

Next, the same steps need to be repeated for the SPP so that
afterwards the entire raw bitstream segment has been written to
the intermediate buffer in shared memory.

B. Parallel Bit-Stuffing
The JPEG 2000 standard requires that whenever there is a

0xFF byte in the bit stream, the next byte must include an extra
zero-bit stuffed into the MSB. The original motivation behind
bit stuffing is to avoid a carry-over in the MQ-encoder, which
would in theory render bit stuffing unnecessary for raw bit
stream segments. However, the fact that after bit-stuffing the
byte following an 0xFF is guaranteed to be in the range of 0x00
to 0x7F is additionally exploited to introduce marker codes,
consisting of a 0xFF byte followed by a byte in the range of
0x90 to 0xFF. For this reason, bit-stuffing applies to raw bit
stream segments just the same. Bit-stuffing is trivial when
building the bit stream serially. However, when done in
parallel, it requires some effort. Algorithm 2 provides an
overview of the basic idea and figure 2 visualizes an example.

Each thread is in charge of writing one byte of the bit-
stuffed output bit stream. In case the byte to the left is 0xFF
and the byte before that is not 0xFF, a thread needs to insert a
zero bit in the MSB (see thread 3 in figure 2). To ensure that
bits are inserted only after every other consecutive 0xFF byte, a
segmented exclusive scan (see [12]) is used, where a segment
represents back to back 0xFF bytes. The head flag, which
indicates that a new segment must be started, is set whenever
the previous byte is not 0xFF. Thread 4 in figure 2 obtains a
scan result of n=1, for example, because the previous n+1=2
bytes consist entirely of one-bits. A thread needs to insert a
zero bit only if the segmented scan result is an even number. A
consequence of inserting a bit is that all subsequent threads
then need to reevaluate their decision: it might be that they, too,
inserted a zero bit, but that this isn’t actually necessary

11001101111111111111111111001101111111101100

thread 1 thread 2 thread 3 thread 4 thread 5 thread 6

110011011111111101111111111001101111111101100

1100110111111111011111111110011011111111 01100

t

t+1

t+2 0

0

0

Figure 2. Parallel bit-stuffing example. Blue bits are inserted.

Figure 3. Impact of fast mode (kicking in after 3 or 4
magnitude bit planes) on compression efficiency

anymore given that a bit was inserted earlier on in the bit-
stream and all other bits were right-shifted. Oppositely, it might
be that they did not insert a zero bit, but now actually have to
do it (see thread 6 at t+1). And finally, it might be that their
decision still stands. For this reason, the parallel bit-stuffing
routine might take multiple iterations to finish. After the initial
decision, a block vote is conducted. In the first iteration, each
thread votes whether or not they think they need to insert a zero
bit. If none of them vote positively, no bit-stuffing is necessary
anywhere and the routine can finish. If at least one bit-stuff is
required, the threads continue and re-evaluate their decisions,
this time taking into account the previous threads’ actions (after
t+1, threads 4-6 know that one bit was inserted in an earlier
byte). By running an exclusive scan over all threads’ bit-
stuffing decisions, each thread can determine the amount of bit-
stuffs in all previous bytes in the bitstream. Considering the bit
shifts required by the zero-bit inserts, they can then figure out
which eight bits would eventually fall into the byte slot to their
immediate left and again check, based on the result of a
segmented scan, if they are required to insert a zero-bit in their
byte’s MSB. Once again each thread casts a vote, this time
signaling if their decision of whether they need to include a
zero-bit or not has changed compared to the last vote. The
entire process is repeated for as long as any of the threads had
to correct their previous vote. In the end, each thread reads the
seven or eight bits from the unstuffed bit-stream that will fall
into their output byte slot, insert a zero-bit in the MSB or not,
depending on their last vote, and finally overwrite the output
byte in the bit-stream.

Since in CUDA, registers are 32 bits wide, an optimization
to the algorithm is for each thread to be in charge of writing
four output bytes as opposed to only one byte. Special care has
to be taken when participating in the scan or voting operations.
Depending on the type of operation, a thread will have to
recursively apply it to its four bytes and then contribute the
overall result to the block-wide operation. The experimental
results reported next include this optimization.

IV. EXPERIMENTAL RESULTS

Three different strategies for EBCOT’s first tier in fast
mode have been evaluated. They differ in how the routines for
(1) context modelling, (2) the two raw passes and (3) the MQ-
encoded CUP are organized into separate kernels. The starting
point was the optimized, non-bypassed EBCOT
implementation used in [4], which launches separate context-
modeling- (CM) and MQ-encoding-kernels (MQ) for every bit-
plane so that all code-blocks are coded in parallel, but the
processing of bit-planes is synchronized. Each code-block
starts processing at its first significant magnitude bit-plane.
Launching kernels individually for each bit-plane is beneficial
for two reasons. First, the memory required for storing the
context-decision pairs collected by the CM-kernel and input to

the MQ-kernel only has to be large enough to fit the worst-case
amount of pairs from a single bit-plane. Second, the MQ-kernel
for bit-plane N can be overlapped with the CM-kernel for bit-
plane N-1.

Three-Kernel-Strategy – The first strategy splits the
routines into three kernels: one for CM, one for the two raw
passes and one for the CUP. The CUP-kernel cannot start
before the raw-passes-kernel has finished, because it needs to
know at which exact byte offsets to continue the code-blocks’
bit streams. However, the next bit-plane’s CM-kernel can be
overlapped with the current bit-plane’s CUP-kernel.

Two-Kernel-Strategy - A drawback of the first approach is
that the CM-kernel needs to store the modeled context-
decision-pairs to global memory in order to make them
available to the coding kernels. Since the CM- and raw-passes-
kernels both use an identical thread layout, the Two-Kernel-
Strategy fuses them together into a single kernel. On the
downside, the CUP kernel can then no longer be overlapped.

One-Kernel-Strategy - Still, the CM-kernel has to write the
context-decision-pairs for the CUP to global memory. The
One-Kernel-Strategy fuses all routines into a single kernel. A
positive side-effect is that now the kernel can just as well loop
over all bypassed bit-planes internally. The drawback is that
most threads stay idle while the block’s first thread feeds the
CUP-context-decision pairs to the MQ-encoder. However, the
regular MQ-kernel with one thread per code-block naturally
suffers from high thread-divergence, which alleviates this
drawback to some degree.

Experiments show that the One-Kernel-Strategy
outperforms the previous two when encoding single images,
yielding an up to 2x speed-up compared to EBCOT without
fast mode (Figure 4). However, the speed-up is not equally
high for all test images. By enabling the fast mode, only the
execution of the less significant bit-planes (LSBs) is sped up.
The number of code-blocks that still have outstanding
significant bit-planes to be processed decreases with every bit-
plane. By the time the coder gets to the bypassed LSBs, the
number of remaining code-blocks has become so low, that a
high-end GPU is severely under-occupied. At this point the
duration for processing the remaining LSBs without fast mode
is almost constant, irrespective of the test image’s resolution
and entropy. The execution time for the MQ-coded bit-planes,

Figure 2. Performance increase for EBCOT when encoding
single images (12 bit 4:4:4, no max. bit-rate).

though, depends much more heavily on the resolution and
entropy. Thus, the relative time spent in the bypassed bit-planes
is lowest for the high-resolution, high-entropy images (VQEG,
Kodak). The relative speed-up for only the bypassed bit-planes
is highest for those images where the GPU was most severely
under-occupied.

An alternative approach to increase the amount of parallel
work units is to process code-blocks from multiple images in
parallel. This concept is denoted as group-of-pictures (GOP)-
coding here. Figure 5 compares the throughput for different
GOP-sizes. The benefit of the fast mode decreases as the GOP-
size, and with it the number of parallelizable code-blocks,
increases. However, even at a GOP-size of eight, the parallel
fast mode implementation yields an increase of throughput of
5-10% for the high-entropy UHD sequences, 10-15% for the
2K sequences and up to 20% for the low-entropy 4K
sequences. Since now the overall GPU occupation is higher,
the three-kernel-strategy performs best: the time savings from
overlapping CM and CUP outweigh the cost of additional
memory accesses.

The impact of the bit-stuffing routine was only measureable
for the high-entropy 4K images, where it accounted for less
than 3% of the total EBCOT tier-1 runtime. The number of
inserted zero bits ranges between 30 ppm for the high-entropy
Kodak_0003 test image and around 300 ppm for the low-
entropy 4k_sintel_title image. The average number of loop

iterations required for the proposed parallel bit-stuffing
algorithm lies between two and three for all test images.

V. CONCLUSION

The research question, whether JPEG 2000’s selective
arithmetic coding bypass mode (“fast mode”) is beneficial to
parallel GPGPU implementations can be answered positively.
Algorithms for a sample-parallel execution of the raw-coded
passes and subsequent bit-stuffing as well as a strategy on how
to best organize them into GPU kernels were proposed. The
increased parallelism speeds up EBCOT tier-1 by a factor of
two for low-entropy images where only very few code-blocks
have more than four significant bit-planes. For high-entropy 4K
images a more moderate speed-up of between 10% and 30%
was measured. The compressed size is within 1% of that of the
unmodified EBCOT, with the exception of those test images
with text, especially “Sintel rolling titles” (14% larger) and
“Sintel title” (6% larger), where the SPP compresses well even
in the high-frequency bands and at lower bit-planes (Figure 3).

If the increased latency and memory consumption can be
tolerated, multiple frames should be encoded in parallel in
order to increase the GPU-occupancy. In this case, the benefit
from the fast mode is diminished significantly to speed-ups
between 5% for high-entropy images and 27% for low-entropy
images.

REFERENCES
[1] ISO/IEC 15444-1. JPEG2000 image coding system|part 1: Core coding

system
[2] A. Bilgin, M.W. Marcelling, JPEG2000 for Digital Cinema, IEEE Int.

Symp. on Circuits and Systems, pp. 3878-3881, May 2006
[3] SMPTE ST 2067-21:2014. Interoperable Master Format – Application

#2 Extended
[4] D. S. Taubman, M. W. Marcellin, JPEG2000: Image Compression

Fundamentals, Standards, and Practice. Springer, 2002
[5] Fraunhofer IIS, http://www.iis.fraunhofer.de/en/ff/bsy/leist/easydcp.html
[6] J. Matela, V. Rusnak, P. Holub, “GPU-Based Sample-Parallel Context

Modelling for EBCOT in JPEG2000,” Sixth Doctoral Workshop on
Math. and Eng. Methods in Computer Science (MEMICS’10), pp. 77-
84, 2010

[7] A. Weiß, M. Heide, S. Papandreou, N. Fürst, “CUJ2K: a JPEG2000
encoder in CUDA,” https://sourceforge.net/projects/cuj2k/files/cuj2k-
documentation.pdf/download, pp. 1-48, Sep. 2009

[8] F. Auli-Llinas, M.W. Marcellin, Stationary Probability Model for
Microscopic Parallelism in JPEG2000, IEEE Trans. on Multimedia, Vol.
16, No. 4, pp. 960-970, Jun. 2014

[9] T. Richter, S. Simon, On the JPEG 2000 ultrast mode, IEEE Int. Conf.
on Image Proc., pp. 2501-2504, Sep. 2012

[10] R. Yu, C. C. Ko, S. Rahardja, X.Lin, Bit-Plane Golomb Coding for
Sources with Laplacian Distribution, Proc. IEEE Int. Conf. Acoustics,
Speech and Signal Processing, Vol. 4, pp. 277-280, Apr. 2003

[11] G.E. Blelloch, Scans as Primitive Parallel Operations, IEEE Trans. On
Computers, Vol. 38, No. 11, pp. 1526-1538, Nov 1989

[12] J. Luitjens, Faster Parallel Reductions on Kepler,
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-
kepler, Feb. 2014

[13] A. Balevic, “Parallel variable-length encoding on GPGPUs,” Proc. of the
2009 int. conf. on Parallel processing, EuroPar’09. Berlin, pp. 26-35,
2010

[14] N. Sakharnykh, Fast Histograms Using Shared Atomics on Maxwell,
https://devblogs.nvidia.com/parallelforall/gpu-pro-tip-fast-histograms-
using-shared-atomics-maxwell, Mar. 2015

Figure 3. Performance increase for EBCOT when encoding
frames in parallel from the (12 bit, 4:4:4, no max. bit-rate, 2.7
bit per sample) DCI SteM sequence
(“MM_2K_XYZ_01xxx”).

