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Abstract

This paper initiates a study of the connection between graph homomorphisms and
the Tutte polynomial. This connection enables us to extend the study to other
important polynomial invariants associated with graphs, and closely related to the
Tutte polynomial. We then obtain applications of these relationships in several
areas, including Abelian Groups and Statistical Physics. A new type of uniqueness
of graphs, strongly related to chromatically-unique graphs and Tutte-unique graphs,
is introduced in order to provide a new point of view of the conjectures about
uniqueness of graphs stated by Bollobas, Peabody and Riordan.
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1 Introduction

Counting homomorphisms between graphs arise in many different areas in-
cluding extremal graph theory, partition functions in statistical physics and
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property testing of large graphs. Given two graphs G = (V (G), E(G)) and
H = (V (H), E(H)), a homomorphism of G to H , written as f : G → H , is a
mapping f : V (G) → V (H) such that f(u)f(v) ∈ E(H) whenever uv ∈ E(G).
The number of homomorphisms of G to H is denoted by hom(G, H). This
number, considered as a function of G with H fixed is a graph parameter, i.e,
a function of graphs invariant under isomorphisms. A more broader class of
parameters related to homomorphisms was recently intensively studied in the
context of statistical physics, see for example [3].

The motivation of this work is to show the usefulness of the homomorphism
perspective in the study of polynomial invariants of graphs. Thus, our main
contribution is to prove that there exists a strong connection between counting
graph homomorphisms and evaluating polynomials associated with graphs.

One of the most studied polynomial invariants in combinatorics is the Tutte
polynomial, a two-variable polynomial T (G; x, y) associated with any graph
G (see for instance [10]). It is well-known that homomorphisms of a graph G
to the complete graph Kn are the n−colourings of G (see [5]). Since the Tutte
polynomial can be regarded as an extension of the chromatic polynomial, a
natural question arises: can we find a graph H such that hom(G, H) is given
(up to a determined term) by an evaluation of the Tutte polynomial of G? In
1984, Joyce [7] showed that the number of homomorphisms of any graph G to
a complete graph with loops, but not with multiple edges, could be deduced
from the Tutte polynomial of G. We prove that every complete graph with p
loops at each vertex and multiplicity q at each non-loop edge, being p different
than q, can play the role of H . As well as the Tutte polynomial is an extension
of the chromatic polynomial, this complete graph which we denote by Kp,q

n , is
a natural extension of Kn (see Figure 1).
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We also prove that, by assuming a local condition, every graph H ′ such
that the parameter hom( , H ′) can be recovered from the Tutte polynomial is
necessarily isomorphic to some Kp,q

n . The characterization of those graphs H



leads to important connections between homomorphisms and other polynomial
invariants associated with graphs, such as, the transition, the circuit partition,
the boundary, and the coboundary polynomials.

This work also provides applications of all the obtained relationships. We
list several applications to: duality, homogeneous graphs, difference sets in
abelian groups, the combinatorial analysis of the Potts model, and the Gibbs
probability. We conclude the paper by introducing the concept of colouring-

unique graph and by showing its connection with two well-known notions: the
Tutte-unique graphs and the chromatically-unique graphs.

2 Connection between homomorphisms and polynomial

invariants of graphs

Our first aim in this section is to define the concept of local function, and to
determine those graphs H , such that the parameter hom( , H) is given by an
evaluation of the Tutte polynomial, up to a local function. Throughout this
section, we consider the family of graphs Kp,q

n with p, q ≥ 0, n ≥ 1 and p 6= q.

Definition 2.1 Let H and G be two graphs. Denote by G − e and G/e
the result of both, deleting and contracting the edge e in G respectively. A
function depending on G and H , denoted by h(G, H), is said to be a local
function if the fractions h(G, H)/h(G− e, H) and h(G, H)/h(G/e, H) depend
only on H and independently of the choice of e ∈ E(G).

Theorem 2.2 For every graph G with λ vertices, m edges and c connected

components, the following holds:

(1) hom(G, Kp,q
n ) = nc(p − q)λ−cqm−λ+cT

(

G; p+q(n−1)
p−q

, p

q

)

with n > 1.

(2) hom(G, Kp,0
1 ) = (p/2)mT (G; 2, 2) with p > 0.

Theorem 2.3 Let H be a graph. There exist two constants xH and yH

such that, for every graph G there is a local function h(G, H) verifying that

hom(G, H) = h(G, H)T (G; xH, yH) if and only if there exist p, q, n ∈ N with

p 6= q and n ≥ 1 so that H is isomorphic to Kp,q
n .

There are many polynomial invariants of graphs that can be recovered
from the Tutte polynomial (see [1,6,8,11] for more details). Such relationships
and the two previous results lead to the characterization of the graphs H such
that hom( , H) can be expressed in terms of the following polynomials: tran-
sition, circuit partition, boundary, and coboundary. Some of the relationships



obtained in this work are summarized in the following table.

Homomorphisms-Transition polynomial

hom(G,Kp,q
n ) = nm−λ+1(p − q)mδmQ(M(G), A,

√
n)

if p − q 6= q
√

n, λ = |V (G)| and m = |E(G)|
hom(G,Kp,q

n ) = (
√

n)λ+1qmδmQ(M(G), A,
√

n)

if p − q = q
√

n, λ = |V (G)| and m = |E(G)|

G connected

planar graph

M(G) medial

graph

Homomorphisms-Circuit transition polynomial

hom
(

G,K
(1+

√
n)q,q

n

)

= (
√

n)λqmj(
−−−→
M(G);

√
n)

q ≥ 1, n > 1,
√

n ∈ N, λ = |V (G)| and m = |E(G)|

G planar graph
−−−→
M(G) directed

medial graph

Homomorphisms-Boundary and Coboundary polynomials

hom(G,Kp,q
n ) = nλ−m(p − q)mF

(

G;n, p+q(n−1)
p−q

)

hom(G,Kp,q
n ) = qmP (G;n, p/q)

G any graph

λ = |V (G)|
m = |E(G)|

The next result characterizes the graphs H such that for every connected
planar graph G, hom(G, H) can be recovered from a transition polynomial of
its medial graph, denoted by M(G).

Theorem 2.4 Let H be a graph and let δH 6= 0, µH 6= 0, and τH be three

constants depending on H. Suppose that for every connected planar graph G
with set of faces R, there is a weight function A for M(G), which assigns

the values α, β and γ to all black, white and crossing transitions respectively,

satisfying the following equations: τHα+β+γ = 1
δH

+ τH

µH
; α+τHβ+γ = 1

µH
+ τH

δH
;

α+β +τHγ = 1
δH

+ 1
µH

. Assume also that there exists a local function h(G, H)

so that hom(G, H) = h(G, H)Q(M(G); A, τH). Then there exist p, q, n ∈ N

with p 6= q and n ≥ 1 such that H is isomorphic to Kp,q
n .

We now state a similar result for the circuit partition polynomial which
generalizes by giving appropriate weights one of Jaeger’s transition polyno-
mials, defined on 4−regular graphs, to Eulerian digraphs with arbitrary even
degrees. This polynomial is a simple transform of the Martin polynomial.

Theorem 2.5 Let H be a graph. If there exists a constant xH such that,

for every planar graph G there is a local function h(G, H) verifying that

hom(G, H) = h(G, H)j(
−−−→
M(G); xH), then there exist p, q, n ∈ N with p 6= q

and n ≥ 1 such that H is isomorphic to Kp,q
n .



Finally, analogous results can be formulated for the boundary and cobound-
ary polynomials which were introduced as a generalization of the flow and
chromatic polynomials respectively (see [11]). In the case of the boundary
polynomial, the connection with homomorphisms is stated as follows.

Theorem 2.6 Let H be a graph. There exist a constant xH and a positive

integer number rH > 1 such that, for every graph G there is a local function

h(G, H) verifying that hom(G, H) = h(G, H)F (G; rH, xH) if and only if there

exist p, q, n ∈ N with p ≥ 0, p 6= q and n ≥ 1 so that H ∼= Kp,q
n .

3 Applications

In this section we sketch several applications of the above-stated connections.

3.1 Duality

Proposition 3.1 For every planar graph G with λ vertices, m edges, and c
connected components, the following holds:

(1) hom(G, Kp,q
n ) =

(

p−q

q

)m

nλ−m−1hom

(

G∗, K
q+ q2n

p−q
,q

n

)

where G∗ denotes

the dual graph of G, p ≥ 0, q ≥ 1, p 6= q, and q + q2n

p−q
∈ N.

(2) hom(G, Kp,0
1 ) =hom(G∗, Kp,0

1 ) with p > 0.

3.2 Homogeneous Graphs

A finite graph G is said to be homogeneous if any isomorphism between in-
duced subgraphs of G extends to an automorphism of G. In 1976, Sheehan
and Gardiner [4] determined the finite homogeneous graphs. They fall into the
following families: disjoint union of complete graphs of the same size, regular
complete multipartite graphs, 5−cycle C5, and the line graph of K3,3.

Proposition 3.2 Let H be a finite homogeneous graph with n vertices. There

exist two constants xH and yH such that, for every graph G there is a local

function h(G, H) verifying that hom(G, H) = h(G, H)T (G; xH , yH) if and only

if H is isomorphic to Kn.

3.3 Difference Sets in Abelian Groups

Let A be an abelian group of order r and 2 ≤ k ≤ r. A (r, k, l)−difference set

in A is a subset B of k elements of A such that, for all 0 6= a ∈ A there exist
l pairs (b1, b2) ∈ B × B with b1 − b2 = a.



Proposition 3.3 Let G be a graph, A an abelian group on r elements, B ⊆ A
an (r, k, l)−difference set in A, and let q be a positive integer number such that

( rl
k−l

+ 1)q ∈ N. If two functions f1, f2 : E(G) → B are chosen uniformly at

random, then the event that f1 and f2 have the same boundary has the following

probability,

Pr(d∗f1 = d∗f2) = k−2|E(G)|(k − l)|E(G)|r−|V (G)|q−|E(G)|hom

(

G, K
( rl

k−l
+1)q,q

r

)

3.4 The Potts Model

For the combinatorial analysis of the Potts model on a finite graph G, it
is assumed that the interaction energy, which measures the strength of the
interaction between neighbourings pairs of vertices, is constant and equal to
J . Consider that each atom can be in Q different states and K = 2βJ , where
β is a parameter determined by the temperature.

Proposition 3.4 Let G be a finite graph, K = 2βJ , and q ∈ N such that

eKq ∈ N. Then, the partition function of the Potts model is given by the

following formula, Z(G) = e−K|E(G)|q−|E(G)|hom(G, KeKq,q
Q ).

3.5 The Gibbs Probability

There are many different interpretations of the random cluster model sum-
marized by A. Sokal [9], but one of the reasons for studying percolation in
the random cluster model is its relation with phase transitions. In fact, this
model can be regarded as the analytic continuation of the Potts model to
non integer Q. Let G be a finite graph and A a subset of E(G). The Gibbs

probability, is a two parameter family of probability measures µ(t, Q) given
by µ(A) = t|A|(1 − t)|E(G)−A|Qk(A)Z(G)−1 where 0 ≤ t ≤ 1, Q > 0, and k(A)
denotes the number of connected components of the graph (V (G), A).

Proposition 3.5 For every Q, s ∈ N such that (1 − t)s is a positive integer

number, µ(A) = 1

hom
“

G,K
s,(1−t)s
Q

”

(

(

t
1−t

)|A|
Qk(A)(1 − t)|E(G)|s|E(G)|

)

4 Colouring Uniqueness

A graph G is said to be Tutte-unique if T (G; x, y) = T (H ; x, y) implies that
H is isomorphic to G for every other graph H . In 2000, Bollobas, Peabody,
and Riordan [2] conjectured that almost all graphs are Tutte-unique.



Definition 4.1 A graph G is colouring-unique if hom(G, Kp,q
n ) =hom(H, Kp,q

n )
for all n ≥ 1, p, q ≥ 0, p 6= q implies H ∼= G for every other graph H .

Theorem 4.2 Let G be a simple 2−connected graph. If G is colouring-unique,

then G is Tutte-unique.

Consequently, if almost all graphs are colouring-unique, then also almost
all graphs are Tutte-unique.
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