GPU-FRIENDLY EBCOT VARIANT WITH SINGLE-PASS SCAN ORDER AND RAW BIT
PLANE CODING

Volker Bruns, Miguel A. Martinez-del-Amor, Heiko Sparenberg

Fraunhofer Institute for Integrated Circuits, Erlangen, Germany

ABSTRACT

A major drawback of JPEG 2000 is the computational
complexity of its entropy coder named Embedded Block
Coder with Optimized Truncation (EBCOT). This paper
proposes two alterations to the original algorithm that seek
to improve the trade-off between compression efficiency
and throughput. Firstly, magnitude bits within a bit plane are
not prioritized by their significance anymore, but instead
coded in a single pass instead of three, reducing the amount
of expensive memory accesses at the cost of fewer
truncation points. Secondly, low bit planes can entirely
bypass the arithmetic coder and thus do not require any
context-modelling. Both the encoder and decoder can
process such bit planes in a sample-parallel fashion.

Experiments show average speed-ups of 1.6x (1.8x) for
the encoder and 1.5x (1.9x) for the decoder, when beginning
raw-coding after the fourth (third) bit plane, while the data
rate increases only by 1.15x (1.3x).

Index Terms— JPEG 2000, GPGPU, EBCOT
1. INTRODUCTION

A popular field of use for JPEG 2000 [1] is in video
post-production where it was chosen by the Society of
Motion Picture Technology Experts (SMPTE) to be
employed in both the Digital Cinema Package (DCP)
format [2] and, more recently, in the Interoperable Master
Format (IMF) [3]. The authors have developed an encoder
and decoder that run on a GPU using NVIDIA's CUDA
technology. The majority of the time is spent in EBCOT's
context modelling and arithmetic coding routines. For
DCPs, a maximum data rate of 250 Mbit/s is defined, for
IMF packages it can be as high as 800 Mbit/s. In [4] it was
shown that at high data rates the EBCOT compression
efficiency is poor for the lower bit planes that contain
mainly noise. A high throughput variant of EBCOT that can
be used during post production and permits downstream
lossless conversion to DCI or IMF profiles would be very
beneficial to have. The standard addresses the high data rate
scenario by defining the optional selective bypassing mode
where part of the samples bypass the arithmetic coder and
are coded raw. It only imposes a minor penalty, if any, on
the compression efficiency. However, the speed-up achieved

with that mode in a GPU implementation was shown to be
only mediocre [4].

This paper proposes two new modes that decrease the
complexity further and are especially useful to coders
running on massively parallel architectures. The research
questions that arise are: How much of a speed-up can be
achieved? What is the cost in terms of diminished
compression efficiency?

Sections 1 and 2 provide the required background about
EBCOT, its latest wvariants and current GPU
implementations. Sections 3 and 4 discuss the proposed
single-pass and raw modes. Experimental results are
presented in section 5 and summarized in section 6.

2. BACKGROUND
2.1. Review of EBCOT

Following the multi component transform, wavelet
transform and quantization, subbands of quantized wavelet
coefficients are split into non-overlapping code-blocks that
are compressed independently into bit streams. Rate control
is carried out by subsequently truncating these embedded bit
streams in order to meet a global maximum data rate
constraint. A single bit stream is formed by feeding the
magnitude and sign-bits of each sample into a context-
adaptive binary arithmetic coder (MQ-coder). The scan
order goes first by bit plane, starting from the most
significant magnitude bit plane that does not consist entirely
of zero-bits, and then by stripe, where each stripe contains
four rows. At any given bit plane the goal is to code samples
that are likely to turn significant before bits that merely
refine an already non-zero magnitude. This is achieved by
scanning each bit plane in three passes. The significance
propagation pass (SPP) codes all those samples that are still
zero to the decoder’s knowledge, but are predicted to turn
significant as inferred from their 3x3-neighborhood. The
magnitude refinement pass (MRP) codes samples that
already turned significant in a previous bit plane. The clean-
up pass (CUP) codes all remaining samples. A sample’s
sign-bit is coded immediately following its first significant
magnitude bit. [5]

2.2 State of the Art

Other variants of EBCOT have previously been
suggested in the literature. [6] proposes an “ultrafast” mode,
where EBCOT is replaced with a fixed codebook Huffman
coder preceded by an optional prediction step. A
comparison of CPU implementations results in an achieved
speed-up of 1.2-1.5x for the encoder and 2.2x-2.9x for the
decoder. On the down side, the resulting codestream is no
longer embedded and a post-compression rate control is not
possible anymore.

EBCOT variants especially tailored for GPU
architectures are described in [7] and [8]. [7] replaces the
MQ-coder with a classical arithmetic coder and elaborates
how to parallelize it. It also examines how the code-block
size impacts the GPU occupancy and memory utilization.

In [8], a code-block is split into columns that are coded
in parallel by multiple arithmetic coders that each produce
fixed-length code words which can be interleaved in a
deterministic way. To get around the problem, that each
coder would have to initially adapt its probability estimates
to the content at hand, a stationary pre-trained probability
model is used instead. The compression efficiency has been
evaluated and is reported to be equal to EBCOT.
Throughput measurements are not yet available, but are
expected to be very competitive.

2.3 EBCOT on a parallel Architecture

When targeting a massively parallel architecture such as
a GPU, the goal is to break down the problem at hand into
as many parallelizable work units as possible. For each bit
plane, an encoder can model the samples’ contexts in a
sample-parallel fashion by using the iterative significance
propagation algorithm presented in [9]. The resulting set of
context-decision pairs is subsequently fed into the MQ-
coder. Due to its context-adaptive nature, this step does not
expose any intra-block parallelism. Therefore, an
interleaved two-kernel structure presents itself. For each bit
plane p, where p=0 is the LSB, the host launches a sample-
parallel context-modelling kernel (CM-kernel,) followed by
a block-parallel arithmetic-coding-kernel (MQO-kernel,).

The EBCOT decoding routine does not expose any intra-
block parallelism since the significance propagation for a bit
plane cannot be precomputed. Context-modelling and MQ-
decoding are tightly coupled in a feedback loop: The context
of any sample X/n/, where n is the location (x,y) with 0 <x
< block width and 0 <y < block height, cannot be computed
without first decoding sample X/n-1J,, A GPU
implementation can therefore combine both tasks in a single
kernel and need not launch it individually for each bit plane.
Instead the kernel loops over all bit planes with three passes
each.

On a modern GPU with thousands of cores the block-
wise MQ-kernel tends to under-occupy the GPU due to its
coarse parallelism. This effect worsens as the number of

code-blocks with outstanding bit planes to be processed
decreases with every processed bit plane. Implementations
can counter-act by processing blocks from a group-of-
pictures (GOP) simultaneously at the cost of an increased
latency. The implementation at hand saturates at a GOP-size
of 8 for 2K 4:4:4 images with approximately 5000 blocks
per image.

3. SINGLE-PASS MODE

The CM- and MQ-kernels are memory bound, which
means that the execution of instructions is often stalled by
pending memory requests. Accordingly, the throughput can
be increased by reducing required read- or write accesses to
memory. The encoder’s CM-kernel can be launched with a
layout as finely grained as one thread per sample. After the
initial iterative significance propagation, each thread
determines their sample’s context by examining the
neighbors. Due to the three-pass-scan-order, the context-
decision pairs need to be sorted by pass type before they can
be handed over to the MQ-kernel via global memory. Each
thread needs to find out at which offset to write their SPP-,
MRP- or CUP-context-decision pairs. This can be achieved
collaboratively by running three prefix-sum scans [10].

The proposed single-pass mode renders this additional
burden unnecessary by giving up the separation into three
passes altogether. The encoder’s CM-kernel then requires
only a single prefix-sum scan in order for each thread to
determine where to write their context-decision pairs.
Context-labeling is not affected by the new scan order and
can remain unchanged. The decoder benefits as well in that
it does then only need to scan through all samples once per
bit plane. Additionally, the sample state representation is
simplified by one bit as it is no longer necessary to
remember for insignificant samples whether or not they had
already been coded in the SPP in order to determine their
membership to the CUP. The altered coding procedure is
laid out in Algorithm 1.

There are two downsides to giving up the pass
separation. Firstly, the number of eligible truncation points
is decreased to a third, leaving the Post-Compression-Rate-

Algorithm 1 — single-pass mode

1. foreach bit plane

2. foreach sample in stripe-oriented scan-order
3. if (sample is not significant and

4. any neighbor is significant)

5. zeroCoding ()

6. if (magnitude bit is 1)

7. markSampleAsSignificant ()

8. signCoding ()

9. else if (sample is significant)

10. magnitudeRefinementCoding ()

11. else if (first row in stripe and

12. all stripe-column neighbors insignificant)
13. runLengthCoding ()

14. JjumpToEndOfRun ()

15. else

16. zeroCoding ()

17. if (magnitude bit is 1)

18. markSampleAsSignificant ()

19. signCoding ()

| bitplane n | bit plane n-1 bit plane n-2 | bit plane o |

compressed | compressed Magnitude Bits
Magnitude & | Magnitude & 26! Sign Bits
Sign Bits Sign Bits 4 Bytes per Row ‘packed

Figure 3 — Code stream structure when raw coding is entered after the 2™
significant bit plane. Code-block size: 32x32

Distortion-Optimizer (PCRD-Opt) less flexibility when the
maximum data rate constraint is exceeded. It can be argued
that this limitation is not severe when compressing to high
data rates as is the case in the use-case examined in this
paper. Research has shown that the coding performance
achieved by various scanning order strategies is virtually
identical at the end of each bit plane [11].

Secondly, the neighborhood taken into consideration
when computing the context for any of the four types of
coding operation needs to be constrained to the scan-order
past. Whereas in the original mode, operations carried out
during the MRP or CUP can already leverage the
information whether or not any of the neighbors, past or
future, has turned significant during the current bit plane’s
SPP, this is not possible anymore in the proposed variant.
This might slightly impact the compression efficiency.

4. RAW CODING MODE

Part-1 of the standard defines the selective bypassing
mode. When enabled, all symbols coded during the SP- and
MR-passes starting from the fifth coded magnitude bit plane
are not arithmetically coded anymore, but instead appended
directly to the bit stream. The underlying assumption is that
the compression efficiency for these two pass types is poor
at low bit planes, while for the CUP it is still reasonable to
invoke the MQ-coder. The bit stream is then terminated at
every switch between the raw and coded mode. A parallel
implementation can benefit from this mode by separating
the raw coding phases into a separate kernel that can be
executed in a sample-parallel fashion [2]. However, even the
partially bypassed bit planes still necessitate the extra tasks
of evaluating and updating each sample’s state, including
the significance propagation, in order to be able to collect all
symbols and order them by pass type.

In line with the single-pass mode, the proposed raw-
coding mode is also processed bit plane-wise without a pass
separation. Instead, magnitude bits are directly concatenated
into a bit stream. A block width of 32, which is used in DCI
and IMF profiles, conveniently matches the SIMD group
size and register size for NVIDIA CUDA devices. The
encoder can collect the magnitude bits from a single row
into a 32-bit register by using the warp ballot intrinsic and
then write it out to memory. All rows of all blocks can be
written in parallel. For a block size of 32x32 the magnitude
bits amount to a total of 128 bytes per bit plane.

Since it is not guaranteed that every sample has already
turned significant by the point the first bypassed bit plane is
processed, not all sign-bits have necessarily been coded yet.
With the goal of maintaining the embeddedness-property of

msecs / frame EBCOT Encoding Time

bypassed LSBs
M coded M5Bs

start bypassing
after bit plane

proposed

original

Figure 1 — source: "Tears of Steel", frames 1290-1547, 4096x1714

the created code-stream, a sample’s sign-bit should be coded
immediately following its first significant magnitude bit.
However, due to the lack of sub-bit plane truncation points,
magnitude and sign bits from one bit plane don’t need to be
interleaved. Instead sign-bits for newly significant samples
are stored after the magnitude bits. This enables a GPU
implementation to exploit that magnitude bits are laid out in
aregular grid and can be accessed in parallel. Figurel shows
the resulting code stream structure.

The proposed implementation strategy is to first collect
the sign-bits row-wise by again using the warp ballot
intrinsic. A first ballot collects which positions in a row
have turned significant; a second ballot collects the actual
sign-bits. One thread per row then writes the rows’ new
sign-bits tightly packed to the bit stream. Since multiple
threads might simultaneously need to write to the same byte,
bits are stored using a bitwise atomic or-operation [12]. The
offset beyond the end of the magnitude bits can be
computed by scanning the prefix-sum across the numbers of
sign-bits in each row.

5. EXPERIMENTAL RESULTS

Figure 2 compares the EBCOT encoding runtime of the
original three-pass mode with and without selective
arithmetic coding with the new proposed single-pass and
raw-coding modes. All experiments have been carried out
on an NVIDIA GeForce GTX 1080. The speed-up due
solely to the proposed single-pass mode is approximately
1.4x and can be seen by comparing the two single-colored
bars, where bit planes never bypass the arithmetic coder.
The standard-compliant bypassing mode brings only little
benefit for the throughput for a GPU implementation. The
proposed raw coding of the lower bit planes, on the other
hand, yields an additional speed-up that grows as more bit
planes are bypassed.

3x —— Sintel 4K - Main Title

EBCOT Encoding Speed-up /, = Sintel 4K - Rolling End Titles

2,5% 7 = ARRI Alexa UHD - Drums
// —— ARRI Alexa UHD - Helicopter
2x
/

—— Bunny HD - FallingTree Trunk

——— Bunny HD - Main Title

) - Tears of Steel 4K - #1290
—— = start bypassing
S ——, after bitplane

] — StEM 2K - Confetti

never| 4 | 3| 2] 1

never‘ 4 ‘ 3 ‘ 2 ‘ 1 - VQEG UHD - Park Joy

VQEG UHD - Crowd Run

original proposed

Figure 2 - EBCOT encoding speed-up relative to original three-pass mode
without bypassing

Jbns Achieved Compression Rate —— Sintel 4K - Main Title

= Sintel 4K - Rolling End Titles

”~ ~ ARRI Alexa UHD - Drums
—— ARRI Alexa UHD - Helicopter

Bunny HD - FallingTree Trunk

— —— Bunny HD - Main Title

Hart bypassing after bitpiane

never‘ 4 ‘ 3 2 1

Tears of Steel 4K - #1290
StEM 2K - Confetti

VQEG UHD - Park Joy
VQEG UHD - Crowd Run

never| 4 | 3 | 2 | 1

original proposed

Figure 5 — Achieved compression rate measured in bits/sample (bps)

Figure 3 presents an overview of the achieved speed-ups
for a range of high-resolution 48 bit RGB 4:4:4 image
sequences. These sequences were chosen instead of the
standard test still images, since processing blocks from
multiple images in parallel increases the throughput
significantly. Duplicating a still image would produce
unrealistic results since then the execution divergence due to
different image contents is not taken into account.

The gain is highest for images with a low-entropy since
then the GPU is most heavily under-occupied without the
proposed modes as only few code-blocks remain active in
the lower bit planes. The average speed-up for the single-
pass mode is 1.3x with a factor of 1.2x on the low end for
the detail-rich VOEG or StEM sequences and almost 1.5x on
the high end for the low entropy images from the Sintel or
Big Buck Bunny sequences. When enabling the raw-coding
mode after the fourth (third) significant bit plane, the
average speed-up is increased to 1.6x (1.8x).

The impact of the single-pass mode on the decoder is
lower, but still yields an average speed-up of 1.16x. The
proposed raw-coding mode works better in the decoder,
though, with speed-ups of 1.5x and 1.9x when enabling it
after the fourth or third plane, respectively.

The down side to the proposed modes is a diminished
compression efficiency. Figure 4 plots how the achieved
compression rate decreases as more bit planes are subjected
to raw coding. The compression rate increase due to the
single-pass mode is only about 0.1%. As expected, it grows
significantly as more bit planes are coded raw.

All sequences have been compressed with a sufficiently
high maximum data rate so that no bit streams had to be
truncated. It has yet to be examined how the quality
compares when compressing to a fixed target rate, given that
the single-pass mode yields fewer truncation points.

Ultimately, an assessment of whether the gain in the
form of increased encoding or decoding throughput
outweighs the cost in terms of an increased data rate
depends on the use case. An attempt is made here by
plotting the speed-up vs. the relative increase in data rate
(Figure 5). Every curve connects five points, which
represent the result for no bypassing, bypassing after 4, 3, 2
or 1 significant bit planes. For those points that lie below the
diagonal dashed line, the speed-up is higher than the relative
increase in data rate.

All except two sequences stay entirely below the dashed
line. The two exceptions correspond to low entropy

data rate
increase

3x

Encoder Decoder

2%

Speed-up

ix 2 3x 1x 2x 3% ax 5x

—4— Sintel 4K - Main Title —8—Sintel 4K - Rolling End Titles —de—ARRI Alexa UHD - Drums

= ARRI Alexa 3840x2160 - Helicopter —+—Bunny HD - Falling Tree Trunk =g Bunny HD - Main Title

Tears of Steel 4K - #1290 SEEM 2K - Confetti VQEG UHD - Park Joy

VQEG 3840x2160 - CrowdRun

Figure 4 — Data rate increase vs. speed-up

sequences that had a high compression efficiency and
throughput to begin with and could therefore be regarded as
uncritical.

6. CONCLUSION

Based on an examination of the bottlenecks of a JPEG
2000 implementation for GPUs, we proposed two new
modes for its entropy coder EBCOT that lead to a higher
throughput. The variant is compatible with the JPEG 2000
framework and can be losslessly transcoded into standard-
compliant profiles. The resulting codestream is still
embedded so that decoders can apply the technique of code-
pass skipping in order to increase their throughput further
when it is not a strict requirement to fully decode the
compressed images, e.g. when previewing 36 bit DCPs on a
24 bit computer monitor [13].

The single-pass mode alone yields speed-ups between
1.2x and 1.5x for the encoder and 1.05x to 1.3x for the
decoder at virtually no increase in compression rate.

The throughput can be further increased by enabling the
raw-coding mode on top of the single-pass mode. In contrast
to the selective-arithmetic coding bypass mode defined in
the JPEG 2000 standard, this proposed mode can be
leveraged by a GPU implementation to increase the
throughput significantly. This comes at the cost of an
increased data rate, but the relative speed-up outweighs the
relative increase in data rate for all tested detail-rich
sequences. It presents an opportunity to flexibly configure
the trade-off between speed and compression rate.

7. REFERENCES

[1] M. Boliek (Ed.), ”Information Technology - The JPEG2000
image coding system: Part 17, ISO/IEC 15444-1, 2000

[2] A. Bilgin, M.W. Marcelling, “JPEG2000 for Digital Cinema”,
1IEEE International Symposium on Circuits and Systems, pp. 3878-
3881, May 2006

[3] SMPTE ST 2067-21:2014. Interoperable Master Format —
Application #2 Extended

[4] V. Bruns and M. A. Martinez-del-Amor, “Sample-Parallel
Execution of EBCOT in Fast Mode”, 32nd Picture Coding
Symposium, Nuremberg, Erlangen, Dec. 2016

[5] D. Taubman, “High performance scalable image compression
with EBCOT”, IEEE Transactions on Image Processing, Vol. 9
No. 7, pp. 1151-1170, 2000

[6] T. Richter and S. Simon, “On the JPEG 2000 ultrafast mode”,
19" IEEE International Conference on Image Processing, Oct
2012

[7]1 R. Le, LR. Bahar and J.L. Mundy, “A novel parallel Tier-1
coder for JPEG2000 using GPUs”, IEEE 9" Symposium on
Application Specific Processors, pp. 129-136, Jun 2011

[8] F. Auli-Llinas, P. Enfedaque, J.C. Moure and V. Sanchez,
Bitplane Image Coding With Parallel Coefficient Processing, /[EEE
Transactions on Image Processing, Vol. 25, No. 1, Jan 2016

[9] J. Matela, V. Rusnak and P. Holub, “GPU-Based Sample-
Parallel Context Modelling for EBCOT in JPEG2000,” Sixth
Doctoral Workshop on Math. and Eng. Methods in Computer
Science (MEMICS’10), pp. 77-84, 2010

[10] G.E. Blelloch, “Scans as Primitive Parallel Operations”, /EEE
Transactions on Computers, Vol. 38, No. 11, pp. 1526-1538, Nov
1989

[11] F. Auli-Llinas and M.W. Marcellin, “Scanning Order
Strategies for Bitplane Image Coding”, IEEE Transaction on
Image Processing, Vol. 21, No. 4, April 2012

[12] A. Balevic, “Parallel variable-length encoding on GPGPUs,”
Proceedings of the 2009 international conference on Parallel
Processing, EuroPar’09, Berlin, pp. 26-35, 2010

[13] V. Bruns and H. Sparenberg, “Comparison of Code-Pass-
Skipping Strategies for Accelerating a JPEG 2000 Decoder”, 15.
ITG-Fachtagung fiir Elektronische Medien, Dortmund, Feb. 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

