STRONG EXTENSIONS FOR q-SUMMING OPERATORS ACTING IN p-CONVEX BANACH FUNCTION SPACES FOR $1 \leq p \leq q$

O. DELGADO AND E. A. SÁNCHEZ PÉREZ

Abstract

Let $1 \leq p \leq q<\infty$ and let X be a p-convex Banach function space over a σ-finite measure μ. We combine the structure of the spaces $L^{p}(\mu)$ and $L^{q}(\xi)$ for constructing the new space $S_{X_{p}}^{q}(\xi)$, where ξ is a probability Radon measure on a certain compact set associated to X. We show some of its properties, and the relevant fact that every q-summing operator T defined on X can be continuously (strongly) extended to $S_{X_{p}}^{q}(\xi)$. This result turns out to be a mixture of the Pietsch and Maurey-Rosenthal factorization theorems, which provide (strong) factorizations for q-summing operators through L^{q}-spaces when $1 \leq q \leq p$. Thus, our result completes the picture, showing what happens in the complementary case $1 \leq p \leq q$, opening the door to the study of the multilinear versions of q-summing operators also in these cases.

1. Introduction

Fix $1 \leq p \leq q<\infty$ and let $T: X \rightarrow E$ be a Banach space valued linear operator defined on a saturated order semi-continuous Banach function space X related to a σ-finite measure μ. In this paper we prove an extension theorem for T in the case when T is q-summing and X is p-convex. In order to do this, we first define and analyze a new class

Date: June 18, 2018.
2010 Mathematics Subject Classification. 46E30, 47B38.
Key words and phrases. Banach function spaces, extension of operators, order continuity, p-convexity, q-summing operators.

The first author gratefully acknowledge the support of the Ministerio de Economía y Competitividad (project \#MTM2012-36732-C03-03) and the Junta de Andalucía (projects FQM-262 and FQM-7276), Spain.

The second author acknowledges with thanks the support of the Ministerio de Economía y Competitividad (project \#MTM2012-36740-C02-02), Spain.
of Banach function spaces denoted by $S_{X_{p}}^{q}(\xi)$ which have some good properties, mainly order continuity and p-convexity. The space $S_{X_{p}}^{q}(\xi)$ is constructed by using the spaces $L^{p}(\mu)$ and $L^{q}(\xi)$, where ξ is a finite positive Radon measure on a certain compact set associated to X.

Corollary 5.2 states the desired extension for T. Namely, if T is q-summing and X is p-convex then T can be strongly extended continuously to a space of the type $S_{X_{p}}^{q}(\xi)$. Here we use the term "strongly" for this extension to remark that the map carrying X into $S_{X_{p}}^{q}(\xi)$ is actually injective; as the reader will notice (Proposition 3.1), this is one of the goals of our result. In order to develop our arguments, we introduce a new geometric tool which we call the family of p-strongly q concave operators. The inclusion of X into $S_{X_{p}}^{q}(\xi)$ turns out to belong to this family, in particular, it is q-concave.

If T is q-summing then it is p-strongly q-concave (Proposition 5.1). Actually, in Theorem 4.4 we show that in the case when X is p-convex, T can be continuously extended to a space $S_{X_{p}}^{q}(\xi)$ if and only if T is p-strongly q-concave. This result can be understood as an extension of some well-known relevant factorizations of the operator theory:
(I) Maurey-Rosenthal factorization theorem: If T is q-concave and X is q-convex and order continuous, then T can be extended to a weighted L^{q}-space related to μ, see for instance [3, Corollary 5]. Several generalizations and applications of the ideas behind this fundamental factorization theorem have been recently obtained, see [1, 2, 4, 4, 5, 9].
(II) Pietsch factorization theorem: If T is q-summing then it factors through a closed subspace of $L^{q}(\xi)$, where ξ is a probability Radon measure on a certain compact set associated to X, see for instance [6, Theorem 2.13].

In Theorem 4.4, the extreme case $p=q$ gives a Maurey-Rosenthal type factorization, while the other extreme case $p=1$ gives a Pietsch type factorization. We must say also that our generalization will allow to face the problem of the factorization of several p-summing type of multilinear operators from products of Banach function spaces -a topic of current interest-, since it allows to understand factorization
of q-summing operators from p-convex function lattices from a unified point of view not depending on the order relation between p and q.

As a consequence of Theorem 4.4, we also prove a kind of Kakutani representation theorem (see for instance [7, Theorem 1.b.2]) through the spaces $S_{X_{p}}^{q}(\xi)$ for p-convex Banach function spaces which are p strongly q-concave (Corollary 4.5).

2. Preliminaries

Let (Ω, Σ, μ) be a σ-finite measure space and denote by $L^{0}(\mu)$ the space of all measurable real functions on Ω, where functions which are equal μ-a.e. are identified. By a Banach function space (briefly B.f.s.) we mean a Banach space $X \subset L^{0}(\mu)$ with norm $\|\cdot\|_{X}$, such that if $f \in L^{0}(\mu), g \in X$ and $|f| \leq|g| \mu$-a.e. then $f \in X$ and $\|f\|_{X} \leq\|g\|_{X}$. In particular, X is a Banach lattice with the μ-a.e. pointwise order, in which the convergence in norm of a sequence implies the convergence μ-a.e. for some subsequence. A B.f.s. X is said to be saturated if there exists no $A \in \Sigma$ with $\mu(A)>0$ such that $f \chi_{A}=0 \mu$-a.e. for all $f \in X$, or equivalently, if X has a weak unit (i.e. $g \in X$ such that $g>0 \mu$-a.e.).

Lemma 2.1. Let X be a saturated B.f.s. For every $f \in L^{0}(\mu)$, there exists $\left(f_{n}\right)_{n \geq 1} \subset X$ such that $0 \leq f_{n} \uparrow|f| \mu$-a.e.

Proof. Consider a weak unit $g \in X$ and take $g_{n}=n g /(1+n g)$. Note that $0<g_{n}<n g \mu$-a.e., so g_{n} is a weak unit in X. Moreover, $\left(g_{n}\right)_{n \geq 1}$ increases μ-a.e. to the constant function equal to 1 . Now, take $f_{n}=$ $g_{n}|f| \chi_{\{\omega \in \Omega:|f| \leq n\}}$. Since $0 \leq f_{n} \leq n g_{n} \mu$-a.e., we have that $f_{n} \in X$, and $f_{n} \uparrow|f| \mu$-a.e.

The Köthe dual of a B.f.s. X is the space X^{\prime} given by the functions $h \in L^{0}(\mu)$ such that $\int|h f| d \mu<\infty$ for all $f \in X$. If X is saturated then X^{\prime} is a saturated B.f.s. with norm $\|h\|_{X^{\prime}}=\sup _{f \in B_{X}} \int|h f| d \mu$ for $h \in X^{\prime}$. Here, as usual, B_{X} denotes the closed unit ball of X. Each function $h \in X^{\prime}$ defines a functional $\zeta(h)$ on X by $\langle\zeta(h), f\rangle=\int h f d \mu$ for all $f \in X$. In fact, X^{\prime} is isometrically order isomorphic (via ζ) to a closed subspace of the topological dual X^{*} of X.

From now and on, a B.f.s. X will be assumed to be saturated. If for every $f, f_{n} \in X$ such that $0 \leq f_{n} \uparrow f \mu$-a.e. it follows that $\left\|f_{n}\right\|_{X} \uparrow$
$\|f\|_{X}$, then X is said to be order semi-continuous. This is equivalent to $\zeta\left(X^{\prime}\right)$ being a norming subspace of X^{*}, i.e. $\|f\|_{X}=\sup _{h \in B_{X^{\prime}}} \int|f h| d \mu$ for all $f \in X$. A B.f.s. X is order continuous if for every $f, f_{n} \in X$ such that $0 \leq f_{n} \uparrow f \mu$-a.e., it follows that $f_{n} \rightarrow f$ in norm. In this case, X^{\prime} can be identified with X^{*}.

For general issues related to B.f.s.' see [7], 8] and [10, Ch. 15] considering the function norm ρ defined as $\rho(f)=\|f\|_{X}$ if $f \in X$ and $\rho(f)=\infty$ in other case.

Let $1 \leq p<\infty$. A B.f.s. X is said to be p-convex if there exists a constant $C>0$ such that

$$
\left\|\left(\sum_{i=1}^{n}\left|f_{i}\right|^{p}\right)^{1 / p}\right\|_{X} \leq C\left(\sum_{i=1}^{n}\left\|f_{i}\right\|_{X}^{p}\right)^{1 / p}
$$

for every finite subset $\left(f_{i}\right)_{i=1}^{n} \subset X$. In this case, $M^{p}(X)$ will denote the smallest constant C satisfying the above inequality. Note that $M^{p}(X) \geq 1$. A relevant fact is that every p-convex B.f.s. X has an equivalent norm for which X is p-convex with constant $M^{p}(X)=1$, see [7, Proposition 1.d.8].

The p-th power of a B.f.s. X is the space defined as

$$
X_{p}=\left\{f \in L^{0}(\mu):|f|^{1 / p} \in X\right\}
$$

endowed with the quasi-norm $\|f\|_{X_{p}}=\left\||f|^{1 / p}\right\|_{X}^{p}$, for $f \in X_{p}$. Note that X_{p} is always complete, see the proof of [8, Proposition 2.22]. If X is p-convex with constant $M^{p}(X)=1$, from [3, Lemma 3], $\|\cdot\|_{X_{p}}$ is a norm and so X_{p} is a B.f.s. Note that X_{p} is saturated if and only if X is so. The same holds for the properties of being order continuous and order semi-continuous.

3. The space $S_{X_{p}}^{q}(\xi)$

Let $1 \leq p \leq q<\infty$ and let X be a saturated p-convex B.f.s. We can assume without loss of generality that the p-convexity constant $M^{p}(X)$ is equal to 1. Then, X_{p} and $\left(X_{p}\right)^{\prime}$ are saturated B.f.s.'. Consider the topology $\sigma\left(\left(X_{p}\right)^{\prime}, X_{p}\right)$ on $\left(X_{p}\right)^{\prime}$ defined by the elements of X_{p}. Note that the subset $B_{\left(X_{p}\right)^{\prime}}^{+}$of all positive elements of the closed unit ball of $\left(X_{p}\right)^{\prime}$ is compact for this topology.

Let ξ be a finite positive Radon measure on $B_{\left(X_{p}\right)^{\prime}}^{+}$. For $f \in L^{0}(\mu)$, consider the map $\phi_{f}: B_{\left(X_{p}\right)^{\prime}}^{+} \rightarrow[0, \infty]$ defined by

$$
\phi_{f}(h)=\left(\int_{\Omega}|f(\omega)|^{p} h(\omega) d \mu(\omega)\right)^{q / p}
$$

for all $h \in B_{\left(X_{p}\right)^{\prime}}^{+}$. In the case when $f \in X$, since $|f|^{p} \in X_{p}$, it follows that ϕ_{f} is continuous and so measurable. For a general $f \in L^{0}(\mu)$, by Lemma 2.1 we can take a sequence $\left(f_{n}\right)_{n \geq 1} \subset X$ such that $0 \leq f_{n} \uparrow|f|$ μ-a.e. Applying monotone convergence theorem, we have that $\phi_{f_{n}} \uparrow \phi_{f}$ pointwise and so ϕ_{f} is measurable. Then, we can consider the integral $\int_{B_{\left(x_{p}\right)^{\prime}}^{+}} \phi_{f}(h) d \xi(h) \in[0, \infty]$ and define the following space:
$S_{X_{p}}^{q}(\xi)=\left\{f \in L^{0}(\mu): \int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{\Omega}|f(\omega)|^{p} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h)<\infty\right\}$.
Let us endow $S_{X_{p}}^{q}(\xi)$ with the seminorm

$$
\begin{aligned}
\|f\|_{S_{X_{p}}^{q}(\xi)} & =\left(\int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{\Omega}|f(\omega)|^{p} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h)\right)^{1 / q} \\
& =\|h \rightarrow\| f|h|^{1 / p}\left\|_{L^{p}(\mu)}\right\|_{L^{q}(\xi)}
\end{aligned}
$$

In general, $\|\cdot\|_{S_{X_{p}}^{q}(\xi)}$ is not a norm. For instance, if ξ is the Dirac measure at some $h_{0} \in B_{\left(X_{p}\right)^{\prime}}^{+}$such that $A=\left\{\omega \in \Omega: h_{0}(\omega)=0\right\}$ satisfies $\mu(A)>0$, taking $f=g \chi_{A} \in X$ with g being a weak unit of X, we have that

$$
\|f\|_{S_{X_{p}}^{q}(\xi)}=\left(\int_{A}|g(\omega)|^{p} h_{0}(\omega) d \mu(\omega)\right)^{1 / p}=0
$$

and

$$
\mu(\{\omega \in \Omega: f(\omega) \neq 0\})=\mu(A \cap\{\omega \in \Omega: g(\omega) \neq 0\})=\mu(A)>0
$$

Proposition 3.1. If the Radon measure ξ satisfies

$$
\begin{equation*}
\int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{A} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h)=0 \Rightarrow \mu(A)=0 \tag{3.1}
\end{equation*}
$$

then, $S_{X_{p}}^{q}(\xi)$ is a saturated B.f.s. Moreover, $S_{X_{p}}^{q}(\xi)$ is order continuous, p-convex (with constant 1) and $X \subset S_{X_{p}}^{q}(\xi)$ continuously.

Proof. It is clear that if $f \in L^{0}(\mu), g \in S_{X_{p}}^{q}(\xi)$ and $|f| \leq|g| \mu$-a.e. then $f \in S_{X_{p}}^{q}(\xi)$ and $\|f\|_{S_{X_{p}}^{q}(\xi)} \leq\|g\|_{S_{X_{p}}^{q}(\xi)}$. Let us see that $\|\cdot\|_{S_{X_{p}}^{q}(\xi)}$ is a norm. Suppose that $\|f\|_{S_{X_{p}}^{q}(\xi)}=0$ and set $A_{n}=\left\{\omega \in \Omega:|f(\omega)|>\frac{1}{n}\right\}$ for every $n \geq 1$. Since $\chi_{A_{n}} \leq n|f|$ and

$$
\int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{A_{n}} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h)=\left\|\chi_{A_{n}}\right\|_{S_{X_{p}}^{q}(\xi)}^{q} \leq n^{q}\|f\|_{S_{X_{p}}^{q}(\xi)}^{q}=0
$$

from (3.1) we have that $\mu\left(A_{n}\right)=0$ and so

$$
\mu(\{\omega \in \Omega: f(\omega) \neq 0\})=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0 .
$$

Now we will see that $S_{X_{p}}^{q}(\xi)$ is complete by showing that $\sum_{n \geq 1} f_{n} \in$ $S_{X_{p}}^{q}(\xi)$ whenever $\left(f_{n}\right)_{n \geq 1} \subset S_{X_{p}}^{q}(\xi)$ with $C=\sum\left\|f_{n}\right\|_{S_{X_{p}}^{q}(\xi)}<\infty$. First let us prove that $\sum_{n \geq 1}\left|f_{n}\right|<\infty \mu$-a.e. For every $N, n \geq 1$, taking $A_{n}^{N}=\left\{\omega \in \Omega: \sum_{j=1}^{n}\left|f_{j}(\omega)\right|>N\right\}$, since $\chi_{A_{n}^{N}} \leq \frac{1}{N} \sum_{j=1}^{n}\left|f_{j}\right|$, we have that

$$
\begin{aligned}
\int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{A_{n}^{N}} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h) & =\left\|\chi_{A_{n}^{N}}\right\|_{S_{X_{p}}^{q}(\xi)}^{q} \\
& \leq \frac{1}{N^{q}}\left\|\sum_{j=1}^{n}\left|f_{j}\right|\right\|_{S_{X_{p}}^{q}(\xi)}^{q} \leq \frac{C^{q}}{N^{q}}
\end{aligned}
$$

Note that, for N fixed, $\left(A_{n}^{N}\right)_{n \geq 1}$ increases. Taking limit as $n \rightarrow \infty$ and applying twice the monotone convergence theorem, it follows that

$$
\int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{\cup_{n \geq 1} A_{n}^{N}} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h) \leq \frac{C^{q}}{N^{q}}
$$

Then,

$$
\int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{\cap_{N \geq 1} \cup_{n \geq 1} A_{n}^{N}} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h) \leq \lim _{N \rightarrow \infty} \frac{C^{q}}{N^{q}}=0
$$

and so, from (3.1),

$$
\mu\left(\left\{\omega \in \Omega: \sum_{n \geq 1}\left|f_{n}(\omega)\right|=\infty\right\}\right)=\mu\left(\bigcap_{N \geq 1} \bigcup_{n \geq 1} A_{n}^{N}\right)=0
$$

Hence, $\sum_{n \geq 1} f_{n} \in L^{0}(\mu)$. Again applying the monotone convergence theorem, it follows that

$$
\begin{aligned}
\int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{\Omega}\left|\sum_{n \geq 1} f_{n}(\omega)\right|^{p} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h) & \leq \\
\int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{\Omega}\left(\sum_{n \geq 1}\left|f_{n}(\omega)\right|\right)^{p} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h) & = \\
\lim _{n \rightarrow \infty} \int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{\Omega}\left(\sum_{j=1}^{n}\left|f_{j}(\omega)\right|\right)^{p} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h) & = \\
\lim _{n \rightarrow \infty}\left\|\sum_{j=1}^{n}\left|f_{j}\right|\right\|_{S_{X_{p}}^{q}(\xi)}^{q} & \leq C^{q}
\end{aligned}
$$

and thus $\sum_{n \geq 1} f_{n} \in S_{X_{p}}^{q}(\xi)$.
Note that if $f \in X$, for every $h \in B_{\left(X_{p}\right)^{\prime}}^{+}$we have that

$$
\int_{\Omega}|f(\omega)|^{p} h(\omega) d \mu(\omega) \leq\left\||f|^{p}\right\|_{X_{p}}\|h\|_{\left(X_{p}\right)^{\prime}} \leq\|f\|_{X}^{p}
$$

and so

$$
\int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{\Omega}|f(\omega)|^{p} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h) \leq\|f\|_{X}^{q} \xi\left(B_{\left(X_{p}\right)^{\prime}}^{+}\right) .
$$

Then, $X \subset S_{X_{p}}^{q}(\xi)$ and $\|f\|_{S_{X_{p}}^{q}(\xi)} \leq \xi\left(B_{\left(X_{p}\right)^{\prime}}^{+}\right)^{1 / q}\|f\|_{X}$ for all $f \in X$. In particular, $S_{X_{p}}^{q}(\xi)$ is saturated, as a weak unit in X is a weak unit in $S_{X_{p}}^{q}(\xi)$.

Let us show that $S_{X_{p}}^{q}(\xi)$ is order continuous. Consider $f, f_{n} \in S_{X_{p}}^{q}(\xi)$ such that $0 \leq f_{n} \uparrow f \mu$-a.e. Note that, since

$$
\int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{\Omega}|f(\omega)|^{p} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h)<\infty
$$

there exists a ξ-measurable set B with $\xi\left(B_{\left(X_{p}\right)^{\prime}}^{+} \backslash B\right)=0$ such that $\int_{\Omega}|f(\omega)|^{p} h(\omega) d \mu(\omega)<\infty$ for all $h \in B$. Fixed $h \in B$, we have that $\left|f-f_{n}\right|^{p} h \downarrow 0 \mu$-a.e. and $\left|f-f_{n}\right|^{p} h \leq|f|^{p} h \mu$-a.e. Then, applying the dominated convergence theorem, $\int_{\Omega}\left|f(\omega)-f_{n}(\omega)\right|^{p} h(\omega) d \mu(\omega) \downarrow 0$.

Consider the measurable functions $\phi, \phi_{n}: B_{\left(X_{p}\right)^{\prime}}^{+} \rightarrow[0, \infty]$ given by

$$
\begin{aligned}
\phi(h) & =\left(\int_{\Omega}|f(\omega)|^{p} h(\omega) d \mu(\omega)\right)^{q / p} \\
\phi_{n}(h) & =\left(\int_{\Omega}\left|f(\omega)-f_{n}(\omega)\right|^{p} h(\omega) d \mu(\omega)\right)^{q / p}
\end{aligned}
$$

for all $h \in B_{\left(X_{p}\right)^{\prime}}^{+}$. It follows that $\phi_{n} \downarrow 0 \xi$-a.e. and $\phi_{n} \leq \phi \xi$-a.e. Again by the dominated convergence theorem, we obtain

$$
\left\|f-f_{n}\right\|_{S_{X_{p}}^{q}(\xi)}^{q}=\int_{B_{\left(X_{p}\right)^{\prime}}^{+}} \phi_{n}(h) d \xi(h) \downarrow 0 .
$$

Finally, let us see that $S_{X_{p}}^{q}(\xi)$ is p-convex. Fix $\left(f_{i}\right)_{i=1}^{n} \subset S_{X_{p}}^{q}(\xi)$ and consider the measurable functions $\phi_{i}: B_{\left(X_{p}\right)^{\prime}}^{+} \rightarrow[0, \infty]$ (for $1 \leq i \leq n$) defined by

$$
\phi_{i}(h)=\int_{\Omega}\left|f_{i}(\omega)\right|^{p} h(\omega) d \mu(\omega)
$$

for all $h \in B_{\left(X_{p}\right)^{\prime}}^{+}$. Then,

$$
\begin{aligned}
\left\|\left(\sum_{i=1}^{n}\left|f_{i}\right|^{p}\right)^{1 / p}\right\|_{S_{X_{p}}^{q}(\xi)}^{q} & =\int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{\Omega} \sum_{i=1}^{n}\left|f_{i}(\omega)\right|^{p} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h) \\
& =\int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\sum_{i=1}^{n} \phi_{i}(h)\right)^{q / p} d \xi(h) \\
& \leq\left(\sum_{i=1}^{n}\left\|\phi_{i}\right\|_{L^{q / p}(\xi)}\right)^{q / p} .
\end{aligned}
$$

Since $\left\|\phi_{i}\right\|_{L^{q / p}(\xi)}=\left\|f_{i}\right\|_{S_{X_{p}}^{q}(\xi)}^{p}$ for all $1 \leq i \leq n$, we have that

$$
\left\|\left(\sum_{i=1}^{n}\left|f_{i}\right|^{p}\right)^{1 / p}\right\|_{S_{X_{p}}^{q}(\xi)} \leq\left(\sum_{i=1}^{n}\left\|f_{i}\right\|_{S_{X_{p}}^{q}(\xi)}^{p}\right)^{1 / p}
$$

Example 3.2. Take a weak unit $g \in\left(X_{p}\right)^{\prime}$ and consider the Radon measure ξ as the Dirac measure at g. If $A \in \Sigma$ is such that

$$
0=\int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{A} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h)=\left(\int_{A} g(\omega) d \mu(\omega)\right)^{q / p}
$$

then, $g \chi_{A}=0 \mu$-a.e. and so, since $g>0 \mu$-a.e., $\mu(A)=0$. That is, ξ satisfies (3.1). In this case, $S_{X_{p}}^{q}(\xi)=L^{p}(g d \mu)$ with equal norms, as

$$
\int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{\Omega}|f(\omega)|^{p} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h)=\left(\int_{\Omega}|f(\omega)|^{p} g(\omega) d \mu(\omega)\right)^{q / p}
$$

for all $f \in L^{0}(\mu)$.
Example 3.3. Write $\Omega=\cup_{n \geq 1} \Omega_{n}$ with $\left(\Omega_{n}\right)_{n \geq 1}$ being a disjoint sequence of measurable sets and take a sequence of strictly positive elements $\left(\alpha_{n}\right)_{n \geq 1} \in \ell^{1}$. Let us consider the Radon measure $\xi=\sum_{n \geq 1} \alpha_{n} \delta_{g \chi_{\Omega_{n}}}$ on $B_{\left(X_{p}\right)^{\prime}}^{+}$, where $\delta_{g \chi_{\Omega_{n}}}$ is the Dirac measure at $g \chi_{\Omega_{n}}$ with $g \in\left(X_{p}\right)^{\prime}$ being a weak unit. Note that for every positive function $\phi \in L^{0}(\xi)$, it follows that $\int_{B_{\left(X_{p}\right)^{\prime}}^{+}} \phi d \xi=\sum_{n \geq 1} \alpha_{n} \phi\left(g \chi_{\Omega_{n}}\right)$. If $A \in \Sigma$ is such that

$$
0=\int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{A} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h)=\sum_{n \geq 1} \alpha_{n}\left(\int_{A \cap \Omega_{n}} g(\omega) d \mu(\omega)\right)^{q / p}
$$

then, $\int_{A \cap \Omega_{n}} g(\omega) d \mu(\omega)=0$ for all $n \geq 1$. Hence,

$$
\int_{A} g(\omega) d \mu(\omega)=\sum_{n \geq 1} \int_{A \cap \Omega_{n}} g(\omega) d \mu(\omega)=0
$$

and so $g \chi_{A}=0 \mu$-a.e., from which $\mu(A)=0$. That is, ξ satisfies (3.1). For every $f \in L^{0}(\mu)$ we have that

$$
\begin{aligned}
\int_{B_{\left(X_{p}\right)^{\prime}}^{+}} & \left(\int_{\Omega}|f(\omega)|^{p} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h)= \\
& \sum_{n \geq 1} \alpha_{n}\left(\int_{\Omega_{n}}|f(\omega)|^{p} g(\omega) d \mu(\omega)\right)^{q / p}
\end{aligned}
$$

Then, the B.f.s. $S_{X_{p}}^{q}(\xi)$ can be described as the space of functions $f \in \cap_{n \geq 1} L^{p}\left(g \chi_{\Omega_{n}} d \mu\right)$ such that $\left(\alpha_{n}^{1 / q}\|f\|_{L^{p}\left(g \chi_{\Omega_{n}} d \mu\right)}\right)_{n \geq 1} \in \ell^{q}$. Moreover, $\|f\|_{S_{X_{p}}^{q}(\xi)}=\left(\sum_{n \geq 1} \alpha_{n}\|f\|_{L^{p}\left(g \chi_{\Omega_{n}} d \mu\right)}^{q}\right)^{1 / q}$ for all $f \in S_{X_{p}}^{q}(\xi)$.

4. p-STRONGLY q-CONCAVE OPERATORS

Let $1 \leq p \leq q<\infty$ and let $T: X \rightarrow E$ be a linear operator from a saturated B.f.s. X into a Banach space E. Recall that T is said to be
q-concave if there exists a constant $C>0$ such that

$$
\left(\sum_{i=1}^{n}\left\|T\left(f_{i}\right)\right\|_{E}^{q}\right)^{1 / q} \leq C\left\|\left(\sum_{i=1}^{n}\left|f_{i}\right|^{q}\right)^{1 / q}\right\|_{X}
$$

for every finite subset $\left(f_{i}\right)_{i=1}^{n} \subset X$. The smallest possible value of C will be denoted by $M_{q}(T)$. For issues related to q-concavity see for instance [7, Ch.1.d]. We introduce a little stronger notion than q-concavity: T will be called p-strongly q-concave if there exists $C>0$ such that

$$
\left(\sum_{i=1}^{n}\left\|T\left(f_{i}\right)\right\|_{E}^{q}\right)^{1 / q} \leq C \sup _{\left(\beta_{i}\right)_{i \geq 1} \in B_{\ell^{r}}}\left\|\left(\sum_{i=1}^{n}\left|\beta_{i} f_{i}\right|^{p}\right)^{1 / p}\right\|_{X}
$$

for every finite subset $\left(f_{i}\right)_{i=1}^{n} \subset X$, where $1<r \leq \infty$ is such that $\frac{1}{r}=\frac{1}{p}-\frac{1}{q}$. In this case, $M_{p, q}(T)$ will denote the smallest constant C satisfying the above inequality. Noting that $\frac{r}{p}$ and $\frac{q}{p}$ are conjugate exponents, it is clear that every p-strongly q-concave operator is q concave and so continuous, and moreover $\|T\| \leq M_{q}(T) \leq M_{p, q}(T)$. As usual, we will say that X is p-strongly q-concave if the identity map $I: X \rightarrow X$ is so, and in this case, we denote $M_{p, q}(X)=M_{p, q}(I)$.

Our goal is to get a continuous extension of T to a space of the type $S_{X_{p}}^{q}(\xi)$ in the case when T is p-strongly q-concave and X is p-convex. To this end we will need to describe the supremum on the right-hand side of the p-strongly q-concave inequality in terms of the Köthe dual of X_{p}.

Lemma 4.1. If X is p-convex and order semi-continuous then

$$
\sup _{\left(\beta_{i}\right)_{i \geq 1} \in B_{\ell r}}\left\|\left(\sum_{i=1}^{n}\left|\beta_{i} f_{i}\right|^{p}\right)^{1 / p}\right\|_{X}=\sup _{h \in B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\sum_{i=1}^{n}\left(\int\left|f_{i}\right|^{p} h d \mu\right)^{q / p}\right)^{1 / q}
$$

for every finite subset $\left(f_{i}\right)_{i=1}^{n} \subset X$, where $1<r \leq \infty$ is such that $\frac{1}{r}=\frac{1}{p}-\frac{1}{q}$ and $B_{\left(X_{p}\right)^{\prime}}^{+}$is the subset of all positive elements of the closed unit ball $B_{\left(X_{p}\right)^{\prime}}$ of $\left(X_{p}\right)^{\prime}$.

Proof. Given $\left(f_{i}\right)_{i=1}^{n} \subset X$, since X_{p} is order semi-continuous, as X is so, and $\left(\ell^{q / p}\right)^{*}=\ell^{r / p}$, as $\frac{r}{p}$ is the conjugate exponent of $\frac{q}{p}$, we have that

$$
\begin{aligned}
\sup _{\left(\beta_{i}\right) \in B_{\ell^{r}}}\left\|\left(\sum_{i=1}^{n}\left|\beta_{i} f_{i}\right|^{p}\right)^{1 / p}\right\|_{X}^{p} & =\sup _{\left(\beta_{i}\right) \in B_{\ell^{r}}}\left\|\sum_{i=1}^{n}\left|\beta_{i} f_{i}\right|^{p}\right\|_{X_{p}} \\
& =\sup _{\left(\beta_{i}\right) \in B_{\ell^{r}}} \sup _{h \in B_{\left(X_{p}\right)^{\prime}}} \int \sum_{i=1}^{n}\left|\beta_{i} f_{i}\right|^{p}|h| d \mu \\
& =\sup _{\left(\beta_{i}\right) \in B_{\ell^{r}}} \sup _{h \in B_{\left(X_{p}\right)^{\prime}}^{+}} \int \sum_{i=1}^{n}\left|\beta_{i} f_{i}\right|^{p} h d \mu \\
& =\sup _{h \in B_{\left(X_{p}\right)^{\prime}}^{+}} \sup _{\left(\beta_{i}\right) \in B_{\ell^{r}}} \sum_{i=1}^{n}\left|\beta_{i}\right|^{p} \int\left|f_{i}\right|^{p} h d \mu \\
& =\sup _{h \in B_{\left(X_{p}\right)^{\prime}}^{+}} \sup _{\left(\alpha_{i}\right) \in B_{\ell^{r} / p}^{+}} \sum_{i=1}^{n} \alpha_{i} \int\left|f_{i}\right|^{p} h d \mu \\
& =\sup _{h \in B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\sum_{i=1}^{n}\left(\int\left|f_{i}\right|^{p} h d \mu\right)^{q / p}\right)^{p / q} .
\end{aligned}
$$

In the following remark, from Lemma 4.1, we obtain easily an example of p-strongly q-concave operator.

Remark 4.2. Suppose that X is p-convex and order semi-continuous. For every finite positive Radon measure ξ on $B_{\left(X_{p}\right)^{\prime}}^{+}$satisfying (3.1), it follows that the inclusion map $i: X \rightarrow S_{X_{p}}^{q}(\xi)$ is p-strongly q-concave. Indeed, for each $\left(f_{i}\right)_{i=1}^{n} \subset X$, we have that

$$
\begin{aligned}
\sum_{i=1}^{n}\left\|f_{i}\right\|_{S_{X_{p}}^{q}(\xi)}^{q} & =\sum_{i=1}^{n} \int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{\Omega}\left|f_{i}(\omega)\right|^{p} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h) \\
& \leq \xi\left(B_{\left(X_{p}\right)^{\prime}}^{+}\right) \sup _{h \in B_{\left(X_{p}\right)^{\prime}}^{+}} \sum_{i=1}^{n}\left(\int_{\Omega}\left|f_{i}(\omega)\right|^{p} h(\omega) d \mu(\omega)\right)^{q / p}
\end{aligned}
$$

and so, Lemma 4.1 gives the conclusion for $M_{p, q}(i) \leq \xi\left(B_{\left(X_{p}\right)^{\prime}}^{+}\right)^{1 / q}$.
Now let us prove our main result.

Theorem 4.3. If T is p-strongly q-concave and X is p-convex and order semi-continuous, then there exists a probability Radon measure ξ on $B_{\left(X_{p}\right)^{\prime}}^{+}$satisfying (3.1) such that

$$
\begin{equation*}
\|T(f)\|_{E} \leq M_{p, q}(T)\left(\int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{\Omega}|f(\omega)|^{p} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h)\right)^{1 / q} \tag{4.1}
\end{equation*}
$$

for all $f \in X$.
Proof. Recall that the stated topology on $\left(X_{p}\right)^{\prime}$ is $\sigma\left(\left(X_{p}\right)^{\prime}, X_{p}\right)$, the one which is defined by the elements of X_{p}. For each finite subset (with possibly repeated elements) $M=\left(f_{i}\right)_{i=1}^{m} \subset X$, consider the map $\psi_{M}: B_{\left(X_{p}\right)^{\prime}}^{+} \rightarrow[0, \infty)$ defined by $\psi_{M}(h)=\sum_{i=1}^{m}\left(\int_{\Omega}\left|f_{i}\right|^{p} h d \mu\right)^{q / p}$ for $h \in B_{\left(X_{p}\right)^{\prime}}^{+}$. Note that ψ_{M} attains its supremum as it is continuous on a compact set, so there exists $h_{M} \in B_{\left(X_{p}\right)^{\prime}}^{+}$such that $\sup _{h \in B_{\left(X_{p}\right)^{\prime}}^{+}} \psi_{M}(h)=$ $\psi_{M}\left(h_{M}\right)$. Then, the p-strongly q-concavity of T, together with Lemma 4.1, gives

$$
\begin{align*}
\sum_{i=1}^{m}\left\|T\left(f_{i}\right)\right\|_{E}^{q} & \leq M_{p, q}(T)^{q} \sup _{h \in B_{\left(x_{p}\right)^{\prime}}^{+}} \sum_{i=1}^{m}\left(\int_{\Omega}\left|f_{i}\right|^{p} h d \mu\right)^{q / p} \\
& \leq M_{p, q}(T)^{q} \sup _{h \in B_{\left(X_{p}\right)^{\prime}}^{+}} \psi_{M}(h) \\
& =M_{p, q}(T)^{q} \psi_{M}\left(h_{M}\right) . \tag{4.2}
\end{align*}
$$

Consider now the continuous map $\phi_{M}: B_{\left(X_{p}\right)^{\prime}}^{+} \rightarrow \mathbb{R}$ defined by

$$
\phi_{M}(h)=M_{p, q}(T)^{q} \psi_{M}(h)-\sum_{i=1}^{m}\left\|T\left(f_{i}\right)\right\|_{E}^{q}
$$

for $h \in B_{\left(X_{p}\right)^{\prime}}^{+}$. Take $B=\left\{\phi_{M}: M\right.$ is a finite subset of $\left.X\right\}$. Since for every $M=\left(f_{i}\right)_{i=1}^{m}, M^{\prime}=\left(f_{i}^{\prime}\right)_{i=1}^{k} \subset X$ and $0<t<1$, it follows that $t \phi_{M}+(1-t) \phi_{M^{\prime}}=\phi_{M^{\prime \prime}}$ where $M^{\prime \prime}=\left(t^{1 / q} f_{i}\right)_{i=1}^{m} \cup\left((1-t)^{1 / q} f_{i}^{\prime}\right)_{i=1}^{k}$, we have that B is convex. Denote by $\mathcal{C}\left(B_{\left(X_{p}\right)^{\prime}}^{+}\right)$the space of continuous real functions on $B_{\left(X_{p}\right)^{\prime}}^{+}$, endowed with the supremum norm, and by A the open convex subset $\left\{\phi \in \mathcal{C}\left(B_{\left(X_{p}\right)^{\prime}}^{+}\right): \phi(h)<0\right.$ for all $\left.h \in B_{\left(X_{p}\right)^{\prime}}^{+}\right\}$. By (4.2) we have that $A \cap B=\emptyset$. From the Hahn-Banach separation theorem, there exist $\xi \in \mathcal{C}\left(B_{\left(X_{p}\right)^{\prime}}^{+}\right)^{*}$ and $\alpha \in \mathbb{R}$ such that $\langle\xi, \phi\rangle<\alpha \leq$ $\left\langle\xi, \phi_{M}\right\rangle$ for all $\phi \in A$ and $\phi_{M} \in B$. Since every negative constant
function is in A, it follows that $0 \leq \alpha$. Even more, $\alpha=0$ as the constant function equal to 0 is just $\phi_{\{0\}} \in B$. It is routine to see that $\langle\xi, \phi\rangle \geq 0$ whenever $\phi \in \mathcal{C}\left(B_{\left(X_{p}\right)^{\prime}}^{+}\right)$is such that $\phi(h) \geq 0$ for all $h \in B_{\left(X_{p}\right)^{\prime}}^{+}$. Then, ξ is a positive linear functional on $\mathcal{C}\left(B_{\left.\left(X_{p}\right)^{\prime}\right)}^{+}\right)$and so it can be interpreted as a finite positive Radon measure on $B_{\left(X_{p}\right)^{\prime}}^{+}$. Hence, we have that

$$
0 \leq \int_{B_{\left(x_{p}\right)^{\prime}}^{+}} \phi_{M} d \xi
$$

for all finite subset $M \subset X$. Dividing by $\xi\left(B_{\left(X_{p}\right)^{\prime}}^{+}\right)$, we can suppose that ξ is a probability measure. Then, for $M=\{f\}$ with $f \in X$, we obtain that

$$
\|T(f)\|_{E}^{q} \leq M_{p, q}(T)^{q} \int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{\Omega}|f(\omega)|^{p} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h)
$$

and so (4.1) holds.
Actually, Theorem 4.3 says that we can find a probability Radon measure ξ on $B_{\left(X_{p}\right)^{\prime}}^{+}$such that $T: X \rightarrow E$ is continuous when X is considered with the norm of the space $S_{X_{p}}^{q}(\xi)$. In the next result we will see how to extend T continuously to $S_{X_{p}}^{q}(\xi)$. Even more, we will show that this extension is possible if and only if T is p-strongly q concave.

Theorem 4.4. Suppose that X is p-convex and order semi-continuous. The following statements are equivalent:
(a) T is p-strongly q-concave.
(b) There exists a probability Radon measure ξ on $B_{\left(X_{p}\right)^{\prime}}^{+}$satisfying (3.1) such that T can be extended continuously to $S_{X_{p}}^{q}(\xi)$, i.e. there is a factorization for T as

where \widetilde{T} is a continuous linear operator and i is the inclusion map. If (a)-(b) holds, then $M_{p, q}(T)=\|\widetilde{T}\|$.

Proof. (a) \Rightarrow (b) From Theorem 4.3, there is a probability Radon measure ξ on $B_{\left(X_{p}\right)^{\prime}}^{+}$satisfying (3.1) such that $\|T(f)\|_{E} \leq M_{p, q}(T)\|f\|_{S_{X_{p}}^{q}(\xi)}$ for all $f \in X$. Given $0 \leq f \in S_{X_{p}}^{q}(\xi)$, from Lemma 2.1, we can take $\left(f_{n}\right)_{n \geq 1} \subset X$ such that $0 \leq f_{n} \uparrow f \mu$-a.e. Then, since $S_{X_{p}}^{q}(\xi)$ is order continuous, we have that $f_{n} \rightarrow f$ in $S_{X_{p}}^{q}(\xi)$ and so $\left(T\left(f_{n}\right)\right)_{n \geq 1}$ converges to some element e of E. Define $\widetilde{T}(f)=e$. Note that \widetilde{T} is well defined, since if $\left(g_{n}\right)_{n \geq 1} \subset X$ is such that $0 \leq g_{n} \uparrow f \mu$-a.e., then

$$
\left\|T\left(f_{n}\right)-T\left(g_{n}\right)\right\|_{E} \leq M_{p, q}(T)\left\|f_{n}-g_{n}\right\|_{S_{X_{p}}^{q}(\xi)} \rightarrow 0
$$

Moreover,

$$
\begin{aligned}
\|\widetilde{T}(f)\|_{E} & =\lim _{n \rightarrow \infty}\left\|T\left(f_{n}\right)\right\|_{E} \\
& \leq M_{p, q}(T) \lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{S_{X_{p}}}(\xi) \\
& =M_{p, q}(T)\|f\|_{S_{X_{p}}^{q}(\xi)} .
\end{aligned}
$$

For a general $f \in S_{X_{p}}^{q}(\xi)$, writing $f=f^{+}-f^{-}$where f^{+}and f^{-}are the positive and negative parts of f respectively, we define $\widetilde{T}(f)=$ $\widetilde{T}\left(f^{+}\right)-\widetilde{T}\left(f^{-}\right)$. Then, $\widetilde{T}: S_{X_{p}}^{q}(\xi) \rightarrow E$ is a continuous linear operator extending T. Moreover $\|\widetilde{T}\| \leq M_{p, q}(T)$. Indeed, let $f \in S_{X_{p}}^{q}(\xi)$ and take $\left(f_{n}^{+}\right)_{n \geq 1},\left(f_{n}^{-}\right)_{n \geq 1} \subset X$ such that $0 \leq f_{n}^{+} \uparrow f^{+}$and $0 \leq f_{n}^{-} \uparrow f^{-}$ μ-a.e. Then, $f_{n}^{+}-f_{n}^{-} \rightarrow f$ in $S_{X_{p}}^{q}(\xi)$ and

$$
T\left(f_{n}^{+}-f_{n}^{-}\right)=T\left(f_{n}^{+}\right)-T\left(f_{n}^{-}\right) \rightarrow \widetilde{T}\left(f^{+}\right)-\widetilde{T}\left(f^{-}\right)=\widetilde{T}(f)
$$

in E. Hence,

$$
\begin{aligned}
\|\widetilde{T}(f)\|_{E} & =\lim _{n \rightarrow \infty}\left\|T\left(f_{n}^{+}-f_{n}^{-}\right)\right\|_{E} \\
& \leq M_{p, q}(T) \lim _{n \rightarrow \infty}\left\|f_{n}^{+}-f_{n}^{-}\right\|_{S_{X_{p}}^{q}(\xi)} \\
& =M_{p, q}(T)\|f\|_{S_{X_{p}}^{q}(\xi)} .
\end{aligned}
$$

(b) \Rightarrow (a) Given $\left(f_{i}\right)_{i=1}^{n} \subset X$, we have that

$$
\begin{aligned}
\sum_{i=1}^{n}\left\|T\left(f_{i}\right)\right\|_{E}^{q} & =\sum_{i=1}^{n}\left\|\widetilde{T}\left(f_{i}\right)\right\|_{E}^{q} \leq\|\widetilde{T}\|^{q} \sum_{i=1}^{n}\left\|f_{i}\right\|_{S_{X_{p}}^{q}(\xi)}^{q} \\
& =\|\widetilde{T}\|^{q} \sum_{i=1}^{n} \int_{B_{\left(X_{p}\right)^{\prime}}^{+}}\left(\int_{\Omega}\left|f_{i}(\omega)\right|^{p} h(\omega) d \mu(\omega)\right)^{q / p} d \xi(h) \\
& \leq\|\widetilde{T}\|^{q} \sup _{h \in B_{\left(X_{p}\right)^{\prime}}^{+}} \sum_{i=1}^{n}\left(\int_{\Omega}\left|f_{i}(\omega)\right|^{p} h(\omega) d \mu(\omega)\right)^{q / p}
\end{aligned}
$$

That is, from Lemma 4.1, T is p-strongly q-concave with $M_{p, q}(T) \leq$ $\|\widetilde{T}\|$.

A first application of Theorem 4.4 is the following Kakutani type representation theorem (see for instance [7, Theorem 1.b.2]) for B.f.s.' being order semi-continuous, p-convex and p-strongly q-concave.

Corollary 4.5. Suppose that X is p-convex and order semi-continuous. The following statements are equivalent:
(a) X is p-strongly q-concave.
(b) There exists a probability Radon measure ξ on $B_{\left(X_{p}\right)^{\prime}}^{+}$satisfying (3.1), such that $X=S_{X_{p}}^{q}(\xi)$ with equivalent norms.

Proof. (a) \Rightarrow (b) The identity map $I: X \rightarrow X$ is p-strongly q-concave as X is so. Then, from Theorem 4.4, there exists a probability Radon measure ξ on $B_{\left(X_{p}\right)^{\prime}}^{+}$satisfying (3.1), such that I factors as

where \widetilde{I} is a continuous linear operator with $\|\widetilde{I}\|=M_{p, q}(X)$ and i is the inclusion map. Since ξ is a probability measure, we have that $\|f\|_{S_{X_{p}}^{q}(\xi)} \leq\|f\|_{X}$ for all $f \in X$, see the proof of Proposition 3.1. Let $0 \leq f \in S_{X_{p}}^{q}(\xi)$. By Lemma [2.1, we can take $\left(f_{n}\right)_{n \geq 1} \subset X$ such that $0 \leq f_{n} \uparrow f \mu$-a.e. Since $S_{X_{p}}^{q}(\xi)$ is order continuous, it follows that $f_{n} \rightarrow f$ in $S_{X_{p}}^{q}(\xi)$ and so $f_{n}=\widetilde{I}\left(f_{n}\right) \rightarrow \widetilde{I}(f)$ in X. Then, there is a
subsequence of $\left(f_{n}\right)_{n \geq 1}$ converging μ-a.e. to $\widetilde{I}(f)$ and hence $f=\widetilde{I}(f) \in$ X. For a general $f \in S_{X_{p}}^{q}(\xi)$, writing $f=f^{+}-f^{-}$where f^{+}and f^{-} are the positive and negative parts of f respectively, we have that $f=$ $\widetilde{I}\left(f^{+}\right)-\widetilde{I}\left(f^{-}\right)=\widetilde{I}(f) \in X$. Therefore, $X=S_{X_{p}}^{q}(\xi)$ and \widetilde{I} is de identity map. Moreover, $\|f\|_{X}=\|\widetilde{I}(f)\|_{X} \leq\|\widetilde{I}\|\|f\|_{S_{X_{p}}^{q}(\xi)}=M_{p, q}(X)\|f\|_{S_{X_{p}}^{q}(\xi)}$ for all $f \in X$.
(b) \Rightarrow (a) From Remark 4.2 it follows that the identity map $I: X \rightarrow$ X is p-strongly q-concave.

Note that under conditions of Corollary 4.5, if X is p-strongly q concave with constant $M_{p, q}(X)=1$, then $X=S_{X_{p}}^{q}(\xi)$ with equal norms.

5. q-SUMMING OPERATORS ON A p-CONVEX B.F.S.

Recall that a linear operator $T: X \rightarrow E$ between Banach spaces is said to be q-summing $(1 \leq q<\infty)$ if there exists a constant $C>0$ such that

$$
\left(\sum_{i=1}^{n}\left\|T x_{i}\right\|_{E}^{q}\right)^{1 / q} \leq C \sup _{x^{*} \in B_{X^{*}}}\left(\sum_{i=1}^{n}\left|\left\langle x^{*}, x_{i}\right\rangle\right|^{q}\right)^{1 / q}
$$

for every finite subset $\left(x_{i}\right)_{i=1}^{n} \subset X$. Denote by $\pi_{q}(T)$ the smallest possible value of C. Information about q-summing operators can be found in [6].

One of the main relations between summability and concavity for operators defined on a B.f.s. X, is that every q-summing operator is q-concave. This is a consequence of a direct calculation which shows that for every $\left(f_{i}\right)_{i=1}^{n} \subset X$ and $x^{*} \in X^{*}$ it follows that

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left|\left\langle x^{*}, f_{i}\right\rangle\right|^{q}\right)^{1 / q} \leq\left\|x^{*}\right\|_{X^{*}}\left\|\left(\sum_{i=1}^{n}\left|f_{i}\right|^{q}\right)^{1 / q}\right\|_{X}, \tag{5.1}
\end{equation*}
$$

see for instance [7, Proposition 1.d.9] and the comments below. However, this calculation can be slightly improved to obtain the following result.

Proposition 5.1. Let $1 \leq p \leq q<\infty$. Every q-summing linear operator $T: X \rightarrow E$ from a B.f.s. X into a Banach space E, is pstrongly q-concave with $M_{p, q}(T) \leq \pi_{q}(T)$.

Proof. Let $1<r \leq \infty$ be such that $\frac{1}{r}=\frac{1}{p}-\frac{1}{q}$ and consider a finite subset $\left(f_{i}\right)_{i=1}^{n} \subset X$. We only have to prove

$$
\sup _{x^{*} \in B_{X^{*}}}\left(\sum_{i=1}^{n}\left|\left\langle x^{*}, f_{i}\right\rangle\right|^{q}\right)^{1 / q} \leq \sup _{\left(\beta_{i}\right)_{i \geq 1} \in B_{\ell^{r}}}\left\|\left(\sum_{i=1}^{n}\left|\beta_{i} f_{i}\right|^{p}\right)^{1 / p}\right\|_{X} .
$$

Fix $x^{*} \in B_{X^{*}}$. Noting that $\frac{q}{p}$ and $\frac{r}{p}$ are conjugate exponents and using the inequality (5.1), we have

$$
\begin{aligned}
\left(\sum_{i=1}^{n}\left|\left\langle x^{*}, f_{i}\right\rangle\right|^{q}\right)^{1 / q} & =\sup _{\left(\alpha_{i}\right)_{i \geq 1} \in B_{\ell^{r} / p}}\left(\sum_{i=1}^{n}\left|\alpha_{i}\right|\left|\left\langle x^{*}, f_{i}\right\rangle\right|^{p}\right)^{1 / p} \\
& =\sup _{\left(\beta_{i}\right)_{i \geq 1} \in B_{\ell^{r}}}\left(\sum_{i=1}^{n}\left|\left\langle x^{*}, \beta_{i} f_{i}\right\rangle\right|^{p}\right)^{1 / p} \\
& \leq \sup _{\left(\beta_{i}\right)_{i \geq 1} \in B_{\ell^{r}}}\left\|\left(\sum_{i=1}^{n}\left|\beta_{i} f_{i}\right|^{p}\right)^{1 / p}\right\|_{X}
\end{aligned}
$$

Taking supremum in $x^{*} \in B_{X^{*}}$ we get the conclusion.
From Proposition 5.1, Theorem 4.4 and Remark 4.2, we obtain the final result.

Corollary 5.2. Set $1 \leq p \leq q<\infty$. Let X be a saturated order semicontinuous p-convex B.f.s. and consider a q-summing linear operator $T: X \rightarrow E$ with values in a Banach space E. Then, there exists a probability Radon measure ξ on $B_{\left(X_{p}\right)^{\prime}}^{+}$satisfying (13.1) such that T can be factored as

where \widetilde{T} is a continuous linear operator with $\|\widetilde{T}\| \leq \pi_{q}(T)$ and i is the inclusion map which turns out to be p-strongly q-concave, and so q-concave.

Observe that what we obtain in Corollary 5.2 is a proper extension for T, and not just a factorization as the obtained in the Pietsch theorem for q-summing operators through a subspace of an L^{q}-space.

References

[1] J. M. Calabuig, O. Delgado and E. A. Sánchez Pérez, Factorizing operators on Banach function spaces through spaces of multiplication operators, J. Math. Anal. Appl. 364 (2010), 88-103.
[2] J. M. Calabuig, J. Rodríguez and E. A. Sánchez Pérez, Strongly embedded subspaces of p-convex Banach function spaces, Positivity 17 (2013), 775-791.
[3] A. Defant, Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces, Positivity 5 (2001), 153-175.
[4] A. Defant and E. A. Sánchez Pérez, Maurey-Rosenthal factorization of positive operators and convexity, J. Math. Anal. Appl. 297 (2004), 771-790.
[5] O. Delgado and E. A. Sánchez Pérez, Summability properties for multiplication operators on Banach function spaces, Integr. Equ. Oper. Theory 66 (2010), 197-214.
[6] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.
[7] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, Berlin, 1979.
[8] S. Okada, W. J. Ricker and E. A. Sánchez Pérez, Optimal Domain and Integral Extension of Operators acting in Function Spaces, Operator Theory: Adv. Appl., vol. 180, Birkhäuser, Basel, 2008.
[9] E. A. Sánchez Pérez, Factorization theorems for multiplication operators on Banach function spaces, Integr. Equ. Oper. Theory 80 (2014), 117-135.
[10] A. C. Zaanen, Integration, 2nd rev. ed., North-Holland, Amsterdam, 1967.

Departamento de Matemática Aplicada I, E. T. S. de Ingeniería de Edificación, Universidad de Sevilla, Avenida de Reina Mercedes, 4 A, Sevilla 41012, Spain

E-mail address: olvido@us.es
Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.

E-mail address: easancpe@mat.upv.es

