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Abstract. Pseudomonas aeruginosa is an opportunistic bacterium that
exploits quorum sensing communication to synchronize individuals in a
colony and this leads to an increase in the effectiveness of its virulence.
In this paper we derived a mechanistic P systems model to describe the
behavior of a single bacterium and we discuss a possible approach, based
on an evolutionary algorithm, to tune its parameters that will allow a
quantitative simulation of the system.

1 Introduction

The quorum sensing is a particular form of cell-to-cell communication in bacteria 
which exploits the concentration of a particular molecule, called signal, to “sense” 
the population density of the colony. The quorum sensing regulatory network is 
used by the individuals of the colony for collective synchronization and therefore 
for a coherent control over the gene expression. In Pseudomonas aeruginosa this 
mechanism is responsible for the effectiveness of the virulence of this bacterium 
[14,23,10,9]. In fact, a single bacterium starts to express his virulence factors 
only when it senses that the bacteria population has reached a certain threshold 
level such that the host response will be inadequate.



The activation of a complex cellular response is what distinguishes the quorum
sensing as a communication regulatory circuit from other density dependent
responses such as the metabolization or detoxification of small molecules.

The simplest quorum sensing network known in Gram-Negative bacteria is
also the first one ever discovered [25,17]. It has been found in the Vibrio fischeri
bacterium, also known as Photobacterium fischeri and is nowadays considered
as the paradigm of this cell communication process. In this network two proteins
and one signalling molecule are involved. The R protein is a transcriptional regu-
lator, while the I protein is the synthase for the signalling molecule, also referred
to as the autoinducer. An important role is also played by the confinement of
the bacterial colony. The fact that the autoinducer molecule is not dispersed
in the environment allows its diffusion inside the individuals and therefore its
concentration sensing.

At low cell densities the I protein synthesizes the autoinducer at a basal rate
and the signal freely diffuses outside the bacterium. The concentration of the sig-
nal inside each bacterium is increased by the combined effect of the confinement
and the increase of the population. At this point, the binding of the R protein
with the autoinducer becomes more likely. The binding of the signal molecules
activates the R protein transcriptional regulator. Since the I gene is the target
of the R protein, the bacterium starts to produce more and more signal. The
regulation network signal autoinduces its transcription. In this way the high con-
centration of the autoinducer coordinates the transcription of all the genes that
are target of the R protein.

The quorum sensing in Pseudomonas aeruginosa is more complex, nevertheless
intriguing, since this bacterium uses two different quorum sensing systems which
interact with each other.

The aim of this work is to provide a P system model [15,16] of the bacterium
Pseudomonas aeruginosa quorum sensing focusing on the communication mech-
anisms. The parameters of the model will be tuned using an evolutionary al-
gorithm. Our long term aim is to reproduce the characteristic behavior of the
quorum sensing in Pseudomonas aeruginosa, namely, the switch between two
distinct stable steady solutions: the first describing the behavior of the non-
quorated bacterium (i.e., with low levels of autoinducer), the second modeling
its quorated behavior (i.e., the behavior obtained with high concentration of the
autoinducer molecule). Once the model will be entirely defined several simula-
tions with different strategies [6,20,18] will be run.

First of all, we address the modeling of the internal dynamics of one single
bacterium, tuning its kinetic constants in a way ensuring its non-quorated be-
havior. At a later stage, we intend to exploit compartmentalization of P systems
to model a colony of bacteria each of them internally specified according to the
same set of kinetic constants. In this respect we will extend the current model
to a Population P systems approach [3] that has been already used to express
some aspects of quorum sensing in bacterium Pseudomonas aeruginosa [22] and
for self-assembly problems [4].



2 An Initial Model

The first stage of our investigation is intended to describe the quorum sensing
related network of each bacterium to capture its main features into a mecha-
nistic model. The quorum sensing internal pathway of each bacterium is taken
from models discussed in [11,9] and a graphical representation of all elements
involved in it, as well as some relevant relationships between them, are depicted
in Figure 1.
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Fig. 1. The Pseudomonas quorum sensing model analyzed here (from [9]). Note that
double arrows denote reversible reactions, bold ones the degradation process and the
empty ones the inhibitory process.

According to this model, the quorum sensing pathway comprises two intercon-
nected signalling cascades. The main elements involved in the first one are pro-
teins LasR, RsaL, LasI (as well as the genes involved in their production), the
autoinducer molecule 3-oxo-C12-HSL and the active complex LasR-3-oxo-C12-
HSL. The key elements of the second system are the proteins RhlR and RhlI
(as well as the genes involved in their production), the autoinducer molecule C4-
HSL and the active complex RhlR-C4-HSL. The first one of the two signalling
cascades is called las system because it was shown to regulate the expression
of LasB elastase. This pathway regulates other virulence factors such as LasA
protease, exotoxin A, alkaline protease A as well as the expression of at least two
genes of the xcp secretory pathway. The las pathway is positively controlled by
GacA and Vfr whereas it is inhibited by RsaL that, in turn, is positively regu-
lated by the active complex LasR-3-oxo-C12-HSL and whose role is to repress
the transcription of the lasI gene.

The second signalling system involved in the model is named rhl system be-
cause it controls the expression of rhamnolipid via the production of rhlAB



operon. The autoinducer molecule in this case is C4-HSL and the active com-
plex is RhlR-C4-HSL. It has been shown that this cascade is necessary for the
production of some virulence factors like LasB elastase and LasA protease, as
well as pyocyanin, cyanide and alkaline protease. For this reason this signalling
system is also known as vsm (virulence secondary metabolites).

Although the corresponding autoinducing molecules are highly selective (and
thus not interchangeable at all), several interconnections between the las and
the rhl pathways of the quorum sensing in Pseudomonas aeruginosa are known.
One link between them has been already mentioned and it is constituted by
the LasB elastase, that needs both LasR-3-oxo-C12-HSL and RhlR-C4-HSL
for its production. More interestingly, the las system is at a higher level in the
hierarchical regulatory cascade, in fact LasR-3-oxo-C12-HSL can activate the
expression of the rhlR gene. In addition, the active complex LasR-3-oxo-C12-
HSL can bind to RhlR preventing it to form the complex RhlR-C4-HSL.

2.1 The Differential Equation Model

Many models for the quorum sensing in the Pseudomonas aeruginosa are pre-
sented in literature and usually they approach the phenomenon from two differ-
ent angles. The first one describes the colony behavior by summarizing individual
dynamics as a state change avoiding a precisely detailed representation of each
of the bacterium quorum sensing networks [24,1]. The second one describes in a
more detailed fashion the quorum sensing pathway for each bacterium with the
purpose to model the emergent behavior of the whole colony [11].

We think that the P system framework is particularly suitable for this second
approach. In fact, the modularity, the compartmentalization, the hierarchical
structure and the rewriting rules (all features of P systems [16]) allow a conve-
nient description of this reality.

In [11] a model of the las signalling system has been devised, but no descrip-
tion is given of the rhl system. The graphical description of the quorum sensing
pathway depicted in Figure 1 has been translated into the set of eight differential
equations presented in the next page. The correspondence between differential
equation symbols and elements in the pathway are summarized in Table 1.

The production of the activated complex P by means of the autoinducer and
the LasR protein (whose expression is given by the product of the constitutive
elements concentrations with a rate kRA: kRARA) is an example of how cooper-
ative contributions are obtained in the differential equations approach by means
of the mass action law.

Basal rates productions and degradations are also taken into account, an ex-
ample of the former being the k1r element giving the basal production of LasR
protein (R), while an example of the latter is the degradation of the active com-
plex (P ) represented by the element kP P . The production of messenger RNAs
from the corresponding genes is modeled with a Michaelis-Menten-like dynam-
ics depending on the concentration of the promoting factor, as it happens in
the case of the production of lasR and rsaL mRNAs (respectively r and s), the



first modeled by Vr
P

Kr + P
and the second by Vs

P

Ks + P
. The production of lasI

mRNA (l) is also down-regulated by the presence of RsaL protein (S) and this

is modeled by Vl
P

Kl + P

1
KS + S

, in which the Michaelis-Menten-like dynamics

is attenuated by an inversely proportional function of the RsaL concentration.
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P
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dt
= Vl

P

Kl + P

1
KS + S

− kll + l0

(1)

Unfortunately, no value is known for the 21 kinetic constants present in the set
of differential equations (1). To overcome this problem, in [11] several simplifying
assumptions are considered, that lead to fewer equations and fewer parameters
as well.

In the following we will describe a possible parameter estimation strategy
to tackle this problem (see Section 4). The idea is to relay to this differential
equations system as a “synthetic bio-experiment” used to confront our model to.

2.2 A First P Systems Model

Several attempts to simulate the quorum sensing in bacteria are present in P
systems literature [5,19], but, as far as we know, none of them deals with the
Pseudomonas aeruginosa bacterium.

Here we describe a direct P systems translation of the differential equation
model previously discussed [11]. Formally, the Pseudomonas P system is

Π = (A, μ, w, R)



Table 1. Variable-concentration correspondence between the differential formulation
and the graphical description of the quorum sensing model of Pseudomonas aeruginosa
(from [11])

Variable Concentration
R LasR
A 3-oxo-C12-HSL
P LasR-3-oxo-C12-HSL
L LasI
S RsaL
r lasR mRNA
l lasI mRNA
s rsaL mRNA

where:

– A = {geneR, geneL, R, A, P, L, S, r, l, s} is the alphabet;
– μ = [ ]0 is the membrane structure: since we address the single bacterium

case, it contains the cellular membrane only;
– w = geneR geneL is the initial configuration that comprises only LasR and

LasI genes, thus is represented as the string;
– R = {r1, · · · , r18} is the set of the rules:

r1 : geneR −→ geneR + r
r2 : r −→ λ
r3 : r −→ r + R
r4 : P −→ P + r
r5 : R + A −→ P
r6 : P −→ R + A
r7 : P −→ P + s
r8 : s −→ λ
r9 : S −→ λ
r10 : s −→ s + S
r11 : P −→ P + l
r12 : l −→ l + L
r13 : l −→ λ
r14 : geneL −→ geneL + l
r15 : L −→ λ
r16 : L −→ L + A
r17 : A −→ λ
r18 : R −→ λ

Note that, symbols in A correspond to the variables of the differential equation
and their correspondence to the biological reality is given in Table 1. Two new
elements (i.e., geneR and geneL) are introduced, which account for the genes
involved in the basal production of the LasR and LasI mRNAs.



Each one of the rules in R is directly obtained from the differential description
of the considered quorum sensing model. For examples, we can see that rule r1
models the basal production of the LasR mRNA, while rule r2 expresses its
degradation, moreover rules r5 and r6 describe the reversible reaction of the
complex P formation by starting from its fundamental constituents R and A.

Due to the different level of abstraction in the representation of different
parts of the model (as in the case of the Michaelis-Menten-like kinetics that
are modelled with a higher level of abstraction than other components of the
system), we cannot directly apply mechanistic algorithms [2] to this model. For
this reason, we will apply to this set of rules only the strategy known as Metabolic
Algorithm (for details refer to [6]), whose simulation results, together with some
numerical solutions of the set of differential equations (1), are shown in Section
2.3 for different choices of parameters.

The metabolic algorithm simulation needs to specify a set of reaction maps,
each one associated in a one-to-one manner to the rules of R. Reaction maps [6]
are functions defined over the state of the system (i.e., multiplicity or concen-
tration of all elements of the system depending on the case), that are used by
the Metabolic algorithm to allocate objects to rules. For example, as we will see
in a while, Fr1 , that is the reaction map of rule r1, is simply the constant rate
of production of LasR mRNA. We can have more complicated reaction maps,
as in the case of rule r4 that takes into account the Michaelis-Menten-like pro-
duction of the LasR mRNA elicited by the LasR-3oxo-C12-HSL complex. As
in the case of the rules, that specify the physical interactions and connections
between the elements of the modeled reality, we can obtain this information from
the differential equation formulation. The set of reaction maps employed in our
simulations are the following:

Fr1 = r0 Fr2 = kr

Fr3 = k1 Fr4 = Vr

Kr+P

Fr5 = kRA Fr6 = kP

Fr7 = Vs

Ks+P Fr8 = ks

Fr9 = k4 Fr10 = kS

Fr11 = Vl

(Kl+P )·(KS+S) Fr12 = k3

Fr13 = kl Fr14 = l0
Fr15 = kL Fr16 = k2
Fr17 = kA Fr18 = kR

(2)

Note that all reaction maps are constant apart from three of them. We have al-
ready discussed the meaning of the reaction map associated to rule r4; analogous
considerations hold for Fr7 as well. More interesting is the reaction map associ-
ated to rule r11 that takes into account the inhibitory effect of RsaL protein on
the production of the lasI mRNA.

Remarkably, the method allows the current description of different parts of
the system at different abstraction levels; moreover it is still applicable if all
reaction maps are constant, a condition required by mechanistic algorithms.



In the following some simulation results are shown, as well as the numerical
solution of the differential equation system, for some chosen parameters.

2.3 Simulation Results

Here we show how the same model-reality can be described with two different
approaches. As mentioned before, we do not have precise values for the model
parameters. For this reason, as a first comparison attempt, we make a completely
fictitious choice for them. As a further work, we plan to adopt some automatic
way for the parameter estimation (see Section 4 for more details). The initial
choice of parameters is here shown, and all the subsequent changes to this initial
parameter set will be explicitly mentioned:

kRA = 10 kP = 2
kR = 5 k1 = 1
k2 = 1 kA = 1
k3 = 1 kL = 1
k4 = 1 kS = 1
Vs = 1 Ks = 1
ks = 0.5 Vr = 1
Kr = 1 kr = 1
r0 = 1 Vl = 1
Kl = 1 kl = 1
l0 = 1 KS = 1

(3)

The lack of biological information makes this choice completely arbitrary and
prevents us to compute the dynamics of the system by means of stochastic
algorithms such as the Gillespie one [12,13], Dynamical Probabilistic P Systems
[20] or the Multi-compartmental Gillespie [18].

In this section we compare the dynamics generated by the metabolic algo-
rithm with the solutions obtained for the corresponding differential equation
system. Figure 2 depicts the case in which parameters are chosen according to
(3). The dynamics of each species reaches a steady state in both approaches,
but the relative position of the species is different and this leads to two distinct
system dynamics. Moreover, the time of the two systems differs; in the solution
of the differential equation system this is measured in arbitrary units (due to
the arbitrary choice of parameters), while in the model based on P systems the
time is measured in steps of system evolution. In Figure 3 the choice of Vl = 0
switches off rule r11 of the P system model and in this case the results of the
two different approaches qualitatively match each other. Finally, the last choice
of parameters is aimed at obtaining a quorum sensing consistent behavior, that
is, in the case of a single bacterium in the environment it should not quorate
and thus the concentration of the complex P should reach the basal rate. Ac-
cordingly, we set KRA to the value 0.1. In this case, depicted in Figure 4, the
dynamics produced by the two approaches is qualitatively similar again.
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Fig. 2. Results for the quorum sensing model with parameters showed in (3) using
ODE approach (left) and metabolic algorithm (right)
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Fig. 3. Results for the quorum sensing model with Vl = 0 using ODE approach (left)
and metabolic algorithm (right)
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Fig. 4. Results for the quorum sensing model with parameters kRA = .1 using ODE
approach (left) and metabolic algorithm (right)

3 Towards a Detailed P Systems Model

Although the preliminary P system model described in Subsection 2.2 showed
that we can obtain comparable results with the current models presented so



far, our intention is to refine the model defined above in order to allow the
simulation of its dynamics by means of mechanistic approaches like Gillespie ap-
proach [12,13], Dynamical Probabilistic P Systems algorithm [20] or the Multi-
compartmental Gillespie method [18]. In addition, this model is completely
driven by the set of differential equations and in same cases it is not entirely
biologically accurate. For example, in the case of rsaL mRNA production, when
different from other mRNAs productions, it does not show any basal rate pro-
duction. Moreover, it does not consider the binding of the transcription factor
to the appropriate gene site necessary to start the transcription process of the
DNA into the mRNA.

The formal description of the detailed P system model of Pseudomonas quo-
rum sensing is the following:

Π = (A, μ, w, R)

where:

– A = {Vfr, lasRgene, Vfr.lasRgene, mlasR, LasR, 3OHSL, LasR.3OHSL,
LasR.30HSL.lasRgene, lasIgene, LasR.30HSL.lasIgene, mlasI, LasI,
rsaLgene, LasR.3OHSL.rsaLgene, mrsaL, RsaL, RsaL.lasIgene} is the al-
phabet;

– μ = [ ]0 is the membrane structure: since we address the single bacterium
case, it contains the cellular membrane only;

– w = Vfrn lasRgene lasIgene rsaLgene is the initial configuration that
comprises only the three genes and the protein Vfr that is needed to initiate
the transcription and should be initialized at an high amount n ∈ N;

– R = {r1, · · · , r28} is the set of the rules:

r1 : Vfr + lasRgene
k1−→ Vfr.lasRgene + Vfr

r2 : Vfr.lasRgene
k2−→ lasRgene

r3 : Vfr.lasRgene
k3−→ Vfr.lasRgene + mlasR

r4 : mlasR
k4−→ λ

r5 : mlasR
k5−→ LasR + mlasR

r6 : LasR
k6−→ λ

r7 : LasR + 3OHSL
k7−→ LasR.3OHSL

r8 : LasR.3OHSL
k8−→ LasR + 3OHSL

r9 : 3OHSL
k9−→ λ

r10 : LasR.3OHSL + lasRgene
k10−→ LasR.3OHSL.lasRgene

r11 : LasR.3OHSL.lasRgene
k11−→ LasR.3OHSL + lasRgene

r12 : LasR.3OHSL.lasRgene
k12−→ LasR.3OHSL.lasRgene + mlasR

r13 : LasR.3OHSL + lasIgene
k13−→ LasR.3OHSL.lasIgene

r14 : LasR.3OHSL.lasIgene
k14−→ LasR.3OHSL + lasIgene



r15 : LasR.3OHSL.lasIgene
k15−→ LasR.3OHSL.lasIgene + mlasI

r16 : mlasI
k16−→ λ

r17 : mlasI
k17−→ LasI + mlsaI

r18 : LasI
k18−→ λ

r19 : LasI
k19−→ LasI + 3OHSL

r20 : LasR.3OHSL + rsaLgene
k20−→ LasR.3OHSL.rsaLgene

r21 : LasR.3OHSL.rsaLgene
k21−→ LasR.3OHSL + rsaLgene

r22 : LasR.3OHSL.rsaLgene
k22−→ LasR.3OHSL.rsaLgene + mrsaL

r23 : mrsaL
k23−→ λ

r24 : mrsaL
k24−→ RsaL + mrsaL

r25 : RsaL
k25−→ λ

r26 : RsaL + lasIgene
k26−→ RsaL.lasIgene

r27 : RsaL.lasIgene
k27−→ RsaL + lasIgene

r28 : RsaL.lasIgene
k28−→ RsaL.lasIgene + mlasI

where ki, for i = 1, · · · , 28, is the rate constant associated to the ith rule.

This system is depicted in Figure 5 where numbers next to arrows refer to
the corresponding rules. Note that arrows with two numbers denote reversible
reactions modeled in the P system description with two distinct rules.

To give some ideas on how the model has been built we explain in details the
process that, starting from the lasIgene, leads to the formation of the complex
LasR.3OHSL, the remaining part of the model follows a similar derivation. The
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Fig. 5. The Pseudomonas quorum sensing detailed model analyzed here. The number
next to each arrow refers to the corresponding P system rule.



production of LasI mRNA (mlsaI) can be done in two ways depending on the
transcription factor bound to the lasIgene gene. In fact, when LasR.3OHSL
binds to the lasIgene (rule r13), it activates the transcription of lasIgene gene
into mlasI mRNA (rule r15) with a rate k15. The RsaL protein can bind to
the lasIgene gene as well (rule r26), but in this case, the same transcription
(modeled by rule r28) has different rate k28. Since the biology of the process tells
us that RsaL protein inhibits the mRNA production, we add the constraint
that k28 � k15. The mlasI mRNA can either be degraded (rule r16) either be
translated into the LasI protein (rule r17). The latter can in turn be degraded
(rule r18) or it can produce the autoinducer molecule 3OHSL (rule r19), that
can bind to the LasR protein and form the complex LasR.3OHSL (rule r7) or
be degraded (rule r9).

As far as we know, no value for the kinetic constant necessary for the simu-
lation of this dynamics is known in literature. For this reason we plan to adopt
some automatic tools for exploring the huge parameter space. In the following
section we describe a genetic algorithm (GA) fitting approach.

4 Parameter Estimation

In previous sections we showed two alternative models of quorum sensing and
qualitatively compared them against a differential equations based model. In this
section we show, as a proof of concept, how P system models can be quantita-
tively fitted to observed data. In this proof of concept section we consider the
ODE model as the golden standard against which the P system must be fit-
ted. That is, the ODE is a proxy for a biological experiment from which we
could measure a variety of molecular concentrations. In order to fit the P system
models to the ODE’s observed data we perform parameter optimization using
an evolutionary algorithm (EA). Our EA has been specially developed for opti-
mizing a range of design and manufacturing processes. It has been successfully
tested on a variety of complex systems and nano-particles self-organization sys-
tem [21]. Our evolutionary system is web-server based and can be tailored to
solve a broad range of problems. The number and data types of genes in the
chromosome, along with the parameters for the GA, including the users choice
of selection, replacement, mutation and crossover mechanisms can be specified in
the web-based configuration module. The later builds an XML script as output.
This script, along with a plug-in style problem specification class, which most
importantly includes the fitness function, configures the evolutionary algorithm
to the specific problem at hand. The execution of the evolutionary algorithm
can then be started and observed over the internet through a Java servlet. This
evolutionary engine also caters for cpu-intensive optimization problems, like the
one we investigate here, by distributing the execution of the algorithm on a large
computer cluster. Moreover, the web-server also allows simultaneous executions
of the evolutionary engines on different problems. The web-server can be ac-
cessed (under request) from www.chellnet.org. For a schematic representation
of the evolutionary engine please see Figure 6.
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Fig. 6. The ChellNet Evolvable Chellware Engine

In what follows we describe the fitness function used to fit our P systems to
the observed time series.

4.1 The Fitness Function

The evolutionary engine is used to adjust the parameters of the P system as to
fit the observed target w ∈ N time series Stgt = {si

tgt}i=1,··· ,w simultaneously,
where each of the w time series corresponds to one of the species concentrations.
In turn, the P system model generates w time series S= {si}i=1,··· ,w. The evo-
lutionary algorithm goal is to minimize the error between Stgt and S. Although
simply put, this error must be done carefully as the sampling of the P system’s
S and that of Stgt are different. If si

tgt ∈ Stgt, with (dropping the super-index
for simplicity) stgt = {y(0), y(ε), y(2 ε), . . . , y(n ε)} and ε the time step precision
for Stgt, and s = {y′(0), . . . , y′(t′j), . . . , y

′(t′m)} there is no direct mapping from
t′j (in s) to kε (in stgt) for some k ≥ 1 as the time interval simulated is not
uniformly sampled under a Gillespie dynamics. In order to compute the error
between a given y′(t′j) and a candidate ŷ interpolated from stgt we need to in-
terpolate the value ŷ(t′j) that stgt would take at t′j . Note that the only point in
time that is guaranteed to match in both time series is t0, so we can obtain the
index

k = �
t′j − t0

ε
�.

With the index k we can interpolate stgt between the time steps tk and tk+1:

q =
y(tk+1) − y(tk)

ε
,



that is, the slope of the segment of line that runs between points (tk, y(tk)) and
(tk+1, y(tk+1)). With q we can interpolate the value of stgt at time t′j with

ŷ(t′j) = y(tk) + q (t′j − tk).

With this provision in mind the parameter learning problem becomes

min
∑

s∈Stgt

∑
∀t′

j∈si,si∈S

|ŷ(t′
j)−y′(t′

j)|
max{ŷ(t′

j),y
′(t′

j)}
||si|| . (4)

Eq. 4 is used by the evolutionary algorithm to fit the P system to the data.
This fitness measure takes into account all the time series to be approximated
and the quality of the sample of each time series.

4.2 A Case Study: The Michaelis-Menten Dynamics

In order to demonstrate the feasibility of automatically tuning a P system with
an evolutionary algorithm we choose a simple case study: we apply the evolution-
ary algorithm to the problem of matching the kinetic constants of a Michaelis-
Menten dynamics (MM). The MM dynamics is numerically obtained through a
set of differential equations that simulate the following enzymatic reactions:

E + S ←−−−−−−→
k1

k2
ES

k3−→ E + P (5)

where E represent the enzyme catalyzing the reaction transforming the substrate
S into the product P . The reaction takes place in two different stages, the former
being the reversible formation of the active complex ES, the latter being the
production of P . All the details regarding the MM dynamics can be found in
[7,8].

As mentioned above these reactions are modeled by means of the following
set of differential equations:

d[S]
dt

= −k1E0[S] + (k1[S] + k2)[ES]

d[ES]
dt

= k1E0[S] − (k1[S] + k2)[ES]

d[P ]
dt

= k2[ES]

(6)

where E0 represents the concentration of the total amount of enzyme (i.e., the
free enzyme plus that bounded to the substrate to form the complex ES), while,
as usual in biochemistry, [X ] represent the concentration of the species X . The
reactions (5) can be straightforwardly translated into a P system having only
one compartment and three rules (each one referring to exactly one of the bio-
chemical reactions mentioned), whose dynamics can be calculated by means of
the Gillespie algorithm.



Fig. 7. Fitness progress of the parameter learning process. Best individual and average
error in the population is shown.

Without loss of generality, we arbitrarily fix the three kinetic constants to k1 =
1000, k2 = 1 and k3 = 0.05 and we numerically solve the differential equations.
The initial conditions used are 0.001 M for the initial substrate S and 0.5 ·
10−3 M for the initial concentration of the enzyme E (no product P neither
active complex ES is present at the beginning). We thus obtain three time series
that represent the target behavior the P system must imitate. The evolutionary
algorithm thus must coerce the P system to mimic as close as possible the
MM dynamics (with an imaginary volume fixed to 1.67 · 10−15 liters, needed
to translate concentrations into objects and deterministic rate constant into
stochastic ones).

Figure 7 shows the progress of the evolutionary engine while trying to match
with a P system the time series generated by the Michaelis-Menten process.
Figure 8 shows the actual display of the evolved P system’s concentrations and
the target concentrations.



Fig. 8. The target Michaelis-Menten concentrations and the evolved P systems ones

5 Conclusions and Further Work

We have briefly described a part of the quorum sensing network in the Pseudomo-
nas aeruginosa. Starting from a differential equations based model we have
provided a P systems version of it and we compared the dynamics of the two
approaches. In order to apply different simulation strategies on this intriguing
phenomenon we provided a more detailed, mechanistic model which, we believe,
is closer to the biological reality. The lack of biological information regarding
the dynamics of the system led us to use an automatic way for estimating them
by using an evolutionary algorithm approach that offers a reliable and effective
method in this respect.

An immediate step further, after obtaining all the parameters regulating a
single bacterium dynamics, is to extend the proposed model at a colony level,



exploiting the compartmentalization offered by P systems and already estab-
lished population P systems models.

Other important developments are related to the use of experimental data
to tune the dynamics of our specifications such as to simulate real biological
processes. In this respect the use of model checking methodologies, already under
consideration in a paper under preparation, will contribute towards validating
certain properties of the systems modeled.

On long term we believe that these steps can represent the first stage toward a
quantitative analysis that will hopefully lead to a successful drug design process.

Acknowledgements. N. Krasnogor and P. Siepmann acknowledge the EPSRC
for funding project EP/D021847/1.
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