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1. INTRODUCTION

Living cells represent complex biomolecular systems with
fully interrelated processes. In order to understand, ma-
nipulate or control cellular systems to produce a desirable
output, integrate partial knowledge, and to predict their
behaviour, the development of good models is crucial. A
new integrative and interdisciplinary field, systems biology,
is emerging to study the dynamics of cellular systems as a
whole. Systems biology has been presented recently in text-
books and article collections [1, 11, 16]. Systems biology is
closely related to the also young and growing research field
of synthetic biology [3]. The final goal when modelling a cel-
lular system is to obtain the necessary understanding to be
able to control its functioning. A deeper knowledge of the
organisation and functioning of cellular processes will allow
us to engineer our own cellular systems exhibiting a desired
behaviour or producing a prefixed output.

The macroscopic continuous and deterministic approach
based on ordinary differential equations (ODEs) constitutes
the most used methodology in cellular modelling within sys-
tems and synthetic biology. Although ODEs have been suc-
cessfully applied in different systems there are two key as-
sumptions in this approach, namely continuity and deter-
minism that are not always fulfilled. There are many sys-
tems where the number of particles of the reacting species
are low and the reactions involved are slow. In these sys-
tems the previous assumptions are invalid and mesoscopic,
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discrete and stochastic approaches are instead more suitable
[16]. In this paper we will use a new approach, P systems,
which integrates this last type of modelling into a compu-
tational framework. P systems represent an unconventional
computational paradigm [13] that abstracts from the struc-
ture and functioning of the living cell. A P system consists
of a cell-like membrane structure, with compartments con-
taining multisets of objects which evolve according to given
rules. These rules are applied according to an extension
of Gillespie’s well known Stochastic Simulation Algorithm
(SSA) [4] to the multicompartmental structure of P system
models [12].

The design of models in systems and synthetic biology is
real world problem solving. Therefore, it is a hard process
prone to failure where one has to reconsider many times the
choice of the model parameters and structure made at differ-
ent points. The use of computational automated tools can
provide the means to optimise both the kinetic parameters
and the network topology or rule structure. Nevertheless,
the use of computer simulation has been mainly focused on
the computation of the corresponding dynamics for a given
model parameters and structure. In contrast to this classical
approach we have developed a methodology based on evo-
lutionary algorithms (EA) that optimises both the kinetic
parameters and structure of our models with respect to a
given desirable behaviour.

Evolutionary algorithms (EAs)[2] has been developed for
solving computation problems in many fields. The approach
mimics the process of biological evolution and the mech-
anisms of natural selection and genetic variation. Suitable
codings are used to represent possible solutions to a problem,
and the search is guided by using some genetic operators and
the principle of survival of the fittest. Due to their merits
of self-organization, self-learning, intrinsic parallelism and
generality, EAs have been successfully applied to economic
prediction, optimum control, engineering and scientific com-
putations [5]. In this paper, we propose a memetic algorithm
[8] to approach the automatic design of cell systems biology
models. Its main idea is to use a nested evolutionary algo-
rithm where the first layer evolves model structures while the
inner layer, implemented as a genetic algorithm (GA)[10],
acts as a local search for the parameters of the model.

The paper is organised as follows. The next section in-
troduces the modelling methodology and the evolutionary
computation methods used in this work. In Section 3 the
case studies and the experimental design are presented. Re-
sults are discussed in Section 4. Finally, some conclusions
and future work are given in Section 5.

2. METHODS

2.1 Modelling Methodology and P systems
In this paper we use a computational, modular and discrete-

stochastic modelling approach based on P Systems [13], an
emergent branch of Natural Computing introduced by Gh.
Paun. More specifically, we use a variant called stochastic
P systems developed for the specification and simulation of
cellular systems [12].

2.1.1 Stochastic P systems
A stochastic P system is a construct

Π = (O, L, µ, M1, M2, . . . , Mn, Rl1 , . . . , Rlm)

Figure 1: Three possible representations of the same
membrane structure consisting of three membranes.

where:
• O is a finite alphabet of objects representing molecules.
• L = {l1, . . . , lm} is a finite set of labels identifying com-

partment types.
• µ is a membrane structure containing n ≥ 1 membranes

defining compartments arranged in a hierarchical manner.
Each membrane is identified in a one to one manner with
values in {1, . . . , n} and is given a label from L which de-
termines its type. The membrane structure is represented
formally, as a rooted tree, where the nodes are called mem-
branes, and the relationship of a membrane being inside
another one is represented by the relationship of the node
being the descendent of another one. Alternatively, it can
be represented using Venn diagrams or pairs of matching
square brackets, see Figure 1.

• Mi = (li, wi), for each 1 ≤ i ≤ n, is the initial configu-
ration of membrane i, with li ∈ L the initial compartment
type and wi the multiset of objects over O initially placed
inside the compartment defined by membrane i.

• Rlt = {rlt
1

, . . . , r
lt
klt

}, for each 1 ≤ t ≤ m, is a finite set

of rewriting rules associated with compartments of the type
represented by the label lt ∈ L and of the following general
form:

o1 [ o2 ]l
c
→ o

′

1 [ o′2 ]l (1)

with o1, o2, o
′

1, o
′

2 multisets of objects over O (potentially
empty) and l ∈ L a label. These multiset rewriting rules op-
erate on both sides of membranes; a multiset o1 placed out-
side membrane l and a multiset o2 placed inside membrane
l are simultaneously replaced by o′1 and o′2, respectively. A
stochastic constant c is associated specifically with each rule
in order to compute its propensity according to Gillespie’s
theory of stochastic kinetics [4].

In the original approach in P systems the rules are selected
in a non deterministic and maximally parallel manner [13].
Nevertheless, this approach produces a qualitative frame-
work that fails to model quantitative aspects which are key
to the functioning of many cellular systems. In order to solve
this problem in stochastic P systems the rewriting rules are
selected according to an extension of Gillespie’s well known
Stochastic Simulation Algorithm (SSA) [4] to the multicom-
partmental structure of P system models [12].

Stochastic P systems have been successfully used in the
specification and simulation of cellular systems, for instance
signal transduction [12], prokaryotic gene regulation [15] and
bacterial colonies [14].

Specifically, in this work we use rules of the following
types where the stochastic kinetic constants are only allowed
within the given range and with the specified precision.



Table 1: Rules Types
Type Rule Constant Range Precision

0 [ X + Y ]l
c
→ [ Z ]l (10−4, 0.17) 10−2

1 [ Z ]l
c
→ [ X + Y ]l (10−4, 1) 10−2

2 [ G ]l
c
→ [ G + R ]l (10−4, 0.2) 10−4

3 [ R ]l
c
→ [ R + P ]l (10−3, 5 × 10−2) 10−3

4 [ R ]l
c
→ [ ]l (10−3, 10−2) 10−3

5 [ P ]l
c
→ [ ]l (10−5, 10−3) 10−6

6 [ P + G ]l
c
→ [ P.G ]l (10−3, 0.1) 10−3

7 [ P.G ]l
c
→ [ P + G ]l (10−3, 0.2) 10−3

8 [ P.G ]l
c
→ [ P.G + R ]l (10−3, 0.1) 10−3

Rules of type 0 and 1 represent the formation and dis-
sociation of a molecular complex Z consisting of the indi-
vidual molecules X and Y . The genetic processes involved
in transcription of a gene G into its messenger RNA R and
translation of this messenger into the protein product P are
specified using rules of type 2 and 3. The degradation of
mRNA R and protein P are described by rules of the type
4 and 5. Rules of types 6 and 7 represent the binding and
debinding of a protein P to a gene G. Finally, the transcrip-
tion of a gene occupied by a protein P.G into its messenger
RNA R is specified using rule of type 8.

The ranges for the different constants were obtained when
possible from lower and upper theoretical bounds [1]. When
this was not possible we have chosen empirically a range
large enough to find the constants needed in this work.

2.1.2 A Library of basic P system modules
Cellular functions are rarely performed by individual molec-

ular interactions. Most biological functions arise as emer-
gent behaviour from the interactions among modules made
up of many molecule species. In this work a module is de-
fined as a discrete entity which performs a specific biological
function separable from those of other modules. This separa-
tion depends on chemical isolation, which can originate from
spatial localisation in different compartments or from chem-
ical specificity or time domain separation [6]. These features
can be easily represented in P systems using membranes for
spatial localisation and rules for chemical specificity.

A P system module is a set of rules with the form in (1)
representing molecular interactions which occur repetitively
in many cell systems. A module is identified with a name
and three sets of variables, V , C and Lab. V represents
variables that can be instantiated using objects describing
molecules. C represents the stochastic constants associated
with each rule. Lab specifies the labels of the compartments
involved in the rules. Formally, a module, mo, with variables
V , constants C and labels L will be written as mo(V,C, L).
More complex modules can be constructed from simple mod-
ules by applying set union. Furthermore, the set of rules
associated with a membrane in a P system model can be
specified in a modular way as the set union of several P
system modules.

In what follows, we present the modules included in the
initial library of P system modules used in this work:
– Complex formation: Two molecules, X and Y , can collide
and stick together according to a stochastic kinetic constant
c to produce a complex Z.

Com({X, Y, Z}, {c}, {l}) = {[ X + Y ]l
c
→ [ Z ]l} (2)

– Complex dissociation: A molecular complex X can disso-

ciate into its components Y and Z according to a stochastic
kinetic constant c.

Diss({X, Y, Z}, {c}, {l}) = {[ X ]l
c
→ [ Y + Z ]l} (3)

– Unregulated expression: A gene encoded in the DNA,
G, produces the corresponding mRNA, R, which in turn
yields a protein P . The mRNA and protein can be degraded
by the cell machinery. These processes take place at rates
determined by some stochastic constants c1, c2, c3 and c4.

UnReg({G, R, P}, {c1, c2, c3, c4}, {l}) =

=

8

>

<

>

:

[ G ]l
c1→ [ G + R ]l,

[ R ]l
c2→ [ R + P ]l,

[ R ]l
c3→ [ ]l, [ P ]l

c4→ [ ]l

9

>

=

>

;

(4)

– Positive regulated expression: In this case an activator
protein Act binds reversibly to the gene G yielding the com-
plex Act.G which turns on the production of the mRNA
R. Ultimately, the protein product P is produced from the
mRNA. The mRNA and the protein are also degraded in
this case. These processes take place at rates determined by
some stochastic constants c1, c2, c4, c5 and c6.

Pos({Act, G, R, P}, {c1, c2, c3, c4, c5, c6}, {l}) =

=

8

>

>

>

>

>

<

>

>

>

>

>

:

[ Act + G ]l
c1→ [ Act.G ]l,

[ Act.G ]l
c2→ [ Act + G ]l,

[ Act.G ]l
c3→ [ Act.G + R ]l,

[ R ]l
c4→ [ R + P ]l,

[ R ]l
c5→ [ ]l, [ P ]l

c6→ [ ]l

9

>

>

>

>

>

=

>

>

>

>

>

;

(5)

– Negative regulated expression: In contrast to the previous
case here a repressor protein Rep binds reversibly to the
gene G yielding the complex Rep.G which does not produce
any mRNA. The binding and debinding of the repressor to
the gene take place at a rate determined by some stochastic
constants c1 and c2.

Neg({Rep, G}, {c1, c2}, {l}) =

=

(

[ Rep + G ]l
c1→ [ Rep.G ]l

[ Rep.G ]l
c2→ [ Rep + G ]l

)

(6)

2.2 A Memetic Algorithm for Evolving P sys-
tem models

We propose a memetic algorithm to evolve P system mod-
els for a particular biological signature. Our methodology is
a nested evolutionary algorithm where the first layer searches
for model structures using a genetic algorithm (GA); while
the inner layer, also implemented as a GA, acts as a local
search for the parameters of the model. A detailed flowchart
of the algorithm is shown in Figure 2.

2.2.1 Modular Structure Optimisation of P System
Models

Encoding: In this work we focus on the design of models of
bacterial systems, consequently the membrane structure of
all our models consists of a single membrane or compart-
ment. In order to characterise a given P system with a
single compartment Π = (O, {l}, [ ], M1, Rl1) it is suffi-
cient to specify the modules used to obtain the rules Rl1 =
{r1, . . . , rn}. Therefore, the stochastic P system model Π
can be represented as a vector whose components are the
modules describing the set of rules Rl1 , Π = (m1, . . . , mn).

Each rule is encoded using a structure which specifies the
rule type according to Table 1, left hand side (LHS) (reac-
tants), right hand side (RHS) (products) and the stochastic



Figure 2: Flowchart of the memetic algorithm for
evolving P systems.

kinetic constant. A P system module is then encoded us-
ing a structure which specifies the module type, module size
(number of rules) and the set of rules included in the module.
In Table 2 we associate module types with the elementary
modules introduced in the previous subsection.

Table 2: Module Types in the Initial Library of P
System Modules

Module name Module type Module size
UnReg 0 4

Pos 1 6
Neg 2 2
Com 3 1
Diss 4 1

For instance, a P system model consisting of the following
two modules UnReg({geneA, rnaA,A}, {c1, c2, c3, c4}, {l})
and Neg({A, geneA}, {c5, c6}, {l}) is encoded using the struc-
ture in Figure 3.

Fitness evaluation: Given a stochastic P system model, Π,
and target time series with N time steps for the evolution
of some M specific molecules (e.g. mRNA, protein, metabo-
lite etc) of Π, (Otar

ij ) where 1 ≤ i ≤ M and 1 ≤ j ≤ N ,
the fitness of the model is calculated using the Root Mean
Square Error (RMSE). The provided time series describe the
expected behaviour of the target model and therefore they
can not be compared directly with a single run of our can-
didate stochastic P system Π. In order to get an estimation
of the expected behaviour of Π, we run a sufficient number
of simulations, MaxRun, and average them. Figure 4 shows
the flowchart of the fitness evaluation process.

Figure 3: Encoding of a P system model consisting
of two modules.

Genetic operators: In the GA used for the optimisation of
the modular structure we use crossover and mutation as the
genetic operators.

Crossover can be done by exchanging single modules, mo-
dule-exchange crossover, or by swapping multiple modules
between two parents, one-point crossover. Consider two par-
ents Π1 = (m1

1, . . . , m
1

n1
) and Π2 = (m2

1, . . . , m
2

n2
) with n1

and n2 modules respectively.
In the module-exchange crossover, two crossover points, i

and j, are randomly selected within Π1 and Π2 and then the
crossover is performed as follows:

if m1

i ∩ m2

j = ∅

then swap m1

i and m2

j

else swap the stochastic kinetic constants of the
common rules within m1

i and m2

j

Calculate fitness of both offspring and choose the best one

The one-point crossover is performed by randomly select-
ing one crossover position from Π1 and Π2 and swapping all
the modules after the crossover points. We use the valid off-
spring as the crossover offspring whose number of modules
does not exceed the predefined maximum module set size,
MaxMsize. If both offsprings are valid we choose the one
with the best fitness.

The structure mutation is performed by randomly choos-
ing a module and making one of the three following vari-
ations: (1) choose randomly a rule within the module and
change its stochastic kinetic constant using Gaussian muta-
tion; (2) keep the module type but change some of the ob-
jects in the module; (3) modify the module type by adding
or deleting some rules.

Finally, before the process of the optimisation of the con-
stants we simplify each P system rule structure by deleting
redundant modules and useless modules which cannot be
applied during the evolution of the P system model.

2.2.2 Parameter Optimisation of P System Models
As the kinetic constant associated with each rule is used in

Gillespie algorithm to compute the probability of applying
each rule and the waiting time for the rule to be applied [4],
the stochastic constants of a P system model determine its
behaviour, and thus it is crucial to optimise them in order
to obtain a desirable behaviour. Here we designed a GA [18]
to optimise the constants of each candidate P system model
with the structure generated during the previous stage of
our algorithm.



Figure 4: Fitness calculation process.

Encoding: Given a stochastic P system model generated in
the previous stage with n modules Π = (m1, . . . , mn) first
we calculate the total number of different rules, l, in Π by ap-
plying set union over the set of rules of the modules RΠ =
∪n

i=1mi = {r1, . . . , rl}. Then we represent each chromo-
some specifying the constants of Π in the parameter popula-
tion using an l−dimensional row vector C(Π) = (c1, . . . , cl)
where ci is the constant associated with ri for i = 1, . . . , l.
Each constant is encoded as a floating number and is gener-
ated randomly within the specific range and precision shown
in Table 1 during the initialisation of the parameter popu-
lation.

Fitness evaluation: The fitness of the P system model Π us-
ing the constants C(Π) = (c1, . . . , cl) is computed according
to the process presented in Figure 4.

Genetic operators: During the parameter optimisation we
use mutation and crossover. More precisely, we use an adap-
tation method [7] to alter the mutation rate of individu-
als rmu using the formula in (7) which uses the fitness of
the best constant vector Cbest and the constant vector of
the given individual C. The crossover rate is computed as
rcro = 1 − rmu.

rmu = 0.3

„

1 −
fitness(Cbest)

fitness(C)

«

(7)

The mutation is performed as follows:

Nmu = 0;
while (Nmu < MaxMu) {

Choose randomly one module and one rule
within the module;

Do Gaussian mutation to the constant
associated with the rule;

If the fitness improves then replace the
old constant with the new one;

Nmu ++;}

The crossover is performed using a multiple-parent crossover
operator. We randomly select M > 2 individuals C1, . . . , CM

from the parameter population with Ci = (ci
1, . . . , c

i
l) for

i = 1, . . . , M . Then M coefficients αi are randomly gener-
ated satisfying: (1) αi ∈ (a, b) where a and b are parameters

of our algorithm such that a < 0 and b > 1; (2)
PM

i=1
αi = 1.

Finally, a new vector of constants Cnew is generated as a
nonconvex linear combination of Ci using the previous con-
stants:

Cnew =

M
X

i=1

αiCi (8)

If the fitness of new vector of constants Cnew is better
than that of the worst individual Cworst in the parameter
population then Cworst is replaced by Cnew . This process is
iterated a predetermined maximum number of times MaxXo.

3. EXPERIMENTS
In this work we use three relatively simple cellular systems

as a proof of concept of the feasibility of our methodology.

3.1 Case Studies Definition
The three case studies are molecular complexation, en-

zymatic reaction and autoregulation in transcriptional net-
works.

The target time series for all these case studies were gener-
ated using PRISM, a probabilistic model checker for formal
modelling and analysis of systems that captures random or
probabilistic behaviour [9]. In order to obtain the target
time series we specified the molecular interactions of each
case study as a stochastic process using the PRISM lan-
guage and then computed the expected behaviour over time
checking specific properties specified using temporal logic.

The first two cases, molecular complexation and enzy-
matic reaction, were used to illustrate the advantage of in-
corporating newly found modules to the library of available
modules. Molecular complexation consists of the forma-
tion and dissociation of molecular complexes. This is one
of the most important molecular processes as the binding
of a molecule to another one can alter the function of the
molecular complex which is normally completely different
from the functioning of the individual molecules. The sec-
ond experiment studies enzymatic reactions. During an en-
zymatic reaction first a molecule called enzyme binds re-
versibly to specific molecules called substrate. Once bound
to the substrate the enzyme performs a change in substrate
and finally the complex enzyme-substrate dissociates into
the unchanged enzyme and a product. Note that the first
step in an enzymatic reaction consists of the molecular com-
plexation of the enzyme and the substrate. In this work
we will study how by including a previously discovered P
system model for molecular complexation to the library of
modules the optimisation of the structure and parameters
of a P system model for enzymatic reactions is improved.

The third case study investigates regulation in transcrip-
tional networks. As a proof of concept we start by studying
networks consisting of a single gene regulating itself. Al-
though autoregulation is a very simple mechanism, it has
been shown to be a highly recurrent pattern in Escherichia
coli [17]. It consists of a gene whose protein product reg-
ulates its own transcription either by repression, negative
autoregulation, or enhancement, positive autoregulation. In
this paper we study these two mechanisms and check how



many different designs or P system models our algorithm
suggests.

3.2 Parameter Settings and Measures
The parameter settings of our memetic algorithm are listed

in Table 3. 50 runs were conducted independently for each
case study. All the experiments were performed on a 1024
CPU 2.2GHz gigabit cluster and programmed in C.

Table 3: Parameter Settings of the Memetic Algo-
rithm

GA for structure popsize = 100 MaxGen = 20
optimisation MaxMsize = 4 MaxRun = 50

GA for parameter popsize = 50 MaxMu = 100 MaxXo = 100
optimisation M = 8 a = -0.5 b = 1.5

To evaluate the goodness of the evolved P system model,
we use RMSE calculated by following the process shown in
Figure 4. The smaller the RMSE, the better the model is.

4. RESULTS AND DISCUSSIONS
In our first case study, the target time series describe

reversible molecular complexation of two molecules A and
B into the complex C. In PRISM, the reaction forming
the complex C was characterised by the constant ctar

1 =
0.048 molec−1sec−1, and the dissociation of the complex C
into A and B was characterised by ctar

2 = 0.5 sec−1. When
given the target time series and the library of elementary
modules introduced in section 2.1.2, our algorithm always
found the same P system model structure which consists of
the two modules in (9).

RevComp({A, B, C}, {c1, c2}, {l}) =
= Com({A, B, C}, {c1}, {l}) ∪ Diss({C, A, B}, {c2}, {l}) =

=
n

[ A + B ]l
c1→ [ C ]l, [ C ]l

c2→ [ A + B ]l

o

(9)

The best model produced the following estimation of the
constants cevo

1 = 0.048 molec−1sec−1 and cevo
2 = 0.48 sec−1.

The target time series and the behaviour of the best evolved
P system model are shown in Figure 5 (top). As it can be
seen from the graph, the obtained P system matches the
target time series very accurately.

The target time series in the second case study corre-
spond to an enzymatic reaction with a substrate A, en-
zyme B and product D. The formation and dissociation
of the complex enzyme-substrate, C, were characterised in
PRISM by the constants ctar

1 = 0.048 molec−1sec−1 and
ctar
2 = 0.5sec−1 whereas the dissociation of the complex into

the unchanged enzyme and product was characterised by the
constant ctar

3 = 0.25sec−1.
In order to find suitable P system models for this case

we experimented with two different approaches. In the first
approach we used the same elementary library of modules as
we did for the first case. In the second approach we added
the newly found module in (9) to the library and examined
the advantage by comparing with the first approach.

Our experimental results show that using the first ap-
proach only in 12 of 50 runs our algorithm found the correct
rule structure corresponding with the three molecular in-
teractions forming enzymatic reactions. Whereas using the
second approach the correct rule structure consisting of the
modules presented in (10) was found in 39 runs. The esti-
mated parameters in the best model found using the second
approach are cevo

1 = 0.049 molec−1sec−1, cevo
2 = 0.5sec−1

and cevo
3 = 0.26sec−1, which are closer to the target con-

stants than the ones found using the first approach with
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Figure 5: Target time series and the behaviour of
the best evolved models for molecular complexation
(top) and enzymatic reactions (bottom).

cevo
1 = 0.036 molec−1sec−1, cevo

2 = 0.27sec−1 and cevo
3 =

0.24sec−1. Figure 5 (bottom) depicts the target time series
for enzymatic reactions and the behaviour of the best P sys-
tem model found by using the second approach. It is obvious
that all the output molecules A, B, C, D coincide with the
target very well.

Enz({A, B, C, D}, {c1, c2, c3}, {l}) =
RevCom({A, B, C}, {c1, c2}, {l}) ∪ Diss({C, B, D}, {c3}, {l}) =

=

8

>

<

>

:

[ A + B ]l
c1→ [ C ]l

[ C ]l
c2→ [ A + B ]l

[ C ]l
c3→ [ B + D ]l

9

>

=

>

;

(10)

In addition, our experimental results showed that by adding
the newly found module RevComp the mean RMSE got
smaller, 2.85, than when using the library of basic modules,
3.8.

In the third case we study transcriptional regulatory net-
works. More precisely, networks with a single node regulat-
ing itself either negatively or positively, namely, negative or
positive autoregulation.

Table 4 lists the statistical results obtained in 50 runs us-
ing the elementary library introduced in Section 2.1.2. Our
algorithm found two possible designs for each case.

Table 4: Statistical Results for Negative and Posi-
tive Autoregulation

Case
Study

P system
Models

Freq. Mean ± STD

Negative Π1 = (UnReg, Neg) 46 4.11 ± 1.73
Autoregulation Π2 = (UnReg, Pos) 4 4.63 ± 2.91
Positive Π3 = (UnReg, Pos) 30 16.36 ± 3.03
Autoregulation Π4 = (UnReg) 20 20.14 ± 5.13



Table 5: The Target and the Best Models for Nega-
tive Autoregulation

Negative Autoregulation
Design 1 Design 2 Target

Modules Constants Modules Constants Constants

UnReg

0.2

UnReg

0.2 0.13
0.03 0.033 0.04
0.002 0.002 0.002

5.23 · 10−4 7.63 · 10−4 5.78 · 10−4

Neg
0.1

Pos

0.086 0.056
0.2 0.152 0.147

0.002
RMSE = 1.703 RMSE = 2.398

In the case of negative autoregulation, the first design Π1

was found in 46 runs whereas the second one Π2 was found
only four times. Nevertheless, due to the fact that the mean
and standard deviation of the RMSE is comparable in both
cases, it shows that both designs are equally plausible. Table
5 shows the best model for each design. The best model for
Design 1 consists of two modules, UnReg and Neg, which
represents the situation when the binding of the protein com-
pletely stops transcription of the gene. This is exactly the
rule structure codified in PRISM to generate the target time
series. More importantly, by comparing the corresponding
constants, it shows that all the estimated parameters in the
model are very close to those of the target model. This
further demonstrates the high effectiveness of our GA for
parameter optimisation. Interestingly, despite the low oc-
currence frequency, our algorithm can find an alternative
design, Design 2, which reproduces the same dynamics as
Design 1. Design 2 consists of two modules, UnReg and
Pos, which corresponds to the situation when the binding
of the protein to the gene does not block transcription com-
pletely. This design may be more biologically realistic as
it has been reported that the binding of a repressor to a
gene normally allows for a leakage in transcription of the re-
pressed gene. Figure 6 depicts the target time series and the
behaviour of the best models for the two designs for negative
autoregulation with Design 1 (top), Design 2 (bottom). It
is notable that both match the target time series very well.
The fact that our protocol produces alternative models for
a specific biological signature is very encouraging as it could
help biologists to design new experiments to discriminate
among competing hypotheses (models).

In the case of positive autoregulation, the first design Π3

was found in 30 runs whereas the second one Π4 was found
20 times. The mean and standard deviation of the RMSE
indicates that the first design is slightly better than the sec-
ond one. Table 6 shows the best model for each design. The
best model for Design 1 consists of two modules, UnReg

and Pos, which represents the situation when the protein
encoded in the gene directly binds to the gene itself enhanc-
ing its own transcription. This is exactly the rule structure
codified in PRISM to generate the target time series. For
this case study, similarly, our algorithm found an alterna-
tive design, Design 2, which reproduces similar dynamics as
the target time series. Design 2 only consists of the module
UnReg, which corresponds to the situation when the protein
encoded in the gene does not regulate the transcription rate
of the gene. The result suggests that this mechanism can
produce similar dynamics as the positive autoregulation by
having a high unregulated transcription and a low protein
degradation rate which was evidenced by the values of the
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Figure 6: Target time series and the behaviours of
the best two possible models for negative autoregu-
lation: Design 1 (top), Design 2 (bottom).

Table 6: The Target and the Best Models for Posi-
tive Autoregulation

Positive Autoregulation
Design 1 Design 2 Target

Modules Constants Modules Constants Constants

UnReg

0.0021

UnReg

0.0079 0.0004
0.006 0.005 0.016
0.007 0.002 0.006

6.3 · 10−5 3.9 · 10−5 10−4

Pos
0.007 0.04
0.018 0.02
0.031 0.014

RMSE = 9.871 RMSE = 13.315

first constant and the fourth constant for Design 2 listed in
Table 6.
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Figure 7: Target time series and the behavior of the
best model in Design 1 for positive autoregulation.

Figure 7 shows the target time series and the behaviour
of the best model with Design 1 for positive autoregulation.



Note that the dynamics of the protein (left) fits the target
time series very accurately. However, as for the rna, it has a
similar shape as the target time series but twice the magni-
tude. Hence in order to improve the simulation result of rna,
we changed the weight coefficients of protein and rna in the
fitness function from 1:1 to 1:100. Figure 8 illustrates the
behaviour of the best model obtained in 50 runs. As it can
be seen the dynamics of protein did not change much while
the simulation result of rna was improved significantly.
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Figure 8: Target time series and the behaviour of the
best model for positive autoregulation after chang-
ing the fitness function.

5. CONCLUSIONS AND FUTURE WORK
A memetic algorithm has been designed to automatically

develop and optimise both the modular structure and pa-
rameters of cellular models based on stochastic P systems.
Specifically, we use a nested evolutionary algorithm where
the first layer evolves model structures while the inner layer
implemented as a GA, acts as a local search for the param-
eters of the model.

The effectiveness of the algorithm was tested by three case
studies with incremental model complexity, namely, molecu-
lar complexation, enzymatic reactions and autoregulation in
transcriptional networks. The experimental results demon-
strate that for each case our algorithm was able to find a rule
structure and stochastic kinetic constants which reproduce
very accurately the target time series. More interestingly,
in the case of autoregulation in transcriptional networks our
algorithm was able to find more than one equally plausi-
ble model (hypothesis). This shows the suitability of our
algorithm to find a set of possible designs of cellular sys-
tems. Furthermore one of these possible designs could be
chosen to be actually engineered in the lab according to its
implementation feasibility. This links our research with the
emerging field of synthetic biology. Finally, the comparing
results for the case of enzymatic reactions by using the el-
ementary library and by adding the newly found module
shows the obvious advantage of using the latter approach.
This points out the great potential to automatically design
more complex and circuitous cellular models in the future
by using our algorithm.

Future research lines include the automatic design of more
complex regulatory transcriptional networks and the study
of eukaryotic cellular systems with relevant compartmen-
talised structure by using and extending our algorithm.
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model of the quorum sensing system in vibrio fischeri
using p systems. Artificial Life, 14(1):95–109, 2008.

[15] F. J. Romero-Campero and M. J. Pérez-Jiménez.
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