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Abstract The subject of PT -symmetry and its areas of application have been blos-

soming over the past decade. Here, we consider a nonlinear Schrödinger model

with a complex potential that can be tuned controllably away from being PT -

symmetric, as it might be the case in realistic applications. We utilize two parame-

ters: the first one breaks PT -symmetry but retains a proportionality between the

imaginary and the derivative of the real part of the potential; the second one, de-

tunes from this latter proportionality. It is shown that the departure of the potential

from the PT -symmetric form does not allow for the numerical identification of

exact stationary solutions. Nevertheless, it is of crucial importance to consider the

dynamical evolution of initial beam profiles. In that light, we define a suitable no-

tion of optimization and find that even for non PT -symmetric cases, the beam

dynamics, both in 1D and 2D –although prone to weak growth or decay– suggests

that the optimized profiles do not change significantly under propagation for specific

parameter regimes.
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1 Introduction

The original suggestion of Bender and collaborators [1, 2] of a new class of sys-

tems that respect parity and time-reversal (so-called PT -symmetric systems) was

motivated by the consideration of the foundations of quantum mechanics and the

examination of the need of Hermitianity within them. The argument of Bender and

collaborators was that such systems, even if non-Hermitian and featuring gain and

loss, could give rise to real spectra, thus presenting a candidacy for being associated

with measurable quantities.

This proposal found a fertile ground for its development in areas, arguably, differ-

ent than where it was originally proposed. In particular, the work of Christodoulides

and co-workers in nonlinear optics a decade later, spearheaded an array of experi-

mental realizations of such media (capitalizing on the ubiquitous in optics loss and

on controllable gain) [3–8]. Other experiments swiftly followed in areas ranging

from electronic circuits [9–11] to mechanical systems [12], bringing about not only

experimental accessibility, but also an intense theoretical focus on this theme. These

threads of research have now been summarized in two rather comprehensive recent

reviews [7, 8].

While PT -symmetric variants of other nonlinear wave models have more re-

cently been proposed, including the PT -symmetric variants of the Dirac equa-

tions [13] and of the Klein-Gordon equation [14], the main focus of associated in-

terest has been on models of the nonlinear Schrödinger (NLS) type. This is natural

given the relevance at the paraxial approximation level of such a model in applica-

tions stemming from nonlinear optics and related themes [7, 8]. In this important

case, the PT -invariance is consonant with complex external potentials Ṽ , of the

form Ṽ = V + iW , subject to the constraint that Ṽ ∗(x) = Ṽ (−x). This implies that

the real part, V , of the potential needs to be even, while the imaginary part, W , of the

potential needs to be odd to ensure PT -symmetry. The expectation, thus, has been

that typically Hamiltonian and PT -symmetric systems featuring gain and loss will

possess continuous families of soliton solutions; otherwise, the models will possess

solutions for isolated values within the parameter space.

However, more recent investigations have started to challenge this belief. On the

one hand, work on complex, asymmetric so-called Wadati potentials has produced

mono-parametric continuous families of stationary solutions [15, 16]. On the other

hand, the notion of partial PT -symmetry has been explored, e.g., with models that

possess the symmetry in one of the directions but not in another [17, 18]. In fact,

in the recent work of [19, 20] that motivated the present study, it was shown that to

identify critical points one can localize a soliton 1 in a way such that its intensity has

1 Below, we use the term “soliton” in a loose sense, without implying complete integrability [21].
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a vanishing total overlap with the imaginary part of the potential, assuming that the

real part of the potential is proportional to the anti-derivative of the imaginary part

(but without making any assumptions on the parity of either).

In the present work, we revisit these considerations. In particular, we discuss the

results of the important contribution of [22]. This work suggests (and indeed con-

jectures) that the only complex potentials that could feature continuous families of

stationary solutions although non-PT -symmetric are the ones of the Wadati type. In

our case, we have considered potentials that depart from this form and either satisfy

–or controllably depart from – the simpler mass and momentum balance conditions

of [19,20]. We observe that in such settings, waveforms “optimizing” the vector field

(which we define as bringing it very –but nor arbitrarily– close to vanishing) may

exist, but still are not true solutions, in line with the above conjecture. We develop

diagnostics that explore how these optimized beams behave dynamically, and iden-

tify their slow growth or decay. We do this for two different broad multi-parametric

families of potentials to showcase the generality of our conclusions. We then ex-

tend relevant considerations also to 2D settings, showing how symmetry breaking

bifurcation scenarios can be traced via our optimized beam approach.

Our presentation will be structured as follows. In section 2, we introduce the

model, connect our considerations to those of [22] and justify the selection of the

complex potential. In section 3, we explore the optimized beams and the associated

dynamics of the relevant waveforms numerically. Then, in section 4, we generalize

these notions in a two-dimensional setting. In section 5, we proceed to summarize

our findings and propose a number of directions for future study. Finally, in the

Appendix, details of the numerical method used to optimize the dynamical beams

are presented.

2 The one-dimensional potential

As explained in the previous section, motivated by the development in the analysis

of NLS models with complex potentials, we consider the rather broad setting of the

form:

iψt =−ψxx +[V(x)+ iW (x)]ψ −|ψ |2ψ , (1)

with subscripts denoting partial derivatives. In the context of optics, ψ(x, t) repre-

sents the complex electric field envelope, t is the propagation distance, x corresponds

to the transverse direction, while the variation of the dielectric permittivity plays the

role of the external potential, with V (x) and W (x) being its real and imaginary parts,

respectively [7,8]. In the recent analysis of [19,20], assuming the existence of bright

solitons (as is natural in the focusing nonlinearity setup under consideration), dy-

namical evolution equations were obtained for the soliton mass and velocity. Here,

we use as our motivating point for constructing standing wave structures of Eq. (1)

the stationary form of these equations, which read (cf. Eqs. (5)-(6) of Ref. [20]):
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∫ ∞

−∞
|ψ(x)|2W (x+ x0)dx =

∫ ∞

−∞
|ψ(x)|2V ′(x+ x0)dx = 0, (2)

where x0 denotes the soliton center. The first one among these equations, corre-

sponds to a “power-balance” (or mass balance) condition, implying that the soliton

has a transverse profile such that it experiences gain and loss in an overall balanced

fashion across its spatial extent. The second equation corresponds to a “momentum-

balance” condition, i.e., the total force exerted on the solitary wave vanishes, hence

the coherent structure is at an equilibrium.

This pair of stationarity conditions in Eq. (2) reduces to a single one, provided

that V ′ = −CW , with C being a constant. In that context, the resulting condition

posits the following: if a soliton can be placed relative to the gain/loss profile so that

its intensity has an overall vanishing overlap with the imaginary part of the potential,

then the existence of a fixed point (and thus a stationary soliton solution) may be

expected.

However, it should be kept in mind that these conditions are necessary but not

sufficient for the existence of a stationary configuration. In particular, a recent inge-

nious calculation shed some light on this problem for a general potential in the work

of [22]. Using a standing wave deomposition

ψ = r(x)ei
∫ x θ(x′)dx′eiµt

in Eq. (1), the following ordinary differential equations were derived:

rxx − µr−Vr+ r3 −θ 2r = 0, (3)

(r2θ )x =Wr2. (4)

It was then realized that, in the absence of external potential, two quantities, namely

J1 = r2θ (the “angular momentum” in the classical mechanical analogy of the prob-

lem) and J2 = r2
x − µr2 + r4/2+ r2θ 2 (the “first integral” or energy in the classical

analogue) are conserved, i.e., dJi/dx = 0. For J1, Eq. (4) yields its evolution in the

presence of the potential while for J2, direct calculation shows:

dJ2

dx
=V (r2)x + 2Wr2θ = Sx − r2Vx − 2(r2θ )x

∫

Wdx, (5)

with S = Vr2 + 2r2θ
∫

Wdx. Combining the last terms, upon substitution of (r2θ )x

from Eq. (4) allows us to infer that this pair of terms will vanish if the coefficient

multiplying r2, namely Vx −2W
∫

Wdx, vanishes; this occurs if the potential has the

form:

V + iW =−[g2 + ig′(x)]+ c,

where c is a constant. A shooting argument presented in [22] suggests that there

are 3 real constants (2 complex ones, yet one of them can be considered as real

due to the phase invariance) in order to “glue” two complex quantities, namely ψ
and ψx at some point within the domain. This can only be done when a conserved

quantity exists, which requires the type of potential suggested above, in the form
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−[g2 + ig′(x)]. However, if additional symmetry exists, such as PT -symmetry, the

symmetry alone may impose conditions such as Im(ψ(0))=Re(ψx(0)) = 0, which

in turn allows for the shooting to go through (and thus solutions to exist) for a

continuous range of µ’s.

Nevertheless, a natural question is: suppose that the potential is not of this rather

non-generic form, yet it deviates from the PT -symmetric limit, possibly in ways

respecting the above mass and/or momentum balance conditions of Eq. (2); then

what is the fate of the system ? Do stationary states perhaps exist or do they not, and

what are the dynamical implications of such conditions ? It is this class of questions

that we will aim to make some progress towards in what follows.

To test relevant ideas, we will use two different potentials Ṽ j(x) =V j(x)+ iWj(x),
with j = 1,2. In the first one, W is of the form:

W1(x) = A1k1sech(x− xd − δ1) tanh(x), (6)

where A1, k1, xd and δ1 are constants, with the latter two controlling the breaking of

the PT -symmetry. We then use a real potential V1 given by the form:

V1(x) =−2A1

[

arctan

(

tanh

(

xd − x

2

))

coth(xd)− arctan
(

tanh
( x

2

))

csch(xd)

]

,

(7)

which, in the limit xd → 0, transforms into V1(x) = −A1sech(x). The motivation

behind this selection is that if δ1 = 0 in Eq. (6) then V1 is proportional to the anti-

derivative of W1 (hence ensures that the pair of conditions of Eq. (2) degenerate to

a single one). In addition, for δ1 = 0 and in the limit xd → 0, the potential is PT -

symmetric. In short, the two parameters xd and δ1 both control the departure from

PT -symmetry, while the latter affects the departure from proportionality of V ′
1 and

W1. This selection and these parameters thus allow us to tailor the properties of the

potential, controlling its departure from the PT -symmetric limit, but also from the

possible degeneracy point of the conditions (2).

The second potential is given by

W2(x) = A2k2xsech2(x− δ2 − 1), (8)

and

V2(x) =−A2(log[cosh(1− x)]+ x tanh(1− x)), (9)

where A2, k2 and δ2 are constants. Contrary to the Ṽ1 case, this potential does not

possess a PT -symmetric limit.

For both Ṽ1(x) and Ṽ2(x) potentials, if δ = 0 then V ′
j(x) = −C jWj(x) and, as

shown in Ref. [19], rendering a topic of interest the exploration of the potential

existence of stationary solutions in the vicinity of the interface between the lossy

and amplifying parts when Eq. (2) applies. In our particular case, the proportionality

factor C j is C j = 1/k j.
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3 Numerical results

3.1 Stationary states

We start by seeking stationary localized solutions, of the form ψ(x, t) = eiµtu(x)
with u(x) ∈ C, which will thus satisfy:

F [u]≡ µu− uxx+[V(x)+ iW(x)]u−|u|2u = 0. (10)

In what follows, we fix A1 = 0.1 and A2 = 1, and consider stationary solutions of

frequency µ = 1. We will make use of periodic boundary conditions.

Notice that the potentials of [22] Ṽ (x) = −[g2(x)+ ig′(x)] would, in the present

notation, necessitate:

[V ′(x)]2 =−4V(x)W 2(x). (11)

It is important to note that the potentials studied in our chapter do not fulfill this

relation for any set of parameters (A1,k1,xd ,δ1) or (A2,k2,δ2) —except for the

“trivial” PT -limit— as it can be easily demonstrated. As a result then, presum-

ably because of the above calculation, the standard fixed point methods that we

have utilized fail to converge away from the PT -symmetric limit. For this rea-

son, we make use of minimization algorithms in order to obtain optimized profiles

of localized waveforms. With these methods, one can seek for local minima of the

norm of F [u] instead of zeros of that function. In our problem, we have made use of

the Levenberg–Marquardt algorithm (see Appendix A for more details), which has

been successfully used for computing solitary gravity-capillary water waves [23],

and established a tolerance of ||F[u]|| < 10−3 with ||F[u]|| being the L2-norm of

F [u]:

||F[u]||=

√

∫

|F [u(x)]|2dx. (12)

In the particular case of potential Ṽ1(x), we have studied the stability of solitons

in the PT -symmetric limit xd = δ1 = 0 as a function of k1, observing that solitons

are stable whenever k1 < kc, with kc = 8.28. At this point, the soliton experiences

a Hopf bifurcation. In order to avoid any connection of the findings below with

the effect of such instability, we have fixed in what follows a value of k1 far enough

from kc. Moreover, since the minimal value attained for ||F [u]|| increases with k1, we

have restricted consideration to relatively small values of k1 and more specifically

will report results in what follows for k1 = 1/2.

Figures 1 and 2 show the potential profile for two different (xd ,δ1) and (k2,δ2)

parameter sets. These figures also show the profile of the waveforms minimizing

||F [u]|| for such potentials, which will be considered further in what follows. These

beam profiles will be referred to as “optimized” in the sense of the above minimiza-

tion. In particular, their real part is nodeless, while their imaginary part features a

zero crossing. Naturally, the profiles are asymmetric mirroring the lack of definite

parity of the potentials’ real and imaginary part. It is interesting to see that, despite
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Fig. 1 Left panels: Real and imaginary part of the potential Ṽ1(x) for A1 = 0.1, k1 = 1/2 and

xd = 0 (top) and xd = 1 (bottom); green line corresponds to the imaginary part for δ1 = 0, whereas

red (black) line corresponds to the imaginary part for δ1 = 0.05 (δ1 =−0.05). Right panels: Beam

profiles minimizing ||F [u]|| (real and imaginary parts) for A1 = 0.1, k1 = 1/2 and xd = 0 (top)

and xd = 1 (bottom); the blue line corresponds to δ1 = 0, and the green (red) line corresponds to

δ1 = 0.5 (δ1 =−0.25).
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to the imaginary part for δ2 = 0.2 (δ2 = −0.1). Right panels: optimized beam profiles (real and
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the breaking of both the PT -symmetry and the violation of conditions such as the

one in Eq. (11), there still exist spatially asymmetric structures almost satisfying the

equations of motion. This naturally poses the question of the dynamical implications

of such profiles in the evolution problem of Eq. (1), as we will see below.

3.2 Dynamics
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Fig. 3 Optimized beam dynamics in the potential Ṽ1(x) for A1 = 0.1, k1 = 1/2, xd = 1 and δ1 = 0.

The top left panel shows the density profile at t = 0, t = 500 and t = 1000, while the top left panel

shows the real and imaginary part of F [u]. The bottom left panel shows the space-time contour

plot of the density evolution, and the bottom right panel shows the evolution of the norm N(t). The

values of diagnostic quantities are λ =−3.63×10−3 and σ =−1.07×10−4.

We now analyze the dynamics of several case examples for the NLS equation

with potential Ṽ1(x), using as initial condition the optimized beam profiles found

by the Levenberg-Marquardt algorithm. Figures 3 and 4 show the outcome of the

simulations for xd = 1 and xd =−1, respectively, when δ1 = 0 is fixed; on the other

hand, Figs. 5 and 6 correspond, respectively, to δ1 =−0.1 and δ1 = 0.1, when xd = 1

is fixed. In these figures, we show the density |ψ(x)|2 at different time instants (top

left), the real and imaginary part of F [u] (top right), a space-time contour plot of the

evolution of the localized beam density |ψ(x, t)|2 (bottom left), and the (squared)

L2-norm (power/mass in optics/atomic physics), N(t) (bottom right), defined as
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Fig. 4 Same as Fig. 3, but for xd = −1. The values of diagnostic quantities are λ = 3.63× 10−3

and σ = 1.07×10−4.
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Fig. 5 Same as Fig. 3, but for δ1 = 0.1. The values of diagnostic quantities are λ = 2.07× 10−2
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Fig. 6 Same as Fig. 3 but for δ1 =−0.1. The values of diagnostic quantities are λ =−3.15×10−2

and σ =−9.40×10−4.

N(t) =

∫

|ψ(x, t)|2dx. (13)

One can observe a clear correlation between the qualitative shape of Im{F[u]}
and the growing/decaying character of the dynamics. In other words, in the growing

case, this quantity is predominantly positive, whereas for the decaying case, it is

predominantly negative.

Moreover, it seems that a larger growth rate (i.e., a faster increase or decrease of

N) is associated to a larger ||F[u]||. In order to showcase this fact, we have depicted

in Fig. 7 the dependence of diagnostic quantities λ and σ , that we have accordingly

defined as

λ =
dN

dt

∣

∣

∣

∣

t=0

. (14)

σ = S||F[u]||, (15)

with

S = sgn

{

∫

Im{F[u(x)]}dx

}

The quantity σ takes into account both the (minimized) norm of ||F [u]|| and the

form of Im{F [u(x)]} through S –that is, if the imaginary part of F [u(x)] is chiefly

positive or negative. Notice that the blank regions correspond to solutions for which

||F [u]|| is higher than the prescribed tolerance of 10−3. On the other hand, λ char-
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acterizes the rate of “departure” from the optimized beam profile obtained from this

minimization procedure.

Figure 7 shows a clear correlation between σ and λ . Notice the symmetry be-

tween the outcomes when the transformation (xd ,δ1) → (−xd ,−δ1) is applied,

which is also manifested in the values of λ and σ displayed in the captions of

Figs. 3 and 4. From this figure it is also clear that, roughly speaking, when xdδ1 < 0,

N(t) grows with time, whereas the opposite takes place when xdδ1 > 0. This is not

always true, as there is a critical value δ1c (close to zero) separating the growing

(λ > 0) and decaying (λ < 0) dynamics, which is tantamount to the separation of

the regions with σ > 0 and σ < 0. The dependence of δ1c versus xd is also depicted

in Fig. 7; having in mind the continuous dependence of σ and λ with xd and δ1, it

is clear that σ = 0 just at the curve δ1c(xd) = 0, so one can find stationary soliton

solutions. This is manifested in Fig. 8, where, for a set of parameters very close to

the curve δ1c(xd) = 0 (in particular, xd = 1 and δ1 = 0.014038), the decay is very

slow (with λ . 10−7), but not identically zero, as ||F [u]|| ∼ 10−8. Interestingly, as

shown in the bottom left panel of the figure, the relation (11) is not fulfilled. Conse-

quently, there is a range of parameter values for which states with a very small value

of ||F [u]|| can be obtained even if the potential is not of the form −(g2 + ig′).
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δ1c(xd) at which both σ and λ vanish.
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k1 = 1/2, xd = 1 and δ1 = 0.014038. The top left panel shows the space-time contour plot of the

density evolution, while the top right panel shows the evolution of the norm N(t). The bottom

left panel compares [V ′
1(x)]

2 and 4V (x)W 2(x), showing that Eq. (11) does not hold. The bottom

right panel depicts the real and imaginary part of F [u]. The values of the diagnostic quantities are

λ =−6.09×10−8 and σ =−3.87×10−8.

In the case of the NLS equation with potential Ṽ2(x), we only focus on the depen-

dence of λ and σ with respect to parameters k2 and δ2, as the outcome of simulations

is essentially the same as in the previous case. Namely, for non-vanishing values of

λ and σ , a growth or decay of the solutions is identified for typical values of δ2,

as shown in Fig. 9. However, this growth or decay is quite slow, as achieved by

the optimization of the beam via the Levenberg–Marquardt algorithm. Notice there

is an anti-symmetry in the outcome when the transformation k2 → −k2 is applied.

In addition, both σ and λ are equal to zero at k2 = 0 as at that point the potential

is real and the solutions are stationary. Once again, the nearly parabolic curve in

the (δ2,k2) plane where λ = σ = 0 enables us to identify parameter values in the

vicinity of which states with particularly small ||F [u]|| appear to exist.

4 Symmetry breaking in two-dimensional potentials

It is of particular interest to extend the above one-dimensional considerations to-

wards the emergence of asymmetric optimized beam families in the 2D version of
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Eq. (1) that reads:

iψt =−(ψxx +ψyy)+ [V(x,y)+ iW(x,y)]ψ −|ψ |2ψ . (16)

In this case, stationary solutions, ψ(x,y, t) = eiµtu(x,y) with u(x,y)∈C, will satisfy:

F [u]≡ µu− (uxx+ uyy)+ [V(x,y)+ iW(x,y)]u−|u|2u = 0. (17)

In Ref. [25], it is shown that not only symmetric solitons exist but also symmetry

breaking is possible if the potential Ṽ (x,y) =V (x,y)+ iW(x,y) is of the form

Ṽ (x,y) =−[g2(x)+αg(x)+ ig′(x)+ h(y)] (18)

with g(x) being a spatially even real function, h(y) being a real function and α a

real constant. Notice that this potential is partially-PT -symmetric (denoted also

as PPT -symmetric), i.e.,

Ṽ ∗(x,y) = Ṽ (−x,y) (19)

The linear spectrum of this potential can be purely real. In this case, a family of

PT -symmetric solitons can emerge from the edge of the continuous spectrum;

two degenerate branches of asymmetric solitons, which do not respect the PPT

symmetry, bifurcate from the symmetric soliton branch through a pitchfork bifurca-

tion. It is worthwhile to note that we consider such PPT -symmetric as a first
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step into the two-dimensional settings. Nevertheless (and in line with the title

of this Chapter), extending considerations to a non-PT -symmetric 2D setting

constitutes an important open question for future considerations.

The symmetry breaking bifurcation can also be observed either if the potential

possesses double PPT symmetry

Ṽ ∗(x,y) = Ṽ (−x,y) and Ṽ ∗(x,y) = Ṽ (x,−y) (20)

or PT - and one PPT -symmetry simultaneously

Ṽ ∗(x,y) = Ṽ (−x,−y) and Ṽ ∗(x,y) = Ṽ (−x,y) or Ṽ ∗(x,y) = Ṽ (x,−y).
(21)

In such cases of double symmetries, there is no need for the potential to have a

special form as in Eq. (18). In addition, the soliton branch that emerges from the

spectrum edge possesses both symmetries whereas the bifurcating branch loses one

of the symmetries although it retains the other.
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Fig. 10 Real (left) and imaginary (right) part of the 2D potential Ṽ3(x,y) for A3 = 3 and k3 = 1.

A later work [26] reports the existence of the same branching behaviour in a

PT -symmetric potential which also features a partial PT -symmetry along the

x-direction. More specifically, the potential used in [26] is given by

V3(x,y) =−[G2(x,y)+G(x,y)], W3(x,y) = k3∂xG(x,y) (22)

with

G(x,y) = A3e−y2
(e−(x−1)2

+ e−(x+1)2
). (23)

Notice that the symmetries mentioned above are applicable as a result of the even

nature of the G(x,y).
To give an associated example of the resulting symmetry breaking, we use, as

in [26], A3 = 3 and k3 = 1. The resulting profile of the potential is shown in Fig. 10.

PT -symmetric solitons are calculated by means of the Newton–Raphson method

and the corresponding branch emerges from µ = 5.810; asymmetric solitons (ac-
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tually, optimized beams) are attained by using the Levenberg-Marquardt algorithm,

with a tolerance of ||F [u]||< 10−2. Now, the L2-norm is defined as

||F [u]||=

√

∫

|F [u(x)]|2dxdy. (24)

Fig. 11 represents P ≡ N(t = 0) versus µ for the symmetric and asymmetric

soliton branches; notice that N(t) is now defined as

N(t) =

∫

|ψ(x,y, t)|2dxdy. (25)
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One can observe that the asymmetric branches exist for µ ≥ 6.3837. The figure

also shows the profile of solitons at µ = 7, the same value that was taken in [26].

Notice that all the soliton profiles are symmetric with respect to the y-axis; the sym-

metric solitons present a couple of humps at (x = ±x1,y = 0) whereas the asym-

metric solitons only possess a single hump at (x = x2,y = 0). We have only shown

solitons with x2 > 0 as the solutions with x2 < 0 are attained simply by making the

transform u(x,y)→ u(−x,y).
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Fig. 12 Dependence of diagnostic quantities σ (left) and λ (right) as a function of µ for optimized

beams at the 2D potential Ṽ3(x,y) with A3 = 3 and k3 = 1.

We have also computed the diagnostic quantities λ and σ [see (14) and Eqs.

(15), with S adapted to 2D domains] for the asymmetric soliton and depicted them

in Fig. 12. Again, we have considered asymmetric solitons branches centred at x =
x2 > 0. In that case, the norm grows with time, as corresponds to σ > 0 and λ > 0

whereas the opposite takes place if x2 < 0. We can observe, as in the 1D case, a clear

correlation between both quantities.

Finally, we show in Fig. 13 and 14 the dynamics of the asymmetric and PT -

symmetric solitons with µ = 7. As it was pointed out in [26], the PT -symmetric

solitons are unstable past the “bifurcation” point, i.e. when they coexist with the

asymmetric branch; as we have shown in Fig. 14, they tend to a state similar to

the asymmetric soliton, although displaying some density oscillations. However, it

was claimed in the same reference that the asymmetric solitons were stable. For the

optimized beam profiles that we have obtained, as shown in Fig. 13, the dynamical

evolution does not dramatically alter the shape of the beam, yet it leads to slow

growth of N(t).
We also considered the stability of the PT -symmetric branch past the relevant

bifurcation point. A spectral stability analysis shows that for µ & 6.40, the solitons

become exponentially unstable as an eigenvalue pair becomes real. Interestingly,

although the asymmetric solitons are actually optimized beams (i.e. solutions with

minimal ||F(u)|| but not exact solutions), they might be more robust than the exact

solutions of the NLS equation corresponding to the PT -symmetric branch, past
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the corresponding destabilization point; compare the associated dynamics of Fig. 14

with those of Fig. 13.
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Fig. 13 Optimized beam dynamics in the 2D potential Ṽ3(x,y) for A3 = 3, k3 = 1 and µ = 7. The

top panels show the density profile at t = 0 (left) and t = 40 (right). The bottom left panel shows

the real and imaginary part of F [u] and the bottom right panel shows the evolution of the norm

N(t). The values of diagnostic quantities are λ = 1.39 and σ = 4.07×10−3.

5 Conclusions & Future Work

In the present work, we have revisited a variant of PT -symmetric systems. In

particular, we have examined multi-parametric potentials whose parameters control,

on the one hand, the potential departure from the PT -symmetric case (such as xd

herein), and on the other hand, the potential degeneracy of the conditions (2) for

stationary solutions –motivated by the recent works of [19, 20]. We have confirmed

the results of the important recent contribution of [22], suggesting that in the absence

of a special form of the complex potential, no true stationary solutions are found to

exist. On the other hand, that being said, we have identified beams that come very

close to satisfying the stationary equations. The dynamics of these beams indicate a
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Fig. 14 Unstable PT -symmetric solitons dynamics in the 2D potential Ṽ3(x,y) for A3 = 3, k3 = 1

and µ = 7. The top panels show snapshots of the density profile evolution. The bottom shows the

evolution of the norm N(t).

slow departure from such a configuration. In fact, diagnostics identifying the rate of

this growth and connecting it to the proximity of the profiles to a stationary solution

(via ||F [u]||) were developed and numerically evaluated, both in 1D and in 2D.

Naturally, this work poses a number of questions for the future. One of the most

notable such concerns the most general conditions (on, say, a complex potential)

under which one may expect to find (or not) families of stationary solutions. PT -

symmetry is a sufficient but not a necessary condition for such existence and extend-

ing beyond it seems of particular interest. The conjecture of [22] is that the potentials

V + iW =−(g2+ ig′(x))+c represent the generic scenario is plausible, but it would

be particularly interesting to produce a proof, perhaps revisiting more systematically

the relevant shooting argument. It is also important to highlight that such shooting

arguments are only valid in one spatial dimension. Hence, examining generalizations

of the present setting to higher dimensions is of particular interest in their own right.

We have briefly touched upon this aspect here, based on the earlier works of [25,26],

but clearly further efforts are necessary to provide a definitive reply in this direction.

In particular, while an interesting class of partially-PT -symmetric potentials

has been examined herein, it is particularly relevant to attempt to understand
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the phenomenology in non-PT -symmetric settings, constituting an important

extension of our 1D considerations herein.
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Appendix: The Levenberg–Marquardt algorithm

Classical fixed-point methods like Newton–Raphson cannot be used for solving the

problem F[u(x)] = 0 in the setting considered in the context of this Chapter, essen-

tially because there might not exist a u(x) that fulfils this relation (to arbitrarily pre-

scribed accuracy). However, it is possible to find a function u(x) that can minimize

F [u(x)]. To this aim, an efficient method is the Levenberg–Marquardt algorithm

(LMA, for short), which is also known as the damped least-square method. This

method is also used to solve nonlinear least squares curve fitting [27, 28]. LMA is

implemented as a black box in the Optimization Toolbox of Matlab TM and in MIN-

PACK library for Fortran, and can be considered as an interpolation between the

Gauss-Newton algorithm and the steepest-descent method or viewed as a damped

Gauss-Newton method using a trust region approach. Notice that LMA can find ex-

act solutions, in case that they exist, as it is the case of the results presented, e.g., in

Ref. [23].

Prior to applying LMA, we need to discretize our equation (10). Thus, we

take a grid xn = −L/2+ nh with n = 0,1,2 . . .M and L being the domain length,

and denote un ≡ u(xn) and Fn ≡ F[u(xn)]. With this definition uxx can be cast as

(un+1+un−1−2un)/h2. In order to simplify the notation in what follows, let us call

u ≡ {un}
M
n=1 and F(u) ≡ {Fn}

M
n=1. We will also need to define the Jacobian ma-

trix J(u)≡ {Jn,m}
M
n,m=1 with Jn,m = ∂umFn. In the presently considered optimization

framework, F(u) is also knows as the residue vector.

Let us recall that fixed point methods typically seek a solution by performing

the iteration u j+1 = u j + δ j from the seed u0 until the residue norm ||F(u)|| is

below the prescribed tolerance; here δ j is dubbed as the search direction. In the

Newton–Raphson method, the search direction is the solution of the equation sys-

tem J(u j)δ j = −F(u j). If the Jacobian is non-singular, the equation system can be

easily solved (as a linear system); however, if this is not the case, one must look for
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alternatives like the linear least square algorithm. It was successfully used for some

of the authors for solving the complex Gross–Pitaevskii equation that describes the

dynamics of exciton-polariton condensates [29–31]. This technique also allowed us

to find optimized beams in the present problem, but presented poor convergence

rates, as we were unable to decrease the residue norm controllably below the order

of unity.

As fixed point methods are unable to give a reasonably small residue norm, we

decided to use a trust-region reflective optimization method. Such methods consist

of finding the search direction that minimizes the so called merit function

m(δ ) =
1

2
F(u)TF(u)+ δ TJ(u)TF(u)+ δ TJ(u)TJ(u)δ . (26)

In addition, δ must fulfill the relation

||D ·δ ||< ∆ , (27)

where D is a scaling matrix and ∆ is the radius of the trust region where the prob-

lem is constrained to ensure convergence. There are several trust-region reflective

methods, with the LMA being the one that has given us the best results for the prob-

lem at hand. This is a relatively simple method for finding the search direction δ
by means of a Gauss-Newton algorithm (which is mainly used for nonlinear least

squares fitting) with a scalar damping parameter λ > 0 according to:

(J(u j)
TJ(u j)+λ jD)δ j =−J(u j)

TF(u j) (28)

with D being the scaling matrix introduced in Eq. (27). There are several possi-

bilities for choosing such matrix. In the present work, we have taken the simplest

option, that is D = I (the identity matrix), so (27) simplifies to ||δ j|| < ∆ . Notice

that for λ j = 0, (28) transforms into the Gauss-Newton equation, while for λ j → ∞
the equation turns into the steepest descent method. Consequently, the LMA inter-

polates between the two methods. Notice also the subscript in λ j: this is because the

damping parameter must be changed in each iteration, with the choice of a suitable

λ j constituting the main difficulty of the algorithm.

The scheme of the LMA is described in a quite easy way in Numerical Recipes

book [32, Chapter 15.5.2] and is summarized below:

1. Take a seed u0 and compute ||F(u0)||
2. Choose a value for λ0. In our particular problem, we have taken λ0 = 0.1.

3. Solve the equation system (28) in order to get δ0 and compute ||F(u0 + δ0)||
4. • If ||F(u0 + δ0)|| ≥ ||F(u0)||, then take λ1 = 10λ0 and u1 = u0, as with this

choice of λ0 the residue norm has not decreased.

• If ||F(u0 + δ0)||< ||F(u0)||, then take λ1 = λ0/10 and u1 = u0 + δ0, as with

this choice of λ0 has succeeded in decreasing the residue norm.

5. Go back to step 3 doing λ0 = λ1 and u0 = u1

This algorithm is repeated while ||F(u)|| is above the prescribed tolerance.
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