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Abstract. Cellular systems present a highly complex organization at
different scales including the molecular, cellular and colony levels. The
complexity at each one of these levels is tightly interrelated. Integrative
systems biology aims to obtain a deeper understanding of cellular systems
by focusing on the systemic and systematic integration of the different
levels of organization in cellular systems.

The different approaches in cellular modeling within systems biology
have been classified into mathematical and computational frameworks.
Specifically, the methodology to develop computational models has been
recently called executable biology since it produces executable algorithms
whose computations resemble the evolution of cellular systems.

In this work we present P systems as a multiscale modeling frame-
work within executable biology. P system models explicitly specify the
molecular, cellular and colony levels in cellular systems in a relevant and
understandable manner. Molecular species and their structure are rep-
resented by objects or strings, compartmentalization is described using
membrane structures and finally cellular colonies and tissues are modeled
as a collection of interacting individual P systems.

The interactions between the components of cellular systems are de-
scribed using rewriting rules. These rules can in turn be grouped together
into modules to characterize specific cellular processes. One of our cur-
rent research lines focuses on the design of cell systems biology models
exhibiting a prefixed behavior through the automatic assembly of these
cellular modules. Our approach is equally applicable to synthetic as well
as systems biology.

1 Introduction

Models in systems biology has been recently classified according to their se-
mantics into denotational and operational models [6]. Models with denotational
semantics are the classical approach in modeling cellular systems which uses a



set of equations to describe how the quantities of the different molecular species
are related to each other over time. The classical example are ordinary and par-
tial differential equations. In this case the behavior of the system is obtained by
approximating numerically these equations. On the other hand, computational
models have operational semantics which describe the behavior of the system
using an algorithm or list of instructions that can be executed by an abstract
machine. The models developed within this last framework has been termed
recently executable biology [6]. In this case a more detailed description of the
processes producing the behavior of the system is provided.

Several formal computational approaches have been proposed to model cellu-
lar systems like Petri nets [10] and process algebra [19]. They mainly focus on
system specification at the molecular level: membranes, compartmentalization
and cellular colonies are seldom described. This fact makes it difficult to study
multicellular systems whose function is determined by molecular interactions.

Membrane computing is a branch of natural computing inspired directly from
the structure and functioning of the living cell [14]. It has been applied to cellular
modeling as one of the few computational frameworks which presents an integra-
tive approach to multiscale systems ranging from the molecular to the multicellu-
lar level. Specifically, it represents the molecular interaction level of living cells
using objects or strings and rewriting rules; the compartmental/cellular level
using membranes; and the colony level using collections of membranes called
membrane structures. The devices of this computational paradigm are referred
to as P systems. Although most research in P systems focuses on the study of the
computational power of the different proposed variants, recently their application
as a modeling formalism to cellular systems is emerging [3,4,7,11,17,20,21,15].
In this paper we discuss through a running example the use of P systems as a
multiscale modeling framework for cell systems biology models.

The paper is organized as follows. Stochastic P systems for cellular model-
ing are introduced in Section 2. Section 3 presents the running example used
throughout this paper. The modeling principles in P systems are described in
Section 4. Modularization in P systems is briefly discussed in Section 5. Finally,
conclusions and future work are discussed in Section 6.

2 Stochastic P Systems

The original strategy for the application of the rewriting rules in P systems was
based on maximal parallelism and non-determinism [13]. This strategy does not
represent the rate at which molecular interactions take place as every object that
can evolve according to any rule must evolve in a single computation step, with-
out taking into account that some molecular interactions are more frequent than
others. Moreover, the real time evolution of cellular systems is not captured as
all the computation steps are assumed to be of the same time length, neglecting
the fact that some molecular interactions are faster than others.

Different strategies for the application of the rewriting rules in P systems have
been studied [5,8]. Specifically, a sequential stochastic strategy based on Gille-
spie’s theory of stochastic kinetics [9] was introduced in order to overcome the two



previous problems when developing a modeling framework for cellular systems bi-
ology based on P systems [16]. Here we refer to this variant as stochastic P systems.

Definition 1 (Stochastic P Systems). A Stochastic P system is a construct:

Π = ((Σobj , Σstr), L, μ, Ml1, . . . , Mlm , (Robj
l1

, Rstr
l1 ), . . . , (Robj

lm
, Rstr

lm )),

where:

• Σobj is a finite alphabet of objects representing molecular species whose in-
ternal structure is not relevant in the functioning of the system under study.

• Σstr is a finite alphabet of objects representing relevant parts of some molec-
ular species in the system. These objects are arranged into strings describing
the structure of molecular species.

• L = {l1, . . . , lm} is a finite alphabet of symbols representing compartment
labels used to identify compartment classes. Compartments with the same
label share the same class, i.e., set of rewriting rules and initial multisets.

• μ is a membrane structure consisting of n ≥ 1 membranes defining compart-
ments identified in a one to one manner with values from {1, . . . , n} and
labeled with elements from L.

• Mlt = (wt, st), for each 1 ≤ t ≤ m, is the initial state of the compartments
from the class identified by label lt, where wt ∈ Σ∗

obj is a finite multiset of
individual objects and st is a finite set of strings over Σstr. A multiset of
objects, obj is represented as obj = o1 + o2 + . . . + op with o1, . . . , op ∈ Σobj.
Strings are represented as follows 〈s1 · s2 · · · sq〉 where s1, . . . , sq ∈ Σstr.

• Robj
lt

= {robj,lt
1 , . . . , robj,lt

kobj,lt
}, for each 1 ≤ t ≤ m, is a finite multiset of

rewriting rules on multisets of objects associated with compartments of the
type specified by the label lt. The rewriting rules on multisets of objects are
of the following form:

robj,lt
j : obj1 [ obj2 ]l

c
obj,lt
j−→ obj′1 [ obj′2 ]l (1)

with obj1, obj2, obj
′
1, obj

′
2 some finite multisets of objects from Σobj and l a la-

bel from L. These rules are multiset rewriting rules that operate on both sides
of membranes, that is, a multiset obj1 placed outside a membrane labeled by
l and a multiset obj2 placed inside the same membrane can be simultaneously
replaced with a multiset obj′1 and a multiset obj′2, respectively.

Note that a constant cobj,lt
j is associated specifically with each rule. This

constant will be referred to as stochastic constant and is key to provide P
systems with a stochastic extension as it will be used to compute the prob-
ability and time needed to apply each rule. This constant depends only on
the physical properties of the molecules and compartments involved in the
reaction described by the rule like temperature, pressure, pH, volume, etc.

• Rstr
lt

= {rstr,lt
1 , . . . , rstr,lt

kstr,lt
}, for each 1 ≤ t ≤ m, is a finite set of rewriting

rules on multisets of strings and objects associated with compartments of the
type defined by lt and of the following form:

rstr,lt
j : [ obj + str ]l

c
str,lt
j−→ [ obj′ + str′; str′1 + . . . + str′s ]l (2)



with obj, obj′ multisets of objects over Σobj and str, str′, str′1, . . . , str
′
s strings

over Σstr. These rules operate on both multisets of objects and strings. The
objects obj are replaced by the objects obj′. Simultaneously a substring str is
replaced by str′ whereas the strings str′1, . . . , str

′
s are produced to form part

of the content of the compartment. In the same way as for rewriting rules on
multisets of objects a stochastic constant cstr,lt

j is associated with each rule.

The previous definition is provided with a stochastic strategy for the application
of the rewriting rules by extending the Gillespie algorithm to the multicom-
partmental structure of P systems. The resulting algorithm has been referred to
as the Multicompartmental Gillespie Algorithm (MGA) [16]. The Gillespie algo-
rithm [9] can only be applied directly in a single, fixed and well mixed volume.
In our approach the first step consists of treating each compartment defined by
a membrane as a fixed and well mixed volume where the rewriting rule to be ap-
plied and the elapsed time before its application is computed using the Gillespie
Direct Method. Our algorithm then applies the corresponding rules following the
order determined by these waiting times. After the application of each rule the
algorithm recomputes the rules to be applied and the waiting times in the com-
partments affected by the application of the last rule using the Gillespie Direct
Method. Finally, the MGA halts when a prefixed simulation time is reached or
no further rules can be applied.

3 Running Example

In order to illustrate our modeling framework we will use an abstract gene reg-
ulation system inspired from the functioning and structure of the lac operon in
Escherichia coli (E. coli). This operon consists of three structural genes, lacZ,
lacY and lacA, located sequentially on the genome and transcribed into one
single mRNA. Their protein products are involved in the sensing, uptake and
metabolism of lactose. The transcription of the lac operon is both positively and
negatively regulated and it is considered a canonical example of gene transcrip-
tion regulation in prokaryotes [18].

The linear structure of the lac operon (Figure 1) starts with a region called cap
where the activator protein CRP binds and increases the rate of transcription.
Following this site there is an operator sequence that we will refer to as op where
the repressor protein LacI binds to stop transcription. The structural genes lacZ,
lacY and lacA then follow. The first gene lacZ codifies the enzyme β-galactosidase
involved in the metabolism of lactose by cleaving it into glucose and galactose;
allolactose appears as a byproduct of this reaction. The protein product of the
second gene lacY is a permease that associates to the cell membrane and acts
as a pump transporting lactose into the cell. The function of the protein coded
in the last gene lacA is not yet fully understood.

The regulation of the lac operon allows E. coli to express the genes in the
operon only when it is more beneficial for the cell. In the absence of lactose in
the media the repressor LacI binds to the operator op preventing the structural



⇓
〈cap.op.lacZ.lacY.lacA〉

Fig. 1. A schematic representation of the structure of the lactose operon (top) and its
representation as a string (bottom)

genes from being transcribed since they are not needed under these conditions.
Nevertheless, occasionally the repressor drops from the operator producing a
basal transcription of the operon.

When lactose becomes available it starts to be transported inside the cell by
the basal number of LacY proteins on the cell surface. Once in the cytoplasm
it interacts with the basal number of β-galactosidase producing as a byproduct
allolactose. Allolactose in turn binds to the repressor LacI and changes its state
so it cannot bind to the operator allowing transcription of the structural genes.
The resulting increase in production of LacY and β-galactosidase forms a positive
feed-back loop increasing the number of allolactose molecules which interact with
the repressors preventing premature termination of transcription.

The lac operon is also under positive regulation by the protein CRP. This
protein is activated by the glucose transport system and when active it binds to
the cap site facilitating transcription. Even in the presence of lactose if glucose
is present in the media CRP will not be active as the transport system will
be occupied, pumping glucose into the cell. Therefore CRP will not bind to
the operon to assist transcription. Only in the presence of lactose and absence
of glucose will CRP be active and bound to the operon, producing the full
transcription of the operon.

This gene regulation system will be used in the following section as the running
example illustrating our modeling principles.

4 Modeling Principles

The complexity of cellular systems is organized into different levels ranging from
the molecular to the cellular and colony scales. These levels of complexity are not
independent instead they are tightly interrelated influencing each other directly.
In this respect, stochastic P systems present an integrating multiscale modeling
framework which explicitly specifies the molecular, cellular and colony levels in
cellular systems in a relevant and understandable manner.

One of our research lines consists of the development of integrative modeling
principles within the modeling framework of stochastic P systems. More specifi-
cally we will present some ideas on how to describe molecular species, cellular re-
gions and compartments, molecular interactions, gene expression control and cell
colonies. Our running example will be used to illustrate our modeling principles.

• Molecular species: These are specified as individual objects or strings of
objects. Molecules with an internal structure that is relevant in the



functioning of the system are specified using strings. For example, gene
operons with a linear structure consisting of promoters, operators, tran-
scription/translation starting points, etc, otherwise molecular species are
described using individual objects.

Table 1. Specification of the molecular species in the lac operon

Molecular Species Object
RNA Polymerase RNAP

Ribosome Rib

Repressor LacI

Activator CRP CRP ∗

LacZ product LacZ

LacY product LacY

LacA product LacA

Lactose Lact

Allolactose Allolac

Glucose Gluc

Glucose transport
system Gluc

Complex glucose
transport system Gluc-GTS

Complex lactose
LacY product Lact-LacY

Complex lactose
LacZ product

Lact-LacZ

Complex lactose
LacZ product

Lact-LacZ

Complex allolactose
repressor

Allolac-LacI

Operon site Object
Activator binding site cap

Occupied activator
binding site

capCRP ∗

Repressor binding site op

Occupied repressor
binding site

opLacI

lacZ gene lacZ

lacY gene lacY

lacA gene lacA

lacZ mRNA mlacZ

lacY mRNA mlacY

lacA mRNA mlacA

Running example: The different molecular species in our example will be
specified according to this modeling principle. On the one hand, the proteins
and complexes of proteins involved in the regulation and expression of the lac
operon are specified as individual objects since we are not interested in their
internal structure (Table 1). On the other hand, each component of the lac
operon will be described using an object such that the lac operon structure
is specified as a string containing these objects in the specific order they can
be found in E. coli’s genome (Figure 1).

• Membranes: Compartmentalization and membranes are fundamental in
the structural organization and functioning of living cells. Membranes do not
act as passive boundaries of cells and compartments; instead they play a key
role in the regulation of the metabolism and information processing between
the outside and the inside of compartments. P systems constitutes one of
the few computational frameworks which explicitly specifies compartments
and membranes. For instance, P systems have been used to study selective



uptake of molecules from the environment [20], signalling at the cell surface
[12] and colonies of interacting bacteria which communicate by sending and
receiving diffusing signals [2,21]. In general P system membranes are used to
define relevant regions in cellular systems and therefore they do not always
correspond to real cell membranes although normally they do.

Running example: In the lac operon gene regulation system there are two
relevant regions. Namely, the bacterium surface where LacY and GTS act
as pumps transporting lactose and glucose into the cell and the aqueous
interior or cytoplasm where the operon is located together with the different
transcription factors and proteins. These two regions are represented using
two membranes embedded one inside the other to described the structure of
an E. coli bacterium (Figure 2).

Fig. 2. Graphical representation of the membrane structure specifying an E. coli
bacterium

• Molecular processes consisting of protein-protein interactions and
protein translocation: Such processes are normally described in P systems
using rewriting rules on multisets of objects. Our P system modeling frame-
work aims at providing a comprehensive and relevant rule-based schema for
the most common molecular interactions taking place in living cells. More
specifically, our approach focuses on the transformation and degradation of
molecular species, the formation and dissociation of complexes, and the basic
processes of communication and transport between different compartments
in cellular systems (Table 2).

Running example: The protein-protein interactions in our gene regulation
system are described using the rewriting rules on multisets of objects pre-
sented in Table 3. Rules r29, r30, r31 and r32 are examples of complex forma-
tion and dissociation rules. The degradation and dilution of different proteins



Table 2. P system rule-based schemas for the most common molecular interactions

Molecular Interaction P System Rules

Transformation and Degradation [ a ]l
c−→ [ b ]l [ a ]l

c−→ [ ]l

Complex formation and dissociation [ a + b ]l
cf−→ [ c ]l [ c ]l

cd−→ [ a + b ]l

Diffusion in and out a [ ]l
cin−→ [ a ]l [ a ]l

cout−→ a [ ]l

Binding and debinding a [ b ]l
clb−→ [ c ]l [ c ]l

cld−→ a [ b ]l

Recruitment and releasing a [ b ]l
crt−→ c [ ]l c [ ]l

crl−→ a [ b ]l

is specified in rules r22, r23 and r24. Finally, active uptake of glucose and lac-
tose are modeled using the binding and releasing rules r27, r28, r33 and r34.

• Gene expression control: The sensing of signals and the processing of
the information they convey is performed in living cells through molecular
interactions of the type presented in Table 2. The response of cells to these
signals consists of the expression of appropriate proteins codified in specific
genes. Gene expression control has been described in P systems using either
rewriting rules on multisets of objects or rewriting rules on multisets of
objects and strings according to the structural organization of the genes in
the system under study. Tables 4 and 5 presents these two alternatives for
the specification of the most important processes in gene expression control;
transcription factor binding and debinding, transcription and translation.

From a simplistic point of view the processes involved in transcription fac-
tor binding and debinding, transcription and translation can be represented
by individual rewriting rules on multisets of objects (Table 4). Nevertheless,
these processes are very complex and they consist of different stages like op-
erator/promoter recognition by transcription factors and RNA polymerase,
transcription/translation initiation/termination, elongation, etc. A more ac-
curate and detailed description of all these processes is achieved by using
rewriting rules on multisets of strings and objects of the form of the rules in
Table 5.

Running Example: The gene regulation control in the lac operon is modeled
using the rewriting rules on multisets of objects and strings given in Table 3.
More specifically, the binding and debinding of the activator and repressor
to their corresponding binding sites is represented using rules r3, r4, r7 and
r8. Transcription initiation in the presence and absence of the promoter site
occupied by the activator CRP ∗ is specified using rules r1, r2, r5 and r6.
The transcription of the structural genes lacZ, lacY and lacA is described
by the rules r9, r10, r11 and r12. Finally, translation and mRNA degradation
is modeled with the rules r13 - r21.

• Cell colonies: The last level of organization that has been represented using
P systems consists of cellular systems where cells form colonies by interacting



Table 3. Lac Operon Regulation Rules

Nr. Rule Stochastic Constant
r1 : [ RNAP + 〈cap〉 ]b

c1−→ [ 〈cap.RNAP 〉 ]b c1 = 5 × 10−3min−1

r2 : [ 〈cap.RNAP 〉 ]b
c2−→ [ RNAP + 〈cap〉 ]b c2 = 1min−1

r3 : [ CRP ∗ + 〈cap〉 ]b
c3−→ [ 〈capCRP ∗〉 ]b c3 = 16.6min−1

r4 : [ 〈capCRP ∗〉 ]b
c4−→ [ CRP ∗ + 〈cap〉 ]b c4 = 10min−1

r5 : [ RNAP + 〈capCRP ∗〉 ]b
c5−→ [ 〈capCRP ∗

.RNAP 〉 ]b c5 = 0.2min−1

r6 : [ 〈capCRP ∗
.RNAP 〉 ]b

c6−→ [ RNAP + 〈capCRP ∗〉 ]b c6 = 1min−1

r7 : [ LacI + 〈op〉 ]b
c7−→ [ 〈opLacI〉 ]b c7 = 166min−1

r8 : [ 〈opLacI〉 ]b
c8−→ [ LacI + 〈op〉 ]b c8 = 0.1min−1

r9 : [ 〈RNAP.op〉 ]b
c9−→ [ 〈op.RNAP 〉 ]b c9 = 3min−1

r10 : [ 〈RNAP.lacZ〉 ]b
c10−→ [ 〈lacZ.RNAP 〉 ; 〈mlacZ〉 ]b c10 = 0.78min−1

r11 : [ 〈RNAP.lacY 〉 ]b
c11−→ [ 〈lacY.RNAP 〉 ; 〈mlacY 〉 ]b c11 = 1.92min−1

r12 : [ 〈RNAP.lacA〉 ]b
c12−→ [ RNAP + 〈lacA〉 ; 〈mlacA〉 ]b c12 = 4min−1

r13 : [ Rib + 〈mlacZ〉 ]b
c13−→ [ 〈Rib.mlacZ〉 ]b c13 = 0.12min−1

r14 : [ Rib + 〈mlacY 〉 ]b
c14−→ [ 〈Rib.mlacY 〉 ]b c14 = 0.12min−1

r15 : [ Rib + 〈mlacA〉 ]b
c15−→ [ 〈Rib.mlacA〉 ]b c15 = 0.12min−1

r16 : [ 〈Rib.mlacZ〉 ]b
c16−→ [ Rib + LacZ + 〈mlacZ〉 ]b c16 = 0.12min−1

r17 : [ 〈Rib.mlacY 〉 ]b
c17−→ [ Rib + LacY + 〈mlacY 〉 ]b c17 = 1.73min−1

r18 : [ 〈Rib.mlacA〉 ]b
c18−→ [ Rib + LacA + 〈mlacA〉 ]b c18 = 3.55min−1

r19 : [ 〈mlacZ〉 ]b
c19−→ [ ]b c19 = 6 × 10−3min−1

r20 : [ 〈mlacY 〉 ]b
c20−→ [ ]b c20 = 6 × 10−3min−1

r21 : [ 〈mlacA〉 ]b
c21−→ [ ]b c21 = 6 × 10−3min−1

r22 : [ LacZ ]b
c22−→ [ ]b c22 = 6.9 × 10−2min−1

r23 : [ LacY ]b
c23−→ [ ]b c23 = 6.9 × 10−2min−1

r24 : [ LacA ]b
c24−→ [ ]b c24 = 6.9 × 10−2min−1

r25 : [ LacY ]b
c25−→ LacY [ ]b c25 = 1min−1

r26 : LacY [ ]b
c26−→ [ LacY ]b c26 = 0.7min−1

r27 : Lact [ LacY ]s
c27−→ [ Lact-LacY ]s c27 = 10min−1

r28 : Lact-LacY [ ]b
c28−→ LacY [ Lact ]b c28 = 10min−1

r29 : [ Lact + LacZ ]b
c29−→ [ Lact-LacZ ]b c29 = 10min−1

r30 : [ Lact-LacZ ]b
c30−→ [ Allolac + LacZ ]b c30 = 10min−1

r31 : [ Allolac + LacI ]b
c31−→ [ Allolac-LacI ]b c31 = 1min−1

r32 : [ Allolac-LacI ]b
c32−→ [ Allolac + LacI ]b c32 = 10−4min−1

r33 : Gluc [ GTS ]s
c33−→ [ Gluc-GTS ]s c33 = 1min−1

r34 : Gluc-GTS [ ]b
c34−→ GTS [ Gluc ]b c34 = 10min−1

r35 : GTS [ CRP ]b
c6−→ GTS [ CRP ∗ ]b c35 = 6.9 × 10−3min−1

r36 : [ CRP ∗ ]b
c6−→ [ ]b c36 = 0.069min−1

and exhibiting coordinated behavior. The specification of the environment
where the colony of cell is located cannot always be described by a single
membrane since it is normally too big to be considered a well mixed vol-
ume or region where the Gillespie Algorithm can be applied. In this respect,



Table 4. P system rule-based schemas for gene expression control using multisets of
objects

Molecular Interaction Rules on Multisets of Objects

Transcription Factor
Binding and Debinding

[ Tf + gene ]l
con−→ [ Tf–gene ]l

[ Tf–gene ]l
coff−→ [ Tf + gene ]l

Transcription [ gene ]l
ctc−→ [ gene + rna ]l

Translation [ rna ]l
ctl−→ [ rna + prot ]l

Table 5. P system rule-based schemas for gene expression control using multisets of
objects and strings

Molecular Interaction Rules on Multisets of Strings and Objects

Transcription Factor
Binding and Debinding

[ Tf + 〈op〉 ]l
con−→ [ 〈op′〉 ]l

[ 〈op′〉 ]l
coff−→ [ Tf + 〈op〉 ]l

Transcription
[ RNAP + 〈prom〉 ]l

crb−→ [ 〈prom.RNAP〉 ]l
[ 〈s0.w.RNAP.sN 〉 ]l

cel−→ [ 〈sN .s0.w.sN .RNAP〉 ]l
[ 〈s0.w.RNAP.st〉 ]l

cter−→ [ RNAP + 〈st〉; 〈s0.w.st〉]l

Translation
[ Rib + 〈s0〉 ]l

ctli−→ [ 〈site0.Rib〉 ]l
[ 〈Rib.sN 〉 ]l

ctle−→ [ 〈sN .Rib〉 ]l
[ 〈Rib.st〉 ]l

ctlt−→ [ Rib + Prot + 〈st〉 ]l

the environment is divided into a set of small regions that can be consid-
ered well mixed volumes. These regions are then connected according to a
graph defining the topology of the environment. This structure has been
termed multienvironment [11]. A cell colony is then specified as a collec-
tion of individual P systems representing individual cells distributed over
the multienvironment. These P systems interact by passive or active trans-
port rules using some of the specifications of molecular interaction described
previously. The different regions in a multienvironment can also interact by
passive diffusion rules of the following form:

[ obj ]l − [ ]l′
c−→ [ ]l − [ obj ]l′ (3)

These rules are multiset rewriting rules that operate on two environments,
one labeled l which is linked to another environment labeled l′. A multiset
obj is removed from the first environment and placed in the second one. In
this way, we are able to capture in a concise way the diffusion of signals from
one region to another in a large environment. As well as objects, P systems



Fig. 3. Evolution over time of the average of the LacY protein products over a colony
of 1000 bacteria for four different environmental conditions representing the presence
and/or absence of glucose and/or lactose

Fig. 4. Histogram representing the frequency of the number of LacY proteins over a
colony of 1000 bacteria



representing individual cells can be moved from one environment to another
using the following type of rules:

[ [ ]l′′ ]l − [ ]l′
c−→ [ ]l − [ [ ]l′′ ]l′ (4)

When a rule of this type is applied, a membrane with label l′′ and all its
contents, objects and other membranes, are moved from an environment
labeled l to another connected to it that must be labeled l′. This colony
level specification of P systems was introduced in [2] and was used to model
the quorum sensing system in the marine bacterium Vibrio fischeri from an
artificial life perspective in [21].

Running Example: In our case study we have examined the behavior of a
colony of 1000 bacteria located inside a single environment. Each bacterium
was represented using the membrane structure in Figure 2, the rewriting
rules in Table 3, the objects in Table 1 and the string in Figure 1. We have
run simulations for four different environmental conditions representing the
presence and/or absence of glucose and/or lactose.

We computed the average across the entire colony of the number of LacY
protein products over time (Figure 3). Our results were in agreement with the
known behavior of E. coli which prefers to consume glucose to lactose. Only
in the absence of glucose and presence of lactose will E. coli fully express the
lac operon and activate the processes involved in the uptake and metabolism
of lactose.

In order to get a more detailed idea of the behavior of the colony we
studied the frequency of the number of LacY protein products over all
the bacteria in the case when only lactose is present in the environment
(Figure 4). The number of LacY protein products over the colony is a bi-
modal distribution. Most bacteria fully express the lac operon, whereas a
small but still noticeable fraction of the colony does not activate the uptake
and metabolism of lactose. This type of behavior is characteristic of gene
regulation systems with positive feedback loops [1].

5 Modularization

Cellular processes arise as emergent behavior from the interactions between
many molecular species. It has been postulated that although these interac-
tions are apparently messy they are arranged in a modular way. Our P system
modeling framework supports the use of modules of rules to represent biological
functions that are separable or orthogonal to some extend from the functioning
of the rest of the system. A P system module is a set of rewriting rules of the
forms previously introduced describing molecular processes occurring frequently
in cell systems. A module is identified with a name and three sets of variables, V ,
representing the molecular species; C, the stochastic constants associated with
each rules; and Lab, the labels of the compartments involved in the rules. Since
a module is a set of rules starting from simple modules more complex modules



can be constructed by applying set union. Table 6 presents example P system
modules describing the most common regulation mechanism in gene expression.

Following this idea one of our current research lines focuses on the automatic
development of cellular models exhibiting a prefixed behavior by assembling P
system modules automatically. Our methodology optimizes both the modular
structure of the P systems and the stochastic constants associated with the
rules. Specifically, our methodology consists of two nested genetic algorithms:
the first one evolves the combination of modules or modular structure of the
model whereas the second one optimizes the stochastic constants associated with
the different rules in the modules. Our approach is incremental, by starting
with simple predefined modules from an elementary library newly generated
modules obtained by combining these elementary modules are added to the
library after having been analyzed and validated. This allows us to develop more
intricate and circuitous modular structures. Our methodology has been tested
on three case studies, namely, molecular complexation, enzymatic reactions and
autoregulation in transcriptional networks [22].

Table 6. Three examples of P system modules describing the most common regulation
mechanisms in gene expression

Molecular process P System Module

Constitutive Expression
[ gene ]l

c1−→ [ gene + rna ]l [ rna ]l
c2−→ [ ]l

[ rna ]l
c3−→ [ rna + p ]l [ p ]l

c4−→ [ ]l

Positive Regulation
[ a + gene ]l

c1−→ [ a.gene ]l [ a.gene ]l
c2−→ [ a + gene ]l

[ a.gene ]l
c3−→ [ a.gene + rna ]l [ rna ]l

c4−→ [ ]l
[ rna ]l

c5−→ [ rna + p ]l [ p ]l
c6−→ [ ]l

Negative Regulation
[ gene ]l

c1−→ [ gene + rna ]l [ r + gene ]l
c2−→ [ r.gene ]l

[ r.gene ]l
c3−→ [ r + gene ]l [ rna ]l

c4−→ [ ]l
[ rna ]l

c5−→ [ rna + p ]l [ p ]l
c6−→ [ ]l

In cellular systems, modularization does not only arise from chemical speci-
ficity, but is also determined by spatial localization of molecular species in dif-
ferent compartments. The P system modules introduced so far only describe
modularity due to chemical specificity. No geometric information is associated
with any components of P systems. Recently we have proposed to extend pop-
ulation P systems by using finite lattices on which individual P systems are
distributed. These P systems communicate by sending and receiving objects
according to rules of the following form:

[ obj ]l
v
� [ ]l′

c−→ [ ]l
v
� [ obj ]l′ (5)

The application of a rule of the previous form in a P system Πj located in
position p, moves the objects obj from the skin membrane l of Πj to the skin
membrane l′ of P system Πj′ located in position p + v. The stochastic constant
c associated with the rule plays the same role as in the previous cases.



6 Conclusions and Future Work

In this paper we have presented P systems as a modeling approach within exe-
cutable biology able to specify and simulate multiscale systems ranging from the
molecular to the cell and colony level. The modeling principles used in P systems
for the specification of molecular species, networks of interacting molecules, in-
dividual cells and collections of cells have been discussed. A running example
consisting in an abstract gene regulation system based on the lac operon has been
used to illustrate our approach. Our results show the characteristic bimodal be-
havior of a colony of bacterial cells with a positive feed back loop.

This framework is currently being extended and implemented in a software
system with integrates stochastic simulation of multicellular P system models
with analytic techniques based on model checking and automate model genera-
tion through the assembling of P systems modules. This framework is also being
used to develop models of plant hormone transport in Arabidopsis thaliana and
quorum sensing in Pseudomonas aeruginosa.

Acknowledgements. We would like to acknowledge EPSRC grant EP/
E017215/1 and BBSRC grants BB/F01855X/1 and BB/D019613/1.

References

1. Alon, U.: Network motifs: theory and experimental approaches. Nature Reviews
Genetics 8, 450–461 (2007)

2. Bernardini, F., Gheorghe, M., Krasnogor, N.: Quorum sensing P systems. Theo-
retical Computer Sci. 371, 20–33 (2007)

3. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G., Colombo, S., Martegani, E.:
Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast
Saccharomyces cerevisiae evidences a key regulatory function for intracellular gua-
nine nucleotides pools. Journal of Biotechnology 133, 377–385 (2008)

4. Bianco, L., Fontana, F., Manca, V.: P systems with reaction maps. Intern. J.
Foundations of Computer Sci. 17, 27–48 (2006)
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