# A RIGID LOCAL SYSTEM WITH MONODROMY GROUP 2.J 

NICHOLAS M. KATZ AND ANTONIO ROJAS-LEÓN


#### Abstract

We exhibit a rigid local system of rank six on the affine line in characteristic $p=5$ whose arithmetic and geometric monodromy groups are the finite group $2 . J_{2}$ ( $J_{2}$ the Hall-Janko sporadic group) in one of its two (Galois-conjugate) irreducible representation of degree six.


## Contents

1. Introduction: the general setting 1
2. Finiteness of the monodromy 4
3. Determination of the monodromy groups 6
4. Appendix: Relation of $[x]_{p, r}$ to Kubert's $V$ function 9

References 11

## 1. Introduction: the general setting

We fix a prime number $p$, a prime number $\ell \neq p$, and a nontrivial $\overline{\mathbb{Q}}_{\ell}{ }^{\times}$-valued additive character $\psi$ of $\mathbb{F}_{p}$. For $k / \mathbb{F}_{p}$ a finite extension, we denote by $\psi_{k}$ the nontrivial additive character of $k$ given by $\psi_{k}:=$ $\psi \circ \operatorname{Trace}_{k / \mathbb{F}_{p}}$. In perhaps more down to earth terms, we fix a nontrivial $\mathbb{Q}\left(\mu_{p}\right)^{\times}$-valued additive character $\psi$ of $\mathbb{F}_{p}$, and a field embedding of $\mathbb{Q}\left(\mu_{p}\right)$ into $\overline{\mathbb{Q}_{\ell}}$ for some $\ell \neq p$.

Given an integer $D \geq 3$ which is prime to $p$, we form the local system $\mathcal{F}_{p, D}$ on $\mathbb{A}^{1} / \mathbb{F}_{p}$ whose trace function, at $k$-valued points $t \in \mathbb{A}^{1}(k)=k$, is given by

$$
t \mapsto-\sum_{x \in k} \psi_{k}\left(x^{D}+t x\right) .
$$

This is a geometrically irreducible rigid local system, being the Fourier Transform of the rank one local system $\mathcal{L}_{\psi\left(x^{D}\right)}$. It has rank $D-1$, and

The second author was partially supported by MTM2016-75027-P (Ministerio de Economía y Competitividad) and FEDER.
each of its $D-1 I(\infty)$-slopes is $D /(D-1)$. It is pure of weight one. [It is the local system $\mathcal{F}\left(\mathbb{F}_{p}, \psi, \mathbb{1}, D\right)$ of [Ka-RLSA].]

Let us further fix a choice of $\sqrt{p} \in \overline{\mathbb{Q}}_{\ell} \times$. For each finite extension $k / \mathbb{F}_{p}$, we then use this choice of $\sqrt{p}$ to define $\sqrt{\# k}:=\sqrt{p}{ }^{\operatorname{deg}\left(k / \mathbb{F}_{p}\right)}$. We then define the "half"-Tate twisted local system

$$
\mathcal{G}_{p, D}:=\mathcal{F}_{p, D}(1 / 2)
$$

whose trace function, at at $k$-valued points $t \in \mathbb{A}^{1}(k)=k$, is given by

$$
t \mapsto-\sum_{x \in k} \psi_{k}\left(x^{D}+t x\right) / \sqrt{\# k}
$$

The local system $\mathcal{G}_{p, D}$ is pure of weight zero.
Lemma 1.1. The determinant $\operatorname{det}\left(\mathcal{G}_{p, D}\right)$ is arithmetically of finite order. More precisely, $\operatorname{det}\left(\mathcal{G}_{p, D}\right)^{\otimes 4 p}$ is arithmetically trivial.

Proof. It suffices to show that after extension of scalars from $\mathbb{F}_{p}$ to its quadratic extension $\mathbb{F}_{p^{2}}$, the $2 p^{\prime}$ th power is trivial, i.e., that if $k / \mathbb{F}_{p}$ is a finite extension of even degree $2 d$, then the determinant takes values in $\mu_{2 p}$. To see this, note that the twisting factor $\sqrt{p}^{2 d}=p^{d} \in \mathbb{Q}$, so this determinant has values in $\mathbb{Q}\left(\mu_{p}\right)$ which are units at all finite places of residue characteristic not $p$ (use the $\ell$-adic incarnations) and which have absolute value 1 at all archimedean places of $\mathbb{Q}\left(\mu_{p}\right)$. Because there is a unique $p$-adic place of $\mathbb{Q}\left(\mu_{p}\right)$, the product formula shows that the determinant has values which are also units at $p$, and hence are roots of unity in $\mathbb{Q}\left(\mu_{p}\right)$, i.e., they are $2 p^{\prime}$ th roots of unity.

When we view the local system $\mathcal{G}_{p, D}$ as a representation

$$
\rho_{\mathcal{G}_{p, D}}: \pi_{1}\left(\mathbb{A}^{1} / \mathbb{F}_{p}\right) \rightarrow G L\left(D-1, \overline{\mathbb{Q}_{\ell}}\right),
$$

the Zariski closure of the image of $\pi_{1}\left(\mathbb{A}^{1} / \mathbb{F}_{p}\right)$ is defined to be the arithmetic monodromy group $G_{\text {arith }}$. The Zariski closure of the image of the normal subgroup $\pi_{1}^{\text {geom }}:=\pi_{1}\left(\mathbb{A}^{1} / \overline{\mathbb{F}_{p}}\right)$ is defined to be the geometric monodromy group $G_{\text {geom }}$. Thus we have inclusions of algebraic groups over $\overline{\mathbb{Q}_{\ell}}$ :

$$
G_{\text {geom }} \triangleleft G_{\text {arith }} \subset G L(D-1) .
$$

Applying [Ka-ESDE, 8.14.5, (1) $\Longleftrightarrow(2) \Longleftrightarrow(6)]$ in the particular case of $\mathcal{G}_{p, D}$, we have

Proposition 1.2. The following conditions are equivalent.
(1) $\mathcal{G}_{p, D}$ has finite $G_{\text {geom }}$.
(1bis) $\mathcal{F}_{p, D}$ has finite $G_{\text {geom }}$.
(2) $\mathcal{G}_{p, D}$ has finite $G_{\text {arith }}$.
(3) All traces of $\mathcal{G}_{p, D}$ are algebraic integers.

When $D \geq 3$ is odd (and prime to $p$ ), the local system $\mathcal{F}_{p, D}$ is symplectically self-dual. As shown in [R-L, Proposition 4 and Corollary 6], its $G_{\text {geom }}$ is either finite or it is the full symplectic group $\operatorname{Sp}(D-1)$. When $D \geq 3$ is even (and prime to $p$ ), the same reference shows that $G_{\text {geom }}$ is either finite or is $S L(D-1)$. The proof of [ $\mathrm{R}-\mathrm{L}$, Proposition 4 and Lemma 5] also shows that when $D$ is not of the form $1+q$ for $q$ a power of $p$, then $\mathcal{F}_{p, D}$ is not induced (i.e., the given representation of its $G_{\text {geom }}$ is not induced). Indeed, by the result [Such, 11.1] of Šuch, if the representation were induced, it would be Artin-Schreier induced, and that is what is ruled out when $D$ is not of the form $1+q$. [When $D=1+q$, then $G_{\text {geom }}$ is, by Pink [Ka-RLSA, 20.3], a finite $p$-group, and (hence) the representation is induced.]

When $D \geq 3$ is prime to $p$, the trace function of $\mathcal{G}_{p, D}$ takes values in $\mathbb{Z}\left[\mu_{p}\right]$. If moreover $p$ is $1 \bmod 4$, then we can choose either quadratic Gauss sum, a quantity which itself lies in $\mathbb{Z}\left[\mu_{p}\right]$, as our $\sqrt{p}$, and hence all traces of $\mathcal{G}_{p, D}$ lie in $\mathbb{Z}\left[\mu_{p}\right][1 / p]$. If $p$ is not $1 \bmod 4$, this remains true for traces of the pullback of $\mathcal{G}_{p, D}$ to $\mathbb{A}^{1} / \mathbb{F}_{p^{2}}$. In either case, the traces of $\mathcal{G}_{p, D}$ in question are algebraic integers if and only if they all have $\operatorname{ord}_{p} \geq 0$.
Remark 1.3. When $D \geq 3$ is prime to $p$ and odd, then the traces of $\mathcal{F}_{p, D}$ lie in the real subfield $\mathbb{Q}\left(\mu_{p}\right)^{+}$. If in addition $p$ is $1 \bmod 4$, then either quadratic gauss sum is $\pm \sqrt{p}$ also lies in this field, and hence $\mathcal{G}_{p, D}$ has traces in $\mathbb{Q}\left(\mu_{p}\right)^{+}$.

Results of Kubert, explained in Ka-RLSA, 4.1,4.2,4.3] and discovered independently in [R-L, Cor. 4, Cor. 5], show that $G_{\text {geom }}$ and $G_{\text {arith }}$ for $\mathcal{G}_{p, D}$ are finite when $q$ is a power of $p$ and $D$ is any of

$$
q+1, \quad \frac{q+1}{2} \text { with odd } q, \frac{q^{n}+1}{q+1} \text { with odd } n .
$$

Let us call these the Kubert cases. In Ka-RLSA, 17.1, 17.2] and [Ka-Ti-RLSMFUG, 3.4] their $G_{\text {geom }}$ groups are determined for all odd $q$.

Both authors have given numerical criteria for $\mathcal{G}_{p, D}$ to have finite $G_{\text {geom }}$ and $G_{\text {arith }}$, cf. [Ka-RLSA, first paragraph after 5.1] and [R-L, Thm. 1]. The second author did extensive computer experiments to find other $(p, D)$ than the Kubert cases for which $\mathcal{G}_{p, D}$ seemed to have finite $G_{\text {geom }}$ (i.e., where many many traces were all algebraic integers). For primes $p \leq 11$ and $D \leq 10^{6}$, there was only one other candidate, the case $p=5, D=7$.

In the first part of this paper, we prove that $\mathcal{F}_{5,7}$ has finite $G_{\text {geom }}$ (and hence, by Proposition 1.2, that $\mathcal{G}_{5,7}$ has finite $G_{\text {geom }}$ and finite
$\left.G_{\text {arith }}\right)$. In the second part, we show that $G_{\text {geom }}=G_{\text {arith }}=2 . J_{2}$ in one of its two six-dimensional irreducible representations. These two representations are symplectic. Their character values lie in $\mathbb{Z}[\sqrt{5}]$ and are Galois-conjugates of each other. As Guralnick and Tiep point out [G-T, Table 1], the group $2 . J_{2}$, sitting inside $\operatorname{Sp}(6, \mathbb{C})$, has the exotic property that it has the same moments $M_{n}$ (dimension of the space of invariants in the $n$ 'th tensor power of the given six-dimensional representation) as the ambient group $\operatorname{Sp}(6, \mathbb{C})$ for $M_{1}$ through $M_{11}$; one needs $M_{12}$ to distinguish them.

It is not clear whether there "should" be infinitely many $(p, D)$ other than the Kubert cases for which $\mathcal{G}_{p, D}$ has finite $G_{\text {arith }}$, or finitely many, or just this one $(5,7)$ case. Much remains to be done.

## 2. Finiteness of the monodromy

In this section we will prove that the sheaf $\mathcal{F}_{5,7}$ has finite geometric monodromy. We will do so by applying the numerical criterion proven in [R-L, Theorem 1], which we recall here. For a prime $p$ and an integer $x \geq 0$, we define
$[x]_{p, \infty}:=$ the sum of the digits of the $p$-adic expansion of $x$,
using the usual digits $\{0,1,2, \ldots, p-1\}$.
For every $r \geq 1$ we define $[x]_{p, r}=[x]_{p, \infty}$ if $1 \leq x \leq p^{r}-1$, and we extend the definition to every integer $x$ by imposing that $[x]_{p, r}=[y]_{p, r}$ if $x \equiv y\left(\bmod p^{r}-1\right)$.[Thus we are using $\left\{1,2, \ldots, p^{r}-1\right\}$ as representatives of $\mathbb{Z} /\left(p^{r}-1\right) \mathbb{Z}$.]

From [R-L, Thm. 1], we have
Theorem 2.1. The sheaf $\mathcal{F}_{p, d}$ has finite geometric monodromy if and only if the inequality

$$
[d x]_{p, r} \leq[x]_{p, r}+\frac{r(p-1)}{2}
$$

holds for every $r \geq 1$ and every integer $0<x<p^{r}$.
Let us enumerate some basic properties of the functions $[-]_{p, \infty}$ and $[-]_{p, r}$.

Proposition 2.2. For strictly positive integers $x$ and $y$, and for $r \in$ $\mathbb{N} \cup\{\infty\}$, we have:
(1) $[x+y]_{p, r} \leq[x]_{p, r}+[y]_{p, r}$
(2) $[x]_{p, r} \leq[x]_{p, \infty}$
(3) $[p x]_{p, r}=[x]_{p, r}$

Proof. We first prove (1) for $r=\infty$. Note that $[x]_{p, \infty}$ is the minimal number of terms in any decomposition of $x$ as a sum of powers of $p$. By taking the sum of the $p$-adic expansions of $x$ and $y$ we see that $x+y$ can be written as a sum of $[x]_{p, \infty}+[y]_{p, \infty}$ powers of $p$, and the inequality follows.

For (2) we proceed by induction on $x$ : for $0<x<p^{r}$ it is obvious by definition. If $x \geq p^{r}$, let $s$ be the largest integer such that $p^{s} \leq x$. Then $s \geq r$ and $\left[x-p^{s}\right]_{p, \infty}=[x]_{p, \infty}-1$. Since $x \equiv x-p^{s}+p^{s-r}(\bmod$ $p^{r}-1$ ), while $x>x-p^{s}+p^{s-r}>0$, we have, by induction on $x$ and $(1)_{\infty}$,

$$
\begin{gathered}
{[x]_{p, r}=\left[x-p^{s}+p^{s-r}\right]_{p, r} \leq\left[x-p^{s}+p^{s-r}\right]_{p, \infty} \leq\left[x-p^{s}\right]_{p, \infty}+\left[p^{s-r}\right]_{p, \infty}=} \\
=[x]_{p, \infty}-1+1=[x]_{p, \infty} .
\end{gathered}
$$

In order to prove (1) for finite $r$ we can assume that $x, y<p^{r}$. Then by $(2)$ and $(1)_{\infty}$, we have

$$
[x+y]_{p, r} \leq[x+y]_{p, \infty} \leq[x]_{p, \infty}+[y]_{p, \infty}=[x]_{p, r}+[y]_{p, r}
$$

Finally, (3) is obvious for $r=\infty$. For finite $r$, note that if $x=$ $a_{r-1} p^{r-1}+\cdots+a_{1} p+a_{0}$ is the $p$-adic expansion of $x<p^{r}$, then $p x \equiv$ $a_{r-2} p^{r-1}+\cdots+a_{1} p^{2}+a_{0} p+a_{r-1}\left(\bmod p^{r}-1\right)$, so $[p x]_{p, r}=[x]_{p, r}=$ $a_{r-1}+\cdots+a_{1}+a_{0}$.

We now fix $p=5$ and $d=7$.
Lemma 2.3. Let $r$ be a positive integer and $0 \leq x<5^{r}$ an integer such that $x \not \equiv 2 \bmod 5$. Then $[7 x]_{5, \infty} \leq[x]_{5, \infty}+2 r$.

Proof. We proceed by induction on $r$. For $r=1$ and $r=2$ one checks it by hand.

Now let $r \geq 3$ and $0 \leq x<5^{r}$ with $x \not \equiv 2 \bmod 5$. If $0 \leq x<5^{r-1}$ the stronger inequality $[7 x]_{\infty} \leq[x]_{\infty}+2 r-2$ holds by induction, so we may assume that $5^{r-1} \leq x<5^{r}$. Consider the 5 -adic expansion of $x$, which has $r$ digits, the last one being $\neq 2$ by hypothesis. We distinguish two cases:

Case 1: The constant term is not 2 , and there is some other digit $\neq 2$, say the one multiplying $5^{s}$, for some $s$ with $r>s>0$. Write $x=5^{s} y+z$, with $0 \leq z<5^{s}, 0 \leq y<5^{r-s}$ (that is, split the first $r-s$ and the last $s 5$-adic digits of $x$ ). Then by induction on $r$ we get

$$
\begin{gathered}
{[7 x]_{5, \infty}=\left[7 \cdot 5^{s} y+7 z\right]_{5, \infty} \leq\left[7 \cdot 5^{s} y\right]_{5, \infty}+[7 z]_{5, \infty}=} \\
=[7 y]_{5, \infty}+[7 z]_{5, \infty} \leq[y]_{5, \infty}+2(r-s)+[z]_{5, \infty}+2 s=[x]_{5, \infty}+2 r .
\end{gathered}
$$

Case 2: All other digits are $=2$, that is, $x=(222 \ldots 22 a)_{5}$ with $a \in\{0,1,3,4\}$. Note that $7 \cdot(222 \ldots 220)_{5}=(322 \ldots 2140)_{5}$ (where there are two fewer 2's on the right hand side). Then

$$
\begin{aligned}
& {[7 x]_{5, \infty}=\left[7 \cdot(22 \ldots 220)_{5}+7 a\right]_{5, \infty} \leq\left[7 \cdot(22 \ldots 220)_{5}\right]_{5, \infty}+[7 a]_{5, \infty}=} \\
= & {\left[(322 \ldots 2140)_{5}\right]_{5, \infty}+[7 a]_{5, \infty}=2(r+1)+[7 a]_{5, \infty} \leq 2(r+1)+a+2=} \\
= & \left.2(r-1)+a+6 \leq 2(r-1)+a+2 r=\mid(222 \ldots 22 a)_{5}\right]_{5, \infty}+2 r=[x]_{5, \infty}+2 r .
\end{aligned}
$$

Remark 2.4. Although it will not be used, it follows from the lemma that for every $r \geq 1$ and for every integer $x$ with $0 \leq x<5^{r}$, we have

$$
[7 x]_{5, \infty} \leq[x]_{5, \infty}+2 r+2
$$

Indeed, for $0 \leq x<5^{r}$, the quantity $5 x$ is $<5^{r+1}$ and is not $2 \bmod 5$. So by the lemma applied to $5 x$ with $r+1$, we have

$$
[7 \cdot 5 x]_{5, \infty} \leq[5 x]_{5, \infty}+2 r+2
$$

But $[7 \cdot 5 x]_{5, \infty}=[7 x]_{5, \infty}$ and $[5 x]_{5, \infty}=[x]_{5, \infty}$.
Theorem 2.5. The geometric monodromy of $\mathcal{F}_{5,7}$ is finite.
Proof. By Theorem [2.1, we need to show that $[7 x]_{5, r} \leq[x]_{5, r}+2 r$ for $r \geq 1$ and $0<x<5^{r}$.

If $x=\frac{5^{r}-1}{2}$, then $x=(22 \ldots 22)_{5}$, so $[x]_{5, r}+2 r=4 r$ and the inequality is clear, since $4 r$ is an absolute upper bound for the function $[-]_{5, r}$.

Otherwise, some 5 -adic digit of $x$ is $\neq 2$. Since multiplying $x$ by 5 cyclically permutes the digits of $x$ modulo $5^{r}-1$ and does not change the values of $[x]_{5, r}$ or of $[7 x]_{5, r}$, we may assume that the last digit of $x$ is $\neq 2$. Then

$$
[7 x]_{5, r} \leq[7 x]_{5, \infty} \leq[x]_{5, \infty}+2 r=[x]_{5, r}+2 r
$$

by Lemma 2.3.

## 3. Determination of the monodromy groups

We first give a general descent construction, valid for general $\mathcal{F}_{p, D}$ with $D \geq 3$ prime to $p$. On $\mathbb{G}_{m} / \mathbb{F}_{p}$, consider the rank $D-1$ local system $\mathcal{H}_{p, D}$ whose trace function, for $k / \mathbb{F}_{p}$ a finite extension, and $t \in \mathbb{G}_{m}(k)=k^{\times}$, is

$$
t \mapsto-\sum_{x \in k} \psi_{k}\left(x^{D} / t+x\right) .
$$

The pullback of $\mathcal{H}_{p, D}$ by the $D^{\prime}$ th power map $[D]$ is (the restriction to $\mathbb{G}_{m}$ of) the local system $\mathcal{F}_{p, D}$ : simply repace $t$ by $t^{D}$ and make the change of variable $x \mapsto t x$ inside the $\psi$.

View $\mathcal{F}_{p, D}$ as the Fourier Transform $F T\left([D]^{*}\left(\mathcal{L}_{\psi(x)}\right)\right.$. Then we see from [Ka-ESDE, 9.3.2], cf. also [Ka-RLSA, 2.1 (1)], that this $\mathcal{H}_{p, D}$ is geometrically isomorphic to the Kloosterman sheaf formed with all the nontrivial multiplicative characters of order dividing $D$.

Remark 3.1. Exactly as in Remark 1.3, when $D \geq 3$ is odd and prime to $p$, and $p$ is $1 \bmod 4$, the field of traces of $\mathcal{H}_{p, D}$ lies in $\mathbb{Q}\left(\mu_{p}\right)^{+}$.

This descent has all of its $I(\infty)$-slopes equal to $1 /(D-1)$ (either from its identification with a Kloosterman sheaf of rank $D-1$, or because its $[D]$-pullback, $\mathcal{F}_{p, D}$, has all its $I(\infty)$-slopes equal to $\left.D /(D-1)\right)$.

Either from the fact that its pullback is geometrically irreducible, or from the Kloosterman description, or just from the fact of having all $I(\infty)$-slopes $1 /(D-1)$, we see that $\mathcal{H}_{p, D}$ is geometrically irreducible.

Lemma 3.2. Let $d \geq 2, \ell \neq p$, and $M$ ad-dimensional continuous $\overline{\mathbb{Q}}_{\ell^{-}}$ representation $\rho_{M}$ of $I(\infty)$ all of whose slopes are $1 / d$. Suppose that $d$ is not divisible by $p^{2}$. Then there does not exist a factorization of $d$ as $d=a b$ with $a, b$ both $<d$, together with algebraic groups $G_{1} \subset S L\left(a, \overline{\mathbb{Q}_{\ell}}\right)$ and $G_{2} \subset S L\left(b, \overline{\mathbb{Q}_{\ell}}\right)$ such that

$$
\operatorname{Image}\left(\rho_{M}\right) \subset \text { the image } G_{1} \otimes G_{2} \text { of } G_{1} \times G_{2} \text { in } S L\left(a b, \overline{\mathbb{Q}_{\ell}}\right)
$$

Proof. We argue by contradiction. The map $G_{1} \times G_{2} \rightarrow G_{1} \otimes G_{2}$ has finite kernel, $\mathcal{K}$, which is a subgroup of the $\operatorname{group} \mu_{\operatorname{gcd}(a, b)}$ (this being the kernel of $S L(a) \times S L(b) \rightarrow S L(a b))$. Because $I(\infty)$ has cohomological dimension one, the group $H^{2}(I(\infty), \mathcal{K})=0$, and therefore there exists a lift of $\rho_{M}$ to a homomorphism

$$
\rho_{a, b}: I(\infty) \rightarrow G_{1} \times G_{2}
$$

compare Ka-ESDE, 7.2.5]. Because the kernel $\mathcal{K}$ has order prime to $p$, the upper numbering subgroup $I(\infty)^{\frac{1}{d}+}$, which acts trivially on $M$, lies in the kernel of $\rho_{a, b}$ (simply because $I(\infty)^{\frac{1}{d}+}$ is a pro- $p$ group which maps to the finite group $\mathcal{K}$ which has order prime to $p$, cf. [Ka-ESDE, 7.1.4]). Then the homomorphisms

$$
\rho_{a}:=p r_{1} \circ \rho_{a, b}: I(\infty) \rightarrow G_{1}
$$

and

$$
\rho_{b}:=p r_{2} \circ \rho_{a, b}: I(\infty) \rightarrow G_{2}
$$

are each trivial on $I(\infty)^{\frac{1}{d}+}$, i.e., each has all slopes $\leq 1 / d$. Therefore their Swan conductors have $\operatorname{Swan}\left(\rho_{a}\right) \leq a / d<1$ and $\operatorname{Swan}\left(\rho_{b}\right) \leq$ $b / d<1$. But Swan conductors are nonnegative integers. Therefore both $\rho_{a}$ and $\rho_{b}$ have $S w a n=0$, i.e., both are tame. But then $M$ is tame, contradiction.

When $D \geq 3$ is odd and prime to $p$, the half-Tate twist $\mathcal{H}_{p, D}(1 / 2)$ is symplectically selfdual.

We now turn our attention to the particular case of $\mathcal{H}_{5,7}$ and its half-Tate twist $\mathcal{H}_{5,7}(1 / 2)$. We know from Theorem 2.5 that its $G_{\text {geom }}$ (and hence also its $G_{\text {arith }}$, by Proposition 1.2 ) is a finite irreducible subgroup of $S p\left(6, \mathbb{Q}_{\ell}\right)$. By Remark 3.1 , the field of traces of $\mathcal{H}_{5,7}(1 / 2)$ lies in $\mathbb{Q}\left(\mu_{5}\right)^{+}=\mathbb{Q}(\sqrt{5})$. Computing the trace at $t=1 \in \mathbb{F}_{5}^{\times}$, we see that its field of traces is in fact $\mathbb{Q}(\sqrt{5})$ (and not just $\mathbb{Q}$ ).

Lemma 3.3. The group $G_{\text {geom }} \subset S p\left(6, \overline{\mathbb{Q}_{\ell}}\right)$ is primitive, i.e., the given six-dimensional representation is not induced.

Proof. By Pink's theorem Ka-MG, Lemma 12], if a Kloosterman sheaf is (geometrically) induced, its list of characters is Kummer induced. So for our Kloosterman sheaf, formed with the nontrivial characters of order 7 , being induced would imply that, for some divisor $n \geq 2$ of 6 , its characters are all the $n$ 'th roots of some collection of $6 / n$ characters. In particular, some ratio of distinct characters of order 7 would be a character of order dividing $n$, for some divisor $n$ of 6 , which is not the case: all such ratios have order 7 .

Another proof is to observe that if $\mathcal{H}_{5,7}$ were induced, then its pullback $\mathcal{F}_{5,7}$ would be induced (a system of imprimitivity for a group remains one for any subgroup). But by [Such, 11.1], if $\mathcal{F}_{5,7}$ were induced, it would be Artin-Schreier induced, so its rank, 6 , would be a multiple of $p=5$.

Theorem 3.4. The local system $\mathcal{H}_{5,7}(1 / 2)$ has $G_{\text {geom }}=G_{\text {arith }}=2 . J_{2}$.
Proof. Our situation now is that we have a primitive (by Lemma 3.2) irreducible subgroup $G$ (the $G_{\text {geom }}$ for $\mathcal{H}_{5,7}(1 / 2)$ ) in $S p\left(6, \overline{\mathbb{Q}_{\ell}}\right)$ such that the given six-dimensional representation is not contained in the tensor product of two lower dimensional representations of $G$. Therefore the larger finite group $G_{\text {arith }}$ is a fortiori itself primitive and irreducible inside $S p(6)$.

We now appeal to the work [Lind, \&3, Theorem] of Lindsey, as stated in [C-S, Theorem 3.1]. This gives the list of irreducible primitive subgroups of $S L(6, \mathbb{C})$. Those whose given six-dimensional representation is not contained in a nontrivial tensor product are either
(1) $2 . S_{5}$ or $S_{7}$.
(2) a quasisimple group.
(3) a group containing a quasisimple group of index two on which the representation remains irreducible.

The first case is subsumed by the third, as $2 . S_{5}=2 . A_{5} .2$ contains 2. $A_{5}$, and $S_{7}$ contains $A_{7}$. The quasisimple groups in question are
$2 . A_{5}=S L(2,5), 3 . A_{6}, 6 . A_{6}, A_{7}, 3 . A_{7}, 6 . A_{7}, P S L(2,7), S L(2,7), S L(2,11)$, and
$S L(2,13), \operatorname{PSp}(4,3) \cong \operatorname{PSU}(4,2), S U(3,3), 6 . \operatorname{PSU}(4,3), 2 . J_{2}, 6 . P S L(3,4)$.
Of these, those which lie as an index two subgroup of a larger group inside $S L(6, \mathbb{C})$ are

$$
\begin{gathered}
S L(2,5), 3 . A_{6}, A_{7}, \operatorname{PSL}(2,7), \operatorname{PSp}(4,3), \\
S U(3,3), 6 . P S U(4,3), 6 . P S L(3,4) .
\end{gathered}
$$

Of the listed quasisimple groups, the only ones with irreducible symplectic representations of degree six are

$$
S L(2,5), S L(2,7), S L(2,13), S U(3,3), 2 . J_{2}
$$

Of these, the only ones whose field of character values (for any of its six-dimensional irreducible symplectic representations) lies in $\mathbb{Q}(\sqrt{5})$ are $S L(2,5), S U(3,3)$ and $2 . J_{2}$. For $S L(2,5)$ and $S U(3,3)$, the field of traces is $\mathbb{Q}$; for $2 . J_{2}$ it is $\mathbb{Q}(\sqrt{5})$. So the only possibilities for $G_{\text {arith }}$ other than $2 . J_{2}$ are the groups $G .2$ for $G$ either $S L(2,5)$ or $S U(3,3)$. But for neither of these two groups does the given representation extend to a symplectic representation (or a selfdual one), as one checks by looking in the Atlas [ATLAS].

Therefore $G_{\text {arith }}$ for $\mathcal{H}_{5,7}(1 / 2)$ must be $2 . J_{2}$. As $G_{\text {geom }}$ is a normal subgroup of $G_{\text {arith }}$ with cyclic quotient (namely some finite quotient of $\left.\operatorname{Gal}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right)\right)$, we must also have $G_{\text {geom }}=G_{\text {arith }}=2 . J_{2}$.

Corollary 3.5. For the local system $\mathcal{G}_{5,7}$, we have $G_{\text {geom }}=G_{\text {arith }}=$ 2. $J_{2}$.

Proof. Neither $G_{\text {geom }}$ nor $G_{\text {arith }}$ changes when we pass from $\mathbb{A}^{1}$ to the dense open set $\mathbb{G}_{m}$. Restricted to $\mathbb{G}_{m}, \mathcal{G}_{5,7}$ is the [7] pullback of $\mathcal{H}_{5,7}(1 / 2)$. This pullback replaces the $G_{\text {geom }}$ and $G_{\text {arith }}$ of $\mathcal{H}_{5,7}(1 / 2)$ by normal subgroups of themselves of index dividing 7. But 2. $J_{2}$ has no such proper subgroups.

## 4. Appendix: Relation of $[x]_{p, r}$ to Kubert's $V$ function

We denote by $(\mathbb{Q} / \mathbb{Z})_{\text {prime to } p}$ the subgroup of $\mathbb{Q} / \mathbb{Z}$ consisting of those elements whose order is prime to $p$. We denote by $\mathbb{Q}_{p}^{n \cdot r .}$ the fraction
field of the Witt vectors of $\overline{\mathbb{F}_{p}}$. For $\mathbb{F}_{q}$ a finite extension of $\mathbb{F}_{p}$, we have the Teichmuller character

$$
\operatorname{Teich}_{\mathbb{F}_{q}}: \mathbb{F}_{q}^{\times} \cong \mu_{q-1}\left(\mathbb{Q}_{p}^{n . r .}\right)
$$

whose reduction $\bmod p$ is the identity map on $\mathbb{F}_{q}^{\times}$. For an integer $d$, consider the Gauss sum over $\mathbb{F}_{q}$,

$$
G\left(\psi_{\mathbb{F}_{q}}, \text { Teich }^{-d}\right):=\sum_{x \in \mathbb{F}_{q}^{\times}} \psi_{\mathbb{F}_{q}}(x) \text { Teich }^{-d}(x)
$$

If we write $q=p^{r}$, then by Stickelberger's theorem,

$$
\operatorname{ord}_{q}\left(G\left(\psi_{\mathbb{F}_{q}}, \text { Teich }^{-d}\right)\right)=(1 / r) \sum_{j=0}^{r-1}<p^{j} \frac{d}{p^{r}-1}>
$$

As explained in Ka-G2hyper, p. 206], standard properties of Gauss sums show that there is a unique function

$$
V:(\mathbb{Q} / \mathbb{Z})_{\text {prime to } p} \rightarrow \text { the real interval }[0,1)
$$

such that for $q=p^{r}$ and $d$ an integer, we have

$$
V\left(\frac{d}{p^{r}-1}\right)=(1 / r) \sum_{j=0}^{r-1}<p^{j} \frac{d}{p^{r}-1}>
$$

As noted in [R-L, line before Theorem 1], we thus have the identity

$$
V\left(\frac{d}{p^{r}-1}\right)=\frac{1}{r(p-1)}[d]_{p, r}
$$

provided that $1 \leq d \leq p^{r}-2$ (i.e., provided that $\frac{d}{p^{r}-1}$ is nonzero in $\left.(\mathbb{Q} / \mathbb{Z})_{\text {prime to } p}\right)$. However, for $d=0, V\left(\frac{d}{p^{r}-1}\right)=0$, while

$$
\frac{1}{r(p-1)}[0]_{p, r}=1
$$

This "reversal" of the values at 0 , together with the identity for Kubert's $V$ function

$$
V(x)+V(-x)=1, \quad \text { for } x \neq 0
$$

means precisely that for any integer $d$ and any power $p^{r}$ of $p$, we have the identity

$$
\frac{1}{r(p-1)}[d]_{p, r}=1-V\left(\frac{-d}{p^{r}-1}\right)
$$

With this identity, one sees easily that the criterion [R-L, Theorem 1] for $\mathcal{F}_{p, D}$ to have finite geometric monodromy, namely that

$$
[D x]_{p, r} \leq[x]_{p, r}+r(p-1) / 2
$$

for all $r \geq 1$ and all integers $x$, is equivalent to the criterion Ka-RLSA, first paragraph after 5.1] that for all $y \in(\mathbb{Q} / \mathbb{Z})_{\text {prime to } p}$, we have

$$
V(D y)+1 / 2 \geq V(y)
$$

## References

[ATLAS] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups. With computational assistance from J. G. Thackray. Oxford University Press, Eynsham, 1985.
[C-S] Cheltsov, I, and Shramov, C.,Six-dimensional exceptional quotient singularities. Math. Res. Lett. 18 (20111), no. 06, 1121-1139.
[De-Weil II] Deligne, P., La conjecture de Weil II. Publ. Math. IHES 52 (1981), 313-428.
[G-T] Guranick, R. M. and Tiep, P. H., Symmetric powers and a conjecture of Kollar and Larsen, Invent. Math. 174 (2008), 505-554.
[Ka-ESDE] Katz, N., Exponential sums and differential equations. Annals of Mathematics Studies, 124. Princeton Univ. Press, Princeton, NJ, 1990. xii+430 pp.
[Ka-G2hyper] Katz, N., $G_{2}$ and hypergeometric sheaves, Finite Flelds Appl. 13 (2007), no. 2 175-223.
[Ka-MG] Katz, N., On the monodromy groups attached to certain families of exponential sums. Duke Math. J. 54 (1987), no. 1, 41-56.
[Ka-MGcorr] Katz, N., Correction to: "On the monodromy groups attached to certain families of exponential sums". Duke Math. J. 89 (1997), no. 1, 201.
[Ka-RLSA] Katz, N., Rigid local systems on $\mathbb{A}^{1}$ with finite monodromy, Mathematika 64 (2018) 785-846.
[Ka-Ti-RLSMFUG] Katz, N., and Tiep, P.H., Rigid local systems, moments, and finite unitary groups, available on https://web.math.princeton.edu/~nmk/ kt8_22.pdf.
[Lind] Lindsey, J.H., Finite linear groups of degree six. Canad. J. Math. 23 (1971) 771-790.
[R-L] Rojas-León, A., Finite monodromy of some families of exponential sums, J. Number. Th. (2018), https://doi.org/10.1016/j.jnt.2018.06.012
[Such] Šuch, Ondrej, Monodromy of Airy and Kloosterman Sheaves, Duke Math. J. 103 (2000), no. 3, 397-444.

Princeton University, Mathematics, Fine Hall, NJ 08544-1000, USA
Email address: nmk@math.princeton.edu
Departamento de Álgebra, Universidad de Sevilla, c/Tarfia, s/n, 41012 SEvilla - SPAIN

Email address: arojas@us.es

