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Abstract. Classical database management can be flawed if the Know-
ledge database is built within a complex Knowledge Domain. We must
then deal with inconsistencies and, in general, with anomalies of several
types. In this paper we study computational and cognitive problems in
dealing qualitative spatial databases.
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1 Introduction

Spatio-temporal representation and reasoning are topics that have attracted
quite a lot of interest in AI. Since the spatial notions used by the humans are
intrinsically qualitative, the reasoning about spatial entities, their properties and
the relationship among them, are central aspects in several intelligent systems.
But the problem is far to be solved in general. The spatial reasoning is more
complex than the temporal one. The higher dimension of the things is not the
unique problem. The topology is, in qualitative terms, hard to represent by for-
malisms with amenable calculus. The semantic of these representations offers
incomplete support to our daily reasoning (the poverty conjecture: there is no
purely qualitative, general purpose kinematics). Different ontologies have been
proposed, but they are not of general purpose.

Among them, the theory called Region Connection Calculus (hereafter re-
ferred as RCC), developed by Randell, Cui and Cohn [4] have been extensively
studied in AI [11], and in the field of Geographic Information Systems (GIS)
[2]. A common deficiency of the theories representing topological knowledge, is
that either the full theory is computationally unacceptable or they fail to meet
basic desiderata for these logics [9]. For constraint satisfaction problems there
are algorithms to work with the relational sublanguage, and tractable subsets
of the calculus RCC-8 (a relational sublogic of RCC) have been found [11].
The intractability of the full theory is mainly due to the complexity of its mo-
dels (topological spaces with separation properties [7]). We propose a practical
approach (using an automated theorem prover) to investigate the verification
� Work partially supported by the MCyT project TIC 2000-1368-C03-0 and the project
TIC-137 of the Plan Andaluz de Investigación
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problem of knowledge bases (KB) written in the language of RCC. In general,
due to the complexity of the theories involved, the knowledge base may be in-
consistent, although the environment was well represented by the relational part
of the database. For a proper understanding of our framework, it is important
to point out the following characteristics of the problem:

– The knowledge database is never completed (the user will write new facts in
the future). Thus the difficulties begin with the future introduction of data.

– The intensional theory of the database is not clausal. Thus, is highly possible
that Reiter’s axiomatization of database theory [12] becomes inconsistent.
Nevertheless, the self database represents a real spatial configuration.

– The knowledge base does not contain facts about all the relationships of
the RCC language. It seems natural that only facts on primary relationships
appear (we have selected for our experiment the relations Connect, Overlaps
and Part-of, that one can consider as the primary relationships).

The preceding characteristics are important in order to classify the anomalies.
The first one may produce inconsistencies that the user can repair, but the
second one is a logical inconsistency and it is hard to solve. Thus, we have to
reason with inconsistent knowledge. The last one implies that the (logic-based)
deduction of new knowledge must replace to solving methods for CSP.

Our problem is only an interesting example of the more general problem of
cleaning incomplete databases in the Semantic Web: the cleaning agent must
detect anomalies in knowledge bases written by the user (in structured text),
and associated to a complex ontology (see Fig. 1). A methodological approach
to the cleaning problem was shown in [1] (where a cleaning cycle to the agent was
proposed). It is necessary to point out that it is not our aim to find inconsisten-
cies in the domain knowledge. In [6] it is shown an application of an automated
theorem prover (the SNARK system) to provide a declarative semantics for lan-
guages for the Semantic Web, by translating first the forms from the semantic
markup languages to first-order logic in order to apply the theorem prover to
find inconsistencies. Our problem is not exactly that. We assume that the do-
main knowledge (the RCC theory and eventually the composition table for the
relations of figure 3) is consistent, and that it is highly possible that RCC jointly



with the database becomes inconsistent. However, in one of the experiments the
theorem prover found an error in the composition table for the RCC-8 shown in
[4]. Our problem has also another interesting aspect: the data inserted have not
any spatial indexing.

2 The Theory of RCC

The Region Connection Calculus is a topological approach to qualitative spa-
tial representation and reasoning where the spatial entities are non-empty re-
gular sets1 (a good introduction to the theory is [4]). The primary relation be-
tween such regions is the connection relation C(x, y), which is interpreted as
“the closures of x and y intersect”. The axioms of RCC are two basic axioms on
C, A1 := ∀x[C(x, x)] and A2 := ∀x, y[C(x, y) → C(y, x)], plus several axioms/defini-
tions on the main spatial relationships (see Fig. 2).

ADC : DC(x, y) ↔ ¬C(x, y) (x is disconnect from y)
AP : P(x, y) ↔ ∀z[C(z, x) → C(z, y)] (x is part of y)
APP : PP(x, y) ↔ P(x, y) ∧ ¬P(y, x) (x is proper part of y)
AEQ : EQ(x, y) ↔ P(x, y) ∧ P(y, x) (x is identical with y)
AO : O(x, y) ↔ ∃z[P(z, x) ∧ P(z, y)] (x overlaps y)
ADR : DR(x, y) ↔ ¬O(x, y) (x is discrete from y)
APO : PO(x, y) ↔ O(x, y) ∧ ¬P(x, y) ∧ ¬P(y, x) (x partially overlaps y)
AEC : EC(x, y) ↔ C(x, y) ∧ ¬O(x, y) (x externally connected to y)
ATPP : TPP(x, y) ↔ PP(x, y) ∧ ∃z[EC(z, x) ∧ EC(z, y)] (x tangential prop. part of y)
ANTPP : NTPP(x, y) ↔ PP(x, y) ∧ ¬∃z[EC(z, x) ∧ EC(z, y)] (x non-tang. prop. part of y)

Fig. 2. Axioms of RCC

The eight jointly exhaustive and pairwise disjoint relations shown in Fig. 3
form the relational calculus RCC-8, that has been deeply studied by J. Renz and
B. Nebel [11]. In that work CSP problems on RCC-8 are classified in terms of
(un)tractability. These problems are, in some cases, tractable, but the relational
language can be too weak for some applications. The consistency/entailment
problems in the full theory RCC have a complex behaviour. If we consider topo-
logical models, the problem is computationally unacceptable. The restriction to
nice regions of R2 is also hard to compute [8].

The problem of a good representation of a model by a knowledge base arises.
Concretely, we must consider three classes of models: the class of all models
(according to the classical definition from first order logic), the class of the
topological models, and Rn where the constants are interpreted as the regular
sets under study (the intended model). Formally,

1 A set x of a topological space is regular if it agrees with the interior of its closure.



a ba b a b a b
a

b
a b

b

a

PO(a,b) TPPi(a,b)EC(a,b) TPP(a,b) NTPP(a,b) NTPPi(a,b)DC(a,b) EQ(a,b)

a

b

Fig. 3. The eight basic relations of RCC-8

Definition 1. Let Ω be a topological space, and X be a finite set of constants.
A structure Θ is called a topological model on Ω if it has the form

〈R(Ω)/∼, C
Θ

, {aΘ : a ∈ X}〉

where R(Ω) is the class of nonempty regular sets, ∼ is the equivalence relation
“the closures agree”2, CΘ is the intended interpretation of C and whenever a ∈ X,
aΘ ∈ R(Ω)/∼.

Every structure is expanded to one in the full language of RCC, by the natu-
ral interpretation of the other relationships [7]: If Ω is a nontrivial connected
T3-space, the natural expansion of any topological structure on Ω to the full
language is a model of RCC.

3 Towards an Automated Argumentative Reasoning

The logic-based argument theory is a formalism to reason with inconsistent
knowledge [5]. An argument in T is a pair 〈Π, φ〉 where Π ⊆ T and Π � φ.
The argumentative structure of K is an hierarchy of arguments which offers a
method to obtain useful knowledge from T with certain properties. Also, it pro-
vides a method to estimate the robustness of an argument via argument trees
[3]. However, this approach can not be directly applied on huge databases (it
needs, for example, to find all maximally consistent subsets of the database). The
problem can be solved in practice by adapting the notion of argument to an auto-
mated theorem prover. For this work we choose OTTER [10], a resolution-based
automated theorem prover. Since it is not our aim to describe the methodology
we need to work with the theorem prover, we simply assume that the system
works in autonomous mode, a powerful feature of OTTER.

Definition 2.

1. An O-argument (an argument for OTTER) is a pair 〈Π, φ〉 such that Π is the
set of axioms from the OTTER’s refutation of {¬φ} (that we write Π �O φ).

2. If 〈Π, φ〉 is an O-argument, the length of 〈Π, φ〉, denoted as len(〈Π, φ〉), is the
length of the refutation of Π ∪ {¬φ} by OTTER.

2 The relation is necessary because of the extensionality of P given in the axiom AP.
With this relation, the mereological relation EQ agree with the equality.



The argumentative structure can not be directly translated, because of the
consistency notion3. By example, the argument class A∃(K) may be adapted:
AO∃(K) = {〈Π, φ〉 : Π is consistent and Π �O φ}.

4 Anomalies in Complex Knowledge Bases

From now on, we will consider fix a topological model Θ, the spatial model with
we will work, and K a database representation of Θ (that is, K is a set of ground
atomic formulae such that Θ |= K). To simplify we assume that the model satisfies
the unique names axiom. Three theories describe the model: the formalization of
Reiter’s database theory TDB(K), the theory RCC(K), whose axioms are those of K
plus RCC, and RCC(TDB(K)). The three theories has a common language, LK. The
following is an intuitive ontology of the anomalies in RCC-databases suggested
by the experiments:

A1: The contradictions of the base due to the bad implementation of the data
(e.g. absence of some knowledge)

A2: The anomalies due to the inconsistency of the model: the theorem prover
derives from the database the existence of regions which do not have a name
(possibly because they have not been introduced by the user yet). This
anomaly may also be due to the Skolem’s noise, produced when we work
with the domain closure axioms but the domain knowledge is not clausal.

A3: Disjunctive answers (a logical deficiency).
A4: Inconsistency in the Knowledge Domain.

As we remarked, the anomalies come from several sources: the set may be in-
consistent with the Domain Knowledge due to formal inconsistencies produced
by wrong data, the database is not complete with respect to a basic predicate
(the user will continue introducing data), etc. In Fig. 4 the most simple problem
is shown. The system shows arguments with the Skolem function of the clausal
form of AO to questions as “give us a region which is part of a”.

If the spatial regions used in a GIS are semialgebraic sets, Skolem functions
can be semi-algebraically defined [13]. In the practice, the spatial interpretation
may be thought as a partial function. In the case of RCC, Skolem functions come
from axioms AP, AO, ATPP and ANTPP. It is possible to give a spatial interpretation
of such functions. For example, the Skolem function for AO, fO(x, y) gives the
intersection region of x and y, if O(x, y). This idea allows one to eliminate useless
results by a partial axiomatization of the intersection (see Fig.6).

5 Consistent Databases and Arguments

Definition 3. Let Θ be a topological model. The graph of Θ, denoted by ΘG, is
the substructure of Θ whose elements are the interpretation of the constants.
3 An associated automated model finder, MACE, may be considered for a complete
description.
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Database OTTER’s proof
-------------------------------------------------------------------------
all x (x=A|x=B). 1[] x=x.
A!=B. 5[] x!=A|y!=B|O(x,y).
all x y (x=A&y=B|x=B&y=A|x=A&y=A| 14[] P($f1(x,y),x)| -O(x,y).

x=B&y=B -> O(x,y)). 16[] -P(x,A)|$Ans(x).
all x y (x=A& y=B|x=B& y=A|x=A&y=A| 27[hyper,5,1,1]O(A,B).

x=B&y=B -> C(x,y)). 65[hyper,14,27]P($f1(A,B),A).
all x y ((exists z (P(z,x)&P(z,y)))<->O(x,y)).66[binary,65.1,16.1]
all x (P(x,A)->$Ans(x)). $Ans($f1(A,B)).

Fig. 4. A simple anomaly and an O-argument

Definition 4. Let K be a set of formulas.

– The world of K, denoted by W(K), is the set of the interpretations in Θ of the
constants in the language of LK.

– Consider an interpretation of the Skolem functions of the clausal form of
RCC. The cognitive neighborhood of K, Γ (K), is the least substructure of the
expansion of Θ to the clausal language of RCC, containing W(K).

It seems that the consistency of an argument depends only on its cognitive
neighborhood. It is true for arguments with enough credibility.

Definition 5. An undercut of 〈Π1, φ〉 is an argument 〈Π,¬(φ1∧· · ·∧φn)〉 where
{φ1, . . . , φn} ⊆ Π1. The undercut is called local if Γ (Π) ⊆ Γ (Π1).

Definition 6. 〈Π, α〉 is more conservative than 〈Π ′, β〉 if Π ⊆ Π ′ and β �O α.

Definition 7. Let T be a theory, and φ a formula of the clausal language of T.

– A clause has Skolem’s noise if it has occurrences of Skolem function symbols.
– The degree of credibility of an argument 〈Π, φ〉 is

gr(〈Π, φ〉) = len(〈Π, φ〉)− |{η ∈ ProofO(Π, φ) : η has Skolem’s noise}|
len(〈Π, φ〉)

The degree of credibility estimates the robustness of the argument according
to the use of Skolem functions in the proof, functions which become ghost regions
(the credibility degree of the argument shown in Fig. 4 is 4/7).

Theorem 1. Let 〈Π, φ〉 be an O-argument of RCC(K). If gr(〈Π, φ〉) = 1 then
〈Π, φ〉 ∈ AO∃(RCC(K)) and Γ (Π) |= Π + φ.



Corollary 1. If gr(〈Π, φ〉) = gr(〈Π ′, φ′〉) = 1 and the first argument is an
undercutting argument of the second one, then

– Γ (Π) �⊆ Γ (Π ′) (thus there is not local undercutting argument with degree of
credibility 1).

– If 〈Π, φ〉 is a canonical undercut, that is φ ≡ ¬(φ1 ∧ · · · ∧ φn) with φi ∈ Π ′,
then Γ (Π ′) � Γ (Π).

The preceding corollary relates undercutting arguments and spatial configu-
rations, and it may be useful to estimate the size of argument trees [3].

Definition 8. Let K be a knowledge database (a set of ground atomic formulae)
for Θ. The base K

– is C-complete if whenever a, b ∈ LK, if Θ |= C(a, b), then C(a, b) ∈ K.
– is extensional for P if whenever a, b ∈ LK

P(a, b) /∈ K =⇒ ∃c ∈ LK [C(c, a) ∈ K ∧ C(c, b) /∈ K]

– is refined if whenever a, b ∈ LK

Θ |= O(a, b) =⇒ ∃c ∈ LK [{P(c, a), P(c, b)} ⊆ K] =⇒ O(a, b) ∈ K

– recognizes frontiers if whenever a, b ∈ LK such that Θ |= P(a, b)

Θ |= TPP(a, b) =⇒ ∃c ∈ LK[{C(c, a), C(c, b)} ⊆ K ∧ {O(c, a), O(c, b)} ∩ K = ∅]
The preceding definition shows a practical interpretation in some KB of the
RCC-relationships. In fact, we have the following theorem.

Theorem 2. If K has the above four properties, then ΘG �W(K)|= RCC(K).

An useful parameter on ΘG is the compactness level.

Definition 9. The compactness level of Θ is the least n > 0 such that the
intersection of any set of regions of ΘG is equal to the intersection of n regions
of the set.

In general, a database is not refined. Notice that when a database K is refined,
the Skolem function fO is interpretable within W(K). Thus, we can add to the
database a set of axioms with basic properties of such function, and f0 can be
syntactically defined in K, and simplified by compactness level, if possible. If it
is not refined, the partial definition is also useful (see table 1).

6 Experiments

We now report experiments with a spatial database on the relationships among
three types of regions: counties, districts, and available maps on Andalućıa, a
Spanish autonomous region. The system works on a database built with the
relationships of connection (Connect), nonempty-intersection ( Overlaps), and



Table 1. Experiment without and with (+) axiomatization of the compactness level

P(x,Jaen) -> $Ans(x)
Exp. CPU time (sec.) generated clauses results (A1) (A2) (A3)
(R1) 54.21 175 1 0 0 0
(R1)+ 55,20 180 1 0 0 0
(R2) 59 671 25 102 1 0
(R2)+ 60,26 677 25 0 2 0
(R3) 316 19,812 232 0 5 1
(R3)+ 320 31,855 287 0 5 1
(R4) 54.79 570 1 0 1 0
(R4)+ 55.6 575 1 0 1 0

K = {〈Connect : SE04, SE05〉, 〈Connect : SE04, Map − 941〉,
〈Overlaps : Map − 920, SE04〉, 〈Part − of : SE04, SEVILLA〉 · · · }

Fig. 5. Partial view of the autonomous region and some facts from the database

part-of (Part-of). Thus there exists hidden information, knowledge with res-
pect to other topological relations among regions, not explicit in the database,
that the theorem prover might derive (and, eventually, add to the database).
The graph of Θ is formed by 260 regions, approximately, for which we have a
database with 34000 facts (included the first-order formalization of databases,
but the number can be reduced using some features of the theorem prover).
This database has been made by hand, and it might have mistakes. It produces
40242 clauses (the processing takes 6.5 seconds). It has been used OTTER 3.2
on a computer with two Pentium III (800 Mhz) processors and 256 Mb RAM,
running with Red Hat Linux operating system 7.0.

The database is C-complete but it is not refined. Thus, it is highly possible
that the theorem prover detects anomalies of type (A2). It recognize accidentally
the frontiers, its compactness level is 2, and it can be axiomatized and incorpo-



Int(x, x) = x P(x, y) → Int(x, y) = x
O(x, y) → Int(x, y) = Int(y, x)

O(y, z) ∧ O(x, Int(y, z)) → Int(x, Int(y, z)) = Int(Int(x, y), z)

O(y, z) ∧ O(x, Int(y, z)) →



Int(x, Int(y, z)) = Int(y, z)∨
Int(x, Int(y, z)) = Int(x, y)∨
Int(x, Int(y, z)) = Int(x, z)




Fig. 6. An axiomatization of fO (as Int) when the compactness level is 2

Table 2. Statistics for a complex question

PP(x, Huelva) -> $Ans(x)

Exp. CPU time (sec.) generated clauses results (A1) (A2) (A3) (A4)
(R1) 2395.31 195,222 1 113 0 0 0
(R2) 2400 201,797 8 113 0 0 0
(R3) 2514.46 287,088 14 117 0 1 0
(R4) 54.15 286 0 1 0 0 0

Table 3. Statistics of an experiment when the composition table of [4] produces errors

EC(x, Sevilla) -> $Ans(x):
CPU time (sec.) generated clauses results (A1) (A2) (A3) (A4)
3845 11,673,078 25 113 0 6 72

rated to the theory if we use the (partial) spatial interpretation of the Skolem
function as partial intersection (see Fig. 6). Likewise, the higher compactness
levels can be axiomatized.

We selected the predicates Part-of, Proper-part, Externally-connect
as targets of the experiments. Several results are in tables 1, 2 and 3. (R1) shows
the statistics for the first correct answer to the question, (R2) for 5 seconds later,
(R3) for the first useless result and (R4) for the first error found.

It is not our aim to use the theorem prover as a simple database program-
ming language. The idea is to ask complex questions which are unsolvable by
constraint satisfaction algorithms or simple SQL commands. The questions are
driven to obtain knowledge on spatial relationships not explicit in the database
(as Proper-part or boolean combination of complex spatial relations). Some
of the questions require an excessive CPU time. Surprisingly, the time cost is
justified: the theorem prover thought all the time on the database and it found
many errors of the type (A1), errors which may to be unacceptable. The degree
of credibility allows to temporally accept some arguments. The number of use-
less argument can be significatively reduced by the spatial interpretation of fO
(see table 1). As we remarked earlier, OTTER found an error in the composition
table of RCC of [4] (type (A4)) working on a complex question (see table 3).



7 Conclusions and Future Work

We have focused on practical paraconsistent reasoning with qualitative spatial
databases using logic-based argumentative reasoning. The problem is an example
of cleaning databases within complex domain knowledge, which is a promising
field of applications in the Semantic Web. This analysis supports —in a case
study— a methodology for the computer-aided cleaning of complex databases [1].
A spatial meaning of some relationships between arguments has been shown. The
next challenge is to model the robustness of an argument estimating the number
of arguments for or against a particular argument by topological parameters on
the graph of the model that it will be useful when we work with a vast amount
of spatial information.
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