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Abstract

A detailed exposition of foundations of a logic-algebraic model for reasoning
with knowledge bases specified by propositional (Boolean) logic is presented.
The model is conceived from the logical translation of usual derivatives on
polynomials (on residue rings) which is used to design a new inference rule of
algebro-geometric inspiration. Soundness and (refutational) completeness of
the rule are proved. Some applications of the tools introduced in the paper
are shown.

Keywords: Polynomial Semantics, Symbolic Computing, Automated
Deduction, Knowledge-Based Systems

1. Introduction

Algebraic models for logic have been revealed as a useful tool for know-
ledge representation and mechanized reasoning. The relationship between
certain algebraic structures and Computational Logic provides methods and
tools for building, compiling and reasoning with Knowledge-Based Systems

1This work was partially supported by TIN2013-41086-P project (Spanish Ministry of
Economy and Competitiveness), co-financed with FEDER funds.
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(KBS) (see e.g. [1] for an introduction). This relationship also provides
mathematical foundations for a number of Knowledge Representation and
Reasoning (KRR) methods and algorithms, encompassing applications since
the pioneer works for classical bivalued logic [2, 3] to extensions for multi-
valued logics [4, 5, 6, 7]. The framework has also been extended to other
logics for Artificial Intelligence (AI) as the paraconsistent logic [8], and even
towards other nonstandard reasoning tasks as the argument-based one (cf.
[9]). One of the benefits of the interpretation of logic in polynomial rings is
that enables the use of powerful algebraic tools as Gröbner Basis to compile
KBS, exploiting this way the use of advanced Computer Algebra Systems in
KRR.

Roughly speaking, algebraic models for logic are mainly based on to spec-
ify, obtain and exploit solutions for the logical entailment problem and other
related ones. Recall that the entailment problem in logic is stated as follows:
given a Knowledge Base (KB) K, and a formula F , to decide whether F is
a logical consequence from K (denoted by K |= F ), that is, whether every
model of K is also model of F .

This paper is focused in to expound with detail an(other) algebraic model
for KRR. Whilst aforementioned approaches do not need to design a new cal-
culus (ideal membership translation -through Gröbner Basis- of entailment
question is sufficient), the approach presented here consists of to design an
inference rule -called independence rule- from an algebraic operation on poly-
nomials2. This rule will allow address a number of other related problems.

Although the independence rule is inspired in Algebra, the idea is in-
timately related with KRR strategies which are oriented to mitigate the
complexity and size of the KB (which may be of large size), with the hope
of reducing the computational cost of the deductive process when it is ap-
plied into specialized contexts or use cases. Two strategies of this type are
interesting for the purposes of the paper and motivate this work.

The first is to facilitate the design of divide-and-conquer strategies to
deal with the entailment problem, a natural idea for managing KBs with
hundreds of thousands of logical axioms with big size logical language (for
example the strategy based on the reasoning with microtheories [11]). In
this case the problem of ensuring the completeness of the designed strategy
arises, being a critical issue the selection/synthesis of sound sub-KBs. In [12]

2The part of the paper devoted to this is an extended version of [10].
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authors propose a partition-based strategy in order to obtain subtheories. It
is based on a syntax level analysis that provides individual partitions where
to reason locally, and distributed reasoning needs of methods to propagate
information among different partitions.

The second strategy to consider is based on the ad-hoc reduction of KB for
particular use cases (distilling the KB for using in context-based reasoning,
for example). In [10] authors propose to reduce K to K ′, where K |= K ′, and
in K ′ only the language of the goal formula F is used (thus it is expected that
the size of K ′ to be smaller than the size of K). Then the entailment problem
with respect to K ′ is considered. For this strategy to be successful -valid and
complete- K must be a conservative extension of K ′ (or, equivalently, K ′ a
conservative retraction of K [10]). A knowledge base K ′ in the language L′
is a conservative retraction of K if K is an extension of K ′ such that every
L′-fórmula entailed by K is also entailed by K ′. Then the use of conservative
retraction allows to reduce the own KB we need to work, because it suffices
to conservatively retracts the original KB to the specialized language of the
formula-goal. A key question is how to compute such kind of sub-KBs.

Whilst conservative extensions have been deeply investigated in several
fields of Mathematical Logic and Computer Science (because they allow the
formalization of several notions concerning refinements and modularity, see
e.g. [13, 14, 15]), solutions focused on its dual notion, the conservative re-
traction, are obstructed by its logical complexity (see e.g. [16]).

Beside the analysis of above strategy, as a secondary motivation of the
approach, it is worth to mention the study of relevance in knowledge bases.
To analyze, locate and remove redundancies in KB is a way to refine and
improve the efficiency of KBS. These type of analysis are important in topics
such as probabilistic reasoning, information filtering, etc. (see also [16] for a
general overview).

The basic mechanism to obtain conservative retractions consists of elim-
inating, step by step, the variables that we wish to eliminate from language.
Such a mechanism is called variable forgetting. Since the first analysis in
cognitive robotics [17], the problem of variable forgetting is a widely stud-
ied technique in IA. In particular the forgetting variable technique has been
used to update or refine (logical, rule-based, CSP) programs. For example
for resolution-based reasoning in specialized contexts (see e.g. [18]), in CSP
and optimization [19], for simplification of rules [20] (included Answer Set
Programming [21]). As it can be seen from these references, the interest in
techniques for forgetting variables is not limited to classical (monotonous)
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logics. It has also received attention in the field of non-monotonous rea-
soning (including the computational complexity of the problems). In the
(epistemic) modal logics for (multi)agency this technique would be very use-
ful to represent knowledge-based games [22, 23]. In addition, in the reasoning
under inconsistency the use of variable forgetting allows to weaken the KB
to obtain consistent subKBs (eliminating the variables involved in the incon-
sistency). This topic, discussed below, is studied as a tool for solving SAT.
In this context, providing methods for variable forgetting is a step towards
the availability of retraction algorithms for programming paradigms based
on logics of different nature.

Taking into account the aforementioned motivations, the aim of this pa-
per is twofold. First, we intend to present a complete and detailed exposition
of the foundations of the independence rule (That can be considered a tool
for variable forgetting), whose basic ideas were published in [10], since no
detailed exposition has been published until now. In fact, we generalize the
cited paper by stating the results for any operator that induces a conserva-
tive retraction, leading as consequence that our case, the independence rule,
is useful to compute the retractions. It is also illustrated how the rule is
useful to design methods for solving some questions on KB. In particular the
redundancy problem can be handled by the independence rule and Boolean
derivatives (an essential tool to design this rule).

The structure of the paper is as follows. Section 2 is devoted to sum-
marize the basics on the algebraic interpretation of propositional logics. In
Sect. 3 the notion of forgetting operator is introduced, and we show how con-
servative retractions can be computed by means of these kind of operators,
as well as logical calculus induced by them are sound and (refutationally)
complete. Section 4 presents a forgetting operator inspired on the projection
of algebraic varieties. The logical translation of the operator is presented as
a inference rule in Sect. 5. Boolean derivatives are used for characterizing
logical relevance (in the case of sensitive variables) in algebraic terms (in
section 6, Prop. 6.3). Some illustrative applications of the tools presented
are described in Sect. 7. The paper finishes with a discussion on the results
presented in the paper as well as some ideas about future work.

2. Background

In this section fundamental relations between propositional logic and
polynomials with coefficients in finite fields (in our case, the finite field with
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Figure 1: The framework

two elements, F2) are summarized. The main idea guiding the algebraic in-
terpretation of logic is to identify a logical formula as a polynomial in such
a way that the truth-value function induced by the formula could be under-
stood as a polynomial function on F2.

The diagram showed above (Fig. 1) depicts the relationship between both
structures, whose elements will be detailed in the following subsections. The
ideal I2 := 〈x1 + x21, . . . , xn + x2n〉 ⊆ F2[x] -on which we will talk about later-
is used, and the map proj is the natural projection on the quotient ring. The
remain elements of the diagram will be detailed bellow.

We assume throughout the paper that the reader is familiar with proposi-
tional logic as well as with basic principles on polynomial algebra on positive
characteristics.

2.1. Propositional logic and conservative retraction

A propositional language is a finite set L = {p1, . . . , pn} of propositional
symbols (also called propositional variables). The set of formulas Form(L)
is built up from in the usual way, using the standard connectives ¬,∧,∨,→
and > ( > denotes the constant true, and ⊥ is ¬>). Given two formulas
F,G and p ∈ L, we denote F{p/G} the formula obtained replacing every
occurrence of p in F by the formula G.

An interpretation (or valuation) v is a function v : L → {0, 1}. An
interpretation v is a model of F ∈ Form(L) if it makes F true in the usual
classical truth functional way. Analogously, it is said that a v is a model of
K (v |= K) if v is model of every formula in K. We denote by Mod(F ) the
set of models of F (resp. Mod(K) for the set of models of K).
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A formula F (or K a KB) is consistent if it exhibits at least one model.
It is said that K entails F (K |= F ) if every model of K is a model of F ,
that is, Mod(K) ⊆Mod(F ). Both notions can be naturally generalized to a
KB, preserving the same notation. It is said that K and K ′ are equivalent,
K ′ ≡ K, if K |= K ′ and K ′ |= K. The same notation will also be used for
the equivalence with (and between) formulas.

It is said that K is an extension of K ′ if L(K ′) ⊆ L(K) and

∀F ∈ Form(L(K ′))[K ′ |= F =⇒ K |= F ]

K is a conservative extension of K ′ (or K ′ is a conservative re-
traction of K) if it is an extension such that every logic consequence of K
expressed in the language L(K ′) is also consequence of K ′,

∀F ∈ Form(L(K ′))[K |= F =⇒ K ′ |= F ]

that is, K extends K ′ but no new knowledge expressed by means of L(K ′)
is added by K.

Given L′ ⊆ L(K), a conservative retraction on the language L′ always
exists. The canonical conservative retraction of K to L′ is defined as:

[K,L′] = {F ∈ Form(L′) : K |= F}

That is, [K,L′] is the set of L′-formulas which are entailed by K. In fact any
conservative retraction on L′ is equivalent to [K,L′]. The actual issue is to
present a finite axiomatization of such formula set.

2.2. Propositional logic and the ring F2[x]

The ring F2[x] is naturally chosen for working with algebraic interpreta-
tions of logic. To clarify the notation, an identification pi 7→ xi (or p 7→ xp)
between L and the set of indeterminates is fixed.

Notation on polynomials is standard. Given α = (α1, . . . , αn) ∈ Nn, let
us define |α| := max{α1, . . . , αn}. By xα we denote the monomial xα1

1 · · ·xαn
n .

The degree of a(x) ∈ F2[x], is deg∞(a(x)) :=max{|α| : xα is a monomial of a}.
If deg∞(a(x)) ≤ 1, the polynomial a(x) we shall denote a polynomial for-
mula. It is defined degi(a(x)) as the degree w.r.t. xi.
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2.3. Translation from formulas and vice versa

The translation of Propositional Logics into Polynomial Algebra is based
on the following translation (see Fig. 1, left diagram):

The map P : Form(L)→ F2[x] is defined by:

• P (⊥) = 0, P (pi) = xi, P (¬F ) = 1 + P (F )

• P (F1 ∧ F2) = P (F1) · P (F2)

• P (F1 ∨ F2) = P (F1) + P (F2) + P (F1) · P (F2)

• P (F1 → F2) = 1 + P (F1) + P (F1) · P (F2), and

• P (F1 ↔ F2) = 1 + P (F1) + P (F2)

For the reciprocal translation (from poynomials to formulas) we use the
map Θ : F2[x]→ Form(L) defined by:

• Θ(0) = ⊥, Θ(1) = >, Θ(xi) = pi,

• Θ(a · b) = Θ(a) ∧Θ(b), and Θ(a+ b) = ¬(Θ(a)↔ Θ(b)).

It can be proved that Θ(P (F )) ≡ F and P (Θ(a)) = a. Sometimes, for the
sake of readability, we will use the following property, that is a straightfor-
ward consequence of the previous assertions:

Θ(1 + a+ ab) ≡ Θ(a)→ Θ(b)

2.4. Correspondence between valuations and points in Fn2
The similar functional behavior of the formula F and its polynomial trans-

lation P (F ) is the basis of the relationship between logical semantics and
polynomial functions. Let’s clarify what similar behavior means:

• From valuations to points: Given a valuation v : L → {0, 1}, the truth
value of F with respect to v agrees with the value of P (F ) on the point
of ov ∈ Fn defined by the values provided by v: if (ov)i = v(pi) then

v(F ) = P (F )((ov)1, . . . (ov)n)

• From points to valuations: Each o = (o1, . . . , on) ∈ Fn2 induces a valua-
tion vo defined by:

vo(pi) = 1 ⇐⇒ oi = 1
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This way

vo |= F ⇐⇒ P (F )(ov) + 1 = 0 ⇐⇒ ov ∈ V (1 + P (F ))

where V (.) is the well-known algebraic vanishing operator (see e.g. [24]:
given a(x) ∈ F2[x],

V (a(x)) = {o ∈ Fn2 : a(o) = 0}

Summarizing we provide two maps among the set of valuations and points
of Fn2 , which are bijections between models of the formula F and points from
the algebraic variety determined by 1 + P (F );

Mod(F ) → V (1 + P (F ))
v 7→ ov

V (1 + P (F )) → Mod(F )
o 7→ vo

For example, consider the formula F = p1 → p2∧p3. The associated poly-
nomial is P (F ) = 1 +x1 +x1x2x3. The valuation v = {(p1, 0), (p2, 1), (p3, 0)}
is model of F and induces the point ov = (0, 1, 0) ∈ F3

2, which belongs to
V (1 + P (F )) = V (x1 + x1x2x3).

2.5. Polynomial projection

Consider now the right-hand side diagram of Fig. 1. To simplify the re-
lation between the semantics of propositional logic and geometry over finite
fields we use the map

Φ : F2[x]→ F2[x]

Φ(
∑
α∈I

xα) :=
∑
α∈I

xsg(α)

being sg(α) := (δ1, . . . , δn), where δi is 0 if αi = 0 and 1 otherwise.
The map Φ selects the representative element of the equivalence class

of the polynomial in F2[x]/I2 that is a polynomial formula. So to associate
a polynomial formula to a propositional formula F it suffices to apply the
composition π := Φ ◦ P , that we will call polynomial projection. For
example,

P (p1 → p1 ∧ p2) = 1 + x1 + x21x2 whereas π(p1 → p1 ∧ p2) = 1 + x1 + x1x2
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2.6. Propositional Logic and polynomial ideals

We recall here the well-known correspondence between algebraic sets and
polynomial ideals on the coefficient field F2, and propositional logic KBs.

Given a subset X ⊆ (F2)
n, we denote by I(X) the set (actually an alge-

braic ideal) of polynomials of F2[x] vanishing on X:

I(X) = {a(x) ∈ F2[x] : a(u) = 0 for any u ∈ X}
Symmetrically, given J ⊆ F2[x] it is possible to consider the previously

mentioned algebraic set V (J), the “vanishing set”:

V (J) = {u ∈ (F2)
n : a(u) = 0 for any a(x) ∈ J}

Nullstellensatz theorem for F2 is stated as follows (see e.g. [8]):

Theorem 2.1. (Nullstellensatz theorem with the coefficient field F2)

• If A ⊆ Fn2 , then V (I(A)) = A, and

• for every J ∈ Ideals(F2[x]), I(V (J)) = J + I2.

From the Nullstellensatz theorem it follows that:

F ≡ F ′ if and only if P (F ) = P (F ′) (mod I2)

Therefore F ≡ F ′ if and only if π(F ) = π(F ′).
The following theorem summarizes the main relationship between propo-

sitional logic and F2[x]:

Theorem 2.2. (see e.g. [4]) Let K = {F1, . . . , Fm} and G be a propositional
formula. The following conditions are equivalent:

1. {F1, . . . , Fm} |= G.
2. 1 + P (G) ∈ 〈1 + P (F1), . . . , 1 + P (Fm)〉+ I2.
3. V 〈1 + P (F1), . . . , 1 + P (Fm)〉 ⊆ V 〈1 + P (G)〉

Remark 2.3. If the use of Gröbner basis is considered, above conditions are
equivalent to:

4. NF(1 + P (G), 〈1 + P (F1), . . . , 1 + P (Fm)〉+ I2) = 0
where GB(I) denotes the Gröbner basis of ideal I and NF(p, B) denotes a
normal form of polinomial p respect to the Gröbner basis B. The complete
description on Gröbner basis is not within the scope of this paper. A general
reference for Gröbner Basis could be seen in [25]. Readers can find in [5] a
quick tour on the use of Gröbner Basis in Propositional Logic.
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Figure 2: Semantic interpretation of a forgetting operator for the variable r (Lifting
Lemma)

Given K be a KB, let us define the ideal

JK = ({1 + P (F ) : F ∈ K})

Note that by Thm. 2.2 it is easy to see that

v |= K ⇐⇒ ov ∈ V (JK)

3. Conservative retractions by forgetting variables

In this section we present how to calculate a conservative retraction by
using forgetting operators. These operators are maps of type:

δ : Form(L)× Form(L)→ Form(L)

Definition 3.1. Let be δ an operator: δ : Form(L)×Form(L)→ Form(L \ {p}).
It is said that δ is

1. sound if {F,G} |= δ(F,G), and

2. a forgetting operator for the variable p ∈ L if

δ(F,G) ≡ [{F,G},L \ {p}]
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An useful characterization of the operators can be deduced from the fol-
lowing semantic property: If δ is a forgetting operator, the models of δ(F,G)
are precisely the projections of models of {F,G} (see Fig. 2).

Lemma 3.2. (Lifting Lemma) Let v : L \ {p} → {0, 1} be a valuation,
F,G ∈ Form(L) and δ a forgetting operator for p. The following conditions
are equivalent:

1. v |= δ(F,G)

2. There exists a valuation v̂ : L → {0, 1} such that v̂ |= F ∧G and

v̂ �L\{p}= v

(that is, v̂ extends v).

Proof. (1) =⇒ (2): Given a valuation v, let us consider the formula

Hv =
∧

q∈L\{p}

qv

where qv is q if v(q) = 1 and ¬q in other case. It is clear that v is the only
valuation on L \ {p} which is model of Hv.

Suppose that there exists a model of δ(F,G), v : L \ {p} → {0, 1}, with
no extension to a model of F ∧G. In this case the formula

Hv → ¬(F ∧G)

is a tautology, in particular

{F,G} |= Hv → ¬(F ∧G)

Since {F,G} |= F ∧G, by modus tollens {F,G} |= ¬Hv. So δ(F,G) |= ¬Hv

because δ is a conservative retraction. This fact is a contradiction because
v |= δ(F,G) ∧Hv.

(2) =⇒ (1): Such an extension v̂ verifies

v̂ |= F ∧G |= [{F,G},L \ {p}] |= δ(F,G)

Since δ(F,G) ∈ Form(L \ {p}), the valuation v = v̂L\{p} is also a model
of δ(F,G).
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In particular the result is true for the canonical conservative retraction
[K,L \ {p}], because

[K,L \ {p}] ≡ δp(
∧

K,
∧

K)

(being
∧
K :=

∧
F∈K F )

An interesting case appears when δp(F1, F2) ≡ >. In this case every
partial valuation on L \ {p} is extendable to a model of {F1, F2}.

The following characterization will be used later:

Corollary 3.3. Let δ : Form(L)× Form(L) → Form(L \ {p}) be a sound
operator. The following conditions are equivalent:

1. δ is a forgetting operator for the variable p.

2. For any F,G ∈ Form(L) and v |= δ(F,G) valuation on L \ {p}, there
exists an extension of v model of {F,G}.

Proof. (1) =⇒ (2): Is true by Lifting Lemma
(2) =⇒ (1). Let F,G be two formulas. Since δ is sound, it suffices

to see that
δ(F,G) |= [{F,G},L \ {p}]

Suppose that is not true. In this case there exists H ∈ Form(L \ {p})
such that [{F,G},L \ {p}] |= H (so {F,G} also entails H), but there exists
a valuation v satisfying v |= δ(F,G) ∧ ¬H.

By (2) there exists v̂ extension of v which is model of {F,G}, so {F,G} 6|=
H, that is, a contradiction.

Corollary 3.4. If p /∈ var(F ), and δp is a forgetting operator for p, then

δp(F, F ) ≡ F and δp(F,G) ≡ {F, δp(G,G)}

Proof. If p /∈ var(F ), then {F} ≡ [{F},L \ {p}] ≡ δp(F, F )
On the other hand, δp(F,G) ≡ [{F,G},L \ {p}] |= {F, δp(G,G)}. To

prove that actually it is an equivalence, it will be shown that they have the
same models.

Let v a valuation on L \ {p} such that v |= {F, δp(G,G)}. Then there
exists v̂, extension of v, such that v̂ |= G. Since v̂ |= F , then by Lifting
lemma v |= δ(F,G).
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For forgetting operators as defined herein, the Lifting Lemma is a re-
formulation of the observation made by J. Lang et al. [16] about variable
forgetting. The authors present a characterization of forgetting by means of
Quantified Boolean Formulas (QBF), ∃xF̂ (x), where F̂ is the interpretation
of F as a Boolean formula whose free variables are the propositional variables
of F . In our case, δp(F,G) could correspond to the QBF formula ∃p(F ∧G).

Authors of the aforementioned article present a method of forgetting X
(a variable set of a formula F ), denoted by forget(F,X) by constructing
disjunctions in the following way:

forget(F, ∅) = F

forget(F, {x}) = F{x/>} ∨ F{x/⊥}

forget(F, {x} ∪ Y ) = forget(forget(F, Y ), {x})

Note that with this approach forget(F, Y ) can have high size. In our
case we aim to simplify the representation by using algebraic operations on
polynomial projections.

3.1. Conservative retractions induced by forgetting operators

We denote by 2X the power set of X. By analogy with the classical
resolution-based saturation process (on CNF formulas), we will call satura-
tion the process of applying the rule exhaustively until no new consequences
are obtained and observing the result (checking whether an inconsistency has
been obtained) .

Definition 3.5.

1. Let δp be a forgetting operator for p. It is defined δp[·] as

δp[·] : 2Form(L) → 2Form(L)

δp[K] := {δp(F,G) : F,G ∈ K}

2. Suppose we have a forgetting operator δp for each p ∈ L. We will call
saturation of K to the process of applying the operators δp[·] (in some
order) by using all the propositional variables of L(K), denoting the
result by satδ(K) (which will be a subset of {⊥,>}).
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Figure 3: Deciding consistency by using a set of forgetting operators ∂

We will bellow see that the set satδ(K) does not essentially depend of
the order of applications of operators. Moreover, keep in mind that since the
forgetting operators are sound, if K is consistent then necessarily satδ(K) =
{>}.

From forgetting operators a logical calculus can be defined in the usual
way:

Definition 3.6. Let K be a KB and F ∈ Form(L) and let {δp : p ∈ L(K)}
a family of forgetting operators.

• A `δ-proof in K is a formula sequence F1, . . . Fn such that for every
i ≤ n Fi ∈ K or exist Fj, Fk (j, k < i) such that Fi = δp(Fj, Fk) for
some p ∈ L.

• K `δ F if there exists `δ-proof in K, F1, . . . Fn, with Fn = F

• A `δ-refutation is a `δ-proof of ⊥.

The (refutational) completeness of the calculus associated to forgetting
operators is stated as follows.

Theorem 3.7. Let {δp : p ∈ L} a family of forgetting operators. Then `δ
is refutationally complete: K is inconsistent if and only if K `δ ⊥.
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Proof. The idea is to saturate the KB (Fig. 3). If satδ(K) = {>}, then,
by repeating the application of Lifting Lemma, we can extend the empty
valuation (which is model of {>}) to a model of K

If ⊥ ∈ satδ(K) then K is inconsistent, because K |= satδ(K) by sound-
ness of forgetting operators. The selection of a particular `δ-refutation is
straightforward, as in the proof of the refutational completeness of resolu-
tion calculus, for example.

Corollary 3.8. δp[K] ≡ [K,L \ {p}]

Proof. By soundness of the forgetting operator δp,

[K,L \ {p}] |= δp[K]

holds. To prove the other direction, let F ∈ [K,L \ {p}], and let us suppose
that δp[K] 6|= F . Then δp[K] + {¬F} is consistent. In particular, if we
saturate, satδ(δp[K] ∪ {¬F}) = {>}.

Since p /∈ var(¬F ), by Lemma 3.4 it holds that for any G ∈ K:

δp(¬F,G) ≡ {¬F, δp(G,G)} and δp(¬F,¬F ) ≡ ¬F

Therefore
δp[K ∪ {¬F}] ≡ δp[K] ∪ {¬F}

so, by applying saturation, starting with p

satδ(K ∪ {¬F}) ≡ satδ(δp[K] ∪ {¬F}) = {>}

what indicates that K ∪ {¬F} is consistent, thereupon K 6|= F , a contradic-
tion.

Given Q ⊆ L and a linear order q1 < · · · < qk on Q, we define the operator

δQ,< := δq1 ◦ · · · ◦ δqk

In fact, if we dispense with making an order explicit, the operator is well-
defined module logical equivalence, that is, any two orders on Q produce
equivalent KBs. This is true because for each p, q ∈ L, using the previous
corollary it follows that

δp ◦ δq[K] ≡ δq ◦ δp[K]
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due to the fact that both KBs are equivalent to [K,L \ {p, q}]. Therefore,
for the sake of simplicity, we will write δQ[K] when syntactic presentation of
this KB does not matter.

A consequence of corollary 3.8 and theorem 3.7 is that entailment problem
can be reduced to a similar problem but that it only uses variables of the
goal formula. This property is called the location property: the entailment
problem can be simplified by eliminating propositional variables that do not
appear in the target formula.

Corollary 3.9. (Location Property, [10]) The following conditions are equi-
valent:

1. K |= F

2. δL\var(F )[K] |= F

Proof. It is trivial, because δL\var(F )[K] ≡ [K, var(F )].

4. Boolean derivatives and independence rule on polynomials

In order to define our forgetting operator we will make use of derivations
on polynomials, by translating the usual derivation on F2[x] to an operator
on propositional formulas. We review here some basic properties. Recall that
a derivation on a ring R is a map d : R→ R verifying

d(a+ b) = d(a) + d(b) and d(a · b) = d(a) · b+ a · d(b) for any a, b ∈ R

The logical translation of derivations is builded as follows:

Definition 4.1. [10] A map ∂ : Form(L)→ Form(L) is a Boolean deriva-
tive if there exists a derivation d on F2[x] such that the following diagram is
commutative:

Form(L)
∂→ Form(L)

π ↓ # ↑ Θ

F2[x]
d→ F2[x]

That is, ∂ = Θ ◦ d ◦ π
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In this paper we are particularly interested in the Boolean derivative,
denoted by ∂

∂p
, induced by the derivation d = ∂

∂xp
. The following result

shows a semantic equivalent expression of this derivative.

Proposition 4.2. ∂
∂p
F ≡ ¬(F{p/¬p} ↔ F )

Proof. It is straightforward to see that

π(F{p/¬p})(x) = π(F )(x1, . . . , xp + 1, . . . , xn)

On the other hand it is easy to see that

∂

∂x
a(x) = a(x+ 1) + a(x)

holds for polynomial formulas, hence

∂

∂xp
π(F ) = π(F )(x1, . . . , xp + 1, . . . , xn) + π(F )(x1, . . . , xp, . . . , xn)

Therefore, by applying Θ we conclude that

∂

∂p
F = Θ(

∂

∂xp
π(F )) ≡ ¬(F{p/¬p} ↔ F )

Notice that truth value of ∂
∂p
F with respect to a valuation does not depend

of the truth value on the own p; hence, we can apply valuations on L \ {p}
to this formula. In fact, we can describe the structure of F by isolating the
role of p as follows:

Lemma 4.3. [10] (p-normal form). Let F ∈ Form(L) and p be a proposi-
tional variable. There exists F0 ∈ Form(L \ {p}) such that

F ≡ ¬(F0 ↔ p ∧ ∂

∂p
F )

Proof. Since π(F ) is a polynomial formula, we can suppose that

π(F ) = a+ xpb with degxp(a) = degxp(b) = 0

Therefore
F ≡ Θ(π(F )) ≡ ¬(θ(a)↔ p ∧Θ(b))

Then let F0 = Θ(a), and, since b = ∂
∂xp

π(F ), we have that Θ(b) = ∂
∂p
F .

17



Figure 4: Geometric interpretation of independence rule

For example, let F = p ∧ q → r. Then

π(F ) = 1 + xpxq + xpxqxr = 1 + xp(xq + xqxr)

Following the above proof, a = 1 and b = xq + xqxr (note that ∂
∂xp

(π(F )) =

xq + xqxr). Therefore Θ(a) = > and Θ(b) = q ∧ ¬r, so

F ≡ ¬(> ↔ p ∧ (q ∧ ¬r))

The forgetting operator that we are going to define next, called indepen-
dence rule, aims to represent the models of the conservative retraction as
those that can be extended to models of F ∧G (that is, the idea behind Lift-
ing Lemma). Geometrically, if a and b are the polynomials π(F ) and π(G)
respectively, then the vanishing set V (1 + a, 1 + b) (which could correspond
to the set of models both of F and G) is projected by ∂p (see Fig. 4). The
algebraic expression of the projection is described as a rule.

Definition 4.4. The independence rule (or ∂-rule) on polynomial formulas
is defined as follows: given a1, a2 ∈ F2[x] and x an indeterminate

a1, a2
∂x(a1, a2)

where ∂x(a1, a2) = 1 + Φ
[
(1 + a1 · a2)(1 + a1 · ∂∂xa2 + a2 · ∂∂xa1 + ∂

∂x
a1 · ∂∂xa2)

]
18



If ai = bi + xp · ci, with degxp(bi) = degxp(ci) = 0 (i = 1, 2), the rule we
can rewritten as:

∂xp(a1, a2) = Φ [1 + (1 + b1 · b2)[1 + (b1 + c1)(b2 + c2)]]

For example, to compute

a = ∂x2(1 + x2x3x5 + x3x5, 1 + x1x2x3x4x5 + x1x2x3x5)

we take

b1 = 1 + x3x5, c1 = x3x5 and b2 = 1, c2 = (1 + x4)x1x3x5

so the result is a = 1 + x1x3x4x5 + x1x3x5.
Note that independence rule is symmetric.

5. Independence rule and non-clausal theorem proving

The independence rule for formulas is defined as

∂p(F,G) := Θ(∂xp(π(F ), π(G)))

Following with above example,

∂p2(p3 ∧ p5 → p2, p1 ∧ p2 ∧ p3 ∧ p5 → p4) =

= Θ(∂x2(1 + x2x3x5 + x3x5, 1 + x1x2x3x4x5 + x1x2x3x5)) =

= Θ(1 + x1x3x4x5 + x1x3x5) = ¬(p1 ∧ p3 ∧ p4 ∧ p5 ↔ p1 ∧ p3 ∧ p5) ≡

≡ p1 ∧ p3 ∧ p5 → p4

It is worthy to point out some interesting features of the rule ∂p: if
∂p(F,G) is a tautology, then ∂p(F,G) = >, and if ∂p(F,G) is inconsistent
then ∂p(F,G) = ⊥. Both features are consequence of the translation to poly-
nomials: polynomial formulas corresponds of tautologies and inconsistencies
are algebraically simplified to 1 and 0 in F2[x]/I2, respectively. In fact, we
will usually work with the polynomial projections to exploit these features.

Proposition 5.1. ∂p is sound
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Proof. We have to prove F1 ∧ F2 |= ∂p(F1, F2). Suppose that

π(F1) = b1 + xp · c1, π(F2) = b2 + xp · c2

According to Thm. 2.2.(3), it is enough to prove that

V (1 + π(F1) · π(F2)) ⊆ V (1 + ∂xp(π(F1), π(F2)))

Let u ∈ V (1 + π(F1) · π(F2)) ⊆ Fn2 , that is,

(b1 + xpc1)(b2 + xpc2)|x=u = 1 (†)

(the notation used here is as usual: F (x)|x=u is F (u)). Let us distinguish
two cases:

• If the p-coordinate of u is 0, then by (†) it follows that

b1|x=u = b2|x=u = 1

Therefore (1 + b1b2)|x=u = 0.

• The p-coordinate of u is 1. In this case (b1 + c1)(b2 + c2)|x=u = 1

By examining the definition of ∂p we conclude in both cases that

∂xp(π(F1), π(F2))|x=u = 1

so we have that u ∈ V (1 + ∂xp(π(F1), π(F2))).

Theorem 5.2. ∂p is a forgetting operator

Proof. The goal is to prove that

[{F1, F2},L \ {p}] ≡ ∂p(F1, F2)

Let us suppose that F1, F2 ∈ Form(L) such that π(Fi) = bi + xpci i = 1, 2
with bi, ci polynomial formulas without variable xp. Recall that in this case
the expression of the rule is

∂xp(π(F1), π(F2)) = Φ ((1 + b1 · b2) [1 + (b1 + c1)(b2 + c2)])
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Since the soundness of ∂p has been proved by the previous proposition,
by Corollary 3.3 it is sufficient to show that any valuation v on L\{p} model
of ∂p(F1, F2) can be extended to v̂ |= {F1, F2}.

Let v |= ∂p(F1, F2). Let us consider the point from Fn2 asociated to v, ov.
It follows that

ov ∈ V (π(∂p(F1, F2)) + 1) = V (∂xp(π(F1), π(F2)) + 1) =

= V ((1 + b1 · b2)[1 + (b1 + c1)(b2 + c2)])

so

((1 + b1 · b2)[1 + (b1 + c1)(b2 + c2)]) |x=ov = 0

In order to build the required extension v̂, let us distinguish two cases:

• If (1 + b1 · b2)|x=ov = 0 then v̂ = v ∪ {(xp, 0)} |= F1 ∧ F2.

• If [1 + (b1 + c1)(b2 + c2)]|x=ov = 0 then

v̂ = v ∪ {(xp, 1)} |= F1 ∧ F2

With some abuse of notation, we use the same symbol, `∂, to denote
similar notions that defined in Def. 3.6 but on polynomial formulas and rules
∂xp . In that way we can describe `∂-proofs on polynomials. For example, a
∂-refutation for the set π[{p→ q, q ∨ r → s,¬(p→ s)}] is

1. 1 + x1 + x1x2 [[π(p→ q)]]

2. 1 + (x2 + x3 + x2x3)(1 + x4) [[π(q ∨ r → s)]]

3. x1(1 + x4) [[π(¬(p→ s)]]

4. 1 + x1 + x3 + x1x4 + x3x4 + x1x3 + x1x3x4 [[∂x2 to(1), (2)]]

5. 0 [[∂x1 to (3), (4)]]

Corollary 5.3. [10]
K is inconsistent if and only if K `∂ ⊥.

Proof. It is consequence of theorems 3.7 and 5.2

The result, in algebraic terms, is as follows:
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Corollary 5.4. Let F ∈ Form(L) and let K be a knowledge basis. The
following conditions are equivalent:

1. K |= F

2. JK `∂ 0

Proof. (1) =⇒ (2): Let us suppose K |= F . Then K + {¬F} is incon-
sistent. Since ∂p is refutationally complete, K + {¬F} `∂ ⊥. Thus

{1 + π(G) : G ∈ K} ∪ {π(F )} `∂ 0

(2) =⇒ (1): If a ∂-refutation is founded on polynomials, then by
above theorem K ∪ {¬F} is inconsistent.

Remark 5.5. To compute conservative retractions we use an implementation
(in Haskell language) of ∂p and ∂xp. In order to simplify the presentation, we
only show the computation on polynomials (that is, the application of ∂xp),
and we use the own propositional variables as polynomial variables (that is,
we identify p and xp) to facilitate the readibility.

The software used in the examples and experiments can be downloaded
from https: // github. com/ DanielRodCha/ SAT-Pol

Example 5.6. Let G = s→ r and K be the KB

K =


t ∧ p↔ s
t ∧ r → s
t ∧ q → s
p ∧ q ∧ s ∧ t→ r

To decide whether K |= G -by applying location lemma- we have to com-
pute

∂L\{r,s}[K] ≡ ∂p[∂q[∂t[K]]]

* [pqrst+pqst+1,pt+s+1,qst+qt+1,rst+rt+1] (projection)

* [pqrs+pqs+ps+s+1, ps+s+1, 1] (forgetting t)

* [ps+s+1, 1] (forgetting q)

* [1] (forgetting p)
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Therefore:

[K,L \ {r, s}] ≡ {>} 6|= G

Consider now the formula F = p ∧ q ∧ t→ s. In order to decide whether
K |= F , by location lemma we have to compute [K,L(F )] ≡ ∂r[K]

* [pqrst+pqst+1,pt+s+1,qst+qt+1,rst+rt+1] (projection)

* [pqst+pqt+pt+qst+qt+s+1,pt+s+1,qst+qt+1,1] (forgetting r)

To see that ∂r[K] |= F it is sufficient to show that ∂r[K] ∪ {¬F} is
inconsistent. The computation is made in the projection set, by saturating
the polynomial set:

* [pt+s+1,qst+qt+1, pqst+pqt] (the retraction and ¬ F)

* [0] (applying sat∂)

An approach to specify contexts in AI for reasoning is to determine which
set of variables Q ⊆ K provides information and which variables are irrel-
evant for represent the specific context. In fact, in some approaches for
formalizing context-based reasoning contexts are determined by this variable
set. When K does not provide any specific information about the context in
which it is to be used, it is natural to conclude [K,Q] should only contain
tautologies, that is, ∂L\Q[K] = {>}. In the previous example K does not
provide relevant information about the context determined by {r, s}, because
[K,L \ {r, s}] = {>}.

6. Characterization sensitive implications

In addition to its use in the design and study of the independence rule,
other use of Boolean derivatives is the detection of variables that are irrele-
vant in a formula (or, in terms of [26], to study when a formula is independent
of a variable), and more generally, when a variable is irrelevant in a formula
relativized to a KB (that is, in the models of the own KB).

We will say that a variable p is irrelevant in a formula F (or F is
independent of p) if F is equivalent to a formula in which p does not occur.
This concept can be generalized to a set of variables in the natural way, and
it can be proved that a F formula is independent of a set of variables X if
and only if F is independent from each variable of X (see [26]). In this paper
also remarks the following result:
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Proposition 6.1. The following conditions are equivalent:

1. F is independent from x

2. F{x/>} ≡ F{x/⊥}
3. F{x/>} ≡ F

4. F{x/⊥} ≡ F

To which we could add:

5. |= ¬ ∂
∂p

(F )

In this section we are interested in studying the notion of independence
relativized to a KB. Note that it may happen that a variable may be relevant
in a formula but not in the KB models we are working with. To distinguish
the relativized notion from the original we will use the word sensitive.

Definition 6.2. A formula F is called sensitive in p with respect to a
knowledge basis K if K 6|= F{p/¬p} ↔ F . We say that F is sensitive w.r.t.
K (or simply sensitive, if K is fixed) if F is sensitive in all its variables.

The following result habilitates the use of Gröbner basis for determining
sensitiveness (by means of ideal membership test in condition (4)) or that of
our interest, by means of ∂p-rules (condition (3)).

It is straightforward to check that:

Proposition 6.3. Let p ∈var(F ). The following conditions are equivalent:

1. F is sensitive in p with respect to a knowledge basis K

2. K ∪ { ∂
∂p

(F )} is consistent

3. sat∂[K ∪ { ∂∂p (F )}] = {>}
4. ∂xpπ(F ) /∈ JK + I2

Proof. (1) =⇒ (2): Since K 6|= F{p/¬p} ↔ F , there exists v |= K
where v |= ¬(F{p/¬p} ↔ F ), that is, v |= K ∪ { ∂

∂p
(F )}

(2) =⇒ (3) by completeness of `∂
(3) =⇒ (4): Let v |= K ∪ { ∂

∂p
(F )} (it is consistent by (3). Then

π( ∂
∂p

(F ))(ov) = 1.

Moreover π(G)(ov) = 1 for any G ∈ K hence ov ∈ JK . Therefore the
polynomial ∂

∂p
π(F ) does not belong to JK
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(4) =⇒ (1): Suppose ∂
∂xp
π(F ) /∈ Jk+I2 so there exists o ∈ V (Jk) such

that ∂
∂xp
π(F )(o) 6= 0. Then vo |= ∂

∂p
(F ) and vo |= K. Therefore K ∪ { ∂

∂p
(F )}

is consistent, so F is sensitive in p w.r.t. K.

From the definition itself it follows that Boolean derivatives can be used to
tackle the problem of sensitive arguments in implications: F is not sensitive in
p w.r.t. K iff K |= ¬ ∂

∂p
F . In this case, there exists G with var(G) =var(F ) \

{p} such that K |= F ↔ G (e.g. F{p/⊥}).

Example 6.4. Lets us consider the following consistent KB as a rule-based
system

K =



R1 : p1 → p9
R2 : p1 → p10
R3 : ¬p2 → p9
R4 : ¬p2 → p10
R5 : (p1 ∧ p7)→ p11
R6 : p3 → p7
R7 : p3 → p10
R8 : p4 → p11
R9 : p5 → p8
R10 : p6 → p9

Let us consider as a set of potential facts (potential inputs of the system)

F = {p1, . . . , p6,¬p1, . . . ,¬p6}

We will say that a rule R ∈ K is sensitive in p w.r.t. to K and a subset of
potential facts C if R is sensitive in p w.r.t. K ∪ C. Let us compute some
examples:

• R1 is sensitive in p1 w.r.t. K and the potential fact set {¬p2}.
∂

∂p1
(R1) = θ(

∂

∂x1
(1 + x1(1 + x9)) = ¬p9

and
K ∪ {¬p2} 6|= ¬p9

This condition can be checked (by using condition (3) of above proposi-
tion) showing that

[K ∪ {¬p2}, {p9}] ≡ ∂L\{p9}[K ∪ {¬p2}] = {p9} |= ¬p9
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The computation is:

* [p1p10+p1+1, p1p11p7+p1p7+1, p1p9+p1+1, p10p2+p10+p2,

p10p3+p3+1, p11p4+p4+1, p2p9+p2+p9, p2+1, p3p7+p3+1,

p5p8+p5+1, p6p9+p6+1] (projection of K ∪ {¬p2})
* [p10p2+p10+p2,p10p3+p3+1,p11p4+p4+1,p2p9+p2+p9, p2+1,

p3p7+p3+1, p5p8+p5+1,p6p9+p6+1,1] (forgetting p1)

* [p10p3+p3+1,p10,p11p4+p4+1,p3p7+p3+1,p5p8+p5+1,

p6p9+p6+1,p9,1] (forgetting p2)

* [p10,p11p4+p4+1,p5p8+p5+1,

p6p9+p6+1,p9,1] (forgetting p3)

* [p10,p5p8+p5+1,

p6p9+p6+1,p9,1] (forgetting p4)

* [p10,p6p9+p6+1,p9,1] (forgetting p5)

* [p10,p9,1] (forgetting p6)

* [p10,p9,1] (forgetting p7)

* [p10,p9,1] (forgetting p8)

* [p9,1] (forgetting p10)

* [p9,1] (forgetting p11)

• R5 is not sensitive in p1 w.r.t. the set {p4}:

∂

∂p1
(R5) = Θ(

∂

∂x1
(1 + (x1x7)(1 + x11))) = Θ(x7(1 + x11)) = p7 ∧ ¬p11

and K ∪ {p4} 6|= ∂
∂p1

(R5). In fact

[K ∪ {p4}, {p7, p11}] ≡ ∂L\{p7,p11}[K ∪ {p4}] = {p11} |= ¬
∂

∂p1
(R5)

7. Some applications

We will illustrate the usefulness of the tools presented to work on different
types of KRR-related tasks. For reasons of paper length we will only describe
two of them.
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7.1. Detecting potentially dangerous states

In [6] authors show an algebraic method for detecting potentially dan-
gerous states in a Rule Based Expert System (RBES) whose knowledge is
represented by Propositional Logic. Given K made up of rules, the idea is to
consider the potential facts that make K to infer an unwanted value (which
leads a danger or undesirable state). Formally, they specify both the set F of
potential facts (potential input literals of the RBES) and dangerous states.

Let us consider the following example, taken from the same [6], to show
that it avoids dangerous situations and K from example 6.4. Let

F = {p1, . . . , p6,¬p1, . . . ,¬p6}

and let p11 be a warning variable of a dangerous state. We know the initial
state the information {p1,¬p2}, which is a secure information because K ∪
{p1,¬p2} 6|= p11.

In this case the question is to detect which potential facts lead us to that
dangerous state, i. e. which literals r ∈ F verifying that

K ∪ {p1,¬p2} ∪ {r} |= p11

By deduction theorem it is equivalent to decide whether

K |= p1 ∧ ¬p2 ∧ r → p11

To apply Location Lemma it is sufficient to bear in mind that this will be
true if and only if

[K, {p1, . . . p6} ∪ {p11}] |= p1 ∧ ¬p2 ∧ r → p11 (††)
In this case,

K ′ = [K, {p1, . . . p6} ∪ {p11}] ≡ ∂L\({p1,...,p6,p11})[K]

In poynomial terms, this KB is represented as

J = {p1p11p3 + p1p3 + 1, p11p4 + p4 + 1, 1}

In order to use the results of this paper it suffices to use Deduction The-
orem for reducing condition (††) to

[K, {p1, . . . p6} ∪ {p11}] ∪ {p1,¬p2} |= r → p11
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Figure 5: Knowledge Base A for an espresso machine from [12]

and, by Reductio ab absurdum we have to find variables r from F such that

[K, {p1, . . . p6} ∪ {p11}] ∪ {p1,¬p2,¬p11} |= ¬r

Obviously p1, p2 do not satisfy this.

• For i = 3, 4 we have [K ′, {pi}] ≡ {¬pi} (because the polynomial pro-
jection, computed using J , is 1 + pi), so they are dangerous variables

• For i = 5, 6 we have [K ′, {pi}] ≡ {>}, (because the polynomial projec-
tion is 1), so they are not dangerous variables

7.2. Decomposing KB for context-based reasoning

This example is taken from [12]. Let us suppose we analyze the behavior
of an espresso machine whose functioning aspects are captured by the axioms
enumerated in Fig. 5. The first four axioms denote that if the machine pump
is OK and the pump is on, then the machine has a water supply. Alternately,
the machine can be filled manually, but this never happens when the pump
is on. The next four axioms denote that there is some steam if and only if
the boiler is OK and it is on and there is enough water supply. The last three
axioms denote that there is always either coffee or tea, and that steam and
coffee (or tea) result in a hot drink. Let the knowledge base for an espresso
machine described in Fig. 5. Although the example is very simple, it is very
useful to show the applicability of the paper tools. We have relied on the
cases of [12].

Authors in [12] obtain the partition described in Fig. 6. The languages
from these partitions can be used to compute conservative retractions, in
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Figure 6: Partition of Knowledge Base of Fig. 5, extracted from [12]

order to check the completeness of the refined KB obtained in the above-
mentioned paper. We compute the conservative retractions by using opera-
tors ∂p defined in this paper.

• L(A1) = {on pump, ok pump,water,man fill}. The analogous one in
our approach, [A,L(A1)], is equivalent to A1,

[A,L(A1)] =

{
ok pump ∧ on pump→ water, man fill→ water,
man fill→ ¬on pump, ¬man fill→ on pump

}
• L(A2) = {water, on boiler, ok boiler, steam}. The analogous one in

our approach, [A,L(A2)], is also equivalent A2,

[A,L(A2)] =

{
steam→ ok boiler, steam→ on boiler, steam→ water,
ok boiler ∧ on boiler ∧ water → steam

}
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• Finally L(A3) = {steam, coffee, hot drink, teabag}. The analogous
one in our approach, [A,L(A3)], is also equivalent to A3,

[A,L(A3)] =

{
coffee ∧ steam→ hot drink, coffee ∨ teabag,
steam ∧ teabag → hot drink,

}
8. Experiments

The proposal of this paper is of a general nature and is not specialized
in specific fragments of propositional logic. Nevertheless, in this section we
are going to experimentally compare saturation based on the independence
rule with saturation based on the basic rule of forgetting variables (see [16]),
which can be applied to propositional logic without syntactic restrictions,
to which we add a simplification operator (we call canonical to this rule).
We will formally see this idea in the next subsection. In adition, before
describing the experimental results, we will show in the second subsection a
refinement of the retraction to decrease the number of rule applications (for
any of them).

8.1. Canonical forgetting operator

A specific syntactic feature of the forgetting operator ∂p is that, if ∂p(F,G)
is a tautology, then ∂p(F,G) = >, and if ∂p(F,G) is inconsistent then
δp(F,G) = ⊥. This characteristic is a consequence of the pre- and post-
processing of formulas by means of polynomial translations and vice versa.
Under this translation, tautologies and inconsistencies are algebraically sim-
plified to > and ⊥ respectively. It would not be true for any forgetting
operator in general, but at least you can achieve some simplification by elim-
inating occurrences of >,⊥, producing thus only reduced formulas (with no
occurrences of > and ⊥). For this purpose we use a simplification operator:

σ : Form(L)→ Formr(L)

(where Formr(L) is the set of reduced formulas) defined as:

1. σ(s) = s if s ∈ {>,⊥}, σ(¬>) = ⊥ and σ(¬⊥) = >,

2. σ(F ) = F if ⊥, > do not occur in F , and in other case:

(a) σ(> ∧ F ) = σ(F ), σ(> ∨ F ) = >
(b) σ(⊥ ∧ F ) = ⊥ and σ(⊥ ∨ F ) = σ(F )
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(c) σ(> → F ) = σ(F ), σ(F → >) = >, σ(⊥ → F ) = > and
σ(F → ⊥) = σ(¬σ(F ))

(d) If F,G 6= >,⊥, σ(F ∗G) = σ(σ(F ) ∗ σ(G)) for ∗ ∈ {∧,∨,→} and
σ(¬F ) = σ(¬σ(F ))

For example,

σ((⊥ → p)∧(>∧q)) = σ(σ(⊥ → p)∧σ(>∧q)) = σ(σ(p)∧σ(q)) = σ(p∧q) = p∧q

It is straight to see that σ ◦ δ ≡ δ for any operator δ.

Definition 8.1. The canonical forgetting operator for a variable p is
defined as

δ0p = σ ◦ δ∗p
where

δ∗p(F,G) := (F ∧G){p/>} ∨ (F ∧G){p/⊥}

Proposition 8.2. δ0p is a forgetting operator for p

Proof. Easy by the Lifting Lemma

Example 8.3. F = p→ q and G = p ∧ r → ¬q:

δ0p(p→ q, p ∧ r → ¬q) = σ(δ∗p(p→ q, p ∧ r → ¬q)
= σ ([(p→ q) ∧ (p ∧ r → ¬q)]{p/>}∨

[(p→ q) ∧ (p ∧ r → ¬q)]{p/⊥}) =
= σ ([(> → q) ∧ (> ∧ r → ¬q)]∨

[(⊥ → q) ∧ (⊥ ∧ r → ¬q)]) =
= σ (σ[(> → q) ∧ (> ∧ r → ¬q)]∨

σ[(⊥ → q) ∧ (⊥ ∧ r → ¬q)]) =
= σ ([q ∧ (r → ¬q)] ∨ >) = >

Corollary 8.4. Let δ : Form(L) × Form(L) → Form(L \ {p}). The fol-
lowing conditions are equivalent:

1. δ is a forgetting operator for p.

2. δ ≡ δ0p
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8.2. Refining the process

In order to make the implementation of the realistic algorithms, we will
use the following result that significantly reduces the number of applications
of the variable forgetting rules in practice. Besides, using the fact that it’s
symmetrical, we can even further reduce the number of applications of the
operators:

Proposition 8.5. In above conditions

δp[K] ≡ {F : p does not occur in F} ∪ δp[{F ∈ K : p occurs in F}]

Proof. Let us denote by A the first set of formulas and by B the second one.
We just have to prove that A ∪B |= δp[K].

Let δp(F,G) be a formula of δp[K]. By symmetry, it is enough to consider
only three cases:

• p /∈ var(F ) ∪ var(G). Then A |= F ∧G ≡ δp(F,G)

• p ∈ var(G) \ var(F ). Then A ∪B |= F ∧ δp(>, G) ≡ δp(F,G)

• p ∈ var(F ) ∩ var(G). Then δp(F,G) ∈ B

8.3. Experimental results

In this section, as an illustration, we will execute variable forgetting on
a set of knowledge bases to show the efficiency of the rule proposed in this
paper with respect to the canonical rule in the processing of forgetting op-
erations (fundamentally, we will focus on the cost in space, the number of
symbols used in the representation). Each experiment has been performed
by randomly choosing some variables present in the knowledge base and or-
der on them (common for both operators) and we will progressively apply
the corresponding operators3. Below we describe the datasets and the results
obtained.

The examples are taken from the SAT Competition 2018 website4. In Fig.
7 their initial size (both in propositional logic and polynomial transformed)

3Although it is irrelevant to calculate the size of the knowledge bases, to estimate the
time we have used a MacBook Air with a 1.6 GHz Intel Core i5 processor and 8 GB 1600
MHz DDR3 memory. The operating system is macOS High Sierra 10.13.5

4http://sat2018.forsyte.tuwien.ac.at
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Name Size Size seconds Space (bytes) seconds Space (bytes)
form. pol. Can. rule Can. Indep. Indep.

mp1-bsat180-648 14715 18176 6.86 1,417,335,160 3.94 1,407,227,832
unsat250 24746 31800 74.60 26,453,571,424 0.92 864,549,664
mp1-squ any s09x07 c27 bail UNS 36619 60318 410.87 81,535,687,624 5.24 1,706,513,448
g2-modgen-n200-m90860q08c40-13698 236112 319913 31.55 16,500,421,928 6.58 5,153,583,936
mp1-klieber2017s-1000-023-eq 351346 416531 out of time – 518.07 426,862,970,928
mp1-tri ali s11 c35 bail UNS 37606 43493 4.34 1,510,720,256 0.48 498,118,016
mp1-Nb5T06 211656 252250 75.89 38,378,129,872 1.03 1,858,302,896

Figure 7: SAT instances used in the experiments: size (both formula and polynomial
representation) and total cost using both rules

is shown. The total time used in each dataset experiment (i.e. in the ap-
plication of all the corresponding operators chosen for that experiment) for
both the proposed and the canonical operator is also shown. In the follow-
ing tables the results of the progressive implementation of the operators are
shown.

mp1-bsat180-648

2 4 6 8 10

1

2

3

·105

Canonical

Indep. rule

Size of KB Size of KB
Step (Indep.

(canonical) rule)
1 15428 19757
2 16900 20876
3 25131 21866
4 26839 23516
5 34908 24612
6 36735 29269
7 54530 33490
8 55231 34985
9 57073 47857
10 169330 59215
11 384996 60313
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unsat250

2 4 6 8 10

2

4

6

8

·105

Canonical

Indep. rule

Size of KB Size of KB
Step (Indep.

(canonical) rule)
1 26280 34091
2 28906 35443
3 34141 35891
4 68952 37731
5 191069 39242
6 193949 40393
7 200293 54677
8 214468 56846
9 231861 61119
10 407926 62330
11 939192 64986

mp1-squ any s09x07 c27 bail UNS

2 4 6 8 10

2

4

6

8

·105

Canonical

Indep. rule

Size of KB Size of KB
Step (Indep.

(canonical) rule)
1 37028 62498
2 37557 64058
3 38496 63921
4 53437 66035
5 411028 65907
6 589455 67631
7 731546 67512
8 825714 68884
9 890920 68774
10 995522 69832

g2-modgen-n200-m90860q08c40-13698

2 4 6 8 10

1

2

3

·106

Canonical

Indep. rule

Size of KB Size of KB
Step (Indep.

(canonical) rule)
1 237141 321926
2 242392 326062
3 290876 327171
4 319155 332485
5 3339545 334528
6 3340602 341128
7 3346440 344213
8 3362678 348381
9 3367621 373298
10 3390750 537880

34



mp1-klieber2017s-1000-023-eq

2 3 4 5 6

2

4

6

·107

Canonical

Indep. rule

Size of KB Size of KB
Step (Indep.

(canonical) rule)
1 351346 1615542
2 1176815 28418531
3 2233525 28418518
4 7599271 28418513
5 74792215 28419039
6 out of time 28419304

mp1-tri ali s11 c35 bail UNS

2 3 4 5 6 7

0.5

1

1.5

2

·105

Canonical

Indep. rule

Size of KB Size of KB
Step (Indep.

(canonical) rule)
1 37877 44127
2 38312 44943
3 38884 44771
4 50809 44634
5 54837 48200
6 213958 48072
7 237610 51134

mp1-Nb5T06

2 4 6 8 10 12 14 16

0.5

1

1.5

2

·107

Canonical

Indep. rule

Size of KB Size of KB
Step (Indep.

(canonical) rule)
1 212003 252400
2 213563 252570
3 222107 252724
4 222446 252862
5 224030 253000
6 232858 253482
7 233189 253620
8 234797 254102
9 243909 254240
10 294441 254378
11 3975580 254516
12 3975911 254998
13 3977425 255136
14 3985776 255278
15 4033048 255760
16 7353991 255898
17 22919499 256036
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As we have observed in the experiments, despite the fact that initially
the transformation to polynomials uses slightly more space, the growth in
the size of the knowledge base representation when progressively applied by
the operators improves considerably the resources needed with respect to the
canonical operator. Note, as we have already noted, that we have compared
our operator (not restricted to a sub-language of the propositional logic) with
the non-specialized operator.

9. Conclusions and future work

As we have already mentioned in the introduction, the algebraic inter-
pretation of propositional logic represents a valuable bridge for applying al-
gebraic techniques in KRR. In this paper we have proposed a new algebraic
model to solve problems on KRR whose knowledge is represented by propo-
sitional logic. We are not concerned here about the practical computational
cost of the use of independence rule, the aim of a next paper. We focused on
its theoretical foundations and potential applications in KRR instead.

The main technique introduced in the paper is the use of a new rule
inspired in the projection of algebraic varieties and polynomial derivatives.
Also, it is justified that with Boolean derivatives is possible to determine
specific cases of conditional independence, the formula-variable independence
relativized to a KB. The tools have been used to solve questions related
with distilling KB to obtain relatively simpler KBs to solve context-based
questions.

Throughout the paper we have remarked some works related to the tools
used here. These works are driven to exploit the computation and use of
Gröbner Basis, whilst in this paper a new method is proposed (specific for
F2).

With regard to the practical complexity of the proposed method, the
application of the independence rule is reduced to the the algebraic simpli-
fication of polynomials. Its calculation appears at two levels: first in the
multiplication of Boolean polynomials (or in finite fields in general), since
the rule of independence is reduced to products, and second in the transfor-
mation of formulas into polynomials for a complete knowledge base.

With respect to the first question, the product of Boolean polynomials
is a long-studied problem, for which refined algorithms exist (see e.g. [27]).
The computational complexity of the application of the rule is irrelevant (it
consists mainly of four polynomial products) compared to the second issue,
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the translation of formulas into polynomials. Such kind of transformation has
been widely used to compile and run (using Gröbner databases) rule-based
programs, for example. The problems where the polynomial interpretation
of the formulas (rules, for example) of a KB is used are problems where the
formulas have very limited complexity. In this type of program, the num-
ber of variables that appear in a rule is very small compared to the total
number (see e.g. [28, 29, 30]). Therefore the computation of conservative
retraction is feasible with our approach. Moreover, in the context of alge-
braic interpretation of logic reasoning, the results shown in this article allow
us to replace the use of ”black box” implementations (those that use a com-
puter algebra system to compile and reason) with another also algebraic but
”white box” type, which can be verified/certified. The complexity of alge-
braic simplifications can be high when both the number of variables is large
and the number of variables that occur in each knowledge base formula is
relatively high (with respect to the size of the total set of variables). However
it is not common (nor advisable) in programming paradigms such as logical
programming (answer set or rule-based programming), DL ontologies, etc.

With respect to the use of independence rule as SAT solver, although the
rule is (refutationaly) complete, its intended use in this article is to calculate
conservative retractions, and we have not presented a SAT algorithm other
than the intuitive one (rule application saturation). In the GitHub repository
https://github.com/DanielRodCha/SAT-Pol, variants are being developed
to solve more efficiently SAT problems. With regard to the complexity of
the problem of the variable forgetting in the case of propositional logic, it
has been studied in considerable depth due to its relationship with the SAT
problem (and, in general, with problems with Boolean functions) both for
the foundations on the complete logic and for various fragments of this logic
(see e.g. [26, 31]). As we have shown in the section devoted to experiments,
computational cost of polynomials computations are irrelevant in practice,
bearing in mind that our method is nos specialized for fragments of proposi-
tional logic, since it works on the full propositional logic. That section focuses
on comparing the rule with the general rule of forgetting variables, since it
does not seem appropriate to compare our proposal with other approaches
specialized in fragments of propositional logic.

As future work we will intend to work in two complementary research
lines. On the one hand we intend to carry out the extension to many-valued
logics and their applications [4, 5, 7] as well as to tackle the knowledge for-
getting problem in modal logics [22]. If the underlying logic is many-valued,
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the algebraic varieties of the polynomial translations of the propositions do
not behave intuitively (see [1]). Therefore, we need to use an appropiate
version of the the Nullstellensatz Theorem. Also, for this research line, a
careful generalization of the concept of Boolean derivatives, with nice logical
meaning, has to be carried out [32]. On the other hand, it is possible to use
our model - in a similar way to the applications presented in the paper- for
implementing expert systems based on the knowledge of different experts as
in [9], for diagnosis (see [33]) or -in the behalf of authors- more promising
field of inconsistency management [34].
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based expert system for fibromyalgia diagnosis, Revista de la Real
Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matem-
aticas 106 (2) (2012) 443–456.

[34] J. Lang, P. Marquis, Reasoning under inconsistency: A forgetting-based
approach, Artif. Intell. 174 (12) (2010) 799 – 823.

41


	1 Introduction
	2 Background
	2.1 Propositional logic and conservative retraction
	2.2 Propositional logic and the ring F2[x]
	2.3 Translation from formulas and vice versa
	2.4 Correspondence between valuations and points in F2n
	2.5 Polynomial projection
	2.6 Propositional Logic and polynomial ideals

	3 Conservative retractions by forgetting variables
	3.1 Conservative retractions induced by forgetting operators

	4 Boolean derivatives and independence rule on polynomials
	5 Independence rule and non-clausal theorem proving
	6 Characterization sensitive implications
	7 Some applications
	7.1 Detecting potentially dangerous states
	7.2 Decomposing KB for context-based reasoning

	8 Experiments
	8.1 Canonical forgetting operator
	8.2 Refining the process
	8.3 Experimental results

	9 Conclusions and future work
	10 Acknowledgements
	11 References

