Problem

Given a measure space (Ω, Σ, μ) , denote by $L^0(\mu)$ the space of all (classes of) measurable real functions on Ω .

Let E be a Banach space and $X(\mu)$ a Banach function space (B.f.s.), i.e. a Banach space $X(\mu) \subset L^0(\mu)$ such that

 $g \in L^{0}(\mu), f \in X(\mu) \text{ and } |g| \leq |f| \Rightarrow g \in X(\mu) \text{ and } ||g||_{X(\mu)} \leq ||f||_{X(\mu)}.$ In particular $X(\mu)$ is a Banach lattice with the μ -a.e. pointwise order. Consider a linear operator $T: X(\mu) \to E$ satisfying a property (*).

Can T be extended to a larger domain in a way that the extension (still with values in E) preserves the property (*)? If that is the case, which is the largest of such domains?

Vector measure associated to T

Consider $\mathcal{R}_X = \{A \in \Sigma : \chi_A \in X(\mu)\}$ which is a δ -ring (ring closed under countable intersections) and the finitely additive set function

> $\nu_T \colon \mathcal{R}_X \longrightarrow E$ $A \longrightarrow \nu_T(A) = T(\chi_A)$

Assume T is order-w continuous, i.e.

 $0 \leq f_n \uparrow f$ in the order of $X(\mu) \Rightarrow Tf_n \to Tf$ weakly in E. Then, ν_T is a vector measure, i.e.

 $(A_n) \subset \mathcal{R}_X$ disjoint sequence with $\cup A_n \in \mathcal{R}_X \Rightarrow \nu_T(\cup A_n) = \sum \nu_T(A_n)$.

Integration with respect to ν_T

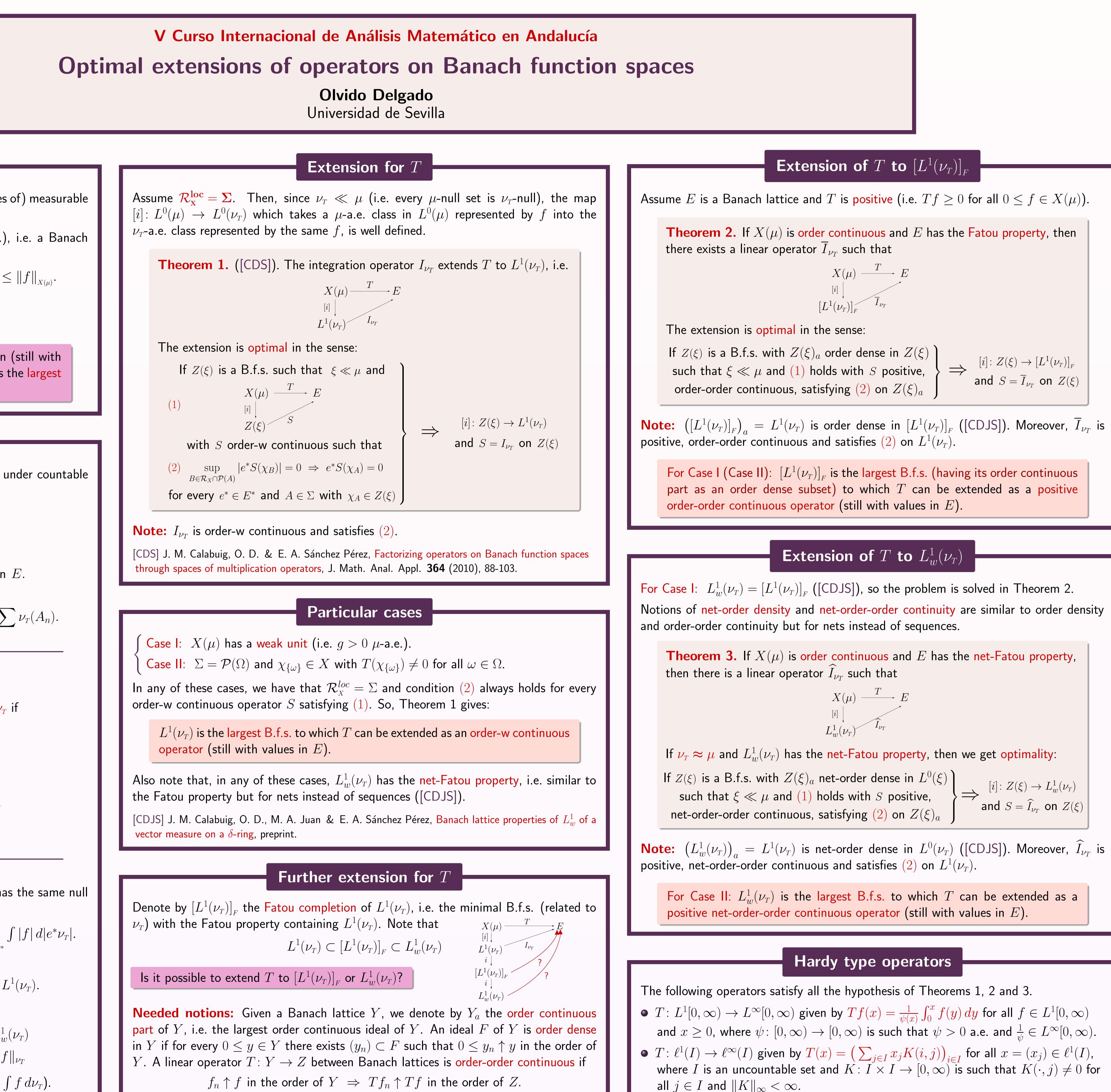
Take the σ -algebra $\mathcal{R}_{X}^{loc} = \{A \subset \Omega : A \cap B \in \mathcal{R}_{X} \text{ for all } B \in \mathcal{R}_{X}\}.$ An \mathcal{R}^{loc}_{X} -measurable function $f: \Omega \to \mathbb{R}$ is integrable with respect to ν_{T} if (i) $\int |f| d |e^* \nu_T| < \infty$ for all $e^* \in E^*$,

(ii) for each $A \in \mathcal{R}_x^{loc}$, there exists $\int_A f \, d\nu_T \in E$ such that $e^*(\int_A f d\nu_T) = \int_A f de^* \nu_T$ for all $e^* \in E^*$.

 $L^{1}(\nu_{T}) = \{\nu_{T}\text{-a.e. classes of functions } f \text{ integrable with respect to } \nu_{T}\}$ $L^1_w(\nu_T) = \{\nu_T \text{-a.e. classes of functions } f \text{ satisfying only condition (i)}\}$

Properties

- There exists a measure $\lambda \colon \mathcal{R}_x^{loc} \to [0,\infty]$ such that $\lambda \approx \nu_T$ (i.e. λ has the same null sets as ν_T). Denote $L^0(\nu_T) = L^0(\lambda)$.
- $L^1(\nu_T)$ and $L^1_w(\nu_T)$ are B.f.s.' related to λ with norm $\|f\|_{\nu_T} = \sup_{x \in D} \int |f| d| e^* \nu_T|$.
- $L^1(\nu_T)$ is order continuous, i.e. $f_n, f \in L^1(\nu_T), 0 \leq f_n \uparrow f \nu_T$ -a.e. $\Rightarrow f_n \to f$ in norm of $L^1(\nu_T)$.
- $L^1_w(\nu_T)$ has the Fatou property, i.e. $(f_n) \subset L^1_w(\nu_T), \quad 0 \le f_n \uparrow \nu_T \text{-a.e.} \\ \text{and } \sup_n \|f_n\|_{\nu_T} < \infty$ $\begin{array}{l} \Rightarrow \\ \text{and } \|f_n\|_{\nu_T} \uparrow \|f\|_{\nu_T} \\ \end{array}$
- The integration operator $I_{\nu_T}: L^1(\nu_T) \to E$ is continuous $(I_{\nu_T}(f) = \int f \, d\nu_T)$.



- $[i]\colon Z(\xi) \to [L^1(
 u_T)]_F$ \Rightarrow and $S = \overline{I}_{\nu_T}$ on $Z(\xi)$

- $\Longrightarrow \quad \stackrel{[i]: \ Z(\xi) \to L^1_w(\nu_T)}{\frown}$ and $S = \widehat{I}_{\nu_T}$ on $Z(\xi)$