
Verifying an Applicative ATP Using Multiset

Relations�

Francisco J. Mart́ın-Mateos, Jose A. Alonso, Maŕıa J. Hidalgo, and
José L. Ruiz-Reina

Departamento de Ciencias de la Computación e Inteligencia Artificial.
Facultad de Informática y Estad́ıstica, Universidad de Sevilla

Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain
{fjesus,jalonso,mjoseh,jruiz}@cica.es

Abstract. We present in this paper a formalization of multiset relations
in the ACL2 theorem prover [6], and we show how multisets can be used
to mechanically prove non-trivial termination properties. Every relation
on a set A induces a relation on finite multisets over A; it can be shown
that the multiset relation induced by a well-founded relation is also well-
founded [3]. We have carried out a mechanical proof of this property in
the ACL2 logic. This allows us to provide well-founded multiset relations
in order to prove termination of recursive functions. Once termination is
proved, the function definition is admitted as an axiom in the logic and
formal mechanized reasoning about it is possible. As a major application
of this tool, we show how multisets can be used to prove termination of
a tableaux based theorem prover for propositional logic.

Introduction

We present in this paper a formalization of multiset relations in the ACL2 system
[6], and we show how these relations can be used to prove non-trivial termina-
tion properties, providing a tool for defining relations on finite multisets and
showing that, under certain conditions, these relations are well-founded. Such
well-founded relations allows the user to provide a particular multiset measure in
order to prove termination of a recursively defined function. Termination proofs
are required by ACL2 to admit function definitions as axioms in the logic, as
a mean to avoid inconsistencies. Once a function definition is admitted, formal
mechanized reasoning about it is possible. We illustrate the use of this tool, pre-
senting the termination proof of a Common Lisp definition of a tableaux based
theorem prover for propositional logic. This allows us to verify soundness and
completeness of this prover.

ACL2 is a programming language, an applicative subset of Common Lisp.
ACL2 is also a logic designed to reason about the programs defined in the lan-
guage. And, finally, ACL2 is a mechanical theorem proving system, supporting

� This work has been supported by DGES/MEC: Projects TIC2000-1368-C03-02 and
PB96-1345



formal reasoning in the logic. The system evolved from the Boyer-Moore theorem
prover, also known as Nqthm. For an introduction to ACL2, see the tutorials in
the ACL2 web page [6]. To obtain more background on ACL2, see [5].

The ACL2 logic is a quantifier-free, first-order logic with equality, describing
an applicative subset of Common Lisp. The syntax of terms is that of Com-
mon Lisp (we will assume the reader familiar with this language). The logic
includes axioms for propositional logic and for a number of Lisp functions and
data types. Rules of inference include those for propositional calculus, equality,
instantiation and induction. By the principle of definition, new function def-
initions (using defun) are admitted as axioms only if there exists a measure
function taking values on a well-founded set, in which the arguments of each re-
cursive call decrease, ensuring in this way that no inconsistencies are introduced
by new definitions. The primitive well-founded set in the logic is the ordinal ε0.
The theory has a constructive definition of the ordinals up to ε0, in terms of
lists and natural numbers, given by the predicate e0-ordinalp and the order
e0-ord-<. For every function definition introduced by the user, ACL2 starts a
proof attempt of its termination. In some non trivial cases, the system is not
able to prove it by its own and needs help from the user. Thus, it allows the user
to provide a particular measure and a well-founded relation.

Multisets provide a powerful way to prove termination in some of these non
trivial cases. Multisets are usually defined in an informal way as “sets with
repeated elements”. Dershowitz and Manna [3] proved that every well-founded
relation on a set A induces a well-founded relation on the set of finite multisets
of elements taken from A. In the first section of this paper, we present how
we have formalized and proved this theorem using ACL2, and stated it in an
abstract way. This allows to instantiate the theorem to show well-foundedness
of concrete multiset relations. We have also developed a macro defmul in order
to easily make definitions of induced multiset relations. Besides defining the
multiset relation induced by a given relation, this macro performs a mechanical
proof, by functional instantiation, of well-foundedness of the defined multiset
relation, provided that the given relation is well-founded.

We illustrate our multiset tool, showing how it is used as part of the verifi-
cation process of a Common Lisp definition of a tableaux based theorem prover
for propositional logic. This prover is defined in the second section. In the third
section we show that the use of a well founded multiset relation is specially well
suited in the termination proof of that definition, and how our defmul tool can
assist in the automation of the proof. Once termination is proved, one can use
the ACL2 logic to reason about the prover and mechanically prove its soundness
and completeness. This case study is part of our current work on formalizing
properties of deduction systems using ACL2.

Due to the lack of space we will skip details of the mechanical proofs.
The complete files with definitions and theorems are available on the web in
http://www-cs.us.es/~fmartin/acl2-tab-prop/.



1 Formalization of Multiset Relations in ACL2

A multiset M over a set A is a function from A to the set of natural numbers.
This is a formal way to define “sets with repeated elements”. Intuitively, M(x)
is the number of copies of x ∈ A in M . This multiset is finite if there are finitely
many x such that M(x) > 0. The set of all finite multisets over A is denoted as
M(A).

Basic operations on multisets are defined to generalize the same operations
on sets, taking into account multiple occurrences of elements: x ∈ M means
M(x) > 0, M ⊆ N means M(x) ≤ N(x), for all x ∈ A, M ∪ N is the function
M +N and M \ N is the function M .− N (where x .− y is x− y if x ≥ y and 0
otherwise).

Any ordering defined on a set A induces an ordering on multisets over A:
given a multiset, a smaller multiset can be obtained by removing a non-empty
subset X and adding elements which are smaller than some element in X . This
construction can be generalized to binary relations in general, not only for partial
orderings. This is the formal definition:

Definition 1. Given a relation < on a set A, the multiset relation induced
by < on M(A), denoted as <mul, is defined as N <mul M iff there exist X, Y ∈
M(A) such that ∅ 
= X ⊆ M, N = (M \ X) ∪ Y and ∀y ∈ Y ∃x ∈ X, y < x. It
can be easily shown that if < is a strict ordering, then so is <mul. In such case
we talk about multiset orderings.

A relation < on a set A is terminating if there is no infinite decreasing1

sequence x0 > x1 > x2 . . .. An important property of multiset relations on finite
multisets is that they are terminating when the original relation is terminating,
as stated by the following theorem:

Theorem 1. (Dershowitz and Manna, [3]). Let < be a terminating relation on
a set A, and <mul the multiset relation induced by < on M(A). Then <mul is
terminating.

The above theorem provides a tool for showing termination of recursive func-
tion definitions, by using multisets: show that some multiset measure decreases
in each recursive call, comparing multisets with respect to the relation induced
by a given terminating relation. In the following subsection, we explain how we
formalized theorem 1 in the ACL2 logic.

1.1 Formalization of Well-Founded Multiset Relations in ACL2

Let us deal with formalization of terminating relations in ACL2. A restricted
notion of terminating relations is built into ACL2 based on the following meta-
theorem: a relation < on a set A is terminating iff there exists a function F :
1 Although not explicitly, we will suppose that the relations given here represent some

kind of “smaller than” relation.



A → Ord such that x < y ⇒ F (x) < F (y), where Ord is the class of all
ordinals. In this case, we also say that the relation is well-founded. Note that
we are denoting the relation on A and the ordering between ordinals using the
same symbol <. Thus, an arbitrary well-founded relation rel defined on a set
of objects satisfying a property mp (measure property) can be defined in ACL2
as shown below:

(encapsulate
((mp (x) booleanp) (rel (x y) booleanp) (fn (x) e0-ordinalp))
...
(defthm rel-well-founded-relation-on-mp
(and (implies (mp x) (e0-ordinalp (fn x)))

(implies (and (mp x) (mp y) (rel x y))
(e0-ord-< (fn x) (fn y))))

:rule-classes :well-founded-relation))

By the encapsulation mechanism (using encapsulate), the user can intro-
duce new function symbols by axioms constraining them to have certain proper-
ties (to ensure consistency, a witness local function having the same properties
has to be exhibited). Inside an encapsulate, properties stated with defthm need
to be proved for the local witnesses, and outside, those theorems work as assumed
axioms. The functions partially defined with encapsulate can be seen as second
order variables, representing functions with those properties. A derived rule of
inference, functional instantiation, allows some kind of second-order reasoning:
theorems about constrained functions can be instantiated with function symbols
known to have the same properties.

In this case, we partially define three functions mp, fn and rel, defining
a general well-founded relation in ACL2 (dots are used to omit the irrelevant
local definitions). The predicate mp recognizes the kind of objects (called mea-
sures) that are ordered in a well-founded way by rel. The embedding function
fn is an order-preserving function mapping every measure to an ordinal. Once
a relation is proved to satisfy these properties and the theorem is stored as a
well-founded relation rule, it can be used in the admissibility test for recursive
functions. We call the theorem rel-well-founded-relation-on-mp above the
well-foundedness theorem for rel, mp and fn. In ACL2, every particular well-
founded relation (except the primitive relation on ε0 ordinals) has to be given
by means of three functions (a binary relation, a measure predicate and an em-
bedding function), and the proof of the corresponding well-foundedness theorem
for such functions.

Let us now deal with formalization of multisets relations. We represent mul-
tisets in ACL2 as true lists. Given a predicate (mp x) describing a set A, finite
multisets over A are described by the following function:

(defun mp-true-listp (l)
(if (atom l)

(equal l nil)
(and (mp (car l)) (mp-true-listp (cdr l)))))



Note that this function depends on the particular definition of the predicate
mp. With this representation, different true lists can represent the same multiset:
two true lists represent the same multiset iff one is a permutation of the other.
Thus, the order in which the elements appear in a list is not relevant, but the
number of occurrences of an element is important. This must be taken into
account, for example, when defining multiset difference in ACL2 (the function
remove-one, omitted here, deletes one occurrence of an element from a list,
whenever possible):

(defun multiset-diff (m n)
(if (atom n) m (multiset-diff (remove-one (car n) m) (cdr n))))

The definition of <mul given in the preceding subsection is quite intuitive
but, due to its many quantifiers, computationally complex. Instead, we will use
a somewhat restricted definition, based on the following theorem:

Theorem 2. Let < be a strict ordering on a set A, and M, N two finite multisets
over A. Then N <mul M iff M \ N 
= ∅ and ∀n ∈ N \ M, ∃m ∈ M \ N , such
that n < m.

From the computational point of view, the main advantage of this alternative
definition is that we do not have to search the multisets X and Y of the original
definition because we can take M \ N and N \ M , respectively. It should be
remarked that this equivalence is true only when < is a strict partial ordering.
Anyway, this is not a severe restriction. Moreover, well-foundedness of <mul also
holds when this restricted definition is used, even if the relation < is not transi-
tive, as we will see. Thus, given a defined (or constrained) binary relation rel,
we define the induced relation on multisets based on this alternative definition:

(defun exists-rel-bigger (x l)
(cond ((atom l) nil)

((rel x (car l)) t)
(t (exists-rel-bigger x (cdr l)))))

(defun forall-exists-rel-bigger (l m)
(if (atom l)

t
(and (exists-rel-bigger (car l) m)

(forall-exists-rel-bigger (cdr l) m))))

(defun mul-rel (n m)
(let ((m-n (multiset-diff m n))

(n-m (multiset-diff n m)))
(and (consp m-n) (forall-exists-rel-bigger n-m m-n))))

Finally, let us see how we can formalize in the ACL2 logic the theorem 1
above, which states well-foundedness of the relation mul-rel. As said before, in



order to establish well-foundedness of a relation in ACL2, in addition to the re-
lation (mul-rel in this case), we have to provide the measure predicate and the
embedding function, and then prove the corresponding well-foundedness theo-
rem. Since mul-rel is intended to be defined on multisets of elements satisfying
mp, then mp-true-listp is the measure predicate in this case. Let us suppose we
have defined a suitable embedding function called map-fn-e0-ord. Then theo-
rem 1 is formalized as follows:

(defthm multiset-extension-of-rel-well-founded
(and (implies (mp-true-listp x)

(e0-ordinalp (map-fn-e0-ord x)))
(implies (and (mp-true-listp x)

(mp-true-listp y)
(mul-rel x y))

(e0-ord-< (map-fn-e0-ord x) (map-fn-e0-ord y))))
:rule-classes :well-founded-relation)

The command defthm starts a proof attempt in ACL2. The theorem prover
is automatic in the sense that once defthm is invoked, the user can no longer
interact with the system. However, the user can guide the prover by adding
previous lemmas and definitions, in order to carry out a formal proof based on a
preconceived hand proof. In the following, we present a suitable definition for the
embedding function map-fn-e0-ord and the proof sketch we followed to obtain
a mechanical proof of the above theorem.

1.2 A Proof of Well-Foundedness of the Multiset Relation

In the literature (for example [3]) Theorem 1 is usually proved using König’s
lemma: every infinite and finitely branched tree has an infinite path. Neverthe-
less, we have to find a different proof (and more constructive) in ACL2, defining
an order-preserving embedding function map-fn-e0-ord from mp-true-listp
objects to e0-ordinalp objects. Thus, our proof is based on the following re-
sult from ordinal theory: given an ordinal γ, the set M(γ) of finite multisets of
elements of γ, ordered by the multiset relation induced by the order between
ordinals, is order-isomorphic to the ordinal ωγ and the isomorphism is given by
the function H where H({β1, . . . , βn}) = ωβ1 + . . . + ωβn . This result can be
proved using Cantor’s normal form of ordinals and its properties.

The isomorphismH above suggests the following definition of the embedding
function map-fn-e0-ord: given a multiset of elements satisfying mp, apply fn
to every element to obtain a multiset of ordinals. Then apply H to obtain an
ordinal less than ε0. If ordinals are represented in ACL2 notation (see [5]), then
the function H can be easily defined, provided that the function fn returns
always a non-zero ordinal: the function H simply has to sort the ordinals in
the multiset and add 0 as the final cdr. These considerations lead us to the
following definition of the embedding function map-fn-e0-ord. Note that the
non-zero restriction on fn is easily overcome, defining (the macro) fn1 equal



to fn except for integers, where 1 is added. In this way fn1 returns non-zero
ordinals for every measure object and it is order-preserving if and only if fn is.

(defun insert-e0-ord-< (x l)
(cond ((atom l) (cons x l))

((not (e0-ord-< x (car l))) (cons x l))
(t (cons (car l) (insert-e0-ord-< x (cdr l))))))

(defun add1-if-integer (x) (if (integerp x) (1+ x) x))

(defmacro fn1 (x) ‘(add1-if-integer (fn ,x)))

(defun map-fn-e0-ord (l)
(if (consp l)

(insert-e0-ord-< (fn1 (car l)) (map-fn-e0-ord (cdr l)))
0))

Once map-fn-e0-ord has been defined, let us now deal with the ACL2 me-
chanical proof of the well-foundedness theorem for mul-rel, mp-true-listp
and map-fn-e0-ord as stated at the end of subsection 1.1. The first part of
the theorem, which establishes that (map-fn-e0-ord x) is an ordinal when
(mp-true-listp x), it is not difficult, and can be proved in ACL2 with minor
help form the user. The hard part of the theorem is to show that map-fn-e0-ord
is order-preserving. Here is an informal proof sketch:

Proof sketch:
Let us denote, for simplicity, the functions fn1 and map-fn-e0-ord, as f

and fmul, and the relation rel, mul-rel and e0-ord-< as <rel, <mul and <,
respectively. LetM and N be two multisets of mp elements such that N <mul M .
We have to prove that fmul(N) < fmul(M). We can apply induction on the
number of elements of N . Note that M can not be empty, and if N is empty the
result trivially holds. So let us suppose that M and N are not empty. Let f(x),
f(y) be the biggest elements of f [N ] and f [M ], respectively. Note that f(x) and
f(y) are the car elements of fmul(N) and fmul(M), respectively. Since f(x) and
f(y) are ordinals, three cases may arise:

1. f(x) < f(y). Then, by definition of <, we have fmul(N) < fmul(M).
2. f(x) > f(y). This is not possible: in that case x is in N \ M and by the
multiset relation definition, exists z in M \ N such that x <rel z. Con-
sequently f(z) > f(x) > f(y). This contradicts the fact that f(y) is the
biggest element of f [M ].

3. f(x) = f(y). In that case, x ∈ M , since otherwise it would exist z ∈ M \ N
such that x <rel z and the same contradiction as in the previous case ap-
pears. Let M ′ = M \ {x} and N ′ = N \ {x}. We have N ′ <mul M ′ and, in
addition, fmul(N ′) and fmul(M ′) are the cdr of fmul(N) and fmul(M),
respectively. Induction hypothesis can be applied here to conclude that
fmul(N ′) < fmul(M ′) and therefore fmul(N) < fmul(M). ��



We carried out this proof in ACL2. The proof effort was not trivial: lemmas
to handle each of the cases generated by the above induction scheme have to
be proved, obtaining a mechanical proof very close to the previous proof sketch.
See the book multiset.lisp in the web page for details about the mechanical
proof.

Well-foundedness of mul-rel has been proved in an abstract framework,
without assuming any particular properties of rel, mp and fn, except those
concerning well-foundedness. This allows us to functionally instantiate the the-
orem in order to establish well-foundedness of the multiset relation induced by
any given well-founded ACL2 relation. We defined a macro defmul in order to
mechanize this process of functional instantiation, providing a convenient way
to define the multiset relation induced by a given well-founded relation and to
declare the corresponding well-founded relation rule. The following section de-
scribes the defmul macro.

1.3 The defmul Macro

Let us suppose we have a previously defined relation my-rel, which is known to
be well-founded on a set of objects satisfying the measure property my-mp and
justified by the embedding function my-fn. That is to say, the following theorem,
using variables x and y, has been proved (and stored as a well-founded relation
rule):

(defthm theorem-name

(and (implies (my-mp x) (e0-ordinalp (my-fn x)))
(implies (and (my-mp x) (my-mp y) (my-rel x y))

(e0-ord-< (my-fn x) (my-fn y))))
:rule-classes :well-founded-relation))

In order to define the (well-founded) multiset relation induced by my-rel,
we simply write the following macro call:

(defmul (my-rel theorem-name my-mp my-fn x y))

The expansion of this macro generate a number of ACL2 events. After the
above call to defmul, the function mul-my-rel is defined as a well-founded
relation on multisets of elements satisfying the property my-mp, induced by the
well-founded relation my-rel, and a proof of the corresponding well-foundedness
theorem is carried out, without assistance from the user. From this moment on,
mul-my-rel can be used in the admissibility test for recursive functions to show
that the recursion terminates.

2 An Applicative ATP for Propositional Logic

We illustrate the use of the defmul tool with a case study: the formal verification
of an applicative Common Lisp definition of a tableaux based theorem prover for
propositional logic. In this section, we present an ACL2 function implementing



the prover; as we will see, termination of this function is not trivial. In the next
section we sketch a termination proof in ACL2 using well-founded multisets
relations. To build the theorem prover, we closely follow the approach given by
M. Fitting in [4].

2.1 Formalization of Propositional Logic and Uniform Notation

We explain now how we have represented propositional formulas in ACL2. Any
ACL2 symbol (recognized by the ACL2 function symbolp) will represent a propo-
sitional symbol. We represent propositional formulas in prefix notation, using
lists. The propositional connectives considered are the usual: negation (¬), con-
junction (∧), disjunction (∨), implication (→) and equivalence (↔). If a list
represents a propositional formula, its first element is a logic connective, and the
rest are the arguments. The following function propositional-p recognize those
ACL2 objects representing propositional formulas. The functions arg1 and arg2
obtain, respectively, the first and the second argument of a formula, if they ex-
ist. There are three kinds of propositional formulas: atomic, monary and binary
formulas. The functions atomic-p, monary-p and binary-p to identify these
formulas. We omit here all these auxiliary functions.

(defun propositional-p (x)
(cond ((monary-p x) (propositional-p (arg1 x)))

((binary-p x) (and (propositional-p (arg1 x))
(propositional-p (arg2 x))))

(t (atomic-p x))))

Notwithstanding, we will adopt the uniform notation approach (see [4]) to
deal with the recursive structure of propositional formulas. We classify propo-
sitional formulas with the form (X ◦ Y ) and ¬(X ◦ Y ) in two categories: those
having a conjunctive behaviour, called α-formulas, and those having a disjunc-
tive behaviour, called β-formulas. Each α-formula and β-formula has two com-
ponents, α1 and α2 for the α-formulas and, β1 and β2 for the β-formulas. The
classification and components are given in the following tables:

α α1 α2

X ∧ Y X Y
¬(X ∨ Y ) ¬X ¬Y
¬(X → Y ) X ¬Y

β β1 β2

X ∨ Y X Y
¬(X ∧ Y ) ¬X ¬Y
X → Y ¬X Y
X ↔ Y X ∧ Y ¬X ∧ ¬Y

¬(X ↔ Y ) X ∧ ¬Y ¬X ∧ Y

We define the functions alpha-formula and beta-formula in order to dis-
tinguish these two kinds of formulas. To access to their components, we define
the functions component-1 (to obtain α1 or β1) and component-2 (to obtain
α2 and β2). There are also formulas neither conjunctive nor disjunctive: the
double negations and the literals. We define the functions double-negation
and literal-p to recognize them. The component of a double negation ¬¬Y ,



is the formula Y . We define the function component-double-neg to build the
component of a double negation. We omit all these definitions here.

The following theorem is a key lemma, needed to classify propositional for-
mulas using the uniform notation. This result gives a new perspective of the
concept propositional-p and then, a new way of defining functions by recur-
sion on formulas:

(defthm uniform-definition-of-propositional-p
(iff (propositional-p F)

(or (alpha-formula F)
(beta-formula F)
(double-negation F)
(literal-p F))))

2.2 Semantic Tableau as Rules of Transformation

The semantic tableau method is a refutation system. To prove the validity of a
formula X , we start with ¬X until we eventually generate a contradiction. From
a constructive point of view, the method works with a set of formulas and tries
to build a model of that set. If it is not possible to build a model for the formula
¬X , then X is valid.

Given a finite tree T , with its nodes labeled with propositional formulas, the
method of semantic tableau selects a branch θ and a non-literal formula X in θ.
If X is ¬¬Y , then the branch θ is extended adding a new node labeled with Y . If
X is an α-formula, then the branch θ is extended adding two nodes labeled with
the components α1 and α2 of the original formula. If X is a β-formula, then the
branch θ is extended adding two branches at the end, each of them with a node
labeled with the components β1 and β2 of the selected formula. If we denote
the result as T ∗, we say that T ∗ is obtained from T using a tableau expansion
rule. If a branch does not have non-literal formulas, we can not apply the above
process. If a branch have two complementary formulas we say that the branch
is closed.

A tableau for a set of formulas, {A1, . . . , An}, is the one branch tree with n
nodes labeled with A1, . . . , An, or any tree T ∗ obtained from a tableau for the
set of formulas {A1, . . . , An}, using a tableau expansion rule. It can be proved
that a propositional formula X is valid if and only if there exists a tableau for
{¬X} with all its branches closed.

To define a function in ACL2 implementing the semantic tableau method,
we have to decide how to represent a tableau. This decision can affect on how
the function is defined later. A tableau can be seen as a list of branches, and
a branch as a list of formulas. In this way, the function that implements the
semantic tableau method has to work recursively; that is, it takes a branch,
apply it a tableau expansion rule and replace the original for the new one. If
the branch considered is closed, it will be discarded and another branch will be
analyzed.



This is a recursive process that works on branches: we begin with a branch θ.
If θ is closed, we have finished the process successfully. Otherwise, a non-literal
formula X is selected from θ. If X is ¬¬Y , Y is added to θ and the process
will be applied again to it. If X is a α-formula, the components α1 and α2 will
be added to θ and the process will be applied again to it. If X is a β-formula,
two new branches are built: θ1 adding the component β1 to θ and θ2 adding the
component β2 to θ. The process is applied to θ1, and, if it succeeds, it will be
applied to θ2. If any of them does not succeed, the process on the original branch
θ does not succeed.

In the process described above a non-literal and non-expanded formula must
be chosen every time an expansion rule is to be applied. If the formula chosen
has been expanded before, then the new branch generated by the process will
have repetitions. To avoid this we can mark the expanded formulas or we can
eliminate them. We use the second option to simplify the function definition: this
is possible because in the tableau method for propositional logic the formulas
are used only once.

Therefore, we can define the function associated with the method of semantic
tableau, as a function that works with a list of formulas. This function builds new
lists from the initial list of formulas, and recursively applies the same process to
them. Thus, it can be seen as a transformation system, specified by a set of rules
acting on a set of formulas. This kind of rule-based point of view is common
to others provers based on transformations acting on set of formulas. The rules
used in this case are the following:

1. Double negation rule:

{F1, . . . , Fi−1,¬¬G, Fi+1, . . . , Fn} st=⇒ {F1, . . . , Fi−1, G, Fi+1, . . . , Fn}
2. α-formula rule:

{F1, . . . , Fi−1, α, Fi+1, . . . , Fn} st=⇒ {F1, . . . , Fi−1, α1, α2, Fi+1, . . . , Fn}
3. β-formula rule:

{F1, . . . , Fi−1, β, Fi+1, . . . , Fn} st=⇒ {F1, . . . , Fi−1, β1, Fi+1, . . . , Fn}

{F1, . . . , Fi−1, β, Fi+1, . . . , Fn} st=⇒ {F1, . . . , Fi−1, β2, Fi+1, . . . , Fn}

2.3 ACL2 Definition of a Semantic Tableau Prover

Based on the above considerations, our ACL2 implementation of a tableau based
theorem prover receives as argument a list of formulas that represents a branch of
the tableau. If this branch is not closed, a selection function chooses a non-literal
formula. The tableau expansion rules are applied to this formula, generating new
branches. The function is recursively applied to these new branches. With this
idea, we define the ACL2 function closed-tableau, implementing the tableau
method for propositional logic:



(defun closed-tableau (S)
(declare (xargs :mode :program))
(cond ((endp S) nil)

((closed S) t)
(t (let ((F (selection S)))

(cond ((double-negation F)
(closed-tableau (add (component-double-neg F)

(remove-one F S))))
((alpha-formula F)
(closed-tableau (add (component-1 F)

(add (component-2 F)
(remove-one F S)))))

((beta-formula F)
(and (closed-tableau (add (component-1 F)

(remove-one F S)))
(closed-tableau (add (component-2 F)

(remove-one F S)))))
(t nil))))))

Several remarks are due about this definition. First, note that to implement
the control of this process we need a selection function, which determines the
chosen formula and, consequently, the expansion rule to apply. For this purpose,
we consider a function named selection (definition omitted) that receives a list
of formulas as an argument and returns the first non-literal formula from that
list, whenever there exists such formula. Nevertheless, we could have used any
function with the following properties:

1. If the argument of selection is a list with some non-literal formula, then
the function returns a non-literal formula from that list.

2. If the argument of selection is a list of literal formulas, then the function
returns nil.

This function can be executed on every compliant Common Lisp implemen-
tation. For example, we have checked the validity of some Urquhart formulas
obtaining the following time results:

N 6 8 10 12 14
time (msec) 130 840 5270 29380 156200

One of the base cases of this recursive function appears when the branch has
two complementary formulas. In such case we recognize the branch as closed. The
function closed, omitted here, checks if a list has two complementary formulas.
For the recursive calls, we have to build new branches by replacing the non-
literal formula chosen with its components. We define the function add to add
one formula to a branch avoiding repetitions.



3 Termination of closed-tableau

The definition of closed-tableau is not admitted immediately as an axiom
in the ACL2 logic, since the default heuristics of the prover are not able to
prove its termination. The termination proof of this function is not trivial: note
the different behaviour of the recursive calls for α-formulas and β-formulas; in
particular, the α expansion rule obtains a larger set of formulas.

The declaration (xargs :mode :program) forces ACL2 to accept this defi-
nition without proving its termination. A function definition in :program mode
is not included as an axiom of the logic (and therefore reasoning about it is
not possible) until its termination is proved. Thus, a suitable measure and well-
founded relation has still to be explicitly given to the prover. We will use a
multiset relation for that purpose, as we explain now.

We can define a measure on formulas, related to the uniform notation, en-
suring that the measure of the components of an α-formula, β-formula or double
negation, are smaller than the measure of the original formula. We extend the
measure given on [1] to include equivalences:

Definition 2. The uniform measure of a propositional formula X is given by
the function µ:

1. If X is atomic, µ(X) = 0
2. If X = ¬Y , µ(X) = 1 + µ(Y )
3. If X = Y1 ◦ Y2, with ◦ distinct of equivalence, µ(X) = 2 + µ(Y1) + µ(Y2)
4. If X = Y1 ↔ Y2, µ(X) = 5 + µ(Y1) + µ(Y2)

We can easily implement the measure µ in ACL2, defining a function uni-
form-measure, omitted here. The main property of this uniform measure is that
it decreases on the components of compound formulas. For example, the property
for α-formulas is showed below (analogous properties for double negation and
beta formulas are established):

(defthm uniform-measure-alpha-formula-decreases
(implies (alpha-formula F)
(and (< (uniform-measure (component-1 F))

(uniform-measure F))
(< (uniform-measure (component-2 F))

(uniform-measure F)))))

Now we can define a suitable measure for the termination of the function
closed-tableau. Recall that the argument of this function is a list of formulas,
representing a branch of a tableau. The idea is to measure this argument by
the list of the uniform measures of each of its formulas. The following function
defines this measure:

(defun branch-uniform-measure (branch)
(cond ((endp branch) nil)

(t (cons (uniform-measure (car branch))
(branch-uniform-measure (cdr branch)))))



Note that this measure can be seen as a multiset of ordinals (natural num-
bers). Thus, the multiset relation induced by e0-ord-< on multisets of ordinals
is a well-founded relation that can be used as the well-founded relation needed
to justify termination of closed-tableau. We simply make this defmul call to
define in ACL2 the intended multiset well-founded relation:

(defmul (e0-ord-< nil e0-ordinalp e0-ord-<-fn nil nil))

After this defmul call, the function mul-e0-ord-< is automatically defined
and proved to be well-founded over multisets of ordinals. We can now verify
the termination of the function closed-tableau, providing the measure of the
arguments and the well-founded relation:

(verify-termination closed-tableau
(declare (xargs :measure (branch-uniform-measure S)

:well-founded-relation mul-e0-ord-<)))

This call to verify-termination generates a proof attempt to show that
the measure branch-uniform-measure decreases (w.r.t the multiset relation
mul-e0-ord-<) in every recursive call of the function closed-tableau. With
the help of some previous lemmas, this proof can be successfully completed in
ACL2 (see the web page for details) and the function definition is admitted as
an axiom in the logic. This allows formal reasoning about it.

For example, we can define a function to check the validity of a formula,
calling the function closed-tableau on the list built with the negation of the
original formula:

(defun tableau-valid-p (F)
(closed-tableau (list (negation F))))

A formal verification of this function is now possible. For example, we can
prove in ACL2 the soundness and completeness theorem (see [4]) for this tableau
based theorem prover, following the lines of a previous verification work of Boyer
and Moore [2], where a tautology checker based on binary decision diagrams is
formally verified using Nqthm. Nevertheless, we do not discuss this issue here,
since we are concentrating on termination aspects and how multiset relations
can help in the task of proving it.

4 Conclusions

We have presented a formalization of multiset relations in ACL2, showing how
they can be used as a tool for proving non-trivial termination properties of re-
cursive functions in ACL2. We have defined the multiset relation induced by a
given relation and proved a theorem establishing well-foundedness of the mul-
tiset relation induced by a well-founded relation. This theorem is formulated
in an abstract way, so that functional instantiation can be used to prove well-
foundedness of concrete multiset relations. We also presented a macro named



defmul, implemented to provide a convenient tool to define these concrete mul-
tiset well-founded relation.

We initially presented this tool in [8], where we successfully used it to prove
several non-trivial termination properties: a tail-recursive version of Ackermann’s
function, a definition of McCarthy’s 91 function and a proof of Newman’s lemma
for abstract reductions. In this paper we present how this tool can be applied to
prove termination of an applicative Common Lisp definition of a tableau-based
theorem prover. Proving termination allows us to formally verify the intended
properties of the function, namely its soundness and completeness. One inter-
esting aspect of ACL2 is that the functions verified are defined in an applicative
subset of Common Lisp, and (under some conditions) they can be executed in
any interpreter of that language.

Proving theorems in ACL2 is not a trivial task. A typical proof effort consists
of formalizing the problem, and guiding the prover to a preconceived hand proof,
by decomposing the proof into intermediate lemmas. If one lemma is not proved
in a first attempt, then additional lemmas are often needed, as suggested by
inspecting the failed proof. See the web page for a detailed description of the
proofs presented in this paper.

The work presented in the second section is part of the ambitious project
of providing a mechanically verified set of automated reasoning algorithms for
some logics. We have begun with propositional logic and a well-known automated
theorem proving technique, semantic tableau. We have seen that the multiset tool
plays an unexpected role in the termination proof. This work can be extended
to others ATP’s for this logic, others logics (first order, equational [7], modal,
...) and applications based on these logics; we think that the multiset tool will
be important to develop this project.

References

1. Ben-Ari, M. Mathematical Logic for Computer Science. Prentice Hall, 1993.
2. Boyer, R., and Moore, J S. A Computational Logic. Academic Press, 1979.
3. Dershowitz, N., and Manna, Z. Proving termination with multiset orderings.

In Annual International Colloquium on Automata, Languages and Programming
(1979), no. 71 in LNCS, Springer-Verlag, pp. 188–202.

4. Fitting, M.C. First-Order Logic and Automated Theorem Proving, 2nd edition.
Springer-Verlag, New York, 1996.

5. Kaufmann, M., Manolios, P., and Moore, J S. Computer-Aided Reasoning:
An Approach. Kluwer Academic Publishers, 2000.

6. Kaufmann, M., and Moore, J S. ACL2 version 2.5. http://www.cs.utexas.edu
/users/moore/acl2/.

7. Ruiz-Reina, J.L., Alonso, J.A., Hidalgo, M.J., and Mart́ın, F.J. Formalizing
rewriting in the ACL2 theorem prover. In Proceedings of AISC’2000 (Fifth Inter-
national Conference Artificial Intelligence and Symbolic Computation), no. 1930 in
LNAI, Springer-Verlag, pp. 92–106.

8. Ruiz-Reina, J.L., Alonso, J.A., Hidalgo, M.J., and Mart́ın, F.J. Multiset
Relations: a Tool for Proving Termination. In ACL2 Workshop 2000 Proceedings,
Technical Report, TR–00–29 Computer Science Departament, University of Texas.


	Formalization of Multiset Relations in ACL2
	Formalization of Well-Founded Multiset Relations in ACL2
	A Proof of Well-Foundedness of the Multiset Relation
	The {tt defmul} Macro

	An Applicative ATP for Propositional Logic
	Formalization of Propositional Logic and Uniform Notation
	Semantic Tableau as Rules of Transformation
	ACL2 Definition of a Semantic Tableau Prover

	Termination of {tt closed-tableau}
	Conclusions

