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Abstract

We describe a method that permits the user of a mechanized mathematical logic to write

elegant logical definitions while allowing sound and efficient execution. In particular, the

features supporting this method allow the user to install, in a logically sound way, alternative

executable counterparts for logically defined functions. These alternatives are often much

more efficient than the logically equivalent terms they replace. These features have been

implemented in the ACL2 theorem prover, and we discuss several applications of the features

in ACL2.
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1 Introduction

This paper is about a way to permit the functional programmer to prove efficient

programs correct. The idea is to allow the provision of two definitions of the

program: an elegant definition that supports effective reasoning by a mechanized

theorem prover, and an efficient definition for evaluation. A bridge of this sort,

between clear logical specifications and efficient execution methods, is sometimes

called “semantic attachment” of the executable code to the logical specification.

We describe an approach that has been implemented to support provably correct

semantic attachment of efficient code within the framework of the ACL2 theorem

prover. ACL2 is a logic based on functional Common Lisp (Steele, 1990). The logic

is supported by a mechanized theorem proving environment in the Boyer–Moore

tradition (Boyer & Moore, 1997). The acronym ACL2 stands for “A Computational

Logic for Applicative Common Lisp.” ACL2 has been used to mechanically reason

about some of the largest commercial systems that have ever undergone formal

verification (Brock et al., 1996; Brock & Hunt, 1999; Russinoff et al., 2005).

It is perhaps surprising to see a focus on semantic attachment in the context of

ACL2 precisely because the logic is based on an efficient functional programming

language, where the “default” semantic attachment is provided by the compiler. But

logical perspicuity and execution efficiency are often at odds, as demonstrated by

numerous examples in this paper.

Despite our focus on ACL2, we believe the techniques described here are of

interest to any system that aims to support mechanized reasoning about programs

in a functional programming language. We demonstrate the feasibility of supporting

efficient reasoning about functional programs without having to give up execution

efficiency.

This paper is a reflection of the importance that the ACL2 community places

on efficient execution in the context of automated reasoning. To put our work in

context, we start the remainder of this section with a description of the history of

ACL2 focusing primarily on the need for efficient executability in industrial-strength

automated reasoning projects. We then provide a brief overview of the ACL2 logic,

its relationship with Common Lisp, and the features already implemented in the

theorem prover to support execution. We then describe what this paper is about in

greater detail.

1.1 A brief history of ACL2

We describe the history of ACL2 to make three points. First, mechanized formal

methods now have a place in the design of digital artfacts. Second, formal models

are much more valuable if they can not only be analyzed but also executed. This is a

powerful argument for the use of an axiomatically described functional programming

language supported by a mechanized theorem prover. Furthermore, industrial test

suites put severe strain on the speed and resource bounds of functional models.

Third, the starting point for this work on semantic attachment was a system already

honed by decades of focus on efficient functional execution in a logical setting.

ACL2 descends from the Boyer–Moore Pure Lisp Theorem Prover, produced in

Edinburgh in the early 1970s (Boyer & Moore, 1975). That system supported a
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first-order mathematical logic based on a tiny subset of Pure Lisp. Constants were

represented by variable-free applications of constructor functions such as cons,

and ground terms were reduced to constants via an interpreter that doubled as a

simplifier for symbolic expressions. Pressure to handle larger examples, specifically

the operational semantics of the BDX 930 flight control computer in the late

1970s (Goldberg et al., 1984), led to the abandonment of ground constructor terms

as the representation of constants and the adoption of semantically equivalent

quoted constants. At the same time, automatic semantic attachment was introduced

to enable evaluation of recursively defined functions on such constants by invoking

code produced by a translator from Boyer–Moore logic into the host Lisp and

thence into machine code by the resident compiler (Boyer & Moore, 1979, 1981,

1997). This version of the Boyer-Moore theorem prover was called Nqthm.

By the mid-1980s, the Boyer–Moore community was tackling such problems as the

first mechanically checked proof of Gödel’s incompleteness theorem (Shankar, 1994)

and the correctness of a gate-level description of an academic microprocessor (Hunt,

1994). These projects culminated in the late 1980s with the “verified stack” of

Computational Logic, Inc. (Bevier et al., 1989), a mechanically checked proof of a

hierarchy of systems with a gate-level microprocessor design at the bottom, several

simple verified high-level language applications at the top, and a verified assembler,

linker, loader, and compiler in between. By the end of the 1980s, researchers in

industry were attempting to use Nqthm to describe commercial microprocessor

design components and exploit the formal descriptions both to verify properties and

to simulate those designs by executing definitions in the Boyer–Moore logic.

In 1989, the ACL2 project was started, in part to address the executability

demands made by the community. Instead of a small home-grown Pure Lisp, the

ACL2 language extends a large subset of applicative (functional) Common Lisp.

It can be built on top of most Common Lisp implementations as of this writing,

and its compiler is the compiler of the underlying Common Lisp. Models of digital

systems written in ACL2 can be analyzed with the mechanical theorem prover and

also executed on constants. This duality has enabled industrial researchers to use

functional Common Lisp to describe designs.

An ACL2 model of a Motorola digital signal processor, which was mechanically

verified to implement a certain microcode engine, ran three times faster on industrial

test data than the previous simulation engine (Brock & Hunt, 1999). At Advanced

Micro Devices, the Register Transfer Logic (RTL) for the elementary floating-point

operations on the AMD Athlon processor1 was mechanically verified with ACL2

to be IEEE compliant. But before the modeled RTL was subjected to proof, it was

executed on more than 80 million floating-point test vectors and the results were

compared (identically) against the output of AMD’s standard simulator (Russinoff

& Flatau, 2000). Subsequently, proofs uncovered design bugs; the RTL was corrected

and verified mechanically before the processor was fabricated. At Rockwell Collins,

Greve et al. (2000) defined an ACL2 model of the microarchitectural design of the

1 AMD, the AMD logo and combinations thereof, and AMD Athlon are trademarks of Advanced
Micro Devices, Inc.
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world’s first silicon Java Virtual Machine, was used as the simulation engine and

executed at about 50% of the speed of the previously written C simulator. Liu and

Moore (2003) described another ACL2 model of the Java Virtual Machine, capable

of executing many bytecode programs and including support for multiple threads,

object creation, method resolution, dynamic class loading, and bytecode verification.

1.2 Syntax and semantics

Having motivated our interest in an axiomatically described functional program-

ming language supported by a mechanized theorem prover, we now give a brief

introduction to ACL2. Here we principally focus on the features of ACL2 that

are relevant to this paper. The reader interested in learning ACL2 is referred

to the ACL2 home page (Kaufmann & Moore, 2006), which contains extensive

hypertext documentation on the theorem prover. In addition, two previous papers

(Kaufmann & Moore, 1997, 2001) lay out the logical foundations of ACL2.

The syntax of the ACL2 logic is that of Lisp. For example, in ACL2, we write

(+ (expt 2 n) (f x)) instead of the more traditional 2n + f(x). Terms are used

instead of formulas. For example,

(implies (and (natp x) (natp y) (natp z) (natp n) (> n 2))

(not (equal (+ (expt x n) (expt y n))

(expt z n))))

is Fermat’s Theorem in ACL2 syntax. The syntax is quantifier free. Formulas may

be thought of as universally quantified on all free variables. Fermat’s Theorem may

be read “for all natural numbers x, y, z, and n > 2, xn + yn �= zn.” Case is generally

unimportant; expt, EXPT, and Expt denote the same symbol. A semicolon (;) starts

a comment for the remainder of the current line.

A commonly used data structure in Lisp is the list, which is represented as an

ordered pair, <head, tail>, or in dotted pair Lisp notation, (head . tail). The

Lisp primitive car returns the first component head of an ordered pair or list, and

cdr returns the second component tail of an ordered pair and (hence) the tail of a list.

ACL2 provides macros whereby the user can introduce new syntactic forms by

providing translators into the standard forms. Macros are functions that operate

on the list structures representing expressions. For example, (list x1x2 . . . xn) is

translated to (cons x1 (cons x2 . . . (cons xn nil). . .)) by defining list as a

macro. Similarly, cond is a macro that translates

(cond (c1 value1)

(c2 value2)

. . .

(ck valuek))

to

(if c1 value1

(if c2 value2

(. . . (if ck valuek nil) . . .))),
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which returns valuei for the least i such that ci is true (i.e., any value other than the

“false” value nil), and otherwise returns nil. The expression (let ((var1 form1)

... (vark formk)) expr) represents the value of expr in an environment where

each vari is bound to formi in parallel; and let* is similar, except that the bindings

are interpreted sequentially. The forms mv and mv-let implement multiple-valued

functions in ACL2. In particular, (mv α1 . . . αn) returns a “vector” of n values and

(mv-let (v1 . . . vn) α β) binds the variables vi to the n values returned by α and

then evaluates β. The meanings of most other Lisp primitives used in this paper

should be clear from the context.

The applicative subset of Common Lisp provides a model of the ACL2 logic.

One of the key attractions of ACL2 is that most ground expressions in the logic are

executable, in the sense that they can be reduced to constants by direct execution of

compiled code for the function definitions as opposed to, say, symbolic evaluation

via the axioms.2 This makes it possible to test ACL2 models on concrete data.

Thus, ACL2 models can serve as simulation engines and can be formally analyzed

to establish properties.

Consider the following recursive definition of a function that computes the length

of a given list. Note that defun is the ACL2 (and Lisp) command for introducing

definitions; here, we are defining lng to be a function of one argument, x, with the

indicated body.

(defun lng (x)

(if (endp x) 0 (+ 1 (lng (cdr x)))))

When such a definition is admitted to the logic, a new axiom is added; in this case:

Definitional Axiom

(equal (lng x) (if (endp x) 0 (+ 1 (lng (cdr x))))).

The so-called definitional principle requires the proof that the recursion in the

definition is well founded, which in turn establishes that there exists a unique

function satisfying the equation to be added as an axiom. The intention is that

the resulting definition provides a conservative extension of the existing theory, and

hence preserves consistency (Kaufmann & Moore, 2001). This intention explains the

purpose of such a proof obligation. For example, without this check, the following

“definition” with nonterminating recursion could be used to prove a contradiction.

(defun bad (x)

(not (bad x)))

The proof obligation for a recursive definition also establishes that all calls of the

function terminate (provided the machine has sufficient resources). ACL2 uses a

default well-founded relation and guesses an appropriate measure to be applied to

the function’s arguments that is to decrease for each recursive call, but the user is

able to override these defaults.

2 We say “most” because it is possible to introduce undefined but constrained function symbols. See
Section 4.3.
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1.3 An interactive automatic theorem prover

The ACL2 subset of Common Lisp is formalized in a set of axioms and rules

of inference that are, in turn, implemented in an automatic theorem prover. The

prover applies a variety of symbolic manipulation techniques, including rewriting

and mathematical induction. The theorem prover is automatic in the sense that no

user input is expected once a proof attempt begins.

But in a more fundamental sense, the theorem prover is interactive. Its behavior is

largely determined by the previously proved lemmas in its database at the beginning

of a proof attempt. The user essentially programs the theorem prover by stating

lemmas for it to prove, to use automatically in subsequent proofs. For example, an

equality lemma can be used as a rewrite rule, an implication concluding with an

equality can be used as a conditional rewrite rule, etc. Every lemma is tagged with

pragmatic information, describing how the lemma is to be used operationally.

The theorem prover is invoked by the user to prove lemmas and theorems. But it is

also invoked by the definitional principle, defun, to prove that a measure decreases

in recursion and to establish certain type-like conditions on definitions, discussed

further below. Thus, user guidance, in the form of appropriate lemma development,

plays a role in the definition of new functions.

In an industrial-scale proof project, thousands of lemmas might have to be proved

to lead the theorem prover to the proof of the target conjecture. However, ACL2

comes with a set of precertified “books” (files) containing hundreds of definitions

and thousands of lemmas relating many of them. The user can include any of these

books into a session to help configure the database appropriately. Commonly used

books include those on arithmetic, finite sets, and record-like data structures.

Interesting proof projects require that the user intimately understand the problem

being attacked and why the conjecture is a theorem. In short, effective users approach

the theorem prover with a proof in mind and code that proof into lemmas developed

explicitly for the conjecture, while leveraging the precertified books for background

information. The theorem prover is more like an assistant that applies and checks

the alleged proof strategy, forcing the user to confront cases that had escaped

preliminary analysis. This process is very interactive and can be time consuming.

Logs of failed proof attempts lead the user to discover new relationships and new

conditions that often lead to re-statements of the main conjecture. A successful

proof project is essentially a collaboration between the user and the theorem prover.

1.4 Guards and guard verification

A successful ACL2 definition adds a new axiom and defines (and generally compiles)

the new function symbol in the host Common Lisp. For example, the above defun

for lng is executed directly in Common Lisp. We refer to this program as the

Common Lisp counterpart of the logical definition. Because Common Lisp is a

model of the ACL2 axioms, ACL2 may exploit the Common Lisp counterpart and

the host Lisp execution engine as follows: When a ground application of the defined

symbol arises during the course of a proof or when the user submits a form to
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the ACL2 read-eval-print loop, its value under the axioms may be computed with

the Common Lisp counterpart in the host Lisp. For example, should (lng ’(1 2

3 4 5)) arise in a proof, ACL2 can use the Common Lisp counterpart of lng to

compute 5 in lieu of deriving that value by repeated reductions using instantiation

of the definitional axioms.

This simple story is complicated by the fact that not all Common Lisp functions

are defined on all inputs, but the ACL2 axioms uniquely define each primitive. For

example, the function endp is defined in Common Lisp to return t (“true”) if its

argument is the empty list, nil (“false”) if its argument is an ordered pair, and is

not defined otherwise. This allows the Common Lisp implementor to compile the

test as a very fast pointer equality (“eq”) comparison against the unique address of

the empty list. However, (endp 7) is undefined in Common Lisp; implementations

typically cause an error or, when code is compiled, may give unexpected results.

The Common Lisp standard (Steele, 1990) implicitly introduces the notion of

“intended domain” of the primitives. The intended domain for endp consists of

the ordered pairs and the empty list. ACL2 formalizes this notion with the idea

of guards. The guard of a function symbol is an expression that checks whether

the arguments are in the intended domain. It is permitted for ACL2 to invoke the

Common Lisp counterpart of a function only if the arguments have been guaranteed

to satisfy the guard.

ACL2 provides a way for the user to declare the guard of a defined function. In

particular, we could define lng as follows:

(defun lng (x)

(declare (xargs :guard (true-listp x)))

(if (endp x) 0 (+ 1 (lng (cdr x))))),

where (true-listp x) is defined to recognize true-lists, which are lists that are

terminated by the empty list, nil.

(defun true-listp (x)

(if (consp x)

(true-listp (cdr x))

(eq x nil)))

ACL2 also provides a means, called guard verification, of proving that the guards

on the input of a function ensure that all the guards in the body are satisfied. In

principle, guard verification consists of two automated steps: (a) generating the guard

conjectures, and (b) proving them to be theorems. The guard on both (endp x) and

(cdr x) is that x is either a cons pair or a nil, which we write as (cons-or-nilp

x). The guard on (+ i j) is (and (acl2-numberp i) (acl2-numberp j)). The

guard conjectures for lng are thus:

(and (implies (true-listp x)

(cons-or-nilp x)) ; from (endp x) and (cdr x)

(implies (and (true-listp x) (not (endp x)))

(true-listp (cdr x))) ; from (lng (cdr x))

(implies (and (true-listp x) (not (endp x)))
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(and (acl2-numberp 1) ; from (+ 1 (lng . . .))

(acl2-numberp (lng (cdr x))))))

These are generated and proved after the definition of lng is admitted.

Thus, when the ACL2 theorem prover encounters (lng ’(1 2 3 4 5)), it checks

that the guard for lng is satisfied, that is, (true-listp ’(1 2 3 4 5)). Since this

is true and the guards for lng have been verified, we know that all evaluation will

stay within the intended domains of all the functions involved. Thus, ACL2 is free

to invoke the Common Lisp definition of lng to compute the answer 5.

On the other hand, if ACL2 encounters (lng ’(1 2 3 4 5 . 7)), a list that

is terminated with the atom 7 instead of the empty list, the guard check fails and

ACL2 is not permitted to invoke the Common Lisp counterpart. The value of the

term is computed by other means, for example, application of the axioms during a

proof, or by an alternative “safe” Common Lisp function that performs appropriate

run-time guard and type checking at the cost of some efficiency. ACL2 defines such

a function in Common Lisp, the so-called executable counterpart.

In general, ACL2 evaluation always calls the executable counterpart to evaluate

a function call. But if the guard of the function has been verified and the call’s

arguments satisfy the function’s guard, then the executable counterpart will invoke

the more efficient Common Lisp counterpart to do the evaluation.

Note that by verifying the guards of a function, it is possible to execute code that

is free of run-time type checks, without imposing logical or syntactic restrictions.

However, we have found that it considerably simplifies the reasoning process to

keep guards out of the logic (i.e., out of the definitional axioms). For further details

about guards and guard verification, see the ACL2 online documentation available

from the ACL2 home page (Kaufmann & Moore, 2006).

Guard verification is but one of several features of ACL2 designed to allow the

efficient execution of ground terms while preserving the axiomatic semantics of the

language. Another such feature is the provision of single-threaded objects (Boyer

& Moore, 2002), which allow destructive modification of some data structures. Still

another feature, related to guards, is ACL2’s support for Common Lisp inline-type

declarations (and their proofs of correctness), which permits Common Lisp compilers

to produce more efficient code assuming the declared types for the intermediate

expressions.

1.5 What this paper is about

The novel idea in this paper is the use of proof to verify semantic attachments that

are defined by the user. We see that ACL2’s guard verification mechanism is the

vehicle that manages this proof obligation. We introduce constructs mbe (“must be

equal”) and defexec that, while simple, are powerful tools for separating logical and

execution needs. The presence of a general-purpose theorem prover allows logical

definitions and executable code to be arbitrarily different in form, where one can

use the full deductive power of the prover to relate them.

Suppose we have verified the guards of lng and encounter an application of lng

to a true-list of length 10, 000. The guard check would succeed and the Common
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Lisp counterpart would be invoked. But since it is defined recursively, we are likely

to get a stack overflow. Although the given definition of lng is mathematically

elegant, for the purpose of efficient execution, it would have been better to define it

as follows:

(defun lng (x)

(declare (xargs :guard (true-listp x)))

(lnga x 0))

where

(defun lnga (x a)

(declare (xargs :guard (and (true-listp x) (integerp a))))

(if (endp x) a (lnga (cdr x) (+ 1 a)))).

Since the function lnga is tail recursive, good Common Lisp compilers will compile

this function into a simple loop with no stack allocation on recursive function calls.

The first recursive definition of lng we presented in the paper is not tail recursive

and would cause stack allocation on each recursive call.

One of the claimed advantages of ACL2 is that models permit both execution

and formal analysis. But this presents a quandary. If we define lng so as to favor

analysis, we may make it impossible to execute on examples of interesting scale.

And if we define it to favor execution, we complicate formal proofs, perhaps quite

significantly.

This paper presents an approach that allows the ACL2 user to have it both ways.

In particular, we introduce two constructs defexec and mbe in the ACL2 theorem

prover that make it possible to write:

(defexec lng (x)

(declare (xargs :guard (true-listp x)))

(mbe :logic

(if (endp x) 0 (+ 1 (lng (cdr x))))

:exec

(lnga x 0))).

This definition incurs, in addition to normal termination and guard verification

obligations, an additional proof obligation that the Common Lisp (:exec) counter-

part will return the same answer as the logical (:logic) definition. More precisely,

the guard verification obligation is extended by this additional proof obligation.

Henceforth, when the theorem prover is reasoning about the function lng, it

will use the original, elegant definitional equation. But when ground applications

satisfying the guard arise, the tail-recursive “definition” is used (assuming that guard

verification has already been completed).

While at first glance, this may appear to be the only reason to use defexec and

mbe, we present several other contexts in this paper where the use of defexec and

mbe affords an elegant solution in ACL2. For example, one problem that arises

in the definition of some complex recursive functions is the need to introduce

additional tests for the purpose of proving that the function terminates on all values

of the parameters—a requirement for function admission in the logic—but these
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additional tests must be optimized away to permit efficient execution. Consider the

formal definition of an operational semantics for a nontrivial computing machine.

The semantics may be well defined only on states satisfying a complicated global

invariant, so that invariant must be checked in the definition to ensure admissibility.

But checking the invariant at every step of subsequent execution is prohibitively

expensive. By using the mechanisms described here, the state invariant can be

checked once and then execution on ground applications no longer does the check—

provided the “invariant” has been proved to be invariant. We illustrate this point in

Section 4.2.

1.6 Related work

Weyhrauch (1980) coined the term semantic attachment for the mechanism in the

FOL theorem prover by which the user could attach programs to logical theories.

The programs were to be partial models of the theories. Manipulation of terms

in the theories could be guided by computing with their semantic attachments.

Thus, for example, the machine integer 0 could be attached to the logical constant

function zero and the program for adding 1 to an integer could be attached to

the Peano successor function, succ. Then, properties of succ(succ(zero())) could

be computed via these attachments. In its original implementation, there was no

provision for establishing the soundness of the attachments; the motivation of the

work was to explore artificial intelligence and reasoning in particular.

Semantic attachment was an approach to the more general problem of reflection,

which has come to denote the use of computation in a metatheory to derive theorems

in a theory. Harrison (1995) provides an excellent survey of reflection.

For obvious reasons, when soundness is considered of great importance, work on

reflection (which is often computation on ground terms in a formal metatheory)

leads to the study of the relation between formal terms and the means to compute

their values. This insight on reflection has been used in Nqthm and ACL2 to

develop a notion of a program designed to compute the value of a given defined

function on explicit constants (Boyer & Moore, 1981). This program is often

referred to as the executable counterpart of the defined function; in ACL2, the

executable counterpart calls the Common Lisp counterpart when the guards have

been verified. The need to evaluate verified term transformers (“metafunctions”) on

ground constants, representing terms in the logic, has made it imperative to provide

for both the efficient representation of ground terms (e.g., ’(0 1) as the “explicit

value” of a ground term such as (cons (zero) (cons (succ (zero)) nil))) and

the efficient computation of defined functions on those values. Indeed, this is a key

facility that has permitted the Boyer–Moore provers to deal with large constants

and encouraged the development of significant work in the operational semantics of

microprocessors, virtual machines, and programming languages. These developments

have also forced the implementors of ACL2 to support the theorem prover on

Common Lisp (Steele, 1990) rather than a home-grown Pure Lisp that Nqthm

supported, thereby exploiting the advantage of diverse development environments

with efficient optimizing compilers.
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Recently, many state-of-the-art theorem provers have adopted means of efficient 
computation on ground constants. For instance, execution capabilities have been

added to Coq (Paulin-Mohring & Werner, 1993), HOL (Gordon et al., 2003),

Nuprl (Allen et al., 1990), and PVS (Shankar, 1999; Crow et al., 2001). Generally

speaking, the features described here provide the ACL2 user with finer grained con-

trol over the code that is executed to compute ground terms. This is not unexpected,

since ACL2 is more closely integrated to a production programming language than

most other theorem provers, resulting in heavier execution performance demands by

its industrial users.

Since the initial development of this paper, several ACL2 applications have used

mbe and defexec. Cowles et al. (2003) implemented fast matrix algebra operations

using mbt, which is a derivative of mbe. Matthews and Vroon (2004) also used mbt
to define an efficient machine simulator. Davis (2004) implemented efficient finite set
theory operations using mbe. Finally, a number of nontrivial applications of the mbe
and defexec are described in an expanded version of this paper that is available as a 
University of Texas Technical Report (Greve et al., 2006). These applications include 
algorithms for ordinal arithmetic and an efficient implementation of a unification 
algorithm.

1.7 Organization of this paper

The rest of this paper begins with a detailed description of the mbe and defexec
features in the next section. Sections 3 and 4 provide extensive example applications

of mbe and defexec. We conclude in Section 5.

The applications described in this paper can be broadly divided into two categories.

Section 3 presents examples in which a function’s natural definition is inefficient for

execution and needs to be replaced with a suitable alternative definition for efficiency.

Section 4 presents examples in which a natural definition is sufficient for execution,

but is ineffective for reasoning in the logic. For clarity, the examples we illustrate here

are, for the most part, pedagogical. However, as mentioned in the last paragraph of

Section 1.6, the extended technical report (Greve et al., 2006) provides many other 
nontrivial applications of mbe and defexec. We refer to this technical report as the

“TR.” While discussing examples in this paper, we often point to corresponding

more complex applications described in the TR. The TR also provides more detailed 
explanations of some of the examples presented here.

ACL2 contains input files, such as the books/defexec/ directory of the ACL2 
distribution, in support of many of the applications in this paper. The information

in this paper is intended to be consistent with those files, although we take liberties

when appropriate, for example, omitting declare forms for brevity.

2 Attaching executable counterparts: mbe and defexec

Every defined function in ACL2 is automatically given an executable counterpart

based on the definition. As mentioned in the preceding section, the executable  counterpart calls the 
Common Lisp counterpart when the guards have been verified.
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In the preceding section, we briefly introduced mbe, which allows the user to

attach alternative executable code to logic forms. In this section, we describe mbe in

some detail. We also introduce the defexec macro, which provides a way to prove

termination of executable counterparts provided by mbe. Both mbe and defexec

were introduced into Version 2.8 of ACL2 (March 2004).

We keep the description here relatively brief. For more details, we refer the reader

to the hypertext ACL2 documentation available from the ACL2 distribution and

from the ACL2 home page (Kaufmann & Moore, 2006). In particular, the mbe

documentation topic provides a link to documentation for a macro mbt (“must be

true”), which may be more convenient than mbe for some applications.

2.1 MBE

In the logic, (mbe :logic logic code :exec exec code) is equal to logic code; the

value of exec code is ignored. However, in the execution environment of the host

Lisp, it is the other way around: this form macroexpands simply to exec code.

The guard proof obligations generated for the above call of mbe are (equal

logic code exec code) together with those generated for exec code. It follows that

exec code may be evaluated in Common Lisp to yield a result, if evaluation

terminates, that is provably equal in the ACL2 logic to logic code. These proof

obligations can be easy to prove or arbitrarily hard, depending on the differences

between exec code and logic code.

We now illustrate mbe using the following definition of a list length function, lng.

This example was presented in the previous section, except that here we use defun

instead of defexec, the latter being a feature to which we return later. The function

lnga was defined in the previous section using tail recursion.

(defun lng (x)

(declare (xargs :guard (true-listp x)))

(mbe :logic

(if (endp x) 0 (+ 1 (lng (cdr x))))

:exec

(lnga x 0)))

The above definition has the logical effect of introducing the following axiom, exactly

as if the above mbe call were replaced by just its :logic part.

Definitional Axiom

(equal (lng x)

(if (endp x) 0 (+ 1 (lng (cdr x))))).

On the other hand, after guards have been verified for lng, ACL2 evaluates calls

of lng on true-list arguments by using the following definition in Common Lisp,

obtained by replacing the mbe call above by its :exec part.

(defun lng (x)

(lnga x 0))
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Guard verification for lng presents the following proof obligations:

(and (implies (true-listp x)

(true-listp x)) ; from (lnga x 0)

(implies (true-listp x)

(integerp 0)) ; from (lnga x 0)

(implies (true-listp x)

(equal (if (endp x) 0 (+ 1 (lng (cdr x))))

(lnga x 0)))) ; from the mbe call

The first two are trivial to prove. But the third, which comes from the mbe call,

requires a key lemma relating lng and lnga. This lemma cannot even be stated

until lng is admitted. Thus, the guard verification must be postponed by extending

the above declare form:

(declare (xargs :guard (true-listp x) :verify-guards nil))

After lng is admitted (without guard verification), the following key lemma can be

stated by the user and is proved automatically by induction.

(defthm lnga-is-lng

(implies (integerp n)

(equal (lnga x n)

(+ n (lng x)))))

Guard verification for lng then succeeds. After guard verification, but only then,

calls of lng in ACL2 generate corresponding calls in Common Lisp of lng, and

hence of lnga. (Before guard verification, calls of lng are evaluated by interpreting

the definitional equation derived from the :logic part of the mbe.)

2.1.1 Remarks on MBE implementation

Mbe is defined as a macro. The form (mbe :logic logic code :exec exec code)

expands in the logic to the function call (must-be-equal logic code exec code).

Indeed, the guard we have been referring to for (mbe :logic logic code :exec

exec code) is really the guard for (must-be-equal logic code exec code).

ACL2 gives special treatment to calls of must-be-equal in several places, so

that from the perspective of the ACL2 logic, the ACL2 user is unlikely to see

any difference between (mbe :logic logic code :exec exec code) and logic code.

For example, the proof obligations generated for admitting a function treat the

above mbe term simply as logic code. For those familiar with ACL2, we note that

function expansion, :use hints, :definition rules, induction schemes, termination

(admissibility) proofs, and generation of constraints for functional instantiation also

treat the above mbe call as if it were replaced by logic code. So, why not simply

define the macro mbe to expand in the logic to its :logic code? We need the call of

function must-be-equal for the generation of guard proof obligations.

Special treatment of must-be-equal is also given in creation of executable coun-

terparts, evaluation within the ACL2 logic, and signature checking when translating

to internal form. Although the idea of mbe is essentially rather straightforward, much
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care has been taken to implement this feature to keep the user view simple while

providing useful heuristics in the prover and sound implementation for the logic.

2.2 DEFEXEC

Evaluation of functions defined using mbe need not terminate, not even given

unlimited computing resources. Consider the following silly example:

(defun silly (x)

(declare (xargs :guard t))

(mbe :logic (integerp x)

:exec (silly x)))

ACL2 has no problem admitting this function. Its guard verification goes through

trivially because the mbe call generates this trivial proof obligation:

(equal (integerp x) (silly x))

However, evaluation of, say, (silly 3) causes a stack overflow, because the

Common Lisp definition of silly, using the :exec part of the above definition, is

essentially as follows:

(defun silly (x)

(silly x))

Although it can sometimes be useful to introduce functions that do not terminate on

all inputs, even of appropriate “type,” nevertheless one often prefers a termination

guarantee. We turn now to a mechanism that guarantees termination (given sufficient

time and space), even for functions that use mbe.

Definitions made with the defexec macro have the same effect for evaluation as

ordinary definitions (made with defun), but impose proof obligations that guarantee

termination of calls of their executable counterparts on their intended domains. For

example, if we use defexec instead of defun in the ACL2 definition of silly above

that calls mbe, then ACL2 will reject that definition.

Defexec has the same basic syntax as the usual ACL2 definitional command,

defun, but with a key additional requirement: the body of the definition must be

a call of mbe. Defexec then generates an additional proof obligation guaranteeing

termination of the :exec part under the assumption that the guard is true. This can

be a nontrivial requirement if the definition is recursive.

Consider the following form:

(defexec fn (x)

(declare (xargs :guard guard))

(mbe :logic logic code

:exec exec code))

In addition to the corresponding defun (where defexec above is replaced by

defun), this form generates the following local definition for the ACL2 theorem

prover. Because it is local, the definition is ignored by Common Lisp; it is only

used by the ACL2 logical engine, as described below.
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(local (defun fn (x)

(declare (xargs :verify-guards nil))

(if guard exec code nil)))

Thus, ACL2 must succeed in applying its usual termination analysis to exec code,

but where the guard is added as a hypothesis in each case. For example, if exec code

contains a recursive call of the form (fn (d x)), then ACL2 will have to prove

that (d x) is “smaller than” x in the sense of an appropriate “measure,” under

the hypothesis of guard. ACL2 provides default notions of “smaller than” and

“measure,” but these can be supplied for the exec code by way of an xargs or

exec-xargs declaration; we refer the reader to the full documentation for these and

other details.

3 Optimizing for execution

This section focuses on examples where the natural definition is modified to

achieve efficient execution. We start by considering a simple list-sorting problem

in Section 3.1; mbe and defexec allow us to use an efficient in situ quicksort for

execution and a natural insertion sort algorithm for the purpose of reasoning.

In Section 3.2, we then consider uses that optimize certain facets of functional

evaluation. The TR discusses a more nontrivial example, namely, the use of mbe to

attach efficient algorithms for ordinal arithmetic to logically elegant definitions. Both

the efficient and elegant algorithms were devised by authors Manolios and Vroon,

using a succinct representation of the ordinals up to ε0 (Manolios & Vroon, 2003,

2006). In addition, they have been integrated into the ACL2 logic and form the basis

of a powerful library of theorems for reasoning about ordinal arithmetic (Manolios

& Vroon, 2004), which is now used to prove that user-submitted function definitions

terminate.

3.1 Sorting a list

Consider the problem of sorting a list. The standard insertion sort algorithm is

simple but inefficient, whereas an in-place quicksort can be efficient but complex. In

this section, we illustrate the use of mbe to write a sorting function whose logical

definition uses the simpler algorithm and whose definition for execution uses the

more efficient algorithm.

The following simple insertion sort function serves as the logical view of sorting a

list. Here, << is a total order on the ACL2 universe (Manolios & Kaufmann, 2002).

(defun insert (e x) ; insert e into sorted list x

(if (or (endp x) (<< e (car x)))

(cons e x)

(cons (car x) (insert e (cdr x)))))

(defun isort (x) ; build up sorted list by insertion

(if (endp x) () (insert (car x) (isort (cdr x)))))
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Defining an efficient in-place quicksort requires the fast random access and fast

random (destructive) update of an array. ACL2 supports the use of efficient array

operations by the use of so-called single-threaded objects or stobjs (Boyer & Moore,

2002). Stobjs are declared by a special form defstobj, which takes a list of field

descriptors, where each field can either be a single Lisp object or a resizable array

of Lisp objects. For instance, the following declaration creates a stobj named qstor

containing a single array field objs:

(defstobj qstor (objs :type (array t (0)) :resizable t))

A defstobj introduces functions for accessing and updating the fields in the stobj

and resizing array fields. In the logic, these functions are defined as corresponding

operations on lists representing the stobj array structure. However, under the hood,

these functions perform fast array access and update operations. ACL2 imposes

syntactic restrictions on functions that operate on stobjs to guarantee that only one

reference to the stobj is ever created and that every function that modifies a stobj

returns that stobj. The restrictions ensure that execution using destructive updates

on arrays is consistent with the constructive list semantics in the logic.

Ray and Sumners (2002) present an efficient in-place implementation of quicksort

in ACL2 using stobjs, which is similar to the classical imperative implementation

of the algorithm. In particular, they define a function sort-qs that takes the above

stobj qstor and two indices lo and hi, and sorts the portion of the array in the objs

field of qstor between lo and hi (inclusive). Given this implementation, we can

define a function qsort, which implements an efficient quicksort on lists, as follows:

(defun qsort (x)

(with-local-stobj qstor

(mv-let (result qstor)

(let* ((size (length x))

(qstor (resize-array size qstor))

(qstor (load-list x 0 size qstor))

(qstor (sort-qs 0 (1- size) qstor))

(result (extract-list 0 (1- size) qstor)))

(mv result qstor)) ; must return modified stobj

result)))

The function qsort creates a “local” stobj qstor, allocates the stobj array, loads

the array with the elements of the list, calls sort-qs to sort the array recursively in

place, and finally copies the sorted array back to a list, which it then returns. The

form with-local-stobj creates a stobj locally inside a function call, freeing the

memory when the function returns.

The functions isort and quicksort are equal under the assumption that the list

being sorted is a true-list.

(defthm qsort-equivalent-to-isort

(implies (true-listp x)

(equal (qsort x)

(isort x))))
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With this theorem proven, we can now define our intended defexec function named

sort-list for sorting lists with a guard assuming that the input list is a true-list.

(defexec sort-list (x)

(declare (xargs :guard (true-listp x)))

(mbe :logic (isort x) :exec (qsort x)))

Thus, while the optimized qsort is used for execution, the simple isort function is

used for logical purposes. Using the logical definition, it is straightforward to prove

that the function does indeed sort, that is, returns an ordered permutation of its

input. To prove a theorem about sort-list, we simply prove the corresponding

theorem about isort without considering the efficient implementation. For example,

the following theorem specifies that sort-list is idempotent and is trivial to prove.

(defthm sort-list-idempotent

(equal (sort-list (sort-list x)) (sort-list x)))

The price we pay for getting both execution speed and logical elegance is the

proof of equivalence—a nontrivial one-time cost. Also, one can implement even

more efficient versions for execution purposes to handle situations when the in-place

quicksort becomes costly, for instance, by optimizing for cases when the list is almost

sorted. Mbe allows us to optimize the :exec body for these cases without affecting

the logical view of sort-list and the resulting proofs involving sort-list.
List sorting, of course, is one very trivial instance of the general approach

in which defexec is used for separation of concerns that allows the use of an 
optimized definition for execution while still making it possible to use a logically

simple definition for reasoning purposes. The approach has also been applied

to define a propositional satisfiability checker in ACL2, where the logical view

of the checker is provided by simply characterizing the notion of satisfiability

using quantification, whereas the executable definition is implemented using Binary

Decision Diagrams (Sumners, 2000).

3.2 Fine-grained optimization using defexec

We now consider another use of mbe and defexec, namely, as effective tools

for providing fine-grained optimizations. In particular, we use them to implement

function inlining, result memoization, and fast simulation of models of computing

systems in ACL2.

3.2.1 Inlined functions

Executing a function call incurs the overhead for managing a call stack that stores

the values of parameters, results, and local variables. While the penalty for a single

function call is nominal, the total cost for all of the function calls in an execution

can be substantial. Most modern compilers provide support for inlining function

calls. Inlining a function is essentially the replacement of the call of a function with

  the body of the function under a substitution of parameters.
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There is a standard approach to achieve the effect of inlining in ACL2. Consider

a nonrecursive function f whose execution suffers from the cost of the overhead of

function calls. Instead of defining this function, one can define a macro with a body

that produces the definition of f. Since a macro is expanded before logical processing

by the theorem prover or execution by the host Common Lisp, this removes the cost

of function calls for execution. However, this approach is inefficient for reasoning

in the logic because, unlike functions, macros are “syntactic sugar” to the logic. If

an algorithm is modeled as a function, then the user can prove lemmas about that

function and use them to guide proofs. On the other hand, macros are immediately

expanded when a form is processed, and thus never appear in the logic. For instance,

in the case of f above, suppose we want to define a new function g that calls f, and

assume that we want to prove a lemma L about g that does not require reasoning

about the code for f. If f were defined as a function, we could then instruct the

theorem prover not to expand its body while proving L; however, if f is a macro,

then we lose such control.

The dichotomy between the needs to inline function calls for execution and to

preserve function calls for reasoning is resolved with the use of defexec. To support

function inlining, we implement two macros: defun-inline and defun-exec. Users

use defun-inline instead of defun if they intend for the function to be inlined,

and defun-exec in place of defun otherwise. The two macros generate mbe forms,

allowing us to address both logical and execution needs.

How are the macros implemented? We first define a function exec-term that

takes a term and replaces every function call (fn ...) with (fn-exec ...). The

defun-inline and defun-exec macros called with name fn and body bdy generate

a defexec form with name fn, whose :logic definition is exactly bdy, and :exec

definition is the result of applying exec-term to bdy. The forms also generate a

macro with the name fn-exec, but in the case of defun-exec, this new macro simply

expands to a call of fn, whereas for defun-inline, it expands to the application of

exec-term to bdy.

Using defun-inline and defun-exec macros, a user can limit the cost of function

calls during execution without losing the flexibility to control term expansion during

proofs. As an example, consider the following definitions of functions foo and bar

where we wish to inline all calls of foo. Then we can write the following two

forms:

(defun-inline foo (x) (f (h x)))

(defun-exec bar (x) (foo x))

This generates the following functions and macros that achieve the intended effect

of removing the function call of foo in the execution bodies of functions that call

foo while leaving foo as a function in the logic. We assume that f and h have

already been defined using defun-inline or defun-exec.

(defun foo (x)

(mbe :logic (f (h x)) :exec (f-exec (h-exec x))))

(defmacro foo-exec (x)

(list ’f-exec (list ’h-exec x)))
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(defun bar (x)

(mbe :logic (foo x) :exec (foo-exec x)))

(defmacro bar-exec (x)

(list ’bar x))

3.2.2 Function memoization

Another common optimization encountered in functional languages is the memo-

ization of function results. Function memoization entails the efficient storage and

retrieval of the results of previous function calls and requires the ongoing access and

maintenance of a table storing previous results. For efficiency, we use a stobj named

memo-tbl to store previously computed results. The details of the implementation

of the stobj and the functions to store and retrieve results from the stobj are not

relevant to this paper. Instead, we focus on the usage of defexec in supporting

memoization through an abstraction (macro) defun-memo, which generates two

defuns along with several additional definitions and theorems to prove relevant

properties of the functions. Defun-memo, when called with argument fn, generates

a function named fn-memo that includes an additional parameter, namely, the

stobj memo-tbl. fn-memo returns the result of the computation and a memo-tbl,

which has been updated to incorporate this result if it is not found in the existing

memo-tbl using macro previous-rslt. The memo functions that are generated call

only other memo functions in order to pass the memo-tbl around to each function

that is subsequently called. We tie these memo functions with the logical definitions by

generating a defexec that creates a local memo-tbl stobj and calls the corresponding

memo function. For instance, the call (defun-memo foo (x) (f (h x))) generates

the following definitions (among many other theorems and definitions):

(defun foo-body (x memo-tbl)

(mv-let (r memo-tbl) (h-memo x memo-tbl)

(f-memo r memo-tbl)))

(defun foo-memo (x memo-tbl)

(mv-let (exists rslt) (previous-rslt (foo x) memo-tbl)

(if exists (mv rslt memo-tbl)

(mv-let (r memo-tbl) (foo-body x memo-tbl)

(let ((memo-tbl (update-rslt (foo x) r memo-tbl)))

(mv r memo-tbl))))))

(defexec foo (x)

(mbe :logic (f (h x))

:exec (with-local-stobj memo-tbl

(mv-let (rslt memo-tbl)

(foo-body x memo-tbl)

rslt))))

The function foo-body performs the evaluation of the body of foo with the

additional access and update of previously computed results in the memo-tbl. The

foo-body and foo-memo functions call other memo-tbl functions for functions that
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the user specifies for memoization. The defexec form for each function uses a local

stobj memo-tbl for the execution body, but has the desired body on the logical

side.

3.2.3 Efficient machine simulators

As a final application of defexec for providing fine-grained user control, we discuss

briefly its use for generating appropriate logical and executable definitions for a

simple simulator for computing runs of system models. For more details, see the

corresponding section in Greve et al. (2006).

We define a macro called defsimulator that takes a list of state variables

along with terms defining the next-state value for each variable. Consider the

following example in which the macro defsimulator is called to define a simple

system.

(defsimulator simple (pc ra rb)

(next-pc (cond ((and (eq (instr pc) ’bra) (= rb 0)) ra)

(t (1+ pc))))

(next-ra (cond ((eq (instr pc) ’add) (+ ra rb))

((integerp (instr pc)) (instr pc))

(t ra)))

(next-rb (cond ((eq (instr pc) ’mov) ra)

((eq (instr pc) ’cmp) (if (> ra rb) 1 0))

(t rb))))

Here (instr pc) defines some mapping from program counter values to instructions

that serves as the definition of the program that will execute on the simple system.

This example simple system has three state variables, named pc, ra, and rb. This

is a trivial processor model with a program counter pc and two registers ra and

rb. Each variable stores an integer counter value that is updated at every step to be

the value defined by evaluating the next-pc, next-ra, or next-rb term using the

current values for the state variables pc, ra, and rb. For the sake of reasoning in the

logic, we prefer to define the state variables as functions of time—where time in this

case is natural valued and specified by the parameter n. For example, the following

definition of pc is generated for the :logic code of an mbe call:

(defun pc (n)

(if (zp n) (initial-pc)

(let ((pc (pc (1- n))) (ra (ra (1- n))) (rb (rb (1- n))))

(cond ((and (eq (instr pc) ’bra) (= rb 0)) ra)

(t (1+ pc))))))

We may then define a function (machine-state n) that returns a list of the

state variables at time n: (list (pc n) (ra n) (rb n)). In systems with larger

numbers of state variables, this approach to defining state variables as functions

of n affords readable terms involving state variables and efficient, elegant reasoning

about the properties of individual state variables that only require the expansion of
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the function definitions for the state variables upon which the property depends; see

for example, Russinoff et al. (2005) for a nontrivial example. The use of functions of

time to represent the values of state variables can also be extended with additional

parameters to elegantly handle vectors and hierarchy. However, for execution it is

preferable to define a function (run-state n state-vars) that iterates for n steps,

updating an array (a field of stobj state-vars) by storing the values of the state

variables computed at each step.

The macro defsimulator creates the desired logic and executable definitions (and

proofs showing their correspondence). The final “result” of this expansion of the

defsimulator macro is the definition of machine-state given below. In the logic,

machine-state computes a simple list composed of the values of pc, ra, and rb at

time n. The execution body of machine-state includes the creation of a local stobj

and the appropriate call of run-state and accumulation of the results into a list

matching the result defined in the logic.

(defexec machine-state (n)

(mbe :logic (list (pc n) (ra n) (rb n))

:exec (with-local-stobj state-vars

(mv-let (rslt state-vars)

(let ((state-vars (run-state n state-vars)))

(mv (list (pc-val state-vars)

(ra-val state-vars)

(rb-val state-vars))

state-vars))

rslt))))

4 Optimizing for proof

In the applications of the mbe and defexec features presented in the last section, the

primary goal was to retain a natural and logically elegant definition of a function

for reasoning in the logic, while attaching a more efficient definition for execution.

Attaching efficiently executable functions to a logically elegant definition forms the

key target application of these features. However, there are situations in which the

more natural definition is efficient, but needs to be modified in order to facilitate

logical reasoning. In this section, we show examples of such applications.

The necessity for a more complex logical definition with a natural, efficient body

arises in practice for several reasons. First, our goal might be to define functions

with nice algebraic properties that enable creation of elegant rewrite rules; the

logical definition necessary to ensure such properties might be cluttered. Second,

the function might be reflexive, that is, the natural definition might involve nested

recursive calls; it is difficult to admit such functions using the definitional principle

without cluttering the definition with so-called “termination tests.” Third, the natural

definition might be partial, that is, it might specify the value of the function only

in some specific domain; since ACL2 is a logic of total functions, additional logical

machinery is necessary to admit such definitions.
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4.1 Normalized association lists

Our first example illustrates how the logical definitions of functions might be

cluttered for the purpose of deriving nice algebraic properties. Consider the problem

of defining functions mget and mset for accessing and updating elements in an

association list. An association list in Lisp is essentially a list of pairs (key

. value), which can be thought of as a finite function mapping each key to the

corresponding value. The function (mget a m) takes a key a and a mapping m

and returns the value currently associated with a in m or returns nil if no value

is associated with a in m. The function (mset a v m) returns a new mapping that

associates the key a with value v but otherwise preserves all associations in the

mapping m.

For logical reasoning, it is convenient if we can define mget and mset such that

the following are theorems.

1. (defthm mget-of-mset

(equal (mget a (mset b v m))

(if (equal a b) v (mget a m))))

2. (defthm mset-eliminate

(equal (mset a (mget a m) m) m))

3. (defthm mset-subsume

(equal (mset a u (mset a v m))

(mset a u m)))

4. (defthm mset-normalize

(implies (not (equal a b))

(equal (mset b v (mset a u m))

(mset a u (mset b v m)))))

Notice that the conditions 1–3 have no hypothesis, and none of the theorems

contains a hypothesis restricting m to be a well-formed association list. The theorems

can thus be treated as elegant rewrite rules.

However, defining mget and mset so that these conditions are theorems is

nontrivial. Here, we provide an overview of the steps involved in the definitions.

To get the last three properties mentioned above, we need a normalized rep-

resentation for the finite mappings. We define a well-formed mapping to be a list

of key-value pairs where the keys are strictly ordered by the total order << (cf.

Section 3.1). Furthermore, to satisfy mset-eliminate, we add the requirement that

no key-value pair may have the value of nil—where nil is the default return

value for mget. This notion of well-formed mapping is recognized by the following

function well-formed-map:

(defun well-formed-map (m)

(declare (xargs :guard t))

(or (null m)
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(and (consp m)

(consp (car m))

(well-formed-map (cdr m))

(cdar m)

(or (null (cdr m))

(<< (caar m) (caadr m))))))

It is straightforward to define recursive functions mset-wf and mget-wf that satisfy

the desired properties with the additional hypothesis of (well-formed-map m). Each

function recurs through the list of pairs until it finds the position in the list where

the key fits (relative to the << order on keys) and performs the appropriate return of

associated value or update of the mapping. Finally, to remove this additional “well-

formedness” hypothesis, we use a generic method discovered by Sumners (Kaufmann

& Sumners, 2002). The method involves defining two functions acl2->map and

map->acl2, so that acl2->map transforms an ACL2 object into a well-formed map

and map->acl2 inverts this transformation. The paper shows how to use these

transformations to define functions that satisfy the desired theorems.

However, what about execution efficiency? The definitions of functions mset-wf

and mget-wf are not optimized for execution, and the additional calls of the

translation functions acl2->map and map->acl2 are expensive. However, we needed

these transition functions because we wanted the theorems described above to hold

unconditionally; for execution, we can avoid them by placing appropriate conditions

on the guard. The guard is defined as follows: We choose a “bad” key that we

never expect to arise in the use of mget and mset. We then define two predicates

good-key and good-map as follows: (good-key a) returns T if and only if a is

not the single bad key chosen; (good-map m) is essentially (well-formed-map m),

with the additional requirement that none of the keys are the bad key. Under these

hypotheses, we can show that the functions acl2->map and map->acl2 are identity

functions; we therefore can define efficient versions mget-fast and mset-fast that

take advantage of this efficient guard to treat m essentially as an already normalized

association list. Finally, we define mget and mset with mbe, to achieve both the

algebraic properties and efficient execution as follows:

(defun mget (a m)

(declare (xargs :guard (good-map m)))

(mbe :logic (mget-wf a (acl2->map m))

:exec (mget-fast a m)))

(defun mset (a v m)

(declare (xargs :guard (and (good-key a) (good-map m))))

(mbe :logic (map->acl2 (mset-wf a v (acl2->map m)))

:exec (mset-fast a v m)))

The guard obligation for mbe (cf., Section 2.1) produces the following proof obligation

for the definitions above, which are easy to discharge on the basis of the above

argument.
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(implies (good-map x)

(equal (mget-wf a (acl2->map x))

(mget-fast a x)))

If the domain of application allows us to strengthen further the guards for mset

and mget, then many further optimizations would be possible. For example, if the

domain were restricted to mapping with keys that were numbers, then we could use

faster tests for equality and the ordering << would reduce to < on numbers, which

is a much faster test to compute. If we could assume that the key passed into mset

was less than the least key in m, then we could simplify mset to be the following:

(defun mset-new (a v m)

(declare (xargs :guard (and (good-key a) (good-map m)

(or (null m) (<< a (caar m))))))

(mbe :logic (mset a v m) :exec (cons (cons a v) m)))

4.2 Reflexive functions: Adding tests for termination

In the preceding section, we saw how it can be useful to clutter function definitions

in order to obtain elegant logical properties of those functions. In contrast, we now

study a class of function definitions whose very admission to the ACL2 logic requires

cluttering them with extra tests. Consider the following definition:

(defun weird-identity (x)

(if (and (integerp x) (< 0 x))

(+ 1 (weird-identity (weird-identity (- x 1))))

0))

As discussed in Section 1.2, there is a termination proof obligation that requires

(weird-identity (+ -1 x)) to be suitably smaller than positive integer x. Unfor-

tunately, it is clearly impossible to carry out any such proof until this definition has

been admitted, that is, until the following axiom has been added:

(equal (weird-identity x)

(if (and (integerp x) (< 0 x))

(+ 1 (weird-identity (weird-identity (- x 1))))

0))

The definition above is reflexive: it contains a recursive call with an argument

that itself contains a recursive call. As seen above, the inner recursive call can occur

in the proof obligation for admitting this function.

The experienced ACL2 user knows that a solution to this problem is to add an

extra test for termination as follows:

(defun weird-identity-logic (x)

(if (and (integerp x) (< 0 x))
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(let ((rec-call (weird-identity-logic (- x 1))))

(if (and (integerp rec-call)

(<= 0 rec-call)

(< rec-call x))

(+ 1 (weird-identity-logic rec-call))

’do-not-care))

0))

However, we would prefer to evaluate calls of a reflexive function without the

additional termination tests. We realize this preference by using mbe as follows:

(defun weird-identity (x)

(declare (xargs :guard (and (integerp x) (<= 0 x))))

(mbe :logic

(weird-identity-logic x)

:exec

(if (and (integerp x) (< 0 x))

(+ 1 (weird-identity (weird-identity (- x 1))))

0)))

The necessary proof obligations above are easily discharged once we have proved

the following lemma:3

(implies (and (integerp x) (<= 0 x))

(equal (weird-identity-logic x)

x))

Note of course that the example described above is merely pedagogical; the :exec

code for weird-identity could have simply been x, as in fact the proof obligation

above demonstrates. However, nontrivial reflexive definitions arise in practice.

The TR describes such a case study, namely, a sophisticated implementation of

a unification algorithm using term dags (Ruiz-Reina et al., 2006). Furthermore,

Greve and Wilding (2003) described the use of the same approach in an efficient

implementation of a path-finding algorithm in a graph.

Finally, we return to a point made about invariants in Section 1.5. The extra test

in the definition of weird-identity-logic can be viewed as an invariant on the

“state” x, assuming that the initial state satisfies the guard. The lemma above is

sufficient to guarantee that this is truly an invariant, and hence can be optimized

away for execution on states x satisfying the guard. See the aforementioned examples

of linear pathfinding and unification for more elaborate examples of the insertion

of invariants for termination.

4.3 Executable tail-recursive partial functions

As a final application of mbe and defexec in optimizing natural executable

definitions for logical reasoning, we consider its use in efficiently executing tail

3 ACL2 does all proofs automatically for the two definitions and the lemma.
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recursive partial functions. Lisp programmers often write tail-recursive functions

that terminate only on some specific intended domain. In this section, we show how

to preserve the natural (partial) definition of tail-recursive equations by using mbe

to associate it with an appropriate function introduced for the logic.

Consider the problem of introducing the following “definition” of tail-recursive

factorial.

(equal (trfact n a)

(if (equal n 0)

a

(trfact (- n 1) (* n a)))

Notice that the equation uniquely specifies the value of the trfact if and only if n

is a non-negative integer; the recursion does not terminate if n is a negative integer,

a nonintegral rational, or non-numeric. However, recall from Section 1.2 that the

definitional principle of ACL2 can be used to introduce a recursive definition if and

only if the recursion is well founded, that is, terminates for all inputs. Hence, we

cannot use this principle to introduce the equation above as a definitional axiom.

Such nonterminating tail-recursive equations can arise in nontrivial contexts,

for example, in formalizing microprocessor interpreters or low-level procedural

programming languages (Moore, 2003). For example, the formal language interpreter

is often defined in ACL2 by specifying a function step such that, given a machine

state s, (step s) returns the state after executing one instruction from state s. One

might then wish to formalize execution of the interpreter by the function stepw as

follows:

(equal (stepw s)

(if (halted s)

s

(stepw (step s))))

The equation above defines a unique value of (stepw s) only for those machine

states s for which the interpreter terminates (i.e., reaches a halted state).

ACL2 provides a generic mechanism, called the encapsulation principle, to intro-

duce functions with axioms that do not fully specify the return value for all inputs.

For instance, we can use encapsulation as follows to introduce a unary function foo

constrained only to return a natural number:

(encapsulate

(((foo *) => *))

(local (defun foo (x) 1))

(defthm foo-is-natural

(natp (foo x))))

The first line (((foo *) => *)) in the form above specifies that foo is a function

of a single argument and returns a single value. The defthm command specifies the

formula (natp (foo x)) as a constraint on foo. To ensure consistency, one must

exhibit that there exists some function, called a local witness, that satisfies the alleged

constraints; in this case, the function that always returns 1 serves as a local witness.
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Once the encapsulate event has been executed, the local witness is “forgotten” and

foo is axiomatized to be a unary function satisfying only the specified constraints.

The encapsulation principle can be used to introduce tail-recursive partial func-

tions in ACL2. In particular, Manolios and Moore (2003) show that given any

tail-recursive equation, one can always define a local witness constrained to satisfy

the equation. Using this observation, they define a macro called defpun that makes

it possible to introduce equations such as trfact described above as follows:

(defpun trfact (n a)

(if (equal n 0)

a

(trfact (- n 1) (* n a))))

The macro expands into an encapsulate form that introduces a local witness

constrained to satisfy the defining equation. Unfortunately, however, because of the

use of encapsulation, the defining equation is introduced as a property or constraint

on the function trfact; no meaningful executable counterpart is provided to the

host Common Lisp. Thus, even for arguments on which the recursion terminates,

one cannot evaluate the function other than possibly by symbolic expansion of the

defining equation. We remedy this situation with mbe and defexec.

Our solution is to define a new macro defpun-exec (Ray, 2004) that allows us to

write the following form:

(defpun-exec trfact (n a)

(if (equal n 0)

a

(trfact (- n 1) (* n a)))

:guard (and (natp n) (natp a)))

In the logic, the effect is the same as that of defpun above, namely, the introduction of

function trfact constrained to satisfy its defining equation. However, for arguments

satisfying the guard, defpun-exec enables evaluation of the equation. Thus, we can

evaluate (trfact 3 1) to 6.

How does defpun-exec work on the above example? First, it introduces a new

function trfact-logic using defpun.

(defpun trfact-logic (n a)

(if (equal n 0)

a

(trfact-logic (- n 1) (* n a))))

Next, it introduces the following form via defexec.

(defexec trfact (n a)

(declare (xargs :guard (and (natp n) (natp a))

(mbe :logic (trfact-logic n a)

:exec (if (equal n 0) a (trfact (- n 1) (* n a)))))
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The use of defexec rather than defun generates proof obligations that ensure the

termination of the :exec body on the domain specified by its guard. With this form,

the definitional axiom of trfact is merely the following:

(equal (trfact n a) (trfact-logic n a))

Since trfact-logic is constrained to satisfy exactly the same tail-recursive equation

as the :exec code for trfact above, the guard obligation for mbe, namely, that

the :logic and :exec forms be provably equal, is trivial. Finally, defpun-exec

introduces the following trivial-to-prove theorem, which verifies that trfact also

satisfies the desired defining equation.

(defthm trfact-def

(equal (trfact n a)

(if (equal n 0)

a

(trfact (- n 1) (* n a))))

:rule-classes :definition)

The keyword :definition in the :rule-classes argument for the defthm com-

mand is a directive to the ACL2 theorem prover asking it to use this theorem as

a defining equation for trfact for reasoning purposes. On the other hand, since

trfact is defined rather than constrained, we can now perform efficient, nonlooping

evaluation of trfact calls on inputs that satisfy its guard, using the :exec code in

the underlying Common Lisp.

5 Conclusion

In this paper, we have discussed the need to combine efficient functional program-

ming constructs with mechanized proof support. Our motivating examples come

from industrial applications of the ACL2 system, in which hardware and software

of industrial interest have been formally modeled. Those models have been used

as efficient simulation engines or rapid prototypes and have also been subjected

to mechanically checked proofs to establish properties of interest. The dual use of

formal models—execution and proof—increases their value but puts great stress on

the programming/logical language because there is frequently a tension between

logical elegance and execution efficiency.

The main point of this paper is to show the utility of the feature mbe (“must be

equal”), which allows the user to define a function in two different but provably

equivalent ways to resolve this tension between execution and proof. Because of

the presence of a theorem prover within the system, the two alternatives may be

arbitrarily different as long as the user can guide the system to a proof of their

equivalence under the hypotheses governing their use.

The obvious application of mbe is to provide both elegant and efficient definitions

of elementary functions such as length, factorial, list reverse, and list sorting, and

on more interesting applications such as ordinal arithmetic and record structure

operations. Mbe is often so used.
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However, this paper highlights less obvious uses. In particular, we noted that

the principle of definition, which is necessary to guard against the introduction of

unsoundness, may require the inclusion of run-time tests that can be shown to be

unnecessary once the properties of the newly defined concept have been established.

Using the new feature, we show how such run-time tests can be eliminated after the

fact.

As another highlighted use of mbe, we show how it can be used to provide

executable counterparts for some partially defined constrained functions. Until the

introduction of mbe into the ACL2 system, it was not possible to compute the values

of any constrained functions (except by symbolic deduction). In particular, we show

how executable counterparts can be provided for partial tail-recursive functions.

This is an important class of functions: most operational models of state machines,

microprocessors, and low-level procedural programming languages are given by an

iterated state-transition system that can naturally be expressed tail-recursively and

whose termination is not guaranteed. We anticipate that the provisioning of partial

functions with executable counterparts will hasten their adoption by the ACL2

community and will simplify system modeling in ACL2.

The most important lesson of this paper is perhaps that functional program-

ming languages can benefit greatly from a focus on mechanically checked proofs.

First, such a focus enables the dual use of functional formal models, and thus

encourages the adoption of functional programming by user communities (such as

microprocessor design teams) that do not traditionally use the paradigm. Second,

the presence of a mechanical theorem prover can allow the user great flexibility in

attaining efficient code while presenting correct definitions.
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