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Abstract

Description Logics are a family of logics used to represent and reason about conceptual and terminological
knowledge. Recently, its importance has been increased since they are used as a basis for the Ontology
Web Language (OWL) used for the Semantic Web. In previous work, we have developed in PVS a generic
framework for reasoning in the ALC description logic, proving its termination, soundness and completeness.
In this paper we present the construction, from the generic framework, of a formally verified generic tableau–
based algorithm for checking satisfiability of ALC –concepts. We do it using a methodology of refinements
to transfer the properties from the framework to the algorithm. We also obtain some verified reasoners from
the algorithm by a process of instantiation.
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1 Introduction

For processing knowledge in the Semantic Web, reasoners of Description Logics

(DLs) such as RACER, Pellet and FaCT++ [6,11,12] are being used. Description

Logics [3] are a family of logics used to represent conceptual and terminological

knowledge. Among these, the ALC logic is a ground logic, which can be extended

to the more expressive logic SHOIN , which corresponds to the Ontology Web

Language.

Formally verifying the reasoners for DLs could increase their reliability and so

that of the Semantic Web. However, formal verification of properties of reasoners

for DLs is a time and resource consuming task. Moreover, if we carry out the

formal verification of different reasoners for a logic, we will probably have to solve

analogous problems for each one.
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In [1], we have formalized a generic framework for checking satisfiability of ALC –

concepts in the PVS verification system [9]. The goal of this work is to construct

reasoners for the ALC –description logic from a generic framework in such a way

that the verified properties of the generic framework are transferred to the reasoners.

For this, in order to transfer the correctness of the framework to the reasoners we

apply the type and operator refinement techniques shown in [2]. The main phases of

the process we have followed, whose details we explain below, are shown in Figure

1.

Generic Framework in PVS

PropertiesGeneric Algorithm 1 Generic Algorithm 2

Properties PropertiesReasoner 1a Reasoner 1b Reasoner 2a Reasoner 2b

Properties Properties Properties Properties

Fig. 1. The roadmap

(i) Generic framework (in the figure, the boxes). In this phase, which will be

summarized in Section 3, we formalize in PVS a generic specification (using

generic types) for checking satisfiability of ALC –concepts. We prove termina-

tion, soundness and completeness. The features of the specification make it

feasible that the proofs of its properties are close to the same ones in the usual

literature. It should be noted that, in general, the most difficult proof is that

of termination.

(ii) Generic algorithm (in the figure, the octagons). In this second phase, described

in Section 5, we implement in PVS a generic algorithm corresponding to the

previous specification, in such a way that the correctness properties of this

algorithm are based on the same properties already proved for the generic

framework. For this purpose, we use the methodology of refinements described

in Section 4.

In this step, the algorithm is generic in the sense that the strategy of appli-

cation of completion rules is not determined. That is, the specified algorithm

depends on a selection function coding the strategy. The correctness of the

algorithm has been proved, assuming some generic hypotheses about the non-

determined selection function.

(iii) Reasoners (in the figure, the ellipses). In the last phase, described in Section 6,

we develop reasoners for the ALC logic in PVS, considered as instances of the

generic algorithm. For this, it suffices to instantiate the strategy of application

of completion rules by a selection function. It should be emphasized that

in order to prove the correctness of these reasoners, we only have to prove

instances of the assumed hypotheses, for each concrete selection function.



To develop our work, we have chosen the PVS system. This system combines an

expressive specification language with an interactive theorem prover. Also, although

the PVS specification language has been designed to be expressive rather than

executable, a wide fragment of PVS is executable by generating Common Lisp code

from PVS, that can be evaluated through the PVSio environment [8].

2 Overview of PVS

PVS (Prototype Verification System) [9] is a general–purpose environment for de-

veloping specifications and proofs. In this section, we present a brief description of

the PVS language and prover, introducing some of the notions used in this paper.

The PVS specification language is built on a classical typed higher–order logic

with the basic types bool, nat, int, in addition to the function type construc-

tor [D -> R] and the product type constructor [A, B]. The type system is also

augmented with dependent types and abstract data types. A feature of the PVS

specification language are predicate subtypes: the subtype {x:T | p(x)} consists

of all the elements of type T verifying p. The notation (A) is used to indicate the

subtype {x:T | A(x)}. Predicate subtypes are used for constraining domains and

ranges of functions in a specification and, therefore, for defining partial functions.

In general, type-checking with predicate subtypes is undecidable. Therefore, the

type-checker generates proof obligations, called type correctness conditions (TCCs).

This TCCs are either discharged by specialized proof strategies or proved by the

user. In particular, for defining a recursive function, it must be ensured that the

function terminates. For this purpose, in the definition of a recursive function,

the user has to provide a measure function. This generates a TCC stating that the

measure function applied to the arguments decreases with respect to a well–founded

ordering in every recursive call.

A built-in prelude and loadable libraries provide standard specifications and

proved facts of a large number of theories. PVS specifications are packaged as theo-

ries that can be parametrized with respect to types and constants. The definitions

and theorems of a theory can then be used by another theory by importing it.

3 A generic framework for checking satisfiability of

ALC –concepts

The goal of this section is to present a summary of a PVS formalization of a

generic framework for checking satisfiability of ALC –concepts, in which differ-

ent tableaux–based algorithms can be placed. A more detailed description of

this formalization, can be seen in [1] and the whole formalization is available at

http://www.cs.us.es/~mjoseh/alc/.

Since one of our goals in the development of the formalization of the generic

framework is to obtain a high degree of generality, we have specified the relations

in a declarative way, instead of by the corresponding function. Another goal of our

development is to obtain PVS proofs closely resembling the proofs that we can find

http://www.cs.us.es/~mjoseh/alc/


in the usual literature, in such a way that the complexity of a PVS proof stems

from the proof itself, and not from the additional complexity introduced by the use

of some specific data structure. For that reason, we have mainly used the type of

finite sets.

We first describe the basic components of the ALC logic, and we show below

how we have formalized in PVS a generic framework for tableau–based algorithms

for this logic. We present the ALC logic along with the corresponding description

of its specification in PVS.

Let NC be a set of concept names and NR be a set of role names. The set of

ALC –concepts is built inductively from these names as described by the following

grammar, where A ∈ NC and R ∈ NR

C ::= A | ¬C | C1 � C2 | C1 � C2 | ∀R.C | ∃R.C

The set of ALC –concepts can be represented in PVS as a recursive datatype,

using the mechanism for defining abstract datatypes [10], and specifying the con-

structors, the accessors and the recognizers.

To introduce the assertional knowledge, let NI be a set of individual names.

Given individual names x, y ∈ NI, a concept C and a role name R, the expressions

x : C and (x, y) : R are called assertional axioms. An ABox A is a finite set of

assertional axioms. We specify in PVS the assertional axioms by a datatype and

the ABox by a type

assertional_ax: DATATYPE

BEGIN

instanceof(left:NI, right:alc_concept) : instanceof?

related(left:NI, role:NR, right:NI) : related?

END assertional_ax

ABox: TYPE = finite_set[assertional_ax]

The semantics of description logics is defined in terms of interpretations. An

ALC –interpretation I is a pair I = (ΔI , ·I), where ΔI is a non–empty set called

the domain, and ·I is an interpretation function that maps every concept name

A to a subset AI of ΔI , every role name R to a binary relation RI over ΔI and

every individual x to an element of ΔI . We represent in PVS an interpretation

I as a structure that contains the domain of I and the functions that define the

interpretation of concept names, role names, and the individuals

interpretation: NONEMPTY_TYPE =

[# int_domain: (nonempty?[U]),

int_names_concept: [NC -> (powerset(int_domain))],

int_names_roles: [NR -> PRED[[(int_domain),(int_domain)]]],

int_names_ind: [NI -> (int_domain)] #]

The interpretation function is extended to non-atomic concepts as follows



(¬D)I = ΔI \ DI

(C1 � C2)
I = CI

1 ∩ CI
2

(C1 � C2)
I = CI

1 ∪ CI
2

(∀R.D)I = {a ∈ ΔI : (∀b ∈ ΔI)[(a, b) ∈ RI → b ∈ DI ]}

(∃R.D)I = {a ∈ ΔI : (∃b ∈ ΔI)[(a, b) ∈ RI ∧ b ∈ DI ]}

The interpretation I is a model of a concept C if CI �= ∅. Thus, a concept C is

called satisfiable if it has a model

is_model_concept(I,C): bool = nonempty?(int_concept(C,I))

concept_satisfiable?(C): bool = EXISTS I: is_model_concept(I,C)

The interpretation I satisfies the assertional axiom x:C if xI ∈ CI and satisfies

(x, y): R if (xI , yI) ∈ RI . It satisfies the ABox A if it satisfies every axiom in A.

In that case, A is called satisfiable and I is called a model of A.

We have made the PVS formalization of the above definitions, in a generic way

using the PVS set theory and its capability of managing the existential and universal

quantifiers.

In order to decide the satisfiability of an ALC –concept, a tableau algorithm

tries to prove the satisfiability of a concept C by attempting to explicitly construct

a model of C. This is done considering an individual name x0 and manipulating the

initial ABox {x0:C}, applying a set of completion rules. In this process, we consider

concepts in negation normal form (NNF), a form in which negations appear only

in front of concept names. This does not impose any restriction since it is easy

to specify a PVS function such that, for each ALC –concept, computes another

equivalent in NNF form.

An ABox A contains a clash if, for some individual name x ∈ NI and concept

name A ∈ NC, {x:A,x:¬A} ⊆ A. Otherwise, A is called clash–free

contains_clash(AB): bool =

EXISTS Aa: member(Aa,AB) AND instanceof?(Aa) AND

alc_atomic?(right(Aa)) AND

member(instanceof(left(Aa), alc_not(right(Aa))), AB)

To test the satisfiability of an ALC –concept C in NNF, the ALC –algorithm

works starting from the initial ABox {x0:C} and iteratively applying the following

completion rules:



→�: if x:C � D ∈ A and {x:C, x:D} �⊆ A

then A →� A ∪ {x:C, x:D}

→�: if x:C � D ∈ A and {x:C, x:D} ∩ A = ∅

then A →� A ∪ {x:E} for some E ∈ {C,D}

→∃: if x:∃R.D ∈ A and there is no y with {(x, y):R, y:D} ⊆ A

then A →∃ A ∪ {(x, y):R, y:D} for a fresh individual y

→∀: if x:∀R.D ∈ A and there is a y with (x, y):R ∈ A and y:D �∈ A

then A →∀ A ∪ {y:D}

It stops when a clash has been generated or when no rule is applicable. In the latter

case, the ABox is complete and a model can be derived from it. The algorithm

answers “C is satisfiable” if a complete and clash–free ABox has been generated.

We have formalized these completion rules following a declarative style, defining

them in PVS as binary relations between ABoxes. For example, A1 →�1
A2 if there

exists an assertional axiom x: C � D in A1 such that x: C �∈ A1, x: D �∈ A1 and

A2 = A1 ∪ {x:C}

or_step_1(AB1, AB2): bool =

EXISTS Aa: member(Aa, AB1) AND

instanceof?(Aa) AND

alc_or?(right(Aa)) AND

NOT member(instanceof(left(Aa),conc1(right(Aa))),AB1) AND

NOT member(instanceof(left(Aa),conc2(right(Aa))),AB1) AND

AB2 = add(instanceof(left(Aa),conc1(right(Aa))),AB1)

Once the rules have been specified in this way, we define the successor relation

on the ABoxes type: A1 → A2 if A1 does not contain a clash and A2 is obtained

from A1 by the application of a completion rule

successor(AB2,AB1): bool =

(NOT contains_clash(AB1)) AND

(and_step(AB1,AB2) OR or_step_1(AB1,AB2) OR or_step_2(AB1,AB2) OR

some_step(AB1,AB2) OR all_step(AB1,AB2))

It should be noted that we have specified the non-deterministic rule →� by two

binary relations (or_step_1 and or_step_2), one for each component.

Taking into account that the completion process can be seen as a closure process,

we say that the ABox A2 is an expansion of the ABox A1 if A1
∗
→ A2, where

∗
→ is

the reflexive and transitive closure of →.

To illustrate the completion process, the following example shows the application

of some completion rules to an initial ABox {x0:C}

Example 3.1 Let C be the concept ∀R.D � (∃R.(D � E) � ∃R.(D � F )). Then,



A0 := {x0:∀R.D � (∃R.(D � E) � ∃R.(D � F ))

∗
→ A1 := A0 ∪ {x0:∀R.D, x0:∃R.(D � E), x0:∃R.(D � F )}

→ A2 := A1 ∪ {(x0, x1):R,x1:D � E}

→ A3 := A2 ∪ {x1:D}

Once defined the expansion relation, we use it to specify the notions of com-

pleteness and consistency. An ABox A is complete if it has not any successor and

is consistent if it has a complete and clash–free expansion. Similarly, a concept C

is consistent if the initial ABox {x0:C} is consistent

complete(AB): bool = FORALL AB1: NOT successor(AB1, AB)

is_consistent_abox(AB): bool =

EXISTS AB1: is_expansion(AB)(AB1) AND complete_clash_free(AB1)

is_consistent_concept(C): bool =

is_consistent_abox(singleton(instanceof(x_0,C)))

where complete_clash_free(A) holds if the ABox A is both complete and clash–

free.

This definition is the PVS specification of a generic framework for deciding

satisfiability of ALC –concepts. It should be pointed out the two types of non–

determinism in it: the way in which the rule →� is applied (“don’t know” non-

determinism); and the choice of which rule to apply in each step and to which

axiom (“don’t care” non-determinism). We have established in [1] the correctness

of this specification, proving its termination, soundness and completeness.

4 Methodology of refinements

In this section we present a sketch of the type and operator refinement techniques

developed in PVS in order to relate different specifications of the same notion. The

point is that if we want to prove properties about a program, the development of

the formal proof will strongly depend of the used datatypes as well as the concrete

implementation of it. Thus, the idea is to verify the desired properties for a generic

specification of this program and that the verified properties can be transferred to

it.

For this, based on the idea of refinement of data types used by A. Dold [5] and

C. B. Jones [7] we have built in PVS a theory establishing the general notions of

refinements and its main properties (see [2]). Given types T and R, we say that a

data refinement of the type T by the type R is a surjective application f : R → T

f: VAR [R->T]

is_ refinement?(f): bool = FORALL (t:T): EXISTS (r:R): f(r) = t

Intuitively, this function provides the relationship between abstract values (T )



and their representations (R). It is clear that there is at least one representation,

not necessarily unique, for any abstract value. Also, we can see that a type can be

refined stepwise by sequential composition of refinements. In that sense, we prove

in PVS that, if f : R → T is a data refinement of T by R and g : Q → R is a data

refinement of R by Q, then f ◦ g : Q → T is a data refinement of T by Q.

With respect to the refinements of operators or functions, let us consider an

operator op : T1 → T2 and let us suppose that we have the data refinements given

by the functions f1 : R1 → T1 and f2 : R2 → T2. We say that the operator

opref : R1 → R2 is a refinement of op if the following diagram commutes:

T1
op
−→ T2

↑ ↑

f1| f2|

| |

R1
opref
−→ R2

op: VAR [T1 -> T2] op_ref: VAR [R1 -> R2]

is_refinement_op?(op,op_ref): bool =

FORALL r1: op(f1(r1))=f2(op_ref(r1))

In essence, we require that opref has the same behavior as op. The most im-

portant feature of this definition is that it makes possible to transfer the properties

of the operator op to the operator opref . For example, we prove that the well–

foundedness of a relation can be transferred through the refinements

refinement_preserve_wf: LEMMA

is_refinement_op?(rel,rel_ref) AND well_founded?(rel) IMPLIES

well_founded?(rel_ref)

In a more general way, let us suppose that we have established a correctness

theorem for op, in terms of pre and post conditions. That is, a theorem like

(∀y ∈ T1)[φ(y) ⇒ ρ(y, op(y))]

where φ is the precondition and ρ is the postcondition. Then, if opref , φref and ρref

are refinements of op, φ and ρ, respectively, we have proved that

(∀x ∈ R1)[φref (x) ⇒ ρref (x, opref (x))]

which is just the correctness theorem corresponding to opref . And this has been

proved in a general way without no specific assumptions about φ, ρ and op.

In order to illustrate the above idea, we show how we have formalized a refine-

ment of finite sets by lists. Let us consider a data refinement f : R → T . From

this, we specify a data refinement of type “finite sets with elements in T” by the

type “lists with elements in R”, by the function c(f):list[R] → finite set[T],

defined as follows



c(f)(l: list[R]): RECURSIVE finite_set[T] =

CASES l OF

null: emptyset,

cons(x, l1): add(f(x), c(f)(l1))

ENDCASES

MEASURE length(l)

To build refinements corresponding to the operations over finite sets we use

operations over lists “simulating” the behaviour of analogous operations on finite

sets. For example, the built–in operations null?, cons and append are refinements

of empty?, add and union, respectively. As for the membership relation, it can be

noticed that if f is injective, the predicate member for lists is a refinement of the

predicate member for finite sets.

Finally, regarding the construction of a refinement on a specification, we take into

account that a specification of an algorithm is normally built combining some other

specifications of operators. Hence, for constructing a refinement of a specification

of an algorithm it suffices to construct a refinement of each operator used in it, and

to replace it. In that sense, we prove that if op1ref
and op2ref

are refinements of op1

and op2, respectively, then op2ref
◦ op1ref

is also a refinement of op2 ◦ op1.

5 Generic algorithms for checking satisfiability of ALC –

concepts

This section is devoted to present the construction of a generic algorithm corre-

sponding to the specification of the generic framework that we have described in

Section 3. In addition, our purpose is to do it in such way that its termination,

soundness and completeness can be deduced from the corresponding properties of

the generic framework. For this, we will use the methodology of refinements ex-

plained in Section 4.

It should be noted that the specification of the generic framework cannot be

transformed into an algorithm by composition of refined operators for each of the

operators composing this specification. The main reason is that in the generic

framework, the searching process that the algorithm has to carry out in the space

E(C) of the expansions of the initial ABox {x0 : C} is not specified. So, in the

process of construction of the algorithm we have to concretize how to carry out the

search. Also, we have to consider the following facts:

(i) It is necessary to use evaluable data types. For this, we have to refine, among

others, the type used to represent ABoxes (finite sets) by another evaluable

type (in this case, lists).

(ii) It is necessary to define evaluable specifications of the predicates used for rec-

ognizing if an ABox is complete and clash-free.

(iii) Since we will construct a recursive algorithm, it is necessary to have a well–

foundness relation in E(C), that provides a measure function for proving its

termination.



(iv) Finally, due to the non–determinism of the generic framework, it is necessary

to determine the completion rule that will be applied in each step. Also, we

need a function that applies a completion rule to an ABox.

In the following subsections, we describe the most significant features of each

one of these points.

5.1 Refinements of data types

Firstly, let us note that in the specification of the generic framework we have used

the same name (for example, left) to denote different accessor functions of the

data types used to represent concepts and assertional axioms. However, although

overloading of names does not present any problem for reasoning about the spec-

ifications, this fact is problematic for the PVS evaluator, since they cannot be

distinguished by their type. This problem has been easily solved specifying new

types that refine the previous ones, with different names for each function. For

example, the type used to refine the datatype assertional_ax is the following

assertional_ax_ref: DATATYPE

BEGIN

r_instanceof(left_i: nat, right_i: r_alc_concept): r_instanceof?

r_related(left_r: nat, role: NR, right_r: nat) : r_related?

END assertional_ax_ref

Also, we refine the types ABox and is_expansion as we show in the following

table:

Notion Type Refined type Refinement function

ALC –concept alc_concept r_alc_concept alc_f

Assertional ax. assertional_ax assertional_ax_ref alc_f_aax

ABox ABox LABox c(alc_f_aax)

Expansion is_expansion is_expansion_l c(alc_f_aax)

where LABox: TYPE = list[assertional_ax_ref]

It should be observed that, for our purposes, it is not necessary to refine the

specification used to represent the notion of interpretation, since this will not be

used directly by the decision procedure. In the same way, it is not necessary for

the notions of satisfiability to be evaluable; they only have to be equivalent to that

defined in the generic framework. Thus, in this case we define the semantic notions

for the refined types through the types refinements

r_concept_satisfiable?(C): bool = concept_satisfiable?(alc_f(C))

r_abox_satisfiable(L: LABox): bool = abox_satisfiable(c(alc_f_aax)(L))



5.2 Evaluable refined predicates

In order to define an evaluable refinement of the predicate contains_clash, we

note that the range of the existential quantifier is the ABox A itself. Therefore, we

can construct a refinement of this predicate using the PVS predicate some 3

be_clash(Aa,L): bool =

r_instanceof?(Aa) AND r_alc_atomic?(right_i(Aa)) AND member(Aa,L)

AND member(r_instanceof(left_i(Aa), r_alc_not(right_i(Aa))), L)

contains_clash_l(L): bool = some(lambda(Aa): be_clash(Aa,L))(L)

However, in the case of the predicate complete the generic specification cannot

be evaluable, not even in the case when the successor relation is it. Let us see how

we have constructed a refinement of this predicate. Firstly, we define predicates that

recognize when an assertional axiom is expansive in an ABox, according to each of

the completion rules. For example, x:C � D ∈ L is expansive in L if x:C �∈ L and

x:D �∈ L

is_or_expansive(Aa,L): bool =

member(Aa,L) AND r_instanceof?(Aa) AND r_alc_or?(right_i(Aa)) AND

NOT member(r_instanceof(left_i(Aa), conc1_or(right_i(Aa))), L) AND

NOT member(r_instanceof(left_i(Aa), conc2_or(right_i(Aa))), L)

This makes possible to specify the notions of expansive axiom with respect to an

ABox L, and the following specification of the predicate complete_l

is_expansive(Aa,L): bool =

is_and_expansive(Aa,L) OR is_or_expansive(Aa,L) OR

is_some_expansive(Aa,L) OR is_all_expansive(Aa,L)

complete_l(L): bool = NOT some(lambda(Aa): is_expansive(Aa,L))(L)

Regarding to the predicate complete_l it should be observed that it is not,

exactly, a refinement of the predicate complete, although it can be seen as a refine-

ment in conjunction with the predicate not_contains_clash_l

complete_iff_complete_l: THEOREM

complete_l(L) AND NOT contains_clash_l(L) IFF

complete(c(alc_f_aax)(L)) AND NOT contains_clash(c(alc_f_aax)(L))

5.3 Measure function

It should be pointed out that the role of the successor relation is the same, both in

the specification of the generic framework and in the algorithm: it is a well founded

relation necessary to ensure the termination of both specifications. Thus, it is not

essential for the refined specification of the successor relation to be evaluable.

Then, we could think in a definition of the successor relation in the same way that

3 The predicate some is an executable PVS predicate that checks if some element of a list verifies a property.



we have defined the notions of satisfiability. That is

successor_l(L2,L1): bool =

successor(c(alc_f_aax)(L2),c(alc_f_aax)(L1))

With this, it would be straightforward that successor_l is a refinement of

successor. Then, we would prove that successor_l is a well founded relation,

applying properties of refinements. However, due to its necessary relationship with

the predicate complete_l, we have chosen to refine each one of the relations rep-

resenting a completion rule. For example, L2 is a �1–expansion of L1 if exists an

axiom x:C1 � C2 expansive in L1, and L2 is obtained adding x:C1 to L1

r_or_step_1(L1,L2): bool =

EXISTS Aa:

is_or_expansive(Aa,L1) AND

FORALL Aa1:

member(Aa1,L2) IFF

(member(Aa1,L1) OR

Aa1=r_instanceof(left_i(Aa),conc1_or(right_i(Aa))))

From these definitions we define the relation successor_l and we prove that it is

a refinement of successor

successor_l(L2,L1): bool =

not_contains_clash_l(L1) AND

(r_and_step(L1,L2) OR r_or_step_1(L1,L2) OR r_or_step_2(L1,L2)

OR r_some_step(L1,L2) OR r_all_step(L1,L2))

successor_l_is_refinement: THEOREM

is_refinement_op?(successor,successor_l)

The hardest part of the formalization of the generic framework was proving that

the successor relation is a well–founded relation on the set E(C) of the expansions

of a concept C in NNF. Now, this property can be transferred to the relation

successor_l using that the well–foundedness of a relation is preserved through

refinements

successor_l_is_wf: THEOREM

well_founded?[expansion_abox_concept_l(C)](successor_l)

5.4 Application of completion rules

In order to construct the satisfiability algorithm we firstly specify some functions

that, given an instance axiom Aa and an ABox L, compute the ABox corresponding

with the application to L of some associated rule to Aa. For example, the result

of apply the rule →�1
to Aa and L is the ABox obtained adding x : C1 to L, if

Aa = x:C1 � C2 is or–expansive in L; and L, otherwise

or_step_1_ax(Aa,L): LABox =

IF is_or_expansive(Aa,L)



THEN cons (r_instanceof(left_i(Aa), conc1_or(right_i(Aa))), L)

ELSE L ENDIF

Secondly, it should be taken into account that the applicability of a rule does

not only depend on an instance axiom of an ABox L. In order to capture the notion

of applicability of a rule, the type activation (activ) was introduced in the generic

framework. An activation is a structure consisting of an instance axiom Aa and

a witness x, which made it applicable. Now, we refine in a natural way the type

activ, and we specify a function computing a list with the ABoxes obtained by

application to L of the rules corresponding to an activation Ac

apply_activ(Ac: r_activ, L:LABox): list[LABox] =

IF NOT r_applicable_activ(Ac,L)

THEN null

ELSE LET Aa = r_ax(Ac), D = right_i(Aa) IN

CASES D OF

r_alc_and(C1,C2): (: and_step_ax(Aa,L) :),

r_alc_or(C1,C2) : (: or_step_1_ax(Aa,L), or_step_2_ax(Aa,L) :),

r_alc_all(R,D1) : (: all_step_ax(Aa,L) :),

r_alc_some(R,D1): (: some_step_ax(Aa,L) :)

ENDCASES

ENDIF

For example, let L be (: x0:∀R.D, (x0, x1):R,x0:D � E :). Then,

apply_activ([x0:∀R.D, x0], L) = (: :)

apply_activ([x0:∀R.D, x1], L) = (: (: x1:D,x0:∀R.D, (x0, x1):R,x0:D � E :) :)

apply_activ([x0:D � E, x0], L) = (: (: x0:D,x0:∀R.D, (x0, x1):R,x0:D � E :),

(: x0:E, x0:∀R.D, (x0, x1):R,x0:D � E :) :)

With regard to the completion rule to apply in each step, our goal is to specify a

decision procedure independent of the strategy followed in the order of application

of these rules. For this, we declare the function

f: [LABox -> list[r_activ[NC,NR]]]

whose role is to select the rule to apply in each step. Then, for every different

selection function, we will have a different decision procedure.

The idea is that f(L) selects an activation applicable to L. With this activation

the algorithm will carry out the next step of the completion process. Due to typing

reasons, given an ABox L, f(L) provides a list of activations. Thus, if there is not

any activation applicable to L, f(L) should be the empty list.

In order to ensure the correctness of the algorithm, the selection function f has

to verify some properties, which we introduce as PVS assumptions. Firstly, let

us observe that if L is not complete, then there is some rule applicable to L and

therefore there is some activations applicable to f . In that sense, we require f to

select at least one activation applicable to L whenever there are such activations.



Also, we require that f only selects activations applicable to L.

Thus, if L,L1 are expansions of an initial concept C0, the function f has to

verify the following properties

f_ax_1: ASSUMPTION NOT complete_l(L) IMPLIES cons?(f(L))

f_ax_2: ASSUMPTION

FORALL (Ac:r_activ):member(Ac,f(L)) IMPLIES r_applicable_activ(Ac,L)

The generic algorithm we specify below is a tableau–based algorithm, that carries

out a depth first search and whose size depends on the selection function f . It

finishes when it finds a complete and clash-free ABox (that is, a non closed branch

of the tableau from which a model of the initial concept can be constructed); or

when all its branches are closed

sat_alc_alg_aux_i(L: expansion_abox_concept_l(C_0)): RECURSIVE bool =

IF complete_l(L) AND not_contains_clash_l(L)

THEN TRUE

ELSIF contains_clash_l(L)

THEN FALSE

ELSE LET Ac = car(f(L)), S = apply_activ(Ac,L) IN

IF null?(cdr (S))

THEN sat_alc_alg_aux_i(car(S))

ELSE LET L1 = car(S), L2 = car(cdr(S)) IN

sat_alc_alg_aux_i(L1) OR sat_alc_alg_aux_i(L2)

ENDIF

ENDIF

MEASURE L BY successor_l

sat_alc_alg_i: bool = sat_alc_alg_aux_i((: r_instanceof(0,C_0) :))

The termination of this algorithm is ensured by the well–foundedness of the

successor_l relation. The soundness and completeness are proved by well–founded

induction in the successor_l relation, using the same properties already proved

for the specification of the generic framework and the properties required to f

sat_alc_alg_i_soundness: THEOREM

sat_alc_alg_i IMPLIES r_concept_satisfiable?(C_0)

sat_alc_alg_i_completeness: THEOREM

r_concept_satisfiable?(C_0) IMPLIES sat_alc_alg_i

6 Reasoners for checking satisfiability of ALC –concepts

A particular reasoner can be constructed by defining a selection function verifying

the assumptions of subsection 5.4 and instantiating the noninterpreted types used to

represent the set of concepts names, the set of role names and the set of individuals.

With each concrete function, a different specification of the generic algorithm can



be defined.

An usual application strategy of completion rules in functional algorithms de-

ciding satisfiability of ALC –concepts is the following (see [4]):

(i) Whenever the →� rule can be applied and L is clash–free, apply the →� rule;

(ii) Else, whenever the →� rule can be applied and L is clash–free, apply the →�

rule;

(iii) Otherwise, if a →∃ rule can be applied, apply the →∃ rule and all the →∀ rules

derived from it.

In order to embed this decision procedure as an instance of the generic algorithm

shown in subsection 5.4 it suffices to instantiate f by the following selection function
4

f(L: LABox): list[r_activ] =

IF cons?(list_first_r_activ_all(L))

THEN (: car(list_first_r_activ_all(L)) :)

ELSIF cons?(list_first_r_activ_and(L))

THEN (: car(list_first_r_activ_and(L)) :)

ELSIF cons?(list_first_r_activ_or(L))

THEN (: car(list_first_r_activ_or(L)) :)

ELSIF cons?(list_first_r_activ_some(L))

THEN (: car(list_first_r_activ_some(L)) :)

ELSE null[r_activ]

ENDIF

where list_first_r_activ_*(L) is a list with one of the activations corresponding

to the →∗–rule applicable to L, if there are such activations; or the empty list,

otherwise. Thus, the concrete decision procedure is

sat_alc_i(C): bool = sat_alc_alg_i[string,string,C,f]

Finally, in order to ensure the correctness of this reasoner it suffices to prove

that f verifies the assumptions required in subsection 5.4, which are automatically

generated by the system when the selection function is instantiated. Then, the

theorems that ensure the correctness of this reasoner are the following

sat_soundness: THEOREM sat_alc_i(C) IMPLIES r_concept_satisfiable?(C)

sat_completeness: THEOREM r_concept_satisfiable?(C) IMPLIES sat_alc_i(C)

7 Conclusions and future work

We have presented a formalization of a generic framework for checking satisfiability

of ALC –concepts in PVS, for which we have proved its termination, soundness and

completeness. From this framework, we have constructed a generic tableau–based

algorithm using the methodology of refinements to transfer it its main properties.

4 It should be noted that when the reasoner is running, f is applied to expansions of an initial ABox
{x0:C}. In this case, the →∀–rule only can be applied after the application of a →∃–rule.



Finally, we have obtained some concrete reasoners by instantiation of noninterpreted

types and of the function which coded the strategy to select the rule to apply in

each step.

It is worth pointing out that this makes the formal verification of the fundamen-

tal properties of the reasoners easier, since this is reduced to prove the hypotheses

assumed on the generic function that codes the selection strategy.

We would like to point out some lines for future work. We plan to continue this

work following several research lines. First, we will extend the ALC –reasoners to

manage concept satisfiability with respect to terminological Boxes. Second, we will

deal with more specific algorithms which optimize the performing by richer data

structures. Also, we are interested in extending the reasoners for the ALC logic

to other description logics, incrementally approaching us to the description logic

SHOIN , which is the description logic corresponding to OWL–DL.
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