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ABSTRACT: The color of olive oils, and of foods in general, can influence consumer choices to a large extent and can
be related to the processing treatments they have undergone. Olive oil color is due to 2 types of pigments, chloro-
phylls and carotenoids, which are attracting the attention of the scientific community due to the probable health
benefits they can provide. Appropriate methodologies for the meaningful definition of the color of olive oil are there-
fore necessary for various reasons. In this review, we discuss the importance of olive oil color and the applicable
legislation and regulation, including sections devoted to the pigments accounting for the growing importance as
likely health-promoting substances. Furthermore, we review in depth the different approaches (visual and instru-
mental methods) used for color measurements in the last 50 y. Instrumental methods have been shown to be highly
appropriate for objective assessments and also for the rapid determination of the pigments.

The Importance of Olive Oil Color: Not Only a Matter of
Acceptability

Olive oil is an important component of the praised Mediter-
ranean diet, which is attracting increasingly the interest of scien-
tists due to the health benefits it can provide (Visioli and Galli
2002; Pérez-Jiménez 2007; Pérez-Jiménez and others 2007). As
is the case for foodstuffs in general (Francis 1995), the color of
olive oil is very related to its perceived quality and therefore to its
acceptability (Ranalli and others 1997; Boskou 1998), hence this
parameter is being paid much attention in recent years, above all
in Spain (Mı́nguez-Mosquera and others 1991; Escolar and oth-
ers 1994, 2007; Moyano and others 1999, 2001, 2008a, 2008b;
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Melgosa and others 2000, 2001, 2004, 2005; Romero and others
2001; Criado and others 2008).

Color and acceptability
There is no doubt that, in the first place, consumers judge

foods according to their external appearance (color, texture, and
so on), so this 1st assessment is going to influence decisively their
choices. This is partly due because the color of foods in general
is frequently related to their stage of maturity, the presence of
contaminants or microorganisms, the conditions of the industrial
processing, and more. On the other hand, there are associations
with food-appropriate colors, which are acquired mainly through
learning; and they play an important role in the consumer choices
(Clydesdale 1993). This link between the coloration of a given
product and its acceptability has been long known by the food
industry; hence, the use of colorants, either synthetic or natural,
is so widespread.

According to all these facts, it can be claimed that the im-
portance of olive oil color in its acceptability is such that the
consumer can reject any given oil based on the appreciation of
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Chlorophyll a Phytol* H COOCH3 CH3 Mg2+ Bluish-green

Chlorophyll b Phytol* H COOCH3 CHO Mg2+ Yellowish-green 

Pheophytin a Phytol* H COOCH3 CH3 2H Brownish-grey 

Pheophytin b Phytol* H COOCH3 CHO 2H Olive green 

Chlorophyllide a H H COOCH3 CH3 Mg2+ Bluish-green 

Chlorophyllide b H H COOCH3 CHO Mg2+ Yellowish-green 

Pheophorbide a H H COOCH3 CH3 2H Brownish-grey 

Pheophorbide b H H COOCH3 CHO 2H Olive green 

Pyropheophytin a Phytol* H H CH3 2H Brownish-grey 

Pyropheophytin b Phytol* H H CHO 2H Olive green 

Figure 1 --- Chemical structures of

chlorophyll pigments.

its color, even though the rest of its quality parameters are appro-
priate. The derived economic importance of the appearance of
the oils is therefore unquestionable. For instance, consumer sur-
veys performed in the United Kingdom, a nontraditional market
and therefore a potential new market for olive oil, revealed that
there is a clear correlation between the acceptability data and
the sensory attributes of the product. More specifically, positive
correlations with color intensity and clarity and negative ones
with lightness and green hue were observed (McEwan 1994).

Color as a useful tool in the food industry
The color parameters can also be very useful from a techno-

logical standpoint. As we will discuss latter, one of the main
advantages of the objective measurement of color is that several
parameters can be obtained in a matter of seconds; so, these color
assessments can be very appropriate to obtain a rapid estimation
of the effects of different commercial practices with olive oils.
In fact, the chromatic intensities and pigment contents of olive
oils have been already used as quality parameters when com-
paring different extraction methodologies. Overall, in these stud-
ies lower color intensities were related to higher qualities. More
importantly, it was also concluded that the objective measure-
ment of the intensities is basic to assess the quality of the product
(Papasseit 1986; Ranalli 1992b; Di Giovachino and others 1994).

However, the interest in the color of olive oil, as that of
many other products, goes beyond its relationship with consumer

choices and commercial practices. This is because the pigments
accounting for it (above all the carotenoids) are raising much in-
terest due to their likely health benefits, as we will comment later
on. Put in other words, it can be stated that the assessment of
olive oil color can also be used for the rapid assessment of the
levels of health-promoting compounds, which has great potential
in relation to quality control in the food industry. In this regard,
it is important to note that the application of multivariate statisti-
cal methods to correlate color parameters with pigment contents
in olive oils (Mı́nguez-Mosquera and others 1991; Moyano and
others 2008a, 2008b) and other foodstuffs is an expanding field
(Arias and others 2000; Ronsholdt and McLean 2001; Meléndez-
Martı́nez and others 2003, 2007a; Ruı́z and others 2005, 2008).
In this sense, we have reported recently that the color parameters
can also be used for the rapid assessment of the vitamin A activity
of orange juice (Meléndez-Martı́nez and others 2007b), which is
due to only some of the carotenoid pigments occurring in it.

The Chemistry Behind the Color of Olive Oil
The color of olive oil is due to 2 types of natural pigments,

chlorophylls and carotenoids (Mı́nguez-Mosquera 1997). Chloro-
phyll pigments account for the greenness of the oils, while the
latter account for their yellowness. The structures of chlorophylls
and carotenoids, many of which can be found in olive oils, are
shown in Figure 1 and 2.
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Figure 2 --- Chemical structures of some carotenoids re-

ported in olive oils.

Chlorophyll pigments
The structure of chlorophyll pigments consists of one tetrapyr-

role macrocycle (one of which is reduced), which contains an
additional isocyclic ring. The macrocycle is coordinated to a
Mg2+ to form a very stable planar complex (Figure 1). This struc-
ture contains a chromophore of several conjugated double bonds
(CDBs) that is responsible for the absorption in the visible region
of the spectrum of these pigments. In olive oils, both the bluish-
green chlorophyll a and the yellowish–green chloprophyll b can
be found. In some olive oils, the ratio between both pigments has
been reported to oscillate between approximately 6 and 8 (Criado
and others 2007b). The fundamental difference between them is
that in the former, there is a methyl group in C3, while in chloro-
phyll b there is a formyl group (Figure 1). The hydrophobic nature
of these pigments is due to the presence of a molecule of phytol,
which is esterified (R1, Figure 1). Other chlorophyll pigments are

pheophytins, chlorophyllides, pheophorbides, pyropheophytins,
chlorines, rhodins, and purpurins (Mı́nguez-Mosquera 1997).

The pheophytins are formed as a consequence of the replace-
ment of the magnesium ion in the chlorophyll molecules with
2 hydrogens. As a result of this change, pheophytin a exhibits a
grey–brown color, whereas pheophytin b is olive green. On the
other hand, the chlorophyllides are dephytilated derivatives of
the chlorophylls that are formed by action of the enzyme chloro-
phyllase. Other chlorophyll derivatives, the pheophorbides, can
be formed when the corresponding pheophytins are enzymati-
cally dephytilated or when the chlorophyllides lose their magne-
sium cation in acidic medium. The pyropheophytins, in which
the COOCH3 group has been replaced by a hydrogen atom,
are formed from the corresponding pheophytins as a result of
prolonged heating. In other chlorophyll derivatives (chlorines,
rhodins, and purpurins), the isocyclic ring is open. They can be
formed as a result of oxidative processes in acidic or alkaline
medium (Mı́nguez-Mosquera 1997).

The reactions that lead to the formation of these derivatives
can occur when the cellular compartmentation of chlorophyll-
containing tissues is lost and/or as a result of common
senescence-related catabolic processes in the plant (Minguez-
Mosquera and others 1993; Heaton and Marangoni 1996;
Mı́nguez-Mosquera 1997; Hörtensteiner 2006; Roca and others
2007). As far as olives are concerned, there is no doubt that the
crushing, milling, beating, heating processes, pH-changes, and
so on they undergo to obtain oils and other products do favor
the formation of chlorophyll derivatives. For instance, the main
chlorophyll pigment in olive drupes is chlorophyll a, although
during their processing to produce oil it gets in contact with acids
and high quantities of its pheophytin a derivative are formed. The
typical spectra of chlorophyll a and pheophytin a in methanol
are shown in Figure 3. As it can be observed, chlorophyll a has
2 main absorption maxima located at 430 and 664 nm. In the
case of pheophytin a, the 1st absorption maximum is located at a
shorter wavelength (407 nm), and the intensity of the 2nd one is
reduced, although it is located at a similar wavelength (666 nm).
Visually, the transformation of chlorophyll a into its pheophytine
derivative involves a shift of color from greenish hues to brownish
hues.

Carotenoid pigments
Carotenoids are isoprenoid compounds that have a hydrocar-

bon structure with CDBs (Figure 2) that accounts for many of
their properties and the actions they are involved in (Britton
1995a, 1995b). Most of the carotenoids described have 40 car-
bon atoms, although there are also carotenoids with shorter
and longer structures. Depending on the presence or not of
rings in their molecules, they can be classified into cyclic or
acyclic carotenoids. Likewise, they can be divided into carotenes
(carotenoids containing only carbon and hydrogen) and xan-
thophylls (carotenoids that also contain oxygenated functions,
like epoxide, hydroxyl, acetate, carbonyl, and carboxylic groups,
among others). In any case, carotenoids in natural structures can
be free or associated with other compounds, such as fatty acids,
sugars, and proteins (Britton and others 1995; Mı́nguez-Mosquera
1997; Rodriguez-Amaya 2001; Meléndez-Martı́nez and others
2007c).

The color of carotenoids is owed to the chromophore of CDBs,
where the delocalization of the electrons is very high. When
organic molecules absorb light, electronic transitions leading
to an excited state of higher energy take place. In the case of
carotenoids these transitions are from orbitals π to orbitals π∗

and the excited state is of low energy, due to the delocalization
of the electrons along the CDB system, such that the energy of
visible light is enough to cause the electronic transitions (Britton
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Figure 3 --- Spectra of chlorophyll a and pheophytin a in

methanol.

1995b). Phytoene and phytofluene have 3 and 5 CDBs, respec-
tively, and are colorless. Those carotenoids with 7 or more CDBs
absorb light maximally between 400 and 500 nm, hence they
furnish the yellowish, orange, and reddish colors of many struc-
tures (Britton 1995b; Rodriguez-Amaya 2001). The influence of
the number and arrangement of CDBs in the absorption spectra
of carotenoids has been long known. Recently, this spectroscopic
information has been translated into color parameters by consid-
ering the CIELAB uniform color space (Meléndez-Martı́nez and
others 2007). In the CIELAB color space (CIE 1978), 2 color co-
ordinates, a∗ and b∗, and a psychometric index of lightness, L∗,
are defined. a∗ is positive for reddish colors and negative for the
greenish ones. The coordinate b∗ is positive for yellowish colors
and negative for the bluish ones. L∗ is an estimation of the lu-
minosity and allows to regard any given color as equivalent to
a member of the gray scale, between black (L∗ = 0) and white
(L∗ = 100). From a∗ and b∗, the psychological parameters chroma

R

O

R

O

Figure 4 --- Scheme of the isomerization of 5,6-epoxides

into 5,8-furanoids.

(C∗
ab) and hue (hab) are defined as

C∗
ab = [(a∗)2 + (b∗)2]1/2 hab = arctan(b∗/a∗)

C∗
ab allows to determine for each hue its degree of difference

in comparison to a gray color with the same lightness. Chroma
is considered as the quantitative attribute of colorfulness. The
angular parameter hue (hab) is regarded as the qualitative attribute
of color and, according to it, colors can be defined as reddish,
greenish, and so on. More specifically, it is the attribute that
allows to distinguish a color from a gray color with the same
lightness.

In Figure 4 it can be appreciated that the main differences be-
tween the spectra in acetone of lutein (10 CDBs, one endocyclic)
and β-carotene (11 CDBs, 2 endocyclic), the major carotenoids
in olive oils, are the shape of their absorption bands and the lo-
cation of their absorption maxima (424, 448, and 476 in the case
of lutein and 454 and 480 nm in the case of the carotene). In
color terms, it was seen that as a result of these differences, lutein
exhibits lower values of a∗ and b∗ relative to β-carotene, while its
value of hue was higher, which indicated that the red and yellow
components in lutein were lower than in the carotene.

Although carotenoids are rather stable in their natural environ-
ment, they are very labile once extracted. As commented ear-
lier in relation to the chlorophyll derivatives, the loss of cellular
compartmentation can promote the isomerization or degradation
of carotenoids, above all due to oxidation processes (Rodriguez-
Amaya 1997, 1999). This fact explains why some pigments (pheo-
phytins, mutatoxanthin, luteoxanthin) not present in the olive
drupes just harvested can be found at a later stage or in the oil
itself (Garrido and others 1990a, 1990b; Ranalli 1992a). In this
sense, it is well known that 5,6-epoxycarotenoids (like violaxan-
thin, neoxanthin, and antheraxanthin; Figure 2) readily isomer-
izes into their 5,8-furanoid isomers in the presence of traces of
acids. These isomerizations are accompanied by a loss of conju-
gation (Figure 5), and color changes do take place. More specif-
ically, the isomerization of each 5,6-epoxide group is followed
by a hypsochromic shift (displacement to shorter wavelengths) of
the absorption maxima of about 20 nm (Eugster 1995; Rodriguez-
Amaya 2001).

The typical absorption spectra in the visible region of the elec-
tromagnetic spectrum of violaxanthin, neoxanthin, and antherax-
anthin and their 5,8-furanoid isomers in acetone are displayed in
Figure 5. Some information regarding the color changes that these
reactions cause has been reported recently (Meléndez-Martı́nez
and others 2007). In their study it was concluded that the loss
of conjugation derived from the isomerisation of antheraxanthin
(10 CDBs) to mutatoxanthin (9 CDBs) was accompanied by a de-
crease in a∗, which, in visual terms, could be translated as a “loss
in redness.” The isomerization of violaxanthin and neoxanthin (9
CDBs) into luteoxanthin and neochrome (8 CDBs), respectively,
resulted in a decrease in b∗, while the values of a∗ did not change
much. This could be interpreted as a loss of yellowness. Lastly,
it was seen that the isomerisation of luteoxanthin (8 CDBs) into
auroxanthin (7 CDBs) was followed by a marked decrease in b∗
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Figure 5 --- Absorption visible spectra (380 to 770 nm) in acetone of lutein, β-carotene, violaxanthin, luteoxanthin,

auroxanthin, antheraxanthin, mutatoxanthin, neoxanthin, and neochrome.

(loss of yellowness) and a certain increase in a∗. Considering the
hue, it was seen that the losses of conjugation led to increases
of this parameter, which meant that the color was shifting from
orange to yellowish hues (Meléndez-Martı́nez and others 2007).

Pigment content of olive oils
The pigment content of a wide variety of olive oils have been

the subject of many studies, some of which are summarized
in Table 1. High-performance liquid chromatography has been
long used and remains the method of choice for the determina-
tion of olive oil pigments (Standcher and others 1987; Mı́nguez-
Mosquera and others 1992; Psomiadou and Tsimidou 1998;
Cichelli and Pertesana 2004; Hornero-Méndez and others 2005;
Mateos and Garcı́a-Mesa 2006). Novel approaches whose use
may be interesting under certain circumstances (quality con-
trol, lack of chromatographic equipment, and so on) have also
been described. Two examples are the determination of chloro-
phylls a and b and pheophytins a and b from fluorescence signals

(Galeano Diaz and others 2003) or the rough estimation of the
carotenoid and chlorophyll indexes from objective color mea-
surements (Moyano and others 2008a, 2008b), methodologies
developed with the help of appropriate multivariate statistical
methods.

Olive Oil Pigments and Likely Health Benefits

Chlorophylls
The role of chlorophylls as natural pigments accounting for

greenish colors and in photosynthesis is well known. However,
there are some reports that hypothesize that chlorophyll pigments
and related compounds may be beneficial for human health. In
this sense, early in the 1980s studies indicated that some of these
pigments seemed to exhibit antioxidant activity under certain
conditions (Endo and others 1985a, 1985b), although the same
authors also observed that they could also act as prooxidants
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Table 1 --- Major pigments found in diverse olive oils.

Olive oil samples Major pigments determined Reference

Verdial variety Pheophytin a, chlorophyll a, chlorophyll b, pheophytin b (Mı́nguez and others 1990)
Lutein, β-carotene

Picual, Picudo, Subbética, Hojiblanca,
and Pajarero varieties

Pheophytin a, chlorophyll a, chlorophyll b, pheophytin b (Mı́nguez-Mosquera and others 1992)
Lutein, β-carotene, violaxanthin, luteoxanthin,

antheraxanthin, mutatoxanthin, neoxanthin

Nevadillo, Hojiblanca, Picual, Marteña,
Pajarero, Arbequina, and Cornicabra
varieties

Pheophytin a, chlorophyll a, chlorophyll b, pheophytin b,
pheophorbide a

(Gandul-Rojas and Mı́nguez-Mosquera
1996)

Lutein, β-carotene, violaxanthin, luteoxanthin,
antheraxanthin, mutatoxanthin, neoxanthin,
β-cryptoxanthin

Greek olive oils Pheophytin a, chlorophyll a, chlorophyll b, pheophytin b (Psomiadou and Tsimidou 1998)
Lutein, β-carotene

Arbequina, Blanqueta, Cornicabra,
Hojiblanca, Picual, and Lechı́n
varieties

Pheophytin a, chlorophyll a, chlorophyll b, pheophytin b (Gandul-Rojas and others 2000)
Lutein, β-carotene, violaxanthin, luteoxanthin,

antheraxanthin, mutatoxanthin, neoxanthin,
β-cryptoxanthin

Amfissis, Athinolia, Chondrolia, Kolovi,
Koroneiki, Lianolia, Manaki, and
Throumbolia cultivars

Pheophytin a (Psomiadou and Tsimidou 2001)
Lutein, β-carotene

Miscellaneous Pheophytin a, chlorophyll a, chlorophyll b, pheophytin b (Cichelli and Pertesana 2004)
Lutein, violaxanthin, neoxanthin

Verdial, Picual, and Manzanilla varieties Pheophytin a, chlorophyll a, chlorophyll b, pheophytin b (Luaces and others 2005)
Lutein, β-carotene

Arbequina variety Pheophytin a, chlorophyll a, chlorophyll b, pheophytin b,
pheophorbide a

(Criado and others 2007b)

Lutein, β-carotene, violaxanthin, luteoxanthin,
antheraxanthin, mutatoxanthin, neoxanthin, α-carotene

Arbequina and Farga cultivars Chlorophyll a, Chlorophyll b (Criado and others 2007)
Lutein, β-carotene, violaxanthin, antheraxanthin,

neoxanthin

Cerasuola, Nocellara, and Biancolilla
varieties

Pheophytin a, chlorophyll a, chlorophyll b, pheophytin b,
pyropheophytine a

(Giuffrida and others 2007)

Lutein, β-carotene, violaxanthin, luteoxanthin,
antheraxanthin, neoxanthin, β-cryptoxanthin

Arbequina Pheophytin a, chlorophyll a, chlorophyll b, pheophytin b,
pheophorbide a

(Criado and others 2008)

Lutein, β-carotene, violaxanthin, luteoxanthin,
antheraxanthin, mutatoxanthin, neoxanthin, α-carotene

(Endo and others 1984). Some years later, compounds related
to chlorophyll a isolated from bivalves also attracted certain at-
tention owing to their likely antioxidant actions (Yamamoto and
others 1992; Watanabe and others 1993).

The interest in the possible beneficial effects of chlorophyll
pigments and related compounds has re-emerged in the current
decade. In this regard, some further studies that seem to indicate
that they may be antioxidants have appeared (Kamat and oth-
ers 2000; Lanfer-Marquez and others 2005). More importantly,
some authors have reported that they may also be beneficial in
the prevention of cancer (Ferruzzi and others 2002; Ferruzzi and
Blakeslee 2007). Due to this renewed interest in chlorophyll pig-
ments in connection to the health benefits they may provide,
their bioaccessibility (release from the foodstuff and processing
into a form that can be absorbed) and uptake by human intesti-
nal cultured cells have been evaluated (Ferruzzi and others 2001;
Gallardo-Guerrero and others 2008), since bioactive compounds
must be absorbed and enter the systemic circulation to be dis-
tributed to the tissues where they exert their functions or actions.

Carotenoids
Carotenoids are much more than pigments furnishing many

natural structures (petals, fruits, feathers, egg yolk, among others)
with yellowish, orange, or reddish colors, this range of colors
widening by association with proteins (Britton 1996). In fact,
they also play key roles in photosynthesis, like for instance, the
protection against deleterious photooxidative damage (Frank and
Brudvig, 2004; Telfer and others 2008) and are precursors of
aromas and the plant hormone abscisic acid (Lewinsohn and
others 2005; Nambara and Marion-Poll 2005). Apart from these
and other functions, carotenoids have attracted the attention of
scientists for decades due to their nutritional importance. Thus,
some of them (β-carotene, α-carotene, β-cryptoxanthin, and so
on) are precursors of vitamin A. Over and above the role of
some carotenoids as provitamins, a large body of evidence ex-
ists indicating that they may be effective antioxidants (Burton
1989; Olson 1993; Krinsky 2001) and beneficial in relation to the
prevention or amelioration of serious human ailments like skin
(Mathews-Roth 1979, 1990) and eye disorders (Snodderly 1995;
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Bernstein 2002), cancer (Krinsky 1989; Wang and Russell 2000;
Rock 2002; Palozza 2004), cardiovascular disease (Voutilainen
and others 2006; Wang and others 2008). Although epidemio-
logical studies indicate that the consumption of carotenoid-rich
products should be encouraged (Southon 2000; O’Neill and oth-
ers 2001) and many advances in the understanding of the mech-
anisms by which these compounds exert their beneficial effects
have been made in the last few years (Mortensen and others
2001; Krinsky and Yeum 2003; Elliott 2005; Krinsky and John-
son 2005; Carail and Caris-Veyrat 2006; Kim and others 2006;
Linnewiel and others 2009; Liu and others 2009), there is still
some controversy about the effects of carotenoids in vivo. Thus,
some authors have reported that they may also be prooxidant
under certain conditions (Palozza 1998; Young and Lowe 2001;
Lowe and others 2003; Palozza and others 2003) and even pro-
carcinogens (Wang and Russell 1999; Paolini and others 2003).

As far as the major carotenoids in olive oil are concerned, both
β-carotene and lutein are thought to provide several health ben-
efits. The vitamin A activity of β-carotene has long been known
and is not further discussed in this review. However, the interest
in this compound was revived some 25 y ago in relation to its
likely antioxidant activity, a line of research that is still attracting
the interest of researchers (Burton and Ingold 1984; Jialal and
others 1991; Tsuchiya and others 1994; Nakagawa and others
1996; Paiva and others 1999; Kim and others 2007). Likewise,
much attention is being paid to its probable beneficial effects
in relation to the prevention of cancer (Russell 2002; Kim and
others 2007; Liu and others 2009). However, as mentioned be-
fore for carotenoids in general, there is still certain controversy
about some of the goodness of β-carotene (Gaziano and others
1995; Wang and Russell 1999; Palozza and others 2003; Paolini
and others 2003), in many cases derived from the design of the
assays.

Lutein is also being paid much attention in the last few years
in relation to its nutritional relevance (Granado and others 2003;
Calvo 2005), as a result of which it is being added to both animal
feeds and human dietary supplements (Breithaupt and Schlatterer
2005; Breithaupt 2007). More specifically, this pigment is being
extensively studied in relation to eye health, since it accumulates
along with zeaxanthin in the macula lutea of the fovea and they
both are thought to be beneficial for the prevention of cataracts
and age-related macular degeneration (Johnson and others 2000;
Trumbo and Ellwood 2006; Schalch and others 2007; Cho and
others 2008; Carpentier and others 2009). Furthermore, in some
studies it is concluded that lutein may exhibit antioxidant activ-
ity (Haila and others 1996; Stahl and others 1998; Broniowska
and others 2007), although it must be considered that contro-
versy about the in vivo antioxidant role of carotenoids in general
remains, as mentioned earlier. Two recent works also indicate
that this pigment may protect against DNA damage (Santocono
and others 2006, 2007). As a result of this increasing interest in
lutein in relation to human health, its status (Cardinault and oth-
ers 2003), bioaccessibility (Granado-Lorencio and others 2009),
and bioavailability (Olmedilla and others 1997, 2002; Granado
and others 1998; Lienau and others 2003) have been evaluated
thoroughly in recent years.

Olive oil and pigment bioavailability
In relation to the health benefits of carotenoids, in general, it

is important to bear in mind that they must be absorbed and de-
livered to the relevant tissues so they can exert their biological
functions or actions. Being highly lipophilic, the absorption of
these compounds is complex and requires their release from the
food and their incorporation into micelles and subsequent uptake

for the enterocytes and release to the systemic circulation. These
processes are dependent on several factors, like the interaction
of carotenoids with other food components and between them,
the food matrix, the intrinsic characteristics of the individual,
and more (Castenmiller and West 1997; Yeun and Russell 2002;
Faulks and Southon 2005). For instance, it is well known that
the commercial food processing and culinary practices cook-
ing can improve the bioavailability of carotenoids (Rock and
others 1998; Edwards and others 2006; Hornero-Mendez
and Minguez-Mosquera 2007; Veda and others 2008; Thakkar
and others 2009), so it is sensible to assume that lutein and β-
carotene are more available from olive oils than from the dru-
pes, since in the latter case, they have to be 1st released from
the cells. Moreover, it must be considered that the absorption of
these compounds can be improved by the simultaneous presence
of oil, which means that olive oil can be a perfect vehicle for the
absorption of native carotenoids and those present in other foods
consumed at the same time (Fielding and others 2005; Ahuja and
others 2006; Lakshminarayana and others 2007).

Legal Aspects Related to the Color of Olive Oil
Despite these examples illustrating the importance of color as

a quality attribute in olive oils, when the quality parameters of
these products were established, not much attention was paid
to color. Indeed, the applicable legislation is far from specific in
relation to the color of olive oils.

When the quality parameters of olive oils started to be de-
fined by the competent authorities, color was left out, such that it
became linked to their commercial characterization or the agree-
ment between the seller and the buyer. In the 1st regulation of the
Intl. Olive Council (IOC), where the quality requirements for vir-
gin olive oils were established (COI 1987), the sensory attributes
more appealing to the consumer were not appropriately defined.
In fact, it turned out unfeasible to perform an objective classifi-
cation based on them since reference methods to be used for the
assessment of aroma, taste, and color were not even described
(Gutiérrez 1987). This regulation at least specifies the color (sub-
jectively defined with terms as bright, yellow to green, and so
on) that some categories should have. However, the specifica-
tions were so ambiguous and subjective that the differentiation
between some of them was very difficult at best. However, in later
regulations this specification regarding the color of the categories
disappears, to the extent that in the current regulation there is not
any either (COI 1996).

During the 60th meeting of the IOC, the need of establishing
an objective methodology to define the color of olive oils was
raised. In this regard, a proposal of the assessment of color ac-
cording to a continuous scale was set out, although the study was
eventually postponed (COI 1990). In the case of the regulation
of the European Union (EU) applicable to olive oils with special
emphasis on analytical methods, there is not any specification
relative to their color definition (CEE 1991).

The sensory evaluation proposed both in the IOC and in the
EU regulations is an objective assessment of the quality of vir-
gin olive oils that does not introduce preference or acceptability
criteria. Pertaining to this, it is important to consider that the ac-
ceptability studies constitute another key aspect of the quality of
the product. These studies involve the realization of appropriate
sensory tests to be carried out by a large number of untrained
people to determine new potential markets or set the specific at-
tributes of olive oils that are of special interests to the consumers
(Dobarganes 1994).

Anyhow, several studies on the objective specification of this
attribute have come out in the last few years, it is important to
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stress the need to define unambiguously the different attributes
related to color (lightness, hue, chroma, for example) (Escolar
and others 1994, 2007; Moyano and others 2001, 2008a, 2008b;
Melgosa and others 2004, 2005).

Methodologies for the Assessment of Olive Oil Color
According to the reasons set out in the introduction, the need of

having appropriate methods to define olive oil color is unques-
tionable; hence, this parameter has been assessed in different
ways for decades. In principle, the approaches followed to this
end can be readily grouped into 2 main categories, visual and
instrumental methods. The visual analysis forms part of the sen-
sory analysis of the product and can be carried out rather easily
without the need of any instrumentation. Although there may be
a certain vocabulary to define the colors so studied, the descrip-
tion is largely subjective. In contrast, to carry out instrumental
measurements, a certain investment has to be made, the prices
of the instruments suitable for the measurement of color rang-
ing considerably. By means of these measurements, an objective
definition of color can be attained once the reference conditions
necessary to carry out the readings are set.

Visual methods
Visual analysis of olive oil and food colors in general are

commonly carried out. In this regard, large panels of untrained
panelists are normally considered to determine preferences,
whereas trained panelists are used for descriptive assessments.
Indeed, trained judges are used for quantitative descriptive anal-
ysis (QDA), which is useful for generating color descriptive terms,
which can be correlated with instrumental or other type of data
at a later stage.

The simplest way of assessing the color of an olive oil visually is
to compare it with color scales. These scales consist of a series of
colored solutions, which are rather stable and can be made from
easily available colorants. Furthermore, the scale of reference
solutions must encompass all the possible colors that can be
found in the type of olive oils studied. It is very important to place
the samples to be assessed in appropriate cuvettes, and that these
match those used to contain the reference solutions, since both
(the sample and the references) are eventually compared using
a standardized blank of diffuse light (Naudet and Sambuc 1955;
Belbin 1993).

In the case of olive oil, the bromothymol blue method (BTM) is
widely used. This method is based on the establishment of a scale
of indexes that do not contain reddish hues for the definition of
the color of oils from olives and seeds. That is, the scale has to
encompass hues ranging from yellow to green (AENOR 1963).
A modification of this method for the visual color definition of
virgin olive oils has also been proposed (Gutiérrez and Gutiérrez
1986).

Colored glasses can also be used as reference standards as an
alternative to colored solutions. These types of glasses are used in
the Lovibond method (AOCS 1992). This method consists in the
visual color matching of the light transmitted through a specific
surface of oil with the color of the light originated by the same
source transmitted through the colored glass standards. The ap-
paratus enables to observe the oil under controlled conditions,
since the illumination is standard and the vision angle is set. The
optic system is designed to help the observer see simultaneously
the field of the reference blank and that of the olive oil sample.
The series of reference colored glasses is numbered and com-
prises colors ranging from unsaturated water-white to completely
saturated red, yellow, and blue colors. These colors constitute
the so-called Lovibond color scale. The color matching between

the samples and the references is expressed in terms of Lovibond
units of red, yellow, and/or blue (Belbin 1993).

Other color scales used to define the color of oils are the
Gardner scale (mainly used to classify natural and synthetic oils,
lecithins, fatty acids, and some oil derivatives) (AOCS 1964), the
Wesson method (applicable to all the normal fats and oils) (AOCS
1992), or the fatty acid committee (FAC) scale, used to classify
nonedible grease and dark oils (AOCS 1943).

The determination of the color of olive oils presents other draw-
backs, such as the obtaining of appropriate reference material
itself, the fact that these are not rigorously standardized, and
the possibility that they undergo color changes due to oxidation
processes catalyzed by heat, light, and oxygen as time goes by.
Besides, the color matching by these means is rather imprecise
and is very dependent on the observer. It is commonplace that
different observers match the same sample differently and that the
same observer matches the same sample differently when the test
is repeated (Presnell 1949; Naudet and Sambuc 1955; Pohle and
Tierneh 1957). On the other hand, in relation to the impact of
color in the sensory analysis of olive oils, in general, a recent study
concludes that the objective intended when using blue glasses for
the oil tasting, which is to conceal the color so it does not influ-
ence the sensory assessment of aroma and taste, is not fulfilled.
In this sense, it was reported that such glasses fail to effectively
conceal the color such that the panelist can appreciate it visually.
From this it can also be inferred that the color of olive oils is paid
little importance in relation to the sensory analysis to the extent
that it is regarded as an “annoying attribute.” This contrasts with
the sensory analysis of other products for human consumption.
For instance, in the case of wines, color is an important part of the
sensory analysis and the panelists are expected to be sufficiently
trained so as not to let themselves be influenced by it. In this study,
it is concluded that the color of olive oils should also be carried
out in a transparent glass so the sensory analysis is complete. In
this sense, it is pointed out that the color intensity and the hue are
much related to the degree of ripeness of the drupes. Additionally,
the fact that unfiltered oils are acquiring certain relevance gives
support to this recommendation, inasmuch as the consumer can
regard olive oils having natural turbidity as more natural. On the
other hand, the authors state that in order to effectively conceal
the color of the oils, the chromatic characteristics of the tinted
glass used for the sensory analysis should be established more
carefully (Melgosa and others 2009).

To conclude this section, it can be stated that the need to re-
duce the subjectivity linked to the visual assessments led to the
progressive development of instrumental methods. These meth-
ods also offer a series of advantages (simplicity, nondestructive-
ness, affordable and versatile equipment, portability, ultra-rapid
measurements, possibility of automation, and so on) that can
be harnessed for the quality control of foods in the field by the
industry, or even in the marketplace.

Instrumental methods
Spectrophotometric methods. The Color Committee of the

American Oil Chemists’ Soc. (AOCS) (Agee 1948) issued a report
stating that, although the system had been useful and necessary,
the use of the visual colorimeters used for the Lovibond glasses
should be discontinued. This measure was adopted on the basis
of the advances in scientific instrumentation, such that the use
of photoelectric colorimeters was advised in order to obtain a
more accurate classification of the oils. This report had also as an
objective to present some data on the color of olive oils obtained
with a spectrophotometer and suggested a method according to
which the spectrophotometric data could be used to replace the
measurements made according to the Lovibond system. In this
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regard, the results obtained after measuring 9 oil samples in a
spectrophotometer (at 550 nm and using CCl4) and according to
the Lovibond system in 2 laboratories were compared. The out-
comes indicated clearly that the red Lovibond colors could be
easily estimated, except in the case of the green oils, for which
low Lovibond values were obtained. Additionally, it appeared
that it did not matter that the oil was diluted or not in CCl4.

In a later study under the auspices of the Color Committee
of the AOCS, more than 30,000 spectrophotometric, Lovibond,
and other visual assessments of the color of different oils (soy, cot-
ton, and peanut) were made in 9 laboratories. After statistically
analyzing the data in 4 of the laboratories, 4 equations were
proposed. By recommendation of the Color Committee of Oils,
one of these equations was unanimously accepted by the AOCS
(Agee 1950). In this equation, which appears in the current spec-
trophotometric method for the determination of the color of soy,
cotton, and peanut oils (AOCS 1989a, 1989b), the transmittance
readings at 460, 550, 620, and 670 nm are taken into account,
with their corresponding coefficients:

R = 1.29 D460 + 69.7 D550 + 41.2 D620 − 56.4 D670

where

R = red Lovibond
D = optical density

The correlation found with the red Lovibond color was very
high (r = 0.993). However, this equation presents some incon-
veniences. The most serious of them is related, evidently, to the
presence of a negative factor in the equation, because, when the
oils are green, this is so considerable that a negative red Lovibond
is obtained. Put otherwise, the oils would have an unreal color
(Naudet and Sambuc 1955; Pohle and Tierneh 1957).

The spectrophotometric measurement has been proposed to
establish a method to control de decoloration of oils, considering
especially the olive oils in which absorption maxima correspond-
ing to the pigments appear. The absorption spectrum changes
considerably as a function of the relative percentages of pig-
ments occurring in them (Stella 1966). In the case of olive oil, the
visible spectrum presents 7 regions of maximum absorption: 410
to 420 nm, 450 to 455 nm, 480 to 485 nm, 530 to 535 nm, 560
to 565 nm, 610 to 615 nm, and 660 to 673 nm (Figure 6). Tak-
ing these facts into consideration it is important to bear in mind,
among other circumstances, the likely interaction between col-
ored compounds with similar absorption maxima, the influence
of the conditions of the medium (acidity, temperature, refractive
index) or transformations of the original pigments into derivatives
with other chromatic characteristics. For the spectrophotometric
measurements, the extinction coefficients corresponding to the 7
regions are calculated and by averaging them the mean extinc-
tion coefficient of the oil is obtained (K0). From K0 a decoloration
index (Id) is proposed, which is calculated by the following
equation:

Id = K 0 − Kd/K 0

where Kd corresponds to the mean extinction coefficient of the
decolored oil, such that Id ranges between 0 and 1.

In a more practical way, the 7 wavelength regions can be
grouped into 3 (410 to 480, 535 to 565, and 610 to 660 nm,
which correspond to yellow, purple–violet and green–blue col-
ors, respectively) and the partial index of each can be calculated.

In relation to the pigments, formulas for the calculation of
carotenoid and chlorophyll indexes (CI and CLI, respectively)
based on spectrophotometric readings have been proposed

(Papasseit 1986):

CI = A500 × 100

CLI = A670 − (A630 + A710/2) × 100

However, all the efforts made to find a suitable spectrophoto-
metric method for the meaningful color definition of olive oils
were based on a rather inappropriate premise, that each new
method must provide values that can be translated into Lovi-
bond colors. The outcome was that, after many years of work,
assembling numerous data, and testing several instruments, an
acceptable methodology has not been achieved. However, the
insistence in relating the colors of oils with the values obtained
according to the Lovibond method was, to some extent, justi-
fied due to the services given to the industry and the market for
many years. The customary use of this methodology precluded
the rapid transition to others. Additionally, some people are so
used to the Lovibond method that the values obtained from it
represent to them the visual sensation of the color far better than
other color parameters. In this regard, it is possible that this has
also contributed to the fact that the application of spectropho-
tometry to the color definition of oils in general has not been
approached correctly. Nonetheless, in the particular case of olive
oil, this problem still does not exist, because there is not yet a
standard methodology for its color assessment. This fact, that on
many occasions could be a serious drawback due to the lack of
reference methodology to be used as foundation, can also be an
advantage.

On the other hand, considering that unfiltered oils are growing
in importance it is also important to determine if the color of
these oils should be inferred from absorbance measurements or
by other means, as the high turbidity of these samples could be
a problem.

The application of tristimulus colorimetry to olive oils
The physiological sensation to examine the appearance of a

transparent liquid is dependent on 3 factors: the amount of radi-
ant energy emitted by the source at each wavelength (emission
spectrum of the source), the way in which this energy is transmit-
ted by the sample observed (emission spectrum), and the response
of the eye of the observer to the radiations of different frequen-
cies (curve of sensitivity of the eye). The 2nd factor is the most
important on which to base the proposal of the appreciation of
the oil color. In this sense, what it is sought is to define a color
from the sensations perceived by the human eye, copying in a
“natural way” the language of the colors and the paintings. Thus,
a color is characterized by its hue (yellowish, orange, greenish),
its purity (the basal hue is more or less mixed with the white) and
its brightness (the color is more dark or more bright).

The tristimulus colorimetry deals with the chromatic specifica-
tion of color abiding by the basis of the trichromatic theory. The
interest in the application of this theory to the color definition of
oils started decades ago, above all, after it was demonstrated that
their color assessment by visual comparisons or empirical equa-
tions yielded few reliable outcomes. Due to the variable amounts
of the different pigments present in the oils, it is not possible to
select only one wavelength at which the transmission is an exact
function of the total or visual transmission of the oil. In this re-
gard, it is considered that the expression of the results in terms of
tristimulus values must be a more satisfactory method (Presnell
1949; Naudet and Sambuc 1955; Bigoni 1963).

The problem of the choice of the most adequate solvent to be
used as blank reference has been tackled, as well as the validation
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Figure 6 --- Typical visible absorption

spectrum of an olive oil.

of the Lambert–Beer Law and its application to fat solutions in
different solvents and at different sample thicknesses. Addition-
ally, the trichromatic theory has been applied in different cases
like raw fatty compounds, decoloration of fats, and refined fats
(Naudet and others 1956).

In the particular case of olive oils, the transmittance curves of
a series of representative samples (3 refined oils, 3 blends of vir-
gin and refined oils, 4 commercial olive oils, and 12 virgin olive
oils obtained by the systems of pressing and partial extraction in
the experimental olive mill of the Instituto de la Grasa (Sevilla,
Spain) were obtained. From these samples, their coordinates in
the International Commission on Illumination (CIE, from its name
in French: Commission Internationale de l’Eclairage) system were
calculated as a starting point to deduce the methodology to be
applied to assess the color of those oils (Castro and others 1955).
More specifically, the chromaticity coordinates (x,y) and the fac-
tor of luminance (Y) were calculated using the illuminant C and
the tristimulus values X,Y,Z. In the chromatic diagram, it was
observed that it was possible to trace a line that, with a very
good approximation, represents the location of the chromaticity
of olive oils. This fact would enable by establishing a scale along
that line, to reduce the specification of the chromaticity of olive
oils to only one parameter, and that of the “complete color” to 2
parameters, by including the luminance, which is not included
in the diagram. On the other hand, the fact that this line was
largely straight made it evident that it would be easy to design a
simple colorimeter to determine the parameter to be used for the
color definition without having to resort to standards. In relation
to this, several simplified methods have been proposed in order
to reduce the numerous calculations necessary to work out the
trichromatic coordinates (above all when computing was not as
advanced as it is nowadays) or to enable its application in the
case that the necessary instrumentation to register the complete
spectrum was unavailable. Likewise, the use of simple colorime-
ters to register only several wavelengths has also been proposed.
In this regard, it seemed feasible to obtain the tristimulus values
with a good approximation from functions of the transmission
values at certain correctly chosen wavelengths. The procedure

consisted basically of the application of Hardy’s method of se-
lected coordinates (Hardy 1936), although reducing the number
of coordinates to a great extent. Presnell (1949) performed it
from oils clarified by filtration and dehydration if necessary. For
this purpose, 5-mm cuvettes were used, except for very dark oils,
for which narrower cuvettes were employed and the results were
finally corrected to 5-mm pathlengths. As blank reference, both
water and CCl4 could be used (although the latter was recom-
mended because its refractive index is closer to that of most of
the oils), while the illuminant C was considered as reference for
being the most widely used at that time. For the original calcula-
tion of the tristimulus values, oils from different origins exhibiting
varied transmission spectra were used and 30 coordinates were
selected. Subsequently, 3 coordinates were selected and the cor-
responding factors that could be applied to achieve a good ap-
proximation to the tristimulus values previously calculated were
found. Eventually, the following expressions for X,Y,Z., obtained
from the transmittance readings at 445, 555, and 600 nm, were
arrived at:

X = 0.2 T445 + 0.15 T555 + 0.65 T600

Y = 0.1 T445 + 0.7 T555 + 0.2 T600

Z = 1.2 T445 + 0.06 T555

Although the approximate values obtained applying these
equations were in accordance with the values obtained by the
method of the selected coordinates, Sambuc and Naudet (1956)
made some observations to these results:

- If the equations proposed by Presnell are applied to a per-
fectly transparent solution (T(λ) = 100), it can be observed
that the trichromatic coordinates do not coincide with those
of the point C (colorless).
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- X and Z are erroneous and the scattering of the results is
considerable, especially in the case of Y.

- The samples surveyed by Presnell were very bright oils with
little variation in brightness.

The authors tried to enhance the results increasing to 4 the
number of degrees of transmission used and choosing conve-
niently the wavelengths (444.4, 495.2, 551.8, and 624.2 nm),
such that the following equations were eventually obtained:

X = 0.19 T444.4 + 0.33 T551.8 + 0.46 T624.2

Y = 0.17 T495.2 + 0.63 T551.8 + 0.20 T624.2

Z = 0.94 T444.4 + 0.24 T495.2

As a result of these modifications, the deviation observed
between the reference values and the practical values were
markedly reduced, considering that the main source of error was
due to raw and little refined oils that exhibited a marked variation
of transparency in a very narrow region of the spectrum.

According to Bigoni (1963) the previous methods were based
in the relative continuity of the absorption spectrum of the oils,
normally without any characteristic band, which justifies partially
the selection of only 4 wavelengths in correspondence to the 3
primary sources. Thus, some inconveniences were pointed out:

- The longest wavelength for the expression of the tristimulus
values was 625 nm, so the absorption band due to chloro-
phylls at 670 nm, which is characteristic of some oils like
olive oils, was not considered.

- The method restricts itself to give as results of the mea-
surements the values XYZ. Such numerical values are not
appropriate to convey an exact idea of the color, with the
exception of the brightness (Y).

Consequently, the author developed a modification of the
method, based on the following principles: to add to the equa-
tion of X (that considers the region 600 to 700 nm) another term
that took into account the absorption band due to chlorophylls
and the proposal of 2 simple equations that manage to express
directly the values of saturation (S) and hue (λ), avoiding the
graphical representation:

X = T660/0.05 + T625/0.40 + T550/0.37 + T445/0.19

Y = T625/0.19 + T550/0.14 + T495/0.17

Z = T495/0.18 + T445/0.82

S = 100(1 − 3Z/(X + Y + Z))

λ = 872 − 173.5 log(100(Y − Z)/(T − 3Z))

More recently, a methodology for the rapid determination of
the color of virgin olive oils from the absorbance or transmit-
tance readings at 480 and 670 nm of the pure samples has been
proposed (Escolar and others 1997). These values correspond to
the absorption maxima of the major pigments accounting for the

color of the samples and, therefore, for the main absorption bands
in their visible spectra. Indeed, the visible spectrum of a virgin
olive oil can be simulated by means of an adequate combination
of the spectra of carotenoids and chlorophylls. Moreover, sim-
plified methods for the determination of the color of olive oils
based on the application of the analysis of characteristic vectors
have been proposed (Ayala and others 1994; Moyano and others
2001).

The use of filter photocolorimeters to assess the color of olive
oils has also been described. When the filters are illuminated by
means of a well-defined source and the emerging light is received
on a photoelectric cell, the response curve of the cell as a func-
tion of the wavelength is identical to the contribution of each
of the primary in that source. In other words, the light of
each filter acts like a primary source. One of the most widely
used filter photocolorimeters is the so-called Hunter photocol-
orimeter. With this apparatus the X,Y,Z values of the samples can
be calculated from the degrees of transmission R,G,B read with
each filter. Another similar apparatus has been devised from some
of the simplified methods to determine the trichromatic coordi-
nates (Cruz and others 1956; Sambuc and Naudet 1956, 1960;
Bigoni 1963).

Up to this point, we have dealt with the development of instru-
mental methodologies that can be used to overcome the subjec-
tivity linked to visual measurements. However, the comparison
between different methods for the color assessment of oils has
also been the objective of several studies. For instance, the corre-
lation existing between different instrumental and visual methods
to measure the color of rapeseed oils has been determined (Brát
and others 1988, 1993).

In recent years, the BTM has been the subject of several inves-
tigations, in which some of the limitations of this methodology
were pointed out. Thus, the trichromatic coordinates correspond-
ing to 90 virgin olive oil samples and to these standard solutions
were evaluated to examine the validity of the BTM scale. Inter-
estingly, it was observed that the scale only matched part of the
oils studied. Furthermore, considering the typical spectra of one
oil and that of a standard solution, it was suggested that there
may be problems of metamerism (the phenomenon by which 2
stimuli with different spectral composition are visually perceived
as equal) that could invalidate even more the use of the BTM
scale in the industry. As a result of these observations, it was con-
cluded that certain corrections were necessary to take advantage
of the well-known practical utility of this scale (Burón and others
1989). Moreover, it has been demonstrated that there is a clear
chromatic degradation of the standards with time, which advised
against the use of this system (Moyano and others 1999; Melgosa
and others 2001). In another investigation, conclusions concern-
ing the low precision, accuracy, and uniformity of the scale were
drawn and additional suggestions for its enhancement were pro-
vided (Melgosa and others 2000).

In a comparative study, several types of oils subjected to ther-
mal oxidation were used to calculate the chromatic parameters
from the standard methods recommended by the CIE and several
simplified methods. As a result, it was concluded that the latter
methods could only be applied to certain chromatic parameters
and certain oils and that, therefore the standard methods recom-
mended by the CIE must be applied for a complete study of the
color parameters of the samples (Guillén and others 1991).

In another interesting study, the mistakes made in the calcula-
tion of the tristimulus values of olive oil by methods based on the
use of several selected coordinates and an increase in the number
of such coordinates were analyzed. For this purpose, 10 meth-
ods were evaluated. Four were old methods developed for other
kinds of oils but eventually used in olive oils. The other 6 were
methods that used a large number of transmittance values and
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that were developed to determine the influence of the number
of data considered to calculate the tristimulus values. The study
demonstrated, as expected, that a large number of coordinates
provide better results in the definition of olive oil color (Escolar
and others 1994).

In recent years, new studies concerning the objective mea-
surement of olive oil color have been published. In one of them,
a uniform color scale for virgin olive oils was developed from
the chromatic parameters corresponding to several hundreds of
Spanish olive oils from different varieties and origins. More specif-
ically, this scale proposed a new set of color standards that appear
more appropriate than those proposed by the BTM (Melgosa and
others 2004). Furthermore, the CIE 1976 (CIELAB) color space for
virgin olive oil has been recently determined and used to classify
the color of over 100 Spanish samples of diverse origin (Escolar
and others 2007).

To conclude, it is important to mention that some of these
methods are being widely used for several purposes, like charac-
terization (Mincione and others 1996; Motilva and others 1998;
Criado and others 2008) or assessment of color changes during
processing (Ranalli 1992a; Ranalli and Angerosa 1996) or oxida-
tion tests (Ranalli and Angerosa 1996; Ceballos and others 2003).
Interestingly, the color of olive oils has also been related to their
pigment content (Mı́nguez-Mosquera and others 1991; Moyano
and others 2008a, 2008b), a research field that is susceptible
to expand in coming years due to the growing interest in these
compounds owed to their likely health benefits.

Concluding Remarks
Olive oil is a key component of the praised Mediterranean diet,

which keeps on attracting the interest of scientist due to the health
benefits associated with its consumption. Its color is of great im-
portance in relation to the acceptability by the consumers, but
also from an industrial point of view. In recent years, the interest
in the pigments accounting for this attribute has revived due to
accumulating evidence indicating that they may be beneficial for
the prevention or alleviation of serious human disorders directly
related or not to oxidative stress (certain types of cancer, cataracts,
age-related macular degeneration, and more). Although the leg-
islation is very lax in relation to the color assessment of olive
oils, according to the facts mentioned above, there is no doubt
that it is necessary to design meaningful standardized methods
to define this attribute. In this sense, some studies conducted in
the last few years indicate that the widely accepted visual as-
sessments of olive oils present serious problems that should be
overcome by using objective instrumental methods. These can
be used not only to define the color of the products, but also to
estimate the contents of chlorophylls and carotenoids, which is
very interesting and can be applied in quality control and other
situations.
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Melgosa M, Pérez MM, Hita E, Heredia FJ, Alba J, Moyano MJ. 2001. Reproducibility of the
bromthymol blue standards used for color specification of virgin olive oil. J Am Oil Chem
Soc 78:265–70.

Melgosa M, Huertas R, Hita E, Roa JM, Heredia FJ, Alba J, Moyano MJ. 2004. Proposal of a
uniform color scale for virgin olive oils. J Am Oil Chem Soc 81:323–30.

Melgosa M, Huertas R, Hita E, Roa JM, Heredia FJ, Alba J, Moyano MJ. 2005. Performance
of two color scales for virgin olive oils: influence of ripeness, variety, and harvest season. J
Am Oil Chem Soc 82:21–5.

Melgosa M, Go mez-Robledo L, Huertas R, Capitan-Vallvey L, Moyano M, Heredia F. 2009.
Color measurements in blue-tinted cups for virgin olive oil tasting. J Am Oil Chem Soc
86:627–36.

Mincione B, Giuffrè AM, Modafferi V, Giuffrè F. 1996. Ricerche sugli oli di oliva mono-
varietali. Nota II. Caratterizzazione dell’olio di Peranzana. Rivista Italiana delle Sostanze
Grasse 73:245–57.

Mı́nguez MI, Gandul B, Garrido J, Gallardo L. 1990. Pigments present in virgin olive oil. J
Am Oil Chem Soc 67:192–6.

Mı́nguez-Mosquera MI. 1997. Clorofilas y carotenoides en tecnologı́a de alimentos Sevilla.
Spain: Secretariado de publicaciones de la Universidad de Sevilla. 189 p.

Mı́nguez-Mosquera MI, Rejano-Navarro L, Gandul-Rojas B, Sánchez-Gómez AH, Garrido-
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Pérez-Jiménez F. 2007. Virgin olive oil: its functional capacity. Mol Nutr Food Res 51:1197.
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