
A Formal Proof of Dickson’s Lemma in ACL2

F.J. Mart́ın–Mateos, J.A. Alonso, M.J. Hidalgo, and J.L. Ruiz–Reina

Computational Logic Group, Dept. of Computer Science and Artificial Intelligence,
University of Seville, E.T.S.I. Informática,

Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain,
http://www.cs.us.es/{˜fmartin,˜jalonso,˜mjoseh,˜jruiz}

Abstract. Dickson’s Lemma is the main result needed to prove the ter-
mination of Buchberger’s algorithm for computing Gröbner basis of poly-
nomial ideals. In this case study, we present a formal proof of Dickson’s
Lemma using the ACL2 system. Due to the limited expressiveness of
the ACL2 logic, the classical non-constructive proof of this result cannot
be done in ACL2. Instead, we formalize a proof where the termination
argument is justified by the multiset extension of a well-founded relation.

1 Introduction

Dickson’s Lemma is the main result needed to prove the termination of Buch-
berger’s algorithm [2] for computing Gröbner basis of polynomial ideals. Thus,
a formal proof of this result is needed by any formal termination proof of this
algorithm. In particular, if we use the ACL2 system [7] to define and verify
Buchberger’s algorithm, a formal proof of Dickson’s Lemma is essential, in or-
der to reason about it in ACL2. This is our motivation for doing the formal
proof of Dickson’s Lemma. Since ACL2 consists of a programming language (an
extension of an applicative subset of Common Lisp), a logic describing the pro-
gramming language and a theorem prover supporting deduction in the logic, a
formally verified Buchberger’s algorithm in ACL2 would allow an environment
in which proving and computing would be intermixed.

The ACL2 logic is a subset of first-order logic, without quantifiers and with
a principle of proof by induction. Due to this limited expressiveness, it is not
possible to reproduce the classical non-constructive proof of Dickson’s Lemma as
it is usually presented in the literature. The proof we present here is constructive
and it is mainly based on a multiset extension of a well-founded relation. In the
mechanization of this proof, we use a tool for defining multiset well-founded
relations in ACL2 in an automated way, a tool that we used previously in other
formalizations [13] and that can now be reused.

Dickson’s Lemma is usually stated as follows:

Theorem 1 (Dickson’s Lemma). Let n ∈ N and {mk : k ∈ N} be an infinite
sequence of monomials in the variables {X1, . . . , Xn}. Then, there exist indices
i < j such that mi divides mj.
� This work has been supported by project TIC2000-1368-C03-02 (Ministry of Science

and Technology, Spain) and FEDER funds.

Given a fixed set of variables V = {X1, . . . , Xn}, we can naturally identify
the set of n-variate monomials (with variables in V) with the set N

n of n-tuples
of natural numbers: a monomial Xe1

1 Xe2
2 . . . Xen

n can be seen as the n-tuple
〈e1, . . . , en〉. The divisibility relation between monomials is then identified with
the relation ≤n on N

n, defined as 〈k1, . . . , kn〉 ≤n 〈l1, . . . , ln〉 if and only if ki ≤ li
for all 1 ≤ i ≤ n. In the sequel, we will identify tuples and monomials in this
sense. Thus, Dickson’s Lemma can be reformulated stating that for every infinite
sequence {fk : k ∈ N} of n-tuples of natural numbers there exist indices i < j
such that fi ≤n fj .

As we said above, the classical proof of Dickson’s Lemma is non-constructive
(see [1], for example), and thus it is not suitable for being formalized in the ACL2
logic. The proof we describe in the following is based on the same ideas as some
constructive proofs already present in the literature [10, 14], and it essentially
shows a well-founded measure that can be associated to the initial segments of
the sequence of tuples and that decreases whenever a tuple in the sequence is
not divided by any of the previous tuples.

2 Formalizing the Proof in ACL2

The ACL2 logic is a quantifier-free, first-order logic with equality, describing an
applicative subset of Common Lisp. The syntax of terms is that of Common Lisp
and the logic includes axioms for propositional logic and for a number of Lisp
functions and data types. Rules of inference of the logic include those for propo-
sitional calculus, equality and instantiation. One important rule of inference is
the principle of induction, that permits proofs by well-founded induction on the
ordinal ε0. The theory has a constructive definition of the ordinals up to ε0,
in terms of lists and natural numbers, given by the predicate e0-ordinalp and
the order e0-ord-<. Although this is the only built-in well-founded relation, the
user may define new well-founded relations from that, by previously providing
an order-preserving ordinal function.

By the principle of definition, new function definitions are admitted as axioms
only if there exists a measure in which the arguments of each recursive call
decrease with respect to a well-founded relation; in this way, it is ensured that
no inconsistencies are introduced by new definitions. Usually, the system can
prove automatically this property using a predefined ordinal measure on Lisp
objects and the relation e0-ord-<. Nevertheless, if the termination proof is not
trivial, the user has to explicitly provide a measure on the arguments and a
well-founded relation ensuring termination.

The ACL2 theorem prover mechanizes the logic, being particularly well suited
for obtaining automated proofs based on simplification and induction. For a
detailed description of ACL2, we refer the reader to the ACL2 book [6].

For the sake of readability, the ACL2 expressions in this paper are presented
using a notation closer to the usual mathematical notation than its original Com-
mon Lisp syntax. Some of the functions are also used in infix notation. The com-
plete proof can be found in http://www.cs.us.es/˜fmartin/acl2/dickson/.

2.1 Formulation of Dickson’s Lemma

To formalize Dickson’s Lemma in the ACL2 logic, we consider a constant N (that
is, a 0-ary function) representing the number of variables, and a unary function
f, representing the infinite sequence of monomials given as N-tuples of natural
numbers. These functions are abstractly defined by means of the encapsulate
mechanism, which allows the user to introduce new function symbols by ax-
ioms constraining them to have certain properties. To ensure consistency, local
witness functions having the same properties have to be exhibited. Inside an
encapsulate construct, the properties stated need to be proved for the local
witnesses, and outside, they work as assumed axioms. In this case, the assumed
properties about N and f are the following1:

Assumption: N-is-natural->-0
N ∈ N ∧ 0 < N

Assumption: f-sequence-of-N-tuples
i ∈ N → [len(f(i)) = N ∧ natural-listp(f(i))]

where natural-listp checks if its argument is a list of natural numbers (we use
lists of length n to represent n-tuples).

Here, the encapsulate mechanism behaves like an universal quantifier over
the functions abstractly defined with it. So, any theorem proved about these
functions is true for any functions with the same properties as the ones assumed
in the encapsulate construct, by means of functional instantiation (see [6] for
details). This is the case for the ACL2 formalization of Dickson’s Lemma: as
the infinite sequence of monomials is abstractly defined via encapsulate, the
proved properties about it are valid for any infinite sequence of monomials.

Let us now define the functions needed to state Dickson’s Lemma. First, the
function tuple-<= implements the divisibility relation (that is, the relation ≤n):

Definition:
T1 tuple-<= T2 ⇔

if endp(T1) then endp(T2)
elseif endp(T2) then endp(T1)
elseif car(T1) ∈ N ∧ car(T2) ∈ N

then car(T1) ≤ car(T2) ∧ cdr(T1) tuple-<= cdr(T2)
else nil

The following function get-tuple-<=-f has two arguments, a natural num-
ber j and a N-tuple T , and it returns the largest index i such that i < j and f(i)
tuple-<= T whenever such index exists (nil otherwise):

Definition:
get-tuple-<=-f(j,T) =

if j ∈ N then if j = 0 then nil
elseif f(j − 1) tuple-<= T then j − 1
else get-tuple-<=-f(j − 1,T)

else nil
1 The local witnesses are irrelevant to our description of the proof.

Finally, the following function dickson-indices receives as input an index
k and uses get-tuple-<=-f to recursively search a pair of indices i < j such
that j ≥ k and f(i) tuple-<= f(j):

Definition:
dickson-indices(k) =

if k ∈ N then let i be get-tuple-<=-f(k,f(k))
in if i �= nil then 〈i, k〉

else dickson-indices(k + 1)
else nil

Let us assume for the moment that we have proved that the function
dickson-indices terminates and that this definition has been admitted by the
system. Then the following property is easily proved as direct consequence of
the definitions of the functions involved:

Theorem: dickson-lemma
[k ∈ N ∧ dickson-indices(k) = 〈i, j〉] → [i < j ∧ f(i) tuple-<= f(j)]

This theorem ensures that for any infinite sequence of monomials {fk : k ∈
N}, there exists i < j such that fi divides fj (and the function dickson-indices
explicitly provides these values). Thus, it is a formal statement of Dickson’s
Lemma in ACL2.

The hard part is the termination proof of the function dickson-indices.
For that purpose, we have to explicitly provide to the system a measure on the
input argument and prove that the measure decreases with respect to a given
well-founded relation in every recursive call. We present the details in the next
subsections.

2.2 A Well-Founded Measure

Before giving a formal definition of the termination measure, we give some intu-
ition by means of an example. Let {fk : k ∈ N} be an infinite sequence of pairs
of natural numbers. Let us assume that f0 = 〈3, 2〉, f1 = 〈1, 5〉 and f2 = 〈2, 1〉.
In figure 1, we sequentially represent (by the shaded regions) the set of tuples
that are divisible by some element of the sequence.

Thus, in each step, the non-shaded region represents the set of tuples that
can be the next in the sequence without being divisible by the previous tuples.
The main idea is that for every tuple of the sequence that is not divisible by any
of the previous tuples, this “free space” decreases with respect to a well-founded
relation.

Let us precise this intuitive idea. We can have a compact representation
of the non-shaded regions by means of patterns. A pattern is an element of
(N ∪ {∗})n, representing the set of tuples obtained replacing every occurrence
of ∗ in the pattern by a natural number (occurrences of ∗ in a pattern will be
called freedoms). Thus, the non-shaded regions may be represented by a multiset
of patterns. For example, the non-shaded region of figure 1-b) is represented by

x2

x1
a)

x1

3,2〉〉

x2

b)

3,2〉〉

1,5〉〉

x1

x2

c)

x2

1,5〉〉

2,1〉〉

3,2〉〉

x1
d)

Fig. 1. Graphical idea of the measure.

{{〈0, ∗〉, 〈1, ∗〉, 〈2, ∗〉, 〈∗, 0〉, 〈∗, 1〉}}. We denote as S(Π) and S(P), the set of tuples
represented by a pattern Π and by a multiset of patterns P, respectively.

In every step, the new region is obtained from the previous one, by replacing
some patterns by others. Given a new tuple T in the sequence, a pattern Π has
to be replaced if there is some T ′ ∈ S(Π) divisible by T (we say in that case that
Π is reducible by T). These reducible patterns are replaced by a new collection
of patterns representing the new region obtained excluding the divisible tuples
(we call these new patterns the reductions of Π with respect to T). Note that
Π ′ is a reduction of Π with respect to T , if Π ′ is equal to Π except that one
of the occurrences of ∗ in Π has been replaced by a natural number less than
the number that appears in the same position in T . In the following table we
present the patterns computed, for k = 0, 1, 2, 3, when f is the sequence of the
example of figure 1. We also indicate the reducible patterns in each step.

k Non-shaded regions fk Reducible patterns
0 {{〈∗, ∗〉}} 〈3, 2〉 〈∗, ∗〉
1 {{〈0, ∗〉, 〈1, ∗〉, 〈2, ∗〉, 〈∗, 0〉, 〈∗, 1〉}} 〈1, 5〉 〈1, ∗〉, 〈2, ∗〉
2 {{〈0, ∗〉, 〈1, 0〉, 〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 0〉, 〈2, 1〉 〈2, 1〉, 〈2, 2〉, 〈2, 3〉,

〈2, 1〉, 〈2, 2〉, 〈2, 3〉, 〈2, 4〉, 〈∗, 0〉, 〈∗, 1〉}} 〈2, 4〉, 〈∗, 1〉
3 {{〈0, ∗〉, 〈1, 0〉, 〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 0〉,

〈∗, 0〉, 〈0, 1〉, 〈1, 1〉}}

If we define the dimension of a pattern as its number of freedoms, then it
is clear that every reducible pattern is replaced by a finite number of patterns
with dimension strictly smaller. For example, the multiset of dimensions of the
patterns representing the region of figure 1-b) is {{1, 1, 1, 1, 1}} and the corre-
sponding multiset for the region of figure 1-c) is {{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1}}.
In other words, every time the region is reduced, the multiset of the dimensions
of the patterns representing the region decreases with respect to the multiset
relation induced by the usual order between natural numbers. This multiset re-
lation is known to be well-founded, and thus it is not possible to reduce the
regions infinitely often, justifying Dickson’s Lemma.

We now explain how we formalize these constructions in ACL2. A pattern
will be represented as a list with the same length as the tuples. The function
member-tuple implements the property T ∈ S(Π) (note that any occurrence in
the pattern of an object that it is not a natural number stands for “∗”):

Definition:
member-tuple(T ,Π) =

if endp(T) then endp(Π)
elseif endp(Π) then endp(T)
elseif car(Π) ∈ N then car(T) = car(Π) ∧ member-tuple(cdr(T),cdr(Π))
else member-tuple(cdr(T),cdr(Π))

Next, we present the definition of the function reductions(Π, T) that com-
putes the multiset2 of reductions of a pattern Π with respect to a tuple T
(assuming that Π is reducible by T). Let us recall that every reduction is ob-
tained by replacing a freedom of Π by a natural number less than the one that
appears in the same position in T :

Definition:
reductions(Π,T) =

if endp(Π) then nil
elseif car(Π) ∈ N

then cons-list-cdr(car(Π), reductions(cdr(Π),cdr(T)))
else cons-list-car(natural-<-list(car(T)), cdr(Π)) @

cons-list-cdr(car(Π), reductions(cdr(Π),cdr(T)))

where the symbol @ is the “append” operation between lists, the function
natural-<-list returns the list of natural numbers less than its argument (that
is, (natural-<-list n) = ’(0 1 ... n−1)) and the functions cons-list-car
and cons-list-cdr behave schematically in the following way:

(cons-list-car ’(x1 ... xn) ’l) = ’((x1 . l) ... (xn . l))

(cons-list-cdr ’x ’(l1 ... ln)) = ’((x . l1) ... (x . ln))

Given a multiset of patterns P and a tuple T , the function reduction-list
describes how the multiset of patterns P is reduced to a new multiset by the
tuple T :

Definition:
reductions-list(P,T) =

if endp(P) then P
elseif member-tuple(T ,car(P)) then reductions(car(P),T) @ cdr(P)
else cons(car(P), reductions-list(cdr(P),T))

Note that the above function differs from the intuitive construction outlined
above in two aspects. First, only the first reducible pattern is replaced by its
reductions. Second, instead of looking for a pattern Π reducible by T , we check
the stronger condition T ∈ S(Π). As we will see, both simplifications are sound3.
2 We will represent multisets as lists. Although this representation is not unique (the

same multiset may be represented by different lists), it is adequate for our purposes.
3 It is interesting to note that the soundness of both simplifications (which are not

intuitive, especially the first one) makes for simpler proofs and were discovered from
the interaction with the prover.

The function reductions-tuple-list iterates the reduction process over a
finite sequence of tuples. It must be noticed that the list of tuples is provided in
the reverse order:

Definition:
reductions-tuple-list(P,T -lst) =

if endp(T -lst) then P
else reductions-list(reductions-tuple-list(P,cdr(T -lst)), car(T -lst))

The function pattern-list-measure computes the multiset of dimensions
of a multiset of patterns (we omit here the definition of the function dimension
which computes the number of freedoms in a pattern):

Definition:
pattern-list-measure(P) =

if endp(P) then nil
else cons(dimension(car(P)), pattern-list-measure(cdr(P)))

And finally, following the intuitive idea sketched above, we can associate a
measure (a multiset of natural numbers) to every index k:

Definition:
dickson-indices-measure(k) =

pattern-list-measure(
reductions-tuple-list(list(initial-pattern(N))),

initial-segment-f(k − 1))

where the function initial-pattern(N) builds the initial pattern 〈∗, . . . , ∗〉 and
the function initial-segment-f(k) builds the list of tuples (fk ... f1 f0).

2.3 Termination Proof of dickson-indices

The last step in this formal proof is to define a well-founded relation and prove
that the given measure decreases with respect to it in every recursive call of
the function dickson-indices. We will define it as the relation induced by a
well-founded relation on finite multisets of natural numbers. Intuitively, this
relation is defined such that a smaller multiset can be obtained by removing a
non-empty subset of elements, and adding elements which are smaller than some
element removed. In [5], Dershowitz and Manna show that if the base relation is
well-founded, then the relation induced on finite multisets is also well-founded.

As we said above, the only predefined well-founded relation in ACL2 is
e0-ord-<, implementing the usual order between ordinals less than ε0. The func-
tion e0-ordinalp recognizes those ACL2 objects representing such ordinals. If
we want to define a new well-founded relation in ACL2, we have to explicitly pro-
vide a monotone ordinal function, and prove the corresponding order-preserving
theorem (see [6] for details). Fortunately, we do not have to do this: we use the
defmul tool. This tool, previously implemented and used by the authors in [13],
automatically generates the definitions and prove the theorems needed to intro-
duce in ACL2 the multiset relation induced by a given well-founded relation. In
our case, we only need the following defmul call:

(defmul (e0-ord-< nil e0-ordinalp e0-ord-<-fn nil nil))

This automatically generates the definition of a function mul-e0-ord-<, im-
plementing the multiset relation on finite multisets (lists) of ordinals induced by
the relation e0-ord-<. And it also automatically proves the theorems needed to
introduce this relation as a well-founded relation in ACL2. See details about the
defmul syntax in [13]. For simplicity, in the following we denote mul-e0-ord-<
as <ε0,M.

We finally prove that the measure decreases with respect to <ε0,M in the
recursive call of the function dickson-indices, hence justifying its termination.
We now explain the main lemmas needed to show this result.

Note that if T ∈ S(P), then the multiset measure of reduction-list(P, T)
is smaller than the measure of P with respect to <ε0,M. This is established by
the following theorem, where the property T ∈ S(P) is defined by the function
exists-pattern, omitted here:

Lemma: reductions-list-reduces-pattern-list-measure
exists-pattern(P,T)

→ pattern-list-measure(reductions-list(P,T))
<ε0,M pattern-list-measure(P)

This lemma is an easy consequence of the definition of <ε0,M and the fact
that the replaced pattern has a bigger dimension than its reductions:

Lemma: reductions-property
Π1 ∈ reductions(Π2,T) → dimension(Π1) < dimension(Π2)

The following lemma establishes the main property of the function
reductions-tuple-list. If a tuple T is in the set of tuples represented by a
pattern multiset P, then this tuple is still in the pattern multiset obtained after
applying a sequence of reductions corresponding to a given sequence of tuples T -
lst, provided that T is not divisible by any of the tuples of T -lst (this divisibility
condition is checked by the function divisible-tuple, omitted here):

Lemma: exists-pattern-reductions-tuple-list
(natural-listp(T) ∧ natural-list-listp(T -lst)

∧ exists-pattern(P,T) ∧ ¬divisible-tuple(T -lst,T))
→ exists-pattern(reductions-tuple-list(P,T -lst),T)

In addition, every tuple is in the initial multiset pattern:

Lemma: initial-pattern-exists-pattern
len(T) = n → exists-pattern(list(initial-pattern(n)),T)

As a consequence of the above two lemmas, if fk is not divisible by any of
f0 . . . fk−1 (that is, the recursive case in the definition of dickson-indices),
then there exists a pattern Π in the multiset of patterns generated in
the k-th step such that fk ∈ S(Π). So now we can use the lemma
reductions-list-reduces-pattern-list-measure to conclude that the mea-
sure of the argument in the recursive call in dickson-indices decreases with
respect to <ε0,M. That is, we have the following theorem:

Theorem: dickson-indices-termination-property
k ∈ N ∧ ¬get-tuple-<=-f(k,f(k))

→ dickson-indices-measure(k + 1) <M dickson-indices-measure(k)

This is exactly the proof obligation generated to show the termination of the
function dickson-indices. Thus, its definition is admited in the logic and then
the theorem dickson-lemma presented in subsection 2.1 is easily proved.

3 Conclusions and Related Work

We have presented a formalization and proof of Dickson’s Lemma in the ACL2
system. This is an essential preliminary step to obtain a formal termination proof
of a Common Lisp implementation of Buchberger’s algorithm [9]. We think that
this is a good example of how a non-trivial result can be formalized in the
first-order, quantifier-free logic of ACL2 (overriding its apparent lack of expres-
siveness). In fact, the automation of the proof is very simple: the hard part was
to preconceive a proof of the result in the restricted ACL2 logic. It is worth
pointing that after obtaining it, we realized that we had rediscovered a proof
with similar arguments to some constructive proofs of Dickson’s Lemma already
present in the literature [10, 14].

There are several contributions related to the formalization of Dickson’s
Lemma using proof checkers. In [16] a formalization of Buchberger’s Algorithm
is presented in COQ, using a non-constructive proof of Dickson’s Lemma devel-
oped in [12]. There is also a non-constructive development in Mizar [8] based on
the book [2]. In [3] a particular case of Dickson’s Lemma (n = 2) is construc-
tively formalized in the system MINLOG. Another constructive approach is [4],
in which a constructive proof of Dickson’s Lemma is mechanized using open
induction in the system AGDA. This proof is used to get a fully constructive
proof of the existence of Gröbner bases in COQ [11]. A comparison with our
work is difficult since the proof we formalize is substantially different and, more
important, the ACL2 logic is less expressive than the logics of those systems. At
the time of this writing, a new proof of Dickson’s Lemma [15] was carried out in
ACL2. In this proof, instead of using multisets, an explicit ordinal mapping is
assigned to finite sequences of monomials, and proved to be strictly decreasing
if no monomial divides a subsequent monomial.

To quantify the proof effort, it should be noted that only 20 definitions and 32
lemmas are needed in the proof, which gives an idea of the degree of automation
of the proof and its simplicity. Of course, part of its simplicity comes from the
use of the multiset book, which provides a proof of well-foundedness of the
multiset relation induced by a well-founded relation. It is worth pointing the
reuse of the defmul tool for generating multiset well-founded relations in ACL2:
although it was originally developed to prove Newman’s Lemma about abstract
reductions [13], it was designed in a very general way such that it has turned
out to be useful in other formalization tasks, being Dickson’s Lemma a relevant
example of this.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

2. T. Becker and V. Weispfenning. Gröbner Bases: A Computational Approach to
Commutative Algebra. Springer–Verlag, 1998.

3. U. Berger, H. Schwichtenberg and M. Seisenberger. The Warshall Algorithm and
Dickson’s Lemma: Two Examples of Realistic Program Extraction. Journal of
Automated Reasoning 26: 205–221, 2001.

4. T. Coquand and H. Persson. Gröbner Bases in Type Theory. In Types for Proofs
and Programs: Selected papers of TYPES’98, LNCS 1657, pages 33–46. Springer–
Verlag, 1999.

5. N. Dershowitz and Z. Manna. Proving Termination with Multiset Orderings. Com-
munications of the ACM 22(8):465–476, 1979.

6. M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Publishers, 2000.

7. M. Kaufmann and J S. Moore. ACL2 Version 2.7, 2001. Homepage:
http://www.cs.utexas.edu/users/moore/acl2/

8. G. Lee and P. Rudnicki. Dickson’s Lemma. Journal of Formalized Mathematics
14, 2002.

9. I. Medina–Bulo, J.A. Alonso, F. Palomo. Polynomial algorithms in ACL2 (an
approach to Buchberger algorithm). In I Taller Iberoamericano sobre Deducción
Automática e Inteligencia Artificial, IDEIA 2002 (in spanish), 2002.
Available at http://www.cs.us.es/ideia

10. H. Perdry. Strong noetherianity: a new constructive proof of Hilbert’s basis the-
orem. Available at http://perdry.free.fr/StrongNoetherianity.ps

11. H. Persson. An Integrated Development of Buchberger’s Algorithm in Coq. Rap-
port de recherche de l’INRIA, n 4271, 2001.

12. L. Pottier. Dixon’s lemma, 1996. Available at
ftp://ftp-sop.inria.fr/lemme/Loic.Pottier/MON/

13. J.L. Ruiz–Reina, J.A. Alonso, M.J. Hidalgo, and F.J. Mart́in. Multiset Relations:
a Tool for Proving Termination. In Second ACL2 Workshop, Technical Report
TR-00-29, Computer Science Departament, University of Texas, 2000. Available
at http://www.cs.utexas.edu/users/moore/acl2/workshop-2000/

14. S.G. Simpson. Ordinal numbers and the Hilbert basis theorem. Journal of Sym-
bolic Logic 53(3): 961–974, 1988.

15. M. Sustyk. Proof of Dickson’s Lemma Using the ACL2 Theorem Prover via
an Explicit Ordinal Mapping. In Fourth ACL2 Workshop, 2003. Available at
http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/

16. L. Théry. A Machine-Checked Implementation of Buchberger’s Algorithm. Jour-
nal of Automated Reasoning 26(2): 107-137, 2001.

	A Formal Proof of Dickson's Lemma in ACL2
	1 Introduction
	2 Formalizing the Proof in ACL2
	2.1 Formulation of Dickson's Lemma
	2.2 A Well-Founded Measure
	2.3 Termination Proof of dickson-indices

	3 Conclusions and Related Work
	References

