SylvaDB: A Polyglot and Multi-backend
Graph Database Management System

Javier de la Rosa!, Juan Luis Suérez® and Fernando Sancho Caparrini?
1CulturePlex Lab, Dept. Modern Languages and Literature, Western University, Western Rd., London, Canada
2Ciencias de la Computacin e Inteligencia Artificial, CulturePlex Lab, University of Seville, Seville, Spain

Keywords:

Abstract:

Graph Databases, Polyglot Backends, Network Research.

This paper presents SylvaDB, a graph database management system designed to be used by people with

no technical knowledge. SylvaDB is based on flexible schema definitions and has been developed taking
into account the need to deal with semantic information. It relies on the mathematical notion of property
graph. SylvaDB is an open source project and aims at lowering the barrier of adoption for anyone using graph
databases. At the same time, it is robust and scalable enough to support collaborative large projects related to
knowledge management, document archiving, and research.

1 INTRODUCTION

After several years of work in an international and
multidisciplinary project on cultural transfers, whose
objectives included the analysis of several datasets of
various types of cultural objects, we came to the con-
clusion that both the classic relational databases and
the total dependence of researchers on programmers
to deal with their data was detrimental to the purposes
and objectives of the project.

We came to this conclusion for several reasons.
First, we realized that non technical researchers pre-
sented a strong tendency towards resigning their own
research autonomy and handing in all the decisions
on database design and implementation to the profes-
sional programmer. However, this attitude was usu-
ally accompanied by the unsatisfactory results of the
collaboration, as humanists, for example, were not
able to extract or analyze their own results. And sec-
ond, as the projects evolved, non technical researchers
would come back to the programmers demanding
changes in the structure of their databases, asking for
new features during incremental design, corrections
of mistakes in the database design, or modifications
to reflect changes in the structure of the real world
artefacts modelled in the database. But despite of the
efforts of the database community to solve schema
modification and evolution, as noticed by (Roddick,
1992), there is still a gap between the database ad-
ministrator who manages to solve this issues, and the
end user who needs them solved.

In an attempt to improve the interaction with
databases, research efforts have been dedicated to
provide graphical interfaces to relational databases
such as HIBROWSE (Ellis et al., 1994), Query-By-
Example (Zloof, 1975), or Santucci and Palmisano’s
Visualiser (Santucci and Palmisano, 1994). Also,
some other works reveals moves from these complex
graphical interfaces to more expressive and closer to
natural languages alternatives (Hendrix et al., 1978;
Wolfe et al., 1992; Popescu et al., 2003). However,
there is no evidence of providing better and easier ad-
ministration tools for non technical users that allow
them to manage their data.

On the other hand, one of the most active areas
of research at this moment is the study of networks
(Knoke et al., 2008), what has brought the need to
manage information with inherent graph-like nature
(Angles and Gutierrez, 2008). Therefore, after sur-
veying the landscape (Vicknair et al., 2010), we de-
cided to build our own database management system,
SylvaDB!, in order to implement the graph model in-
stead of the relational and to provide researchers with
the tools they need as well as to reduce the depen-
dency on programmers and database administrators.

2 DESIGN PRINCIPLES

The main goals that guided the design of this graph

Lhttp://sylvadb.com

database management system were:

to provide technological autonomy to non techni-
cal researchers,

to allow for modifications and evolutions of the
schema at any time of the life cycle of the
database,

to be scalable and therefore useful for both the
single researcher working on a relatively small
project and the requirements of large teams,

to manage different datasets under the same sys-
tem,

to allow collaborative work on single databases,
to support as many as possible types of objects,

to present the information by using an intuitive in-
terface.

Out of our own experience in Complex Systems
and Cultural Analysis, we realized that topics and re-
lations among them are at the same level of interest.
Consequently, and from previous goals, the following
conceptual and technological features were manda-
tory for us:

No tables, only objects and relations.

Arbitrary number of attributes on objects and re-
lationships.

Support for multimedia content natively (image,
audio, video and documents).

Users and permissions management.

Ability to perform complex queries to retrieve and
analyze information.

Interactive graphic visualization of the content.

Connection to external tools for visualization and
analysis.

3 ARCHITECTURE

SylvaDB relies on the paradigm of Database as a Ser-
vice (DBaaS), as described by Hacigumus (Hacigu-
mus et al., 2002). Written using the Python pro-
gramming language, and built through the Model-
View-Controller web framework Django (Holovaty
and Kaplan-Maoss, 2009), SylvaDB is a web platform
that can be used in modern browsers such as Google
Chrome or Mozilla Firefox.

In SylvaDB a graph database consists of a schema
with information on data types and properties for
nodes and relationships, and the real data stored on
them. Because some graph backends are schema-free
and some others are schema-restricted, and in order

>

PostgreSQL
(Heroku)

Static files
(Amazon S3)

| J’ rNeo4j Node H'Neo4j Nodel

[Neoaj Node { Neo4j Node |

I_l I" Neo4j HA (Amazon EC2)
| Django l_
. Payments
uwsgi | | memcached (Stripe)
I—l h Graph Instance 1
| . | ' (Amazon EC2)
Nginx
______ Graph Instance N
SylvaDB (Amazon EC2) (Amazon EC2)

Figure 1: General Architecture of SylvaDB.

to guarantee compatibility with as many of them as
possible, we store the schema (if any) in a relational
database while all data is actually stored in the graph
database backend; properties for both nodes and re-
lationships are also stored in the graph backend; and
the set of media files and other static files are stored
in Amazon Simple Storage Service (S3)2.

SylvaDB’s architecture, as depicted in Figure 1, is
divided into several parts in terms of machine isola-
tion, so any of them can be replaced or clustered with
no major problems®.

In short, there is a main HTTP server that serves
the Django application SylvaDB through an uwsgi-
compliant Python process. All statics files (includ-
ing user uploads and client-side Javascript and styles)
are handled in Amazon S3 instances. The relational
database to manage users, sessions, permissions and
graphs metadata like their schemas, is managed in
PostgreSQL instances by the Platform as a Service
provider Heroku (Malliga, 2012). Actual data for
graphs in the shared graph backend is stored in a
Neodj High Availability (HA) cluster, and graphs in
custom instances may be in different kinds of graph
backends as described in section 3.2. On the other
hand, both low level and view level cache are im-
plemented in a distributed memcached environment
(Fitzpatrick, 2004).

This setup confers reliability and performance to
SylvaDB at the time that makes scalability a problem
easy to solve.

3.1 HTTP Server

Nginx* is an asynchronous HTTP and reverse proxy
server that natively includes support for upstream

Zhttps://aws.amazon.com/en/s3/

3SylvaDB also gives support to services such as regis-
tration and messaging, but we have omitted them in the di-
agram, as they play an auxiliary role in our architecture.

4http://nginx.com/

servers speaking the WSGI® protocol, such as
uWSGI® does for Django. The main advantage of the
asynchronous approach is scalability. In a process-
based server, each simultaneous connection requires
a thread which incurs significant overhead. An asyn-
chronous server, on the other hand, is event-driven
and handles requests in a single, or very few threads.
While a process-based server can often perform on
par with an asynchronous server under light loads, if
heavier loads occur the performance degrades signifi-
cantly as RAM consumption increases.

3.2 Graph Model

At the core of the system, we use the Object-
Relational Mapping (ORM) (Burzahska et al., 2010)
provided by Django to manipulate the programming
objects in the code, and a set of mixins to abstract
graph backends (Esterbrook, 2001).

Figure 2 illustrates a simplified UML diagram of
the elements implied in the Graph model. Django ter-
minology uses model when refering to Python classes
that inherit from the base class that does the mapping
between the code and the database; it provides some
helpers to avoid the manual manipulation of tables,
foreign keys and many to many relationships. To em-
ulate a similar behaviour in relation to the graph back-
ends, and to make it easier to develop SylvaDB, we
wrote some mixins to abstract all the graph databases
primitives. In the diagram we omit inheritance from
Django models. Therefore, SylvaDB makes use of
Graph object instances that cover both the schema and
the backend.

Our graph structure is based on the property
graph, i.e., a multigraph data structure where graph
elements, nodes and relationships, can have prop-
erties (attributes) and can be typed. Formally,
the property graph is defined as a tuple G =
(V;E;P,Dy;Dg;ny;ng), where V is a set of vertices,
E is a multiset of directed edges, P is a domain of
properties, Dy ;Dg are the domain of allowed prop-
erty values for vertices ad edges, respectively, nx :
X P ¥ P¢(Dx) X =V or X =E) is a function
that maps properties of elements of X to their val-
ues (P¢(Dx) is the collection of finite subsets of Dy,
meaning that a property can be associated with multi-
ple items from D).

3.2.1 Flexible Schemas

The first component of a Graph object is the schema,

Shttp://wsgi.readthedocs.org/
Bhttp://uwsgi-docs.readthedocs.org/en/latest/
Protocol.html

<<django.db.models.Model>>|
Relational Backend

Graph >

+data: OneToOneField
t+schema: OneToOneField

<<object>>
Graph Backend

GraphDatabasef - - - - -
Q

| NeodjGraphDatabase |

BlueprintsGraphDatabase |

<<mix-in>>
GraphMixin
+nodes >

_‘ +relationships
1 l 1

<<facade>> <<facade>>
NodeManager RelationshipManager

|Node| |Relationship|
= *

Figure 2: Simplified UML Diagram.

albeit it is not required of the graph to have one. To-
gether with the fact that some users may need no
schema in their data structure, the idea behind this
flexible schema is to design the platform as indepen-
dent as possible from the graph backend. Since some
graph bakends may require a schema and others do
not, we move the schema out of the graph backend
and made it optional.

Even when this decision may involve a manual
managing of all triggers commonly handled by rela-
tional databases, at the same time provide us with a
powerful and fine grained control over schema evo-
lution (the ability of a database system to respond to
changes in the real world by allowing the schema to
evolve (Roddick, 1992)). Relational databases usu-
ally have fixed schemas, but SylvaDB does not have
this limitation because is based on graphs, and schema
information is only tied to graph data through the ap-
plication logic.

SylvaDB makes users owners and responsible for
their schema evolution, at the time it provides them
with the tools to decide. Before adding nodes to a
graph, a schmea must be defined by creating node

types and relationship types. By using web forms
generated by SylvaDB, the user is able to add prop-
erties to the types and build the schema. Every time
a user makes a change in a graph schema, he is
prompted to choose what to do depending on the op-
eration he wants to perform:

If the user renames a node type or relationship
type, nothing will happen since types have inter-
nal numerical identifiers.

If the user renames a property, SylvaDB can keep
the previous property name internally in the item
(node or relationship), can remove the old prop-
erty from the item and consider the new property
as new and empty, or can try to rename the last
property with the new one.

If the user removes a node type or relationship
type, will be asked to decide if all related items
must be removed on cascade or just the type.

If the user removes a property, SylvaDB can also
keep the value internally in the item or remove it
from all the items affected.

3.2.2 Polyglot Graph Backend

The second component of a Graph object is a (manda-
tory) graph backend. From its inception, SylvaDB
was designed to support different technologies as
backend, what we call polyglot graph backend, since
there exist different graph databases providers for dif-
ferent needs. For example, Titan” is intended for dis-
tributed and massive-scale graphs, whereas Neo4j is
faster but does support a slightly lower number of
nodes. Currently, the graph databases providers land-

Table 1: Summary of graph databases, query methods and
Python bindings.

Graph Query Python
Database Method Binding
Cypher, Blueprints,
Neo4j Gremlin, Native,
Traversal REST
OrientDB Cypher Blueprints
Traversal
HyperGraphDB | HGQuery No
Traversal
DEX Traversal | Blueprints
Titan Gremlin Blueprints
InfiniteGraph Gremlin No

scape is not as huge and diverse as the relational, and
unfortunately most of them are only suitable to be
used in Java language programming.

To overcome this limitation, and having in mind

Thttp://thinkaurelius.github.io/titan/

that SylvaDB base code is Python, we resorted to
REST (Representational State Transfer) interfaces
(Fielding, 2000). Specifically, SylvaDB makes use
of the Blueprints API®, a generic graph Java API
that binds to various graph database backends. Many
graph processing and programming frameworks are
built on top of it, e.g., Gremlin®, a graph traversal lan-
guage, and Rexster'?, a graph server that exposes any
Blueprints graph through a REST interface. Not all
graph database backends have a built-in support for
the Blueprints API, as the Table 1 shows, and others
have their own interfaces, like Neo4;.

Figure 3 shows how, on top of these REST inter-
faces (Blueprints and Neo4j), SylvaDB defines a set
of abstraction layers to operate with them exposing
a common and unique set of methods and attributes,
the GraphDatabase interface. Any class able to im-
plement this interface, will be suitable as a graph
backend in SylvaDB. Nevertheless, only Neo4j and
Blueprints-compliant graph databases are available
now, thanks to client libraries like neo4j-rest-client!!
and pyblueprints'?, respectively.

29996
A
v

Blueprints API
A

REST

Y Y
pyblueprints

o

GraphDatabase

neodj-rest-client

Figure 3: Polyglot graph backend diagram.

Since each graph backend run on its own service,
SylvaDB is able to deploy backends on demand, by
using Amazon CloudFormation®? templates, and of-
fer them to users with different needs.

3.3 Queries

For the purposes SylvaDB has been built, easy ways

8http://blueprints.tinkerpop.com
Shttp://gremlin.tinkerpop.com
Ohttp://rexster.tinkerpop.com
Uhttp://pypi.python.org/pypi/neo4ijrestclient/
2http://pypi.python.org/pypi/pyblueprints/
13http://aws.amazon.com/cloudformation

for retrieval information from data was as important
as data itself, making it mandatory to provide tools to
build powerful queries to the user.

However, although it is not a new topic, recent re-
search and implementations are finally reaching a tip-
ing point with regards to providing natural language
interfaces for querying databases (Popescu et al.,
2003). In this context, SylvaDB tries to be a step
ahead by generating schema-based grammars to pro-
Cess users’ queries.

Although the grammar depends on the graph
schema and is domain-specific and quite limited
yet, it is able to process approximate natural lan-
guage queries as inputs and produce backend-specific
queries as outputs. As an example, let’s suppose we
have a graph called ”Workers” with a Neo4j backend,
which supports Cypher Query Language#, then the
query:

Person who lives in country with name Spain

will produce the following Cypher query:
START node=node:graph(label="Workers”)
MATCH person-[:lives_in]->country
WHERE country.name = ’Spain’

AND person.type = ’person’

AND country.type = ’country’
RETURN person

Unfortunately, for more complex queries (such as
returning nodes in the middle of a path) or to support
schema-free graphs, the only way around is by using
the query language available for the specific backend.
After having explored the options to implement a vi-
sual query system (Catarci et al., 1997), it is clear that
SylvaDB has considerable room to improve in this
area.

3.4 Visualization

For graphs with defined schemas, paginated table-
based views are provided for each type in the schema.

Since the data model is based on graphs, SylvaDB
may provide a proper way to visualize users’ data in
a more graphical manner. There are so far two differ-
ent kinds of visualization: the first is our own devel-
opment, and it allows users to expand relationships
by clicking on the nodes. However, for graphs with
more than a couple of thousand nodes this visualiza-
tion, although more complete, is not very useful. The
second one is based on sigma.js®, an open-source
lightweight JavaScript library to draw graphs, and us-
ing the HTMLS5 canvas element?6.

M http://docs.neo4j.org/chunked/stable/
cypher-query-lang.html

Bhttp://sigmajs.org/

B http://w3.0rg/ TR/htmI5/embedded-content-0.html

For other general purposes, the system provides
exporting functionality to GEXF files, a graph for-
mat file defined for Gephi (Bastian et al., 2009).

3.5 Collaboration

Fine grained permissions is also an important feature
that SylvaDB includes. Implemented to graph object
level, graph owners can grant up to 9 different permis-
sions for their graphs to other users:

over the graph: view, change collaborators,
change graph properties (information description
and visibility),

over the data: all CRUD operations for nodes and
relationships,

and over the schema: view and change.

4 APPLICATIONS

Thanks to the versatility of the conceptual storage
data type supported, the property graph, the uses of
SylvaDB vary from a tool for standard storage, or
an implementation system for ontologies, glossaries,
conceptual maps and relaxed topic maps, to an anal-
ysis tool useful to find non explicit relations between
topics or discover hidden knowledge through queries
that traverse the graph.

Below follow three well studied cases that have
proven how useful SylvaDB can become.

4.1 Formal Ontologies: Baroque
Paintings Network

This research on baroque paintings is part of a 7-year
project that deals with the issues of cultural transmis-
sion and assimilation and community formation dur-
ing the baroque period in the territories of the former
Hispanic Monarchy. One of the important aspects of
this historical case lies in the fact that the political
structure that supported or accompanied the studied
cultural transfers reached almost global proportions,
from Europe to American and Asia. Thus, it offered
an excellent benchmark to test some of the prevalent
theories in the field taking advantage of a dataset that
included over 13,000 paintings, 1636 creators, 405 se-
ries of paintings, 195 schools and 2482 geographical
locations from different territories and cultural areas.

So far, extensive research have been done on three
main issues. First, an analysis of the data set to an-
swer questions related to the formation and sustain-
ability of large cultures, the semantic content of the

http://gexf.net/format/

Figure 4: Example of graph generated by SylvaDB, ex-
ported to GEXF format and visualized and styled in Gephi.
This graph represents the similarity network of Hispanic-
American paintings in the period from 1600 to 1625. Colors
designate modularity classes.

network of paintings, and the role of art as an insti-
tution that contributes to sustain large-scale societies
(Suérez et al., 2012). From a set of 211 keys or de-
scriptors it was carried out a manual semantic annota-
tion of all artworks (with an average of 5.85 descrip-
tors/work and peaks of 14 per work).

This process of annotation required a special level
of reliability in order to avoid data conflicts. A team
of annotators was setup following the next hierar-
chy: administrators (with global permissions over the
graph), reviewers (with all CRUD permissions over
the graph data, but not over the schema), and annota-
tors (with creation and edition permissions only). The
fact that SylvaDB has a built-in support for collabora-
tive work and detailed permissions management (both
essential in this kind of research), was crucial to the
success of the project.

On the other hand, this experience allowed us to
know how real users face the interface, resulting in
a positive feedback about its usability and easiness
when it comes time to handle complex data or modify
the schema according to the necessities in real time.
Altogether, more than 30 people were using SylvaDB
in creating the Hispanic Baroque paintings network,
and currently it is available for researchers all over
the world to enhance and validate the content.

The research focuses on the network of paintings
resulting from an analysis of the edges that connected
them (Suérez et al., 2011) (see Figure 4). These edges
are part of a detailed ontology that allowed the re-
search team to fully categorize artworks from various
provenances and geographic contexts. The network

of baroque paintings proved to be a resilient one that
allowed for the integration of many local aspects and
techniques while keeping all those technical and the-
matic features that made a painting from Cusco (Peru)
similar to one from Puebla (Mexico), Madrid (Spain),
or Antwerp (Belgium).

4.2 Knowledge Influence: elBulli Graph

This case proposes a formalization of the evolutionary
method of creation developed by Ferran Adria in his
restaurant, elBulli, over many years of work that took
it to be considered the best restaurant in the world
by expert media and the public. If a recipe is a sort
of algorithm that explicitly gives a set of instructions
to reproduce a given dish, then they are excellent for
reproducing existing culinary knowledge. But if re-
production is not the objective any more, as Adria
discovered early on, then the recipe would be just a
byproduct of the whole method, not the corner stone.
For the new method of creative cuisine developed by
Adria, creativity was to be anchored at the levels of
preparations, techniques and concepts as it is at these
levels that creativity in the kitchen can become evolv-
ing creativity. Figure 5 shows the general schema of
a recipe as conceived by Adria’s cooking style.

Preparation Family| 8 B
m Temperaturel

v o0
% N ol
00n Style Famiy o
I P
@ N StyleCud
Product! = ©
% = Recipe|
Preparation)

A

e . Lk

Flavour TechniqueB57
el
Technique Famiyl 574

Preparation techmqueog lngred\en(% Recipe Fa'““

Figure 5: Schema of a Recipe in elBulli context.

What Adria and his team did was to develop and
implement a method to achieve what Horng and Lin
(Horng and Lin, 2009) have described as the objec-
tive of a truly creative form of culinary art, that is,
a "wider variety of dishes, as well as more innova-
tive, aesthetically, and culturally innovative individual
dishes”. The development of new techniques, the in-
clusion of new concepts, the constant addition of new
products and, specifically, the combination, mix and
merger of all elements would open the floodgates of
discovery into the creation of new preparations and,
along with it, a considerable increase in the rate of in-
novation. All these elements become nodes in a com-
plex network that keep most of their own instances
connected, a network that allows for the creation of
many paths and the integration of new elements, spe-
cially products, techniques, and preparations. The

combinatory potential of the method is unquestion-
able, but even more important are the effects provoked
by the integration of new elements connected in sur-
prising ways with the existing structure. This increase
in innovation can be seen in the growth in the numbers
of hubs and relations in their method that would result
in a multiplication of the dishes and recipes produced
at the end of any given season.

Using the SylvaDB query system, in this case run-
ning real Cypher queries for a Neo4j graph backend,
conclusions about elBulli artistic evolution and the el-
ements involved in its creative process, just came up.
In this way, we could prove how useful is the rep-
resentation of data in graphs, not only at conceptual
level, but from the point of view of storage backend
and querying.

4.3 Social Network Analysis:
Preliminaries Project

Finally, the Preliminaries project uses SylvaDB to
store, visualize and analyze a large data set dealing
with information contained in the 17"-century books
that allow us to unearth the social network of publish-
ers, writers, bureaucrats, and noblemen involved in
the publishing industry at both sides of the Hispanic
Atlantic.

The “preliminary” of a 17"-century book encom-
passes all pages appearing in the printed text before
the beginning of the work itself. This information is
divided into five different types: details of publica-
tion, documentation of censorship (both civil and ec-
clesiastical), licensing, selling price and dedications.
The important thing for this project lies in the fact that
all sections usually include names of the officers or
individuals signing the specific documentation, dates
and places of the issuing of the documents, i.e., in
a few pages these preliminaries give us a very com-
plete image of the individuals, places, dates, coun-
cils, and institutions involved in the publication of
each specific title of literature. In this process, Syl-
vaDB played an important role by allowing an incre-
mental design of the schema without losing any pre-
vious data. By compiling all this information into a
graph database, and subsequently performing differ-
ent kinds of queries according to the various research
questions, the dataset became a valuable source of
information about the historical networks that influ-
enced the publication of early Modern Spanish litera-
ture.

This project has produced a research model that
combines network-based analysis with quantitative
and qualitative studies of early Modern cultural pro-
duction. It has also explored the concept of cultural

+

+) x
+)

Figure 6: Screenshot of the SylvaDB schema for the Pre-
liminaries Project graph.

network within the framework of complexity theory
and with new data covering various historical peri-
ods. Last, it has given evidence of the interaction
between political structures and cultural production
through social network analysis.

The cultural objects considered in this study are
complex and variable (see Figure 6). Therefore, the
flexibility of SylvaDB, that allows for the adaptation
of the schema in real time, was a key factor to achieve
the goals of the project.

5 CONCLUSIONS AND FUTURE
WORK

SylvaDB, although still in private beta, is currently
being used in several historical and cultural projects,
and it will soon be open for any researcher or group
to use. Also, it is open source software (GNU Affero
General Public License!®) and the source code can be
easily found and forked™®.

As fields like Digital Humanities grow and evolve,
more and more researchers with no training in com-
puter science feel the need to work with large datasets
and combine their traditional object-focused research
with data analysis and visualization. SylvaDB aims at
lowering the barrier for the adoption of database sys-
tems into the practices of those fields. Also, it is de-
signed to support the storage and analysis required by
large, advanced research projects looking for a power-
ful and intuitive data and document management sys-
tem based on flexible schemas.

As any other existing piece of software, SylvaDB
is far of being finished in terms of features. A non
exhaustive list of proposed features is shown below.

18http://www.gnu.org/licenses/agpl-3.0.html
http://github.com/CulturePlex/Sylva

A visual editor for queries. Even if the natu-
ral language query input is powerful and intuitive
enough, a more complete and customizable sys-
tem that enables users to build their own complex
queries is in our plans, due to the same criteria
of usability and low barriers that got the project
started in the first place.

Implementation of topological pattern matching
protocols as a complement for the query module.

Better visualizations. Full-screen mode, integra-
tion with queries system, and basic interaction
with properties of drawn elements such as shape,
color, and size of nodes, relationships and labels.

A battery of well-known algorithms. Including
the most common ones, like Page Rank, HITS or
Dijkstra (Ding et al., 2002), could be a valuable
help for users to perform first level analysis using
the same interface.

We are also working to improve tests coverage to
reach at least a 90% of the code covered.

ACKNOWLEDGEMENTS

We acknowledge the support of the Social Sciences
and Humanities Research Council of Canada through
a Major Collaborative Research Initiative on The His-
panic Baroque. And the Canada Foundation for Inno-
vation through the Leaders Opportunity Fund.

REFERENCES

Angles, R. and Gutierrez, C. (2008). Survey of graph
database models. Computing Surveys, 40(1):1.

Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi:
An open source software for exploring and manipulat-
ing networks.

Burzafhska, M., Stencel, K., Suchomska, P., Szumowska,
A., and Wisniewski, P. (2010). Recursive queries us-
ing object relational mapping. Future Generation In-
formation Technology, pages 42-50.

Catarci, T., Costabile, M., Levialdi, S., and Batini, C.
(1997). Visual query systems for databases: A survey.
Journal of visual languages and computing, 8(2):215—
260.

Ding, C., He, X., Husbands, P., Zha, H., and Simon, H.
(2002). Pagerank, hits and a unified framework for
link analysis. In Proceedings of the 25th annual in-
ternational ACM SIGIR conference on Research and
development in information retrieval, pages 353-354.
ACM.

Ellis, G., Finlay, J., and Pollitt, A. (1994). Hibrowse for ho-
tels: bridging the gap between user and system views

of a database. In IDS’94 Workshop on User Interfaces
to Databases, pages 45-58.

Esterbrook, C. (2001). Using mix-ins with python. Linux
Journal, 2001(84es):7.

Fielding, R. (2000). Architectural styles and the design
of network-based software architectures. PhD thesis,
University of California.

Fitzpatrick, B. (2004). Distributed caching with mem-
cached. Linux journal, (124):72-74.

Hacigumus, H., lyer, B., and Mehrotra, S. (2002). Provid-
ing database as a service. In Data Engineering, 2002.
Proceedings. 18th International Conference on, pages
29-38. IEEE.

Hendrix, G., Sacerdoti, E., Sagalowicz, D., and Slocum,
J. (1978). Developing a natural language interface to
complex data. ACM Transactions on Database Sys-
tems (TODS), 3(2):105-147.

Holovaty, A. and Kaplan-Moss, J. (2009). The Defini-
tive Guide to Django: Web Development Done Right.
Apress.

Horng, J. and Lin, L. (2009). The development of a scale
for evaluating creative culinary products. Creativity
Research Journal, 21(1):54-63.

Knoke, D., Yang, S., and Kuklinski, J. (2008). Social net-
work analysis, volume 2. Sage Publications Los An-
geles, CA.

Malliga, P. (2012). Database services for cloud computing—
an overview. Database, 2(3).

Popescu, A., Etzioni, O., and Kautz, H. (2003). Towards
a theory of natural language interfaces to databases.
In Proceedings of the 8th international conference on
Intelligent user interfaces, pages 327-327. ACM.

Roddick, J. (1992). Schema evolution in database systems:
an annotated bibliography. ACM sIGMOD record,
21(4):35-40.

Santucci, G. and Palmisano, F. (1994). A dynamic form-
based data visualiser for semantic query languages.
Interfaces to Database Systems, pages 249-265.

Suéarez, J., Sancho, F., and de la Rosa, J. (2011). The art-
space of a global community: the network of baroque
paintings in hispanic-america. In Culture and Com-
puting (Culture Computing), 2011 Second Interna-
tional Conference on, pages 45-50. IEEE.

Suarez, J., Sancho, F,, and de la Rosa, J. (2012). Sustaining
a global community: Art and religion in the network
of baroque hispanicamerican paintings. Leonardo,
45(3):281-281.

Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., and
Wilkins, D. (2010). A comparison of a graph database
and a relational database: a data provenance perspec-
tive. In Proceedings of the 48th annual Southeast re-
gional conference, page 42. ACM.

Wolfe, R., Needels, M., Arias, T., and Joannopoulos, J.
(1992). Visual revelations from silicon ab initio calcu-
lations. Computer Graphics and Applications, IEEE,
12(4):45-53.

Zloof, M. (1975). Query by example. In Proceedings Na-
tional Computer Conference, pages 431-438. ACM.

