Trabajo Fin de Máster Máster en Ingeniería Electrónica, Robótica y Automática

Identificación de posturas en imágenes pequeñas mediante redes de neuronas artificiales e invariantes de Hu

Autor: Daniel Ruiz Gómez Tutor: Manuel Ruiz Arahal

> Dpto. Ingeniería de Sistemas y Automática Escuela Técnica Superior de Ingeniería Universidad de Sevilla

> > Sevilla, 2018

Trabajo Fin de Máster Máster en Ingeniería Electrónica, Robótica y Automática

Identificación de posturas en imágenes pequeñas mediante redes de neuronas artificiales e invariantes de Hu

Autor:

Daniel Ruiz Gómez

Tutor:

Manuel Ruiz Arahal

Profesor titular

Dpto. Ingeniería de Sistemas y Automática Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2018

Trabajo Fin de Máster: Identificación de posturas en imágenes pequeñas mediante redes de no artificiales e invariantes de Hu			
Autor: Daniel Ruiz Gómez			
Tutor: Manuel Ruiz Arahal			
El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros:			
Presidente:			
Vocales:			
Secretario:			
Acuerdan otorgarle la calificación de:			
Sevilla, 2018			

El Secretario del Tribunal

Agradecimientos

A mis padres por haberme dado todo lo necesario para mi formación durante todos estos años. Porque gracias a ellos he conseguido ser quien soy y formarme como profesional y sobre todo como persona.

A mis tíos que siempre me han apoyado. Gracias a ellos he podido superar muchas dificultades. Han sido unos segundos padres para mí.

A mis primos por haberme animado a superar las metas, formando parte de mí como hermanos.

A mis abuelas por haber sido siempre un pilar fundamental en mi vida.

A mi pareja, por haber estado junto a mi en todo momento, apoyándome y dándome fuerzas en momentos tanto malos, como buenos. Por haber estado junto a mí incluso en la distancia.

A mis compañeros y amigos que hicieron que la etapa académica fuese mucho más amena.

A mi profesor que aceptó ser mi tutor en el presente trabajo y me ha guiado a lo largo del mismo.

Daniel Ruiz Gómez Sevilla, 2018

Resumen

En este trabajo de fin de máster se desarrollan estudios sobre la clasificación de posturas de personas a partir de imágenes. La motivación es la posibilidad de mejoras en la videovigilancia de supermercados, siendo aplicable a otros ámbitos. El entorno de programación a utilizar será MATLAB de MathWorks.

En primer lugar, se toma como referencia una base de datos de 600 imágenes creada por el alumno, en la que se tienen 120 imágenes de cada una de las 5 posturas a utilizar en el presente trabajo. Además, se dispone de más imágenes para que posteriormente a la elaboración del trabajo se puedan realizar pruebas sobre el mismo. Teniendo en cuenta esta base de datos se realiza un sistema de clasificación de posturas que utiliza los esqueletos (en el sentido matemático y no anatómico) de objetos presentes en las imágenes. Dichas imágenes contienen personas, en una de las 5 poses a estudiar. En primer lugar, se tienen que calcular como base para el estudio a posteriori, las siluetas de dichas imágenes. Para el cálculo de estas y su seguida esqueletización se utilizan técnicas existentes de procesado de MATLAB. Una vez obtenido el esqueleto, se calculan los invariantes de Hu. Éstos proporcionan características particulares a cada una de las posturas que se pretenden clasificar. Con ello el sistema es capaz de utilizar esos invariantes como entradas aplicadas a redes neuronales artificiales (RNA). Esto permite que después de haber realizado y entrenado múltiples redes se proceda al estudio de los resultados y se obtenga un clasificador con un índice de acierto elevado.

El objeto de este trabajo es realizar mediante programas de MATLAB todos estos pasos y analizar en cada paso los resultados obtenidos, estudiando posibles mejoras. Para ello se hace un estudio sobre la modificación de parámetros, como son los elementos estructurales utilizados o el número de nodos en cada una de las capas ocultas, entre otros.

Abstract

In this end-of-master project, studies are developed on the classification of people's positions based on images. The motivation is the possibility of improvements in the video surveillance of supermarkets, being applicable to other areas. The programming environment to be used will be MathWorks MATLAB.

First, a database of 600 images created by the student is taken as a reference, in which 120 images of each of the 5 postures to be used in the present work are taken. In addition, more images are available so that after the work is done, tests can be performed on it. Considering this database, a classification system of postures is performed that uses the skeletons (in the mathematical and non-anatomical meaning) of objects present in the images. These images contain people, in one of the 5 poses to study. In the first place, the silhouettes of these images must be calculated as a basis for a posteriori study. For the calculation of these and their subsequent skeletonization, existing MATLAB processing techniques are used. Once the skeleton is obtained, the invariants of Hu are calculated. These provide characteristics to each of the positions that are intended to be classified. With this the system can use these invariants as inputs applied to artificial neural networks (ANN). This allows after having done and trained multiple networks to proceed to the study of the results and obtain a classifier with a high hit rate.

The purpose of this work is to perform all these steps through MATLAB programs and analyze the results obtained in each step, studying possible improvements. For this, a study is made on the modification of parameters, such as the structural elements used or the number of nodes in each of the hidden layers, among others.

Índice

Αį	Agradecimientos	7
Re	Resumen	9
Αl	Abstract	11
ĺn	Índice	12
ĺn	índice de Tablas	13
ĺn	Índice de Figuras	14
1		18 18 18 19
	 2 Siluetas 2.1 Obtención de la silueta aplicando apertura 2.2 Extracción del fondo 2.3 Modificando parámetros del elemento estructura 	20 20 26 30
	 3.1 Operación "Hit or Miss" 3.2 Algoritmo de adelgazamiento de Zhang y Suen 3.3 Comparativa de resultados en la obtención de los esqueletos de las siluetas 	34 34 35 37
4	4 Invariantes de Hu 4.1 Descripción y aplicación de los invariantes de Hu	40
5	 Clasificador de posturas con RNA Redes Neuronales Artificiales (RNA) Aplicación de la RNA y resultados obtenidos 	44 44 47
6	6.1 Desarrollo de la mejora y resultados obtenidos	55 55
7	7 Conclusiones y ampliaciones futuras 7.1 Conclusiones 7.2 Ampliaciones futuras	66 66 66
	Anexos ANEXO A: Tabla de valores de los invariantes ANEXO B: Gráfica de los invariantes	67 88
	9 Referencias	07

ÍNDICE DE TABLAS

Tabla 1. Procesamiento aplicado a las distintas poses, utilizando apertura.	25
Tabla 2. Procesamiento aplicado a las distintas poses, utilizando extracción de fondo.	29
Tabla 3. Modificaciones de la forma del elemento estructura.	31
Tabla 4. Modificaciones de las dimensiones del elemento estructura.	33
Tabla 5. Resultados para la obtención de esqueletos.	39
Tabla 6. Características de las simetrías.	42
Tabla 7. Valores medios de los invariantes de Hu calculados para 120 muestras de cada una de las	poses 43
Tabla 8. Porcentajes de acierto medio para una red con 2 capas ocultas y 4 nodos en cada capa.	48
Tabla 9. Porcentajes de acierto medio para una red con 2 capas ocultas y con 3 nodos en la primera y 4 en la segunda.	nodos 49
Tabla 10. Siluetas y esqueletos aplicando la mejora.	57
Tabla 11. Valores medios de los invariantes de Hu calculados para 120 muestras de cada una de las aplicando la mejora.	poses 58
Tabla 12. Porcentajes de acierto medio para una red con 2 capas ocultas y 4 nodos en cada capa, aplica mejora.	ndo la 59
Tabla 13. Porcentajes de acierto medio para una red con 2 capas ocultas y con 3 nodos en la primera y 4 en la segunda, aplicando la mejora.	nodos 60
Tabla 14. Porcentajes de aciertos al comprobar el clasificador con un 94,8% de acierto.	64
Tabla 15. Porcentajes de aciertos al comprobar el clasificador con un 97,5% de acierto.	64
Tabla 16. Invariantes recogidos para la pose 1.	71
Tabla 17. Invariantes recogidos para la pose 2.	75
Tabla 18. Invariantes recogidos para la pose 3.	79
Tabla 19. Invariantes recogidos para la pose 4.	84
Tabla 20. Invariantes recogidos para la pose 5.	88

ÍNDICE DE FIGURAS

Figura 1. Ejemplo de aplicación de LU1s.	21
Figura 2. Imagen de prueba para el cálculo de la silueta.	21
Figura 3. Imagen de prueba pasada a escala de grises.	21
Figura 4. Imagen de prueba con umbral de binarización de 100.	21
Figura 5. Elemento estructura con forma de disco.	22
Figura 6. Pose 1. Imagen original.	23
Figura 7. Pose 1. Imagen en escala de grises.	23
Figura 8. Pose 1. Imagen binarizada con umbral 100.	23
Figura 9. Pose 1. Imagen con apertura.	23
Figura 10. Pose 2. Imagen original.	23
Figura 11. Pose 2. Imagen en escala de grises.	23
Figura 12. Pose 2. Imagen binarizada con umbral 100.	23
Figura 13. Pose 2. Imagen con apertura.	23
Figura 14. Pose 3. Imagen original.	24
Figura 15. Pose 3. Imagen en escala de grises.	24
Figura 16. Pose 3. Imagen binarizada con umbral 100.	24
Figura 17. Pose 3. Imagen con apertura.	24
Figura 18. Pose 4. Imagen original.	24
Figura 19. Pose 4. Imagen en escala de grises.	24
Figura 20. Pose 4. Imagen binarizada con umbral 100.	24
Figura 21. Pose 4. Imagen con apertura.	24
Figura 22. Pose 5. Imagen original.	25
Figura 23. Pose 5. Imagen en escala de grises.	25
Figura 24. Pose 5. Imagen binarizada con umbral 100.	25
Figura 25. Pose 5. Imagen con apertura.	25
Figura 26. Regiones distinguidas por un color.	26
Figura 27. Rectángulo delimitante de cada región.	26
Figura 28. Selección de regiones a eliminar.	26
Figura 29. Resultado de la eliminación de regiones.	26
Figura 30. Imagen del pasillo vacío. Fondo a extraer.	27
Figura 31. Pose 1. Extracción del fondo.	27
Figura 32. Pose 1. Binarización con umbral 50.	27
Figura 33. Pose 1. Aplicando apertura con el método de extracción del fondo.	27
Figura 34. Pose 2. Extracción del fondo.	28

Figura 35. Pose 2. Binarización con umbral 50.	28
Figura 36. Pose 2. Aplicando apertura con el método de extracción del fondo.	28
Figura 37. Pose 3. Extracción del fondo.	28
Figura 38. Pose 3. Binarización con umbral 50.	28
Figura 39. Pose 3. Aplicando apertura con el método de extracción del fondo.	28
Figura 40. Pose 4. Extracción del fondo.	29
Figura 41. Pose 4. Binarización con umbral 50.	29
Figura 42. Pose 4. Aplicando apertura con el método de extracción del fondo.	29
Figura 43. Pose 5. Extracción del fondo.	29
Figura 44. Pose 5. Binarización con umbral 50.	29
Figura 45. Pose 5. Aplicando apertura con el método de extracción del fondo.	29
Figura 46. Resultados sin extracción del fondo. Rombo (R=2).	30
Figura 47. Resultados con extracción del fondo. Rombo (R=2).	30
Figura 48. Resultados sin extracción del fondo. Rectángulo (2x3).	30
Figura 49. Resultados con extracción del fondo. Rectángulo (2x3).	30
Figura 50. Resultados sin extracción del fondo. Cuadrado (2x2).	31
Figura 51. Resultados con extracción del fondo. Cuadrado (2x2).	31
Figura 52. Resultados sin extracción del fondo. Disco (R=3).	31
Figura 53. Resultados sin extracción del fondo. Disco (R=1).	31
Figura 54. Resultados con extracción del fondo. Disco (R=3).	31
Figura 55. Resultados con extracción del fondo. Disco (R=3).	31
Figura 56. Resultados sin extracción del fondo. Rombo (R=3).	32
Figura 57. Resultados sin extracción del fondo. Rombo (R=1).	32
Figura 58. Resultados con extracción del fondo. Rombo (R=3).	32
Figura 59. Resultados con extracción del fondo. Rombo (R=3).	32
Figura 60. Resultados sin extracción del fondo. Rectángulo (3x2).	32
Figura 61. Resultados sin extracción del fondo. Rectángulo (2x1).	32
Figura 62. Resultados con extracción del fondo. Rectángulo (3x2).	32
Figura 63. Resultados con extracción del fondo. Rectángulo (2x1).	32
Figura 64. Resultados sin extracción del fondo. Cuadrado (3x3).	33
Figura 65. Resultados sin extracción del fondo. Cuadrado (1x1).	33
Figura 66. Resultados con extracción del fondo. Cuadrado (3x3).	33
Figura 67. Resultados con extracción del fondo. Cuadrado (1x1).	33
Figura 68. Operadores morfológicos.	34
Figura 69. Ejemplo de aplicar la operación "hit or miss" para adelgazamiento. Ejemplo tomado de [23]	. 35
Figura 70. Nombres de los píxeles para los test del adelgazamiento de Zhang y Suen.	36
Figura 71. Ejemplo para el cálculo de $S(p_1)$ y $N(p_1)$.	36
Figura 72. Pose 1. Esqueleto por "hit or miss".	37
Figura 73. Pose 1. Esqueleto por adelgazamiento de Zhang y Suen.	37

Figura 74. Pose 2. Esqueleto por "hit or miss".	38
Figura 75. Pose 2. Esqueleto por adelgazamiento de Zhang y Suen.	38
Figura 76. Pose 3. Esqueleto por "hit or miss".	38
Figura 77. Pose 3. Esqueleto por adelgazamiento de Zhang y Suen.	38
Figura 78. Pose 4. Esqueleto por "hit or miss".	39
Figura 79. Pose 4. Esqueleto por adelgazamiento de Zhang y Suen.	39
Figura 80. Pose 5. Esqueleto por "hit or miss".	39
Figura 81. Pose 5. Esqueleto por adelgazamiento de Zhang y Suen.	39
Figura 82. Espacio de invariantes.	40
Figura 83. Simetría sobre el eje y.	42
Figura 84. Simetría sobre el eje x.	42
Figura 85. Invariantes 1 y 2.	43
Figura 86. Dibujo de Santiago Ramón y Cajal. Neuronas del cerebelo de una paloma. Imagen ton https://www.pinterest.es/pin/194851121357163571/.	nada de 44
Figura 87. Modelo básico de RNA como caja negra.	44
Figura 88. Modelo del Perceptrón. Comparativa entre neuronas biológicas y neuronas artificiales. tomada de [6]	Imagen 45
Figura 89. Ejemplo de RNA.	45
Figura 90. Ejemplo de RNA con entrada extra conectada a 1.	46
Figura 91. Reparto de la población de conjuntos para la fase de entrenamiento de la RNA.	47
Figura 92. Comparativa de porcentajes de error medio.	50
Figura 93. Estructura de red con: 7 entradas (invariantes de Hu), 2 capas ocultas (4 nodos en ambas capsalidas (poses).	pas) y 5 50
Figura 94. Resultados de un entrenamiento aleatorio de ejemplo.	51
Figura 95. Error cuadrático medio (ECM) cometido a lo largo de las 50 iteraciones para cada uno conjuntos.	de los 52
Figura 96. Variación del gradiente. Variación de mu. Comprobación de la validación.	53
Figura 97. Histograma de error para cada uno de los conjuntos.	53
Figura 98. Pose 1. Silueta aplicando la mejora.	55
Figura 99. Pose 1. Esqueleto aplicando la mejora.	55
Figura 100. Pose 2. Silueta aplicando la mejora.	56
Figura 101. Pose 2. Esqueleto aplicando la mejora.	56
Figura 102. Pose 3. Silueta aplicando la mejora.	56
Figura 103. Pose 3. Esqueleto aplicando la mejora.	56
Figura 104. Pose 4. Silueta aplicando la mejora.	57
Figura 105. Pose 4. Esqueleto aplicando la mejora.	57
Figura 106. Pose 5. Silueta aplicando la mejora.	57
Figura 107. Pose 5. Esqueleto aplicando la mejora.	57
Figura 108. Invariantes 1 y 2 aplicando la mejora.	58
Figura 109 Comparativa de porcentajes de error medio aplicando la mejora	61

Figura 110. Estructura de red con: 4 entradas (invariantes de Hu), 2 capas ocultas (4 nodos en ambas casalidas (poses).	pas) y 5 61
Figura 111. Resultados del entrenamiento de la mejor red obtenida.	62
Figura 112. Error cuadrático medio (ECM) cometido a lo largo de las 50 iteraciones para cada un conjuntos. Mejor red.	de los 62
Figura 113. Variación del gradiente. Variación de mu. Comprobación de la validación. Mejor red.	63
Figura 114. Histograma de error para cada uno de los conjuntos. Mejor red.	63
Figura 115. Invariantes 1 y 3.	89
Figura 116. Invariantes 1 y 4.	89
Figura 117. Invariantes 1 y 5.	90
Figura 118. Invariantes 1 y 6.	90
Figura 119. Invariantes 1 y 7.	91
Figura 120. Invariantes 2 y 3.	91
Figura 121. Invariantes 2 y 4.	91
Figura 122. Invariantes 2 y 5.	92
Figura 123. Invariantes 2 y 6.	92
Figura 124. Invariantes 2 y 7.	92
Figura 125. Invariantes 3 y 4.	93
Figura 126. Invariantes 3 y 5.	93
Figura 127. Invariantes 3 y 6.	93
Figura 128. Invariantes 3 y 7.	94
Figura 129. Invariantes 4 y 5.	94
Figura 130. Invariantes 4 y 6.	95
Figura 131. Invariantes 4 y 7.	95
Figura 132. Invariantes 5 y 6.	95
Figura 133. Invariantes 5 y 7.	96
Figure 134 Invariantes 6 v 7	96

1 Introducción

omo introducción al presente trabajo se expondrán en este apartado el objeto de estudio, el estado del arte y el objetivo que se pretende alcanzar.

1.1 Objeto

El desarrollo de este trabajo de fin de máster parte de la importancia del uso de sistemas de procesado de imágenes automáticos utilizados junto a las nuevas tecnologías de videovigilancia para sacarles el máximo partido. La motivación del trabajo parte de aplicar clasificación de posturas a las cámaras de seguridad de los supermercados y comprobar si las personas adoptan posturas no propias para ese tipo de centro. Esto puede llegar a ser extensible a otras aplicaciones. En el presente trabajo se plantean los estudios realizados sobre la clasificación de posturas mediante los invariantes de Hu y las redes neuronales artificiales (RNA), sin llevar a cabo las distintas aplicaciones propuestas.

En primer lugar, se realiza la obtención de la silueta de la persona que se encuentra en un pasillo dentro del supermercado. Una vez obtenida la silueta y realizado el estudio de cómo poder obtener resultados mejores para la misma tomando como referencia una base de datos creadas por el alumno, se plantea el desarrollo del esqueleto de la imagen para realizar a posteriori el cálculo matemático de los distintos invariantes de HU del esqueleto en cuestión. Con la toma de muchas muestras y habiendo calculado múltiples esqueletos y sus respectivos invariantes, se utilizan dichos invariantes para realizar el estudio del clasificador. Se analizan entonces un conjunto amplio de redes neuronales artificiales. Como entradas a dichas redes se utilizan en distinta combinación los 7 invariantes de Hu. Se pretende entonces entrenar a varias redes y conseguir la red que se adapte mejor a la hora de realizar la clasificación de posturas, adquiriendo mayor índice de probabilidad de acierto. Además, se realiza un estudio sobre las mejores redes encontradas y búsqueda de mejores resultados.

Las operaciones de procesamiento de imágenes son realizadas sobre una base de datos formada por 600 imágenes tomadas en un pasillo. Se dispone de 120 imágenes para cada una de las 5 posturas que se procederán a estudiar. Además se dispone de más imágenes para que posteriormente a la elaboración del trabajo se puedan realizar pruebas sobre el mismo.

1.2 Estado del arte

Poco a poco los sistemas de procesamiento de imágenes se hacen más y más cercanos a lo cotidiano. Por ejemplo, en el campo de los smartphones actuales las personas utilizan reconocimiento de sonrisas para tomarse fotos, reconocimiento de la palma de la mano para poder detener vídeos, e incluso aplicaciones más modernas como Snapchat utilizan el procesado de imágenes para captar las diferentes expresiones de la cara y colocar filtros de realidad aumentada. Pero no es sólo el campo del ocio el que ha tomado constantes mejoras, si no que estás se extienden mucho más allá permitiendo a sistemas más complejos, como son las máquinas industriales, realizar distintas operaciones dependiendo de lo que capten las cámaras que utilizan. Por ejemplo, en el caso de las máquinas industriales se podría añadir que se utiliza procesamiento para captar piezas defectuosas y apartarlas de la cadena de producción y así conseguir evitar repetidos gastos, permitiendo que se produzcan ganancias empresariales importantes. Otros sistemas industriales también utilizan las cámaras para captar piezas diferentes y clasificarlas según sean para almacenar en un lugar u otro, o cualquier otro fin que se desee.

El desarrollo de un sistema que produzca una buena clasificación es de gran importancia también en el ámbito de la ciencia. Los científicos utilizan datos recogidos de distintos elementos (flores, por ejemplo) y los introducen en el sistema siendo este capaz de detectar de qué tipo de elemento se trata. Por ello es de gran importancia que los clasificadores obtengan un alto índice de acierto.

En los supermercados hay sistemas que permiten reconocer cuántas personas hay en un cierto pasillo e incluso que son capaces de reconocer el género y la edad de las personas [1]. En este trabajo se analizarán estrategias

para la mejora de videovigilancia basadas en reconocimiento de posturas de las personas. Con ello se podrá detectar si una persona está en una postura que puede resultar inusual dentro de un supermercado como puede ser estar tumbado. De esta forma se dejará pie a la incorporación de estas técnicas y estudios a sistemas reales y para aplicaciones concretas. [22]

1.3 Objetivo

El objetivo principal de este proyecto es estudiar el comportamiento de las redes neuronales artificiales a la hora de realizar la clasificación de posturas humanas. Los resultados obtenidos dictarán cómo de bueno es el sistema neuronal conseguido y se investigarán posibles mejoras sobre el mismo.

Como validación se comprobará el índice de acierto para distintas redes neuronales y se aplicará la mejor a diversas imágenes poniendo en práctica al sistema.

2 SILUETAS

n este apartado se explican las técnicas que se han desarrollado y sus posibles mejoras a la hora de obtener las siluetas de las personas de las imágenes de la base da datos. Se muestran ejemplos con alguna muestra de cada pose para poder visualizar lo resultados. También se muestran las consecuencias de modificar parámetros asociados al elemento estructura utilizado. Referencias: [1], [2], [3], [4] y [5].

En el presente trabajo no se abordará la obtención de las siluetas, si no que se darán por calculadas previamente. Se parte de la hipótesis de que ya hay técnicas mejores, que están siendo utilizadas, que permiten su cálculo y que se dispone de ellas. No obstante, será necesario que se realice algún cálculo de ellas para poder obtener unas siluetas sobre las que trabajar.

Para la obtención de la aproximación de las siluetas a utilizar en el presente trabajo, se han llevado a cabo varias implementaciones hasta obtener una silueta aceptable para el desarrollo de las pruebas. Por un lado, se probó aplicar binarización utilizando LUTs y por otro extraer el fondo de la imagen para obtener la silueta de la persona en cuestión. Estas pruebas son realizadas sobre una base de datos formada por 600 imágenes tomadas en un pasillo. Se dispone de 120 imágenes para cada una de las 5 posturas que se procederán a estudiar. Además, se dispone de más imágenes para que posteriormente a la elaboración del trabajo se puedan realizar pruebas sobre el mismo.

2.1 Obtención de la silueta aplicando apertura

En primer lugar, se probó a obtener la silueta a partir de la binarización de la imágen. A partir de su histograma (función que representa el número de veces que aparece cada nivel de gris en la imagen) se pueden aplicar filtros para separar los píxeles en dos niveles de grises diferenciados. Estos filtros son tablas de consulta (Look-Up Table, LUT). A cada nivel de gris de la imagen original se le asigna un nuevo nivel de gris en una nueva imagen, realizando una transformación píxel a píxel como muestra la expresión (1.1).

$$f(x,y) \xrightarrow{T} g(x,y)$$

$$T(f(x,y)) = g(x,y)$$
(1.1)

Siendo f(x, y) el nivel de gris del píxel con coordenadas (x, y) de la imagen original; g(x, y) el nivel de gris del píxel con coordenadas (x, y) de la imagen obtenida tras la transformación; $y T(\bullet)$ la función de transformación LUT.

Las LUTs se pueden crear dependiendo del uso que se vaya a hacer de ellas. Lo que hay que tener en cuenta es que a cada píxel le corresponde un nuevo valor al pasar por la función de transformación. Las LUTs tienen gran utilidad a la hora de procesar imágenes ya que permiten una transformación global de la imagen, se implementan fácilmente y es posible aplicarlas durante el proceso de digitalización en aplicaciones en tiempo real. A continuación, se muestra el efecto de aplicar distintas tablas de consulta a una primera imagen (Figura 1):

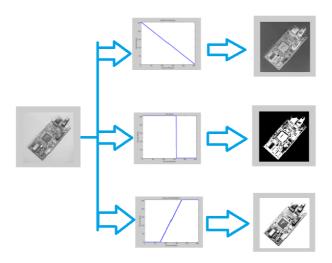


Figura 1. Ejemplo de aplicación de LUTs.

Como se puede observar en la Figura 1, se han utilizado en primer lugar una LUT que permite la inversión de los niveles de grises, en segundo lugar, un escalón y en tercer lugar una función rampa.

Una vez explicado el funcionamiento de las LUTs se va a exponer cómo se han utilizado para el cálculo de las siluetas. En principio ya que las siluetas serían provistas por el sistema sobre el que se trabajase, se planteó, como ya se ha mencionado, la binarización simple de la imagen. Para ello se utilizó una LUT escalón con un umbral en 100, que permitía que los píxeles con nivel de gris<100 tomasen el valor 255 y que el resto de los píxeles tomase el valor 0.

Figura 2. Imagen de prueba para el cálculo de la silueta.

Figura 3. Imagen de prueba pasada a escala de grises.

Figura 4. Imagen de prueba con umbral de binarización de 100.

En la Figura 2 se puede observar una imagen de prueba para calcular su silueta. La imagen de prueba se tomó sobre una pared blanca para minimizar errores a la hora de binarizar. En la Figura 3 se ha transformado la anterior a escala de grises. En la Figura 4 se ve el efecto de aplicar el umbral de binarización que se mencionó anteriormente. Como se puede apreciar, en la parte inferior hay zonas con nivel de gris 255 que no se deseaban. Esto es debido a la sombra. Como ya se mencionó, en este trabajo no se hará gran incapié en el cálculo de siluetas, sino que se pretenden obtener siluetas que sean aceptables para el desarrollo del clasificador y por ello hace falta realizar un mínimo estudio sobre ellas.

Para mejorar la silueta lo primero que se hace es utilizar la función 'strel' de MATLAB para calcular un elemento estructura a pasar sobre la imagen. El elemento estructura utilizado ha sido un disco tal y como se muestra en la Figura 5. El radio del disco utilizado es de 2 píxeles, aunque más adelante se retocará este parámetro.

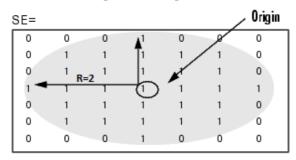


Figura 5. Elemento estructura con forma de disco.

Una vez obtenido el elemento estructura, se procede al uso del mismo, aplicando la función de MATLAB 'imopen' que utiliza el elemento estructura creado para realizar la apertura de la imagen. La apertura consta de realizar una erosión y posteriormente una dilatación. La erosión consiste en pasar el elemento estructura sobre todos los píxeles que tengan un nivel de gris de 255 y hacer que mantenga el origen del elemento estructura donde este coincida con los píxeles analizados (operación también llamada "hit or miss"). Una vez realizada la erosión se procede a la dilatación en la que los elementos estructura se hacen coincidir con los orígenes que resultaron de la erosión y agrandar así el número de píxeles con 255 consiguiendo eliminar puntos aislados. La ecuación que define la apertura es la (1.2).

$$X \circ B \equiv X_B = (X ! B) \oplus B$$
 (1.2)

En la Tabla 1 se muestra la evolución de una imagen de muestra de cada una de las cinco poses a analizar. Las imágenes fueron tomadas en un pasillo simulando a una persona en un supermercado. En la Figura 6, Figura 10, Figura 14, Figura 18 y Figura 22 se aprecian las muestras de las imágenes sin procesar. En la Figura 7, Figura 11, Figura 15, Figura 19 y Figura 23 se han pasado a escala de girses. En la Figura 8, Figura 12, Figura 16, Figura 20 y Figura 24 se han binarizado las imágenes según la LUT con umbral 100. Al aplicar la apertura se obtienen la Figura 9, Figura 13, Figura 17, Figura 21 y Figura 25 que muestran una silueta de la persona bastante aproximada. Aún así existen elementos espurios.

POSE	IMAGEN ORIGINAL	ESCALA DE GRISES	BINARIZADA	APERTURA
POSE 1: Persona agachada en un pasillo y girada hacia el lateral derecho de este.	Figura 6. Pose 1. Imagen original.	Figura 7. Pose 1. Imagen en escala de grises.	Figura 8. Pose 1. Imagen binarizada con umbral 100.	Figura 9. Pose 1. Imagen con apertura.
POSE 2: Persona gateando en un pasillo.	Figura 10. Pose 2. Imagen original.	Figura 11. Pose 2. Imagen en escala de grises.	Figura 12. Pose 2. Imagen binarizada con umbral 100.	Figura 13. Pose 2. Imagen con apertura.

POSE 3:
Persona en un
pasillo
agachada y
con las manos
en las dos
paredes del
mismo.

Figura 14. Pose 3. Imagen original.

Figura 15. Pose 3. Imagen en escala de grises.

Figura 16. Pose 3. Imagen binarizada con umbral 100.

Figura 17. Pose 3. Imagen con apertura.

POSE 4:
Persona
tumbada en un
pasillo.

Figura 18. Pose 4. Imagen original.

Figura 19. Pose 4. Imagen en escala de grises.

Figura 20. Pose 4. Imagen binarizada con umbral 100.

Figura 21. Pose 4. Imagen con apertura.

Tabla 1. Procesamiento aplicado a las distintas poses, utilizando apertura.

Para la eliminación de esos elementos espurios se procedió de la siguiente forma:

En primer lugar, se comprueba utilizando conectividad-8 cuántas regiones hay en la imagen binarizada. Para ello se utiliza la instrucción de MATLAB 'bwlabel', que permite, además, numerar cada región con un valor diferente y generar así una nueva imagen que se llamará 'L'. Utilizando como ejemplo la Figura 9 de la tabla anterior, devolvería 4 regiones. Una vez obtenidas las regiones, se utiliza la instrucción de MATLAB 'regionprops', con la cual a partir de la imagen L se pueden obtener propiedades como son el área de cada región, el centroide y un entorno en el que está acotada cada región denominado 'BoundinBox'. Si se muestra L en valores RGB se podrá ver cada región de un color distinto como se muestra en la Figura 26. En la Figura 27 se muestra el efecto de remarcar el rectángulo que acota cada región. Como lo que se pretende es eliminar las regiones de menor tamaño que no formen parte de la silueta, se coloca un margen a partir del cual se separan las regiones a eliminar. Este margen se coloca en función de los píxeles del cuerpo mayor de la silueta, en este ejemplo se marca un margen de 1000 píxeles. Las regiones con menos de 1000 píxeles que no se encuentren dentro de una región con más de 1000 píxeles, son las candidatas a la eliminación. En la Figura 28 se han recuadrado en color rojo las candidatas a la eliminación. Como se puede observar, existe una región formada por la cabeza de la persona de la cual se quiere extraer la silueta, que forma parte de una de las dos regiones candidatas a la eliminzación. El resultado elimina como se aprecia en la Figura 29 las regiones seleccionadas, eliminando consigo parte de la silueta y dejando zonas espurias aún en la imagen.

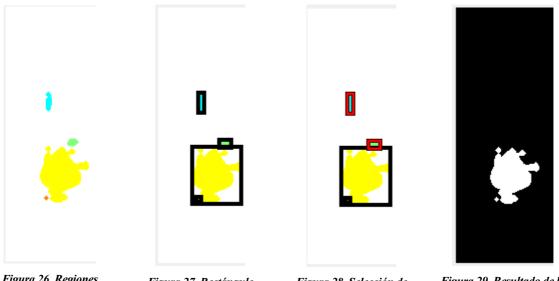


Figura 26. Regiones distinguidas por un color.

Figura 27. Rectángulo delimitante de cada región.

Figura 28. Selección de regiones a eliminar.

Figura 29. Resultado de la eliminación de regiones.

El problema de aplicar este procesamiento a la imagen es que no se consiguen eliminar todos los espurios de la imagen. Además, se eliminan zonas de interés dejando una silueta mucho más pobre. Este método si funcionase de forma que en cada imagen fuese capaz de eliminar todas las regiones espurias, seleccionando el margen o cota más adecuado, y fuese capaz de dejar intactas regiones pertenecientes a la silueta sería ideal para la obtención de las siluetas. Como en este trabajo ya se ha mencionado en varias ocasiones que el estudio de las siluetas es para conseguir una base sobre la que trabajar, encontrar ese método ideal se dispone como un posible trabajo futuro continuación de este. No obstante, para poder trabajar con las siluetas se sigue necesitando que sean lo más buenas posibles. A continuación, se detalla otro método a partir del cual se obtuvieron mejores resultados.

2.2 Extracción del fondo

Un buen método para intentar evitar que las zonas espurias aparezcan, es la obtención de las siluetas de la siguiente forma: esta vez las siluetas se obtendrían de restar dos imágenes. La primera imágen sería el pasillo vacío (de personas, no de productos en el caso del supermercado), mientras que la segunda sería el mismo pasillo, pero esta vez con la persona cuya silueta se quiere obtener. De esta forma la diferencia entre imágenes sería la propia silueta.

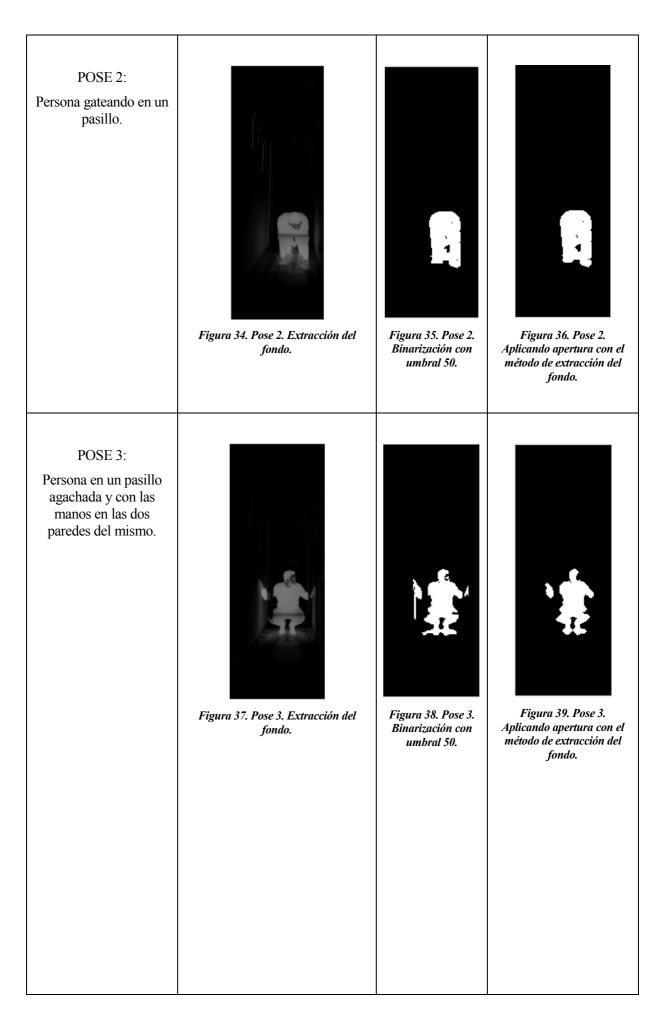

Para proceder a la resta de las imágenes, se pasan a escala de grises tanto la imagen del pasillo vacío (Figura 30) como la imagen con la persona en cuestión. De este modo restando ambas se obtiene una primera aproximación de la silueta, pero con muchas regiones espurias debidas a las sombras. Al estar la persona en el pasillo, los reflejos y sombras hacen variar la intensidad de luz de muchos de los píxeles de la imagen. Como consecuencia de esto, aun habiendo restado la persona del fondo, no se obtiene la silueta de la imagen directamente.

Figura 30. Imagen del pasillo vacío. Fondo a extraer.

Además de pasar a escala de grises hay que utilizar la instrucción 'imopen' como en el apartado anterior para eliminar al máximo las regiones indeseadas. Esta vez el umbral de binarización aplicado es 50. Los resultados se muestran en la Tabla 2. En la Figura 31, Figura 34, Figura 37, Figura 40 y Figura 43 se muestran los resultados de aplicar la extracción del fondo a la Figura 6, Figura 10, Figura 14, Figura 18 y Figura 22 de la tabla anterior. En la Figura 32, Figura 35, Figura 38, Figura 41 y Figura 44 se aprecian los resultados tras aplicar el umbral de binarización de 50. Por último, en la Figura 33, Figura 36, Figura 39, Figura 42 y Figura 45 se aplica la apertura para eliminar pequeñas regiones no deseadas.

POSE	EXTRACCIÓN DEL FONDO	BINARIZADA	APERTURA
POSE 1: Persona agachada en un pasillo y girada hacia el lateral derecho de este.	Figura 31. Pose 1. Extracción del fondo.	Figura 32. Pose 1. Binarización con umbral 50.	Figura 33. Pose 1. Aplicando apertura con el método de extracción del fondo.

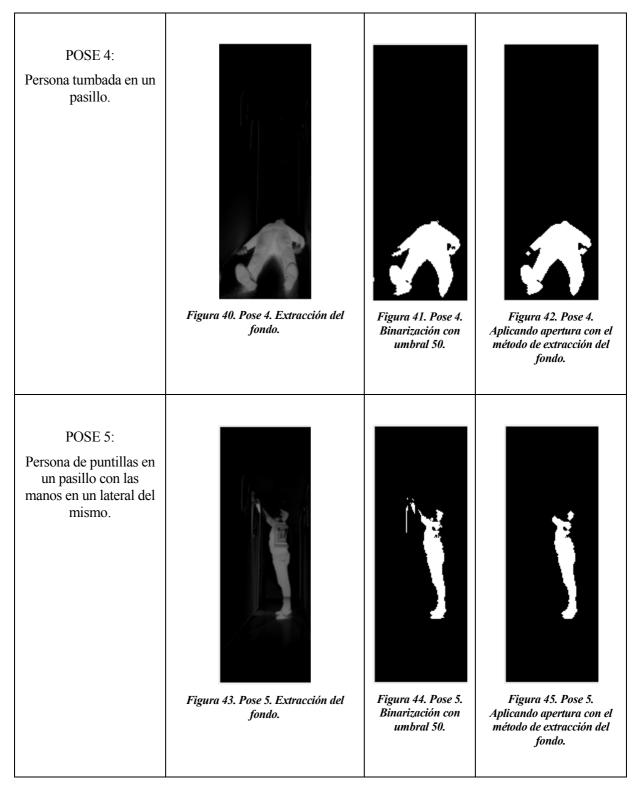


Tabla 2. Procesamiento aplicado a las distintas poses, utilizando extracción de fondo.

Finalmente, los resultados obtenidos y recogidos en la columna 4 de la tabla anterior, serán los que se utilizarán en el presente trabajo como mejores aproximaciones de las siluetas. Esto es debido a que se han conseguido eliminar la mayoría de las regiones no deseadas dañando mínimamente las siluetas, mostrándose resultados mejores a los del apartado anterior.

2.3 Modificando parámetros del elemento estructura

Hasta ahora se ha mostrado el efecto de aplicar un disco de radio 2 como elemento estructura. Se tienen dos parámetros que se podrían modificar: por un lado, se tiene la forma del elemento estructura (se ha utilizado disco), y por otro lado está su radio o cantidad de píxeles a contener. En este subapartado se pretende exponer el por qué se ha elegido un disco de radio 2 píxeles para el cálculo de la silueta. Se plantea el estudio de algunas opciones posibles que al final como se verá se descartaron por no llegar a un buen resultado.

En primer lugar, se mostrará en la Tabla 3 el resultado de modificar la forma tomando como ejemplo una muestra de la pose 1. Todo ello siguiendo el planteamiento que se explicó con anterioridad en este documento. Figura 46, Figura 48 y Figura 50 sin extracción del fondo. Figura 47, Figura 49 y Figura 51 con extracción del fondo

FORMA	RESULTADOS SIN EXTRACCIÓN DEL FONDO	RESULTADOS CON EXTRACCIÓN DEL FONDO
ROMBO (R=2)	Figura 46. Resultados sin extracción del fondo. Rombo (R=2).	Figura 47. Resultados con extracción del fondo. Rombo (R=2).
RECTÁNGULO (2x3)	Figura 48. Resultados sin extracción del fondo. Rectángulo (2x3).	Figura 49. Resultados con extracción del fondo. Rectángulo (2x3).

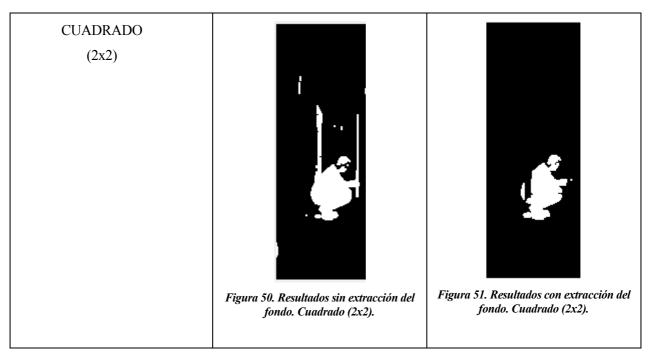
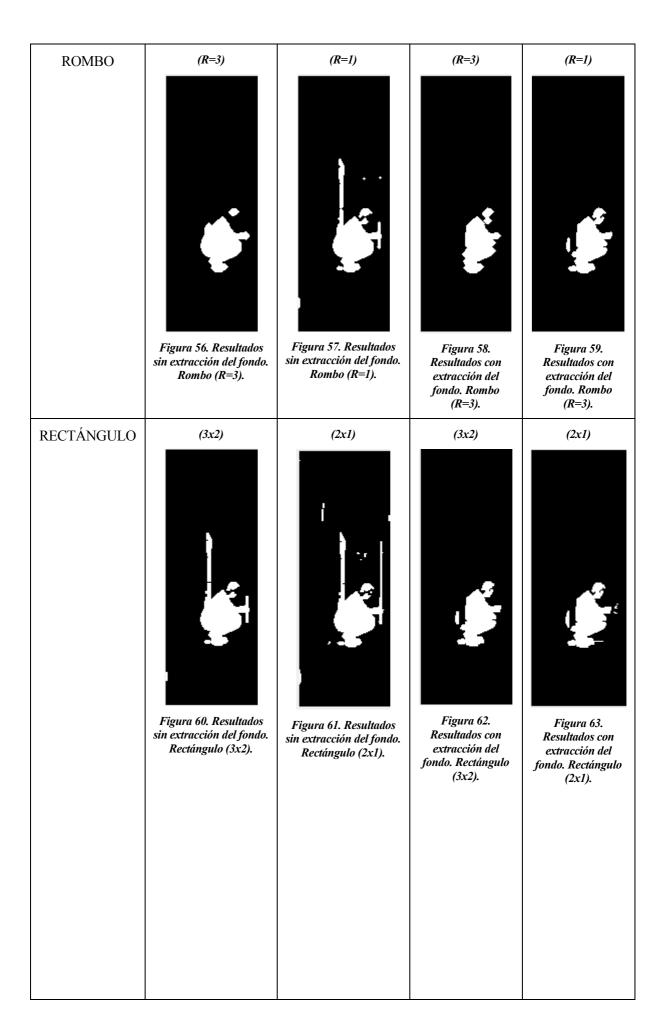



Tabla 3. Modificaciones de la forma del elemento estructura.

En segundo lugar, se mostrará en la Tabla 4 el resultado de modificar el tamaño tomando como ejemplo una muestra de la pose 1. Todo ello siguiendo el planteamiento que se explicó con anterioridad en este documento. Figura 52, Figura 53, Figura 56, Figura 56, Figura 60, Figura 61, Figura 64 y Figura 65 sin extracción de fondo. Figura 54, Figura 55, Figura 58, Figura 59, Figura 62, Figura 63, Figura 66 y Figura 67 con extracción de fondo.

FORMA	RESULTADOS SIN EXTRACCIÓN DE FONDO			ADOS CON N DE FONDO
DISCO	(R=3)	(R=1)	(R=3)	(R=1)
	Figura 52. Resultados sin extracción del fondo. Disco (R=3).	Figura 53. Resultados sin extracción del fondo. Disco (R=1).	Figura 54. Resultados con extracción del fondo. Disco (R=3).	Figura 55. Resultados con extracción del fondo. Disco (R=3).

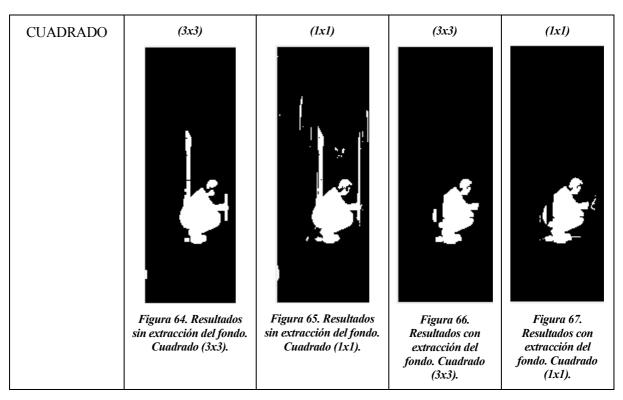


Tabla 4. Modificaciones de las dimensiones del elemento estructura.

Observando los resultados se aprecia que la forma y el tamaño elegidos son los más adecuados para encontrar una silueta mejor. Así se puede entender por qué se eligió la forma de un disco de radio 2 píxeles.

3 ESQUELETOS

n este apartado se expondrá cómo obtener los esqueletos de las siluetas elegidas en el apartado anterior. El fin de conseguir los esqueletos es obtener los invariantes de los mismos y utilizarlos como entradas para el sistema neuronal que se expondrá en el apartado 5. Para su obtención se han probado dos caminos: utilizar la operación "hit or miss" y utilizar el algoritmo de adelgazamiento de Zhang y Suen. Referencias [13], [14], [15] y [23].

3.1 Operación "Hit or Miss"

En el apartado 2 se mencionó que era necesario utilizar elementos estructura. Estos elementos son lo que se llaman operadores morfológicos. En este subapartado se explicará cómo aplicar operadores morfológicos para conseguir el adelgazamiento de la silueta y así obtener su esqueleto. Para ello se utiliza una instrucción de MATLAB 'bwmorph' aplicada al cálculo de esqueletos. Esta instrucción va eliminando en cada iteración los píxeles de la región que se encuentran en los límites de esta, deteniéndose cuando solo quede un píxel de grosor. A la instrucción se le debe indicar que se pretende obtener las siluetas, eligiendo 'skel' en el tipo de operación. Además, se le ha indicado que el número de iteraciones sea infinito, para que realice el proceso hasta tener un único píxel de grosor. Un ejemplo a la hora de aplicar adelgazamiento mediante operadores morfológicos podría ser el que se explicará a continuación. Habría que aplicar la operación que se muestra en la ecuación (1.3), donde # es la operación "hit or miss" y ⊗ es la operación de aplicar el operador morfológico L a la región X.

$$X \otimes L = X - (X \# L) \tag{1.3}$$

En este ejemplo L es un conjunto de 8 elementos estructura de la siguiente forma $\{L\} = \{L^1, L^2, L^3, ..., L^8\}$, donde Lⁱ es una versión girada de Lⁱ⁻¹. En la Figura 68 se muestran los elementos estructura del conjunto $\{L\}$.

Figura 68. Operadores morfológicos.

Aplicando el conjunto $\{L\}$ la ecuación a aplicar es (1.4). En ella se puede obserar como se aplicar en primer lugar a la imagen el operador L^1 , a continuación, L^2 y así sucesivamente hasta L^8 . Una vez aplicados todos los operadores se repite el proceso desde L^1 de nuevo, hasta que no se produzcan cambios. En la Figura 69 se puede apreciar un ejemplo de aplicar esos operadores sobre una región X. El píxel marcado en amarillo en la figura indica el píxel que se está analizando y sobre el que se está aplicando el operador.

$$X \otimes \{L\} = \left(\left(\dots \left(\left(X \otimes L^{1} \right) \otimes L^{2} \right) \dots \right) \otimes L^{8} \right)$$
 (1.4)

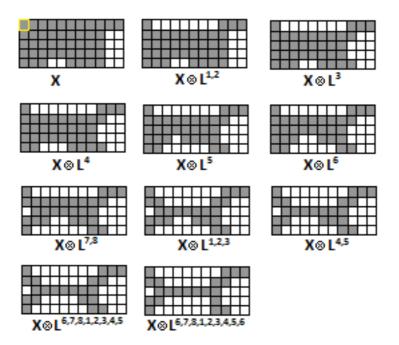


Figura 69. Ejemplo de aplicar la operación "hit or miss" para adelgazamiento. Ejemplo tomado de [23].

Los resultados de aplicar la instrucción 'bwmorph' a las siluetas que se obtuvieron en el apartado 2.2 de cada una de las poses, se muestran en la primera columna de la Tabla 5 en el apartado 3.3. Como recordatorio cabe indicar que las siluetas escogidas como base fueron las calculadas mediante la extración de fondo y mediante la aplicación de una apertura con un elemento estructura disco de radio 2. En el apartado 3.3 se muestran los resultados y se realiza la comparación de los esqueletos obtenidos con los esqueletos obtenidos mediante el algoritmo de adelgazamiento de Zhang y Suen que se explica en el apartado siguiente.

3.2 Algoritmo de adelgazamiento de Zhang y Suen

Como ya se ha visto, se pueden obtener los esqueletos de las siluetas utilizando la operación "hit or miss". Además de aplicar "hit or miss" existen más algoritmos de obtención de siluetas mediante adelgazamiento. El que se explica en este subapartado es el algoritmo de adelgazamiento de Zhang y Suen. Este algoritmo consiste en eliminar iterativamente puntos del contorno C de una región R que cumplan ciertas condiciones en una iteración. En el caso del presente trabajo, las regiones R serían las siluetas obtenidas en el apartado 2.2. El contorno C sería el contorno de la silueta a la que se le esté aplicando el adelgazamiento.

El algoritmo consta de 5 pasos:

- 1- De los píxeles del contorno, marcar como candidato a ser borrado los que verifican las cuatro condiciones del TEST 1: (1.5)(1.6)(1.7)(1.8).
- 2- Borrar todos los píxeles marcados en el paso 1.
- 3- De los píxeles del contorno, marcar como candidato a ser borrado los que verifican las cuatro condiciones del TEST 2: (1.9)(1.10)(1.11)(1.12).
- 4- Borrar todos los píxeles marcados en el paso 3.
- 5- Si algún píxel se ha eliminado, se vuelve al paso 1.

El TEST 1 y el TEST 2 se explican a continuación. Para ambos tests tener en cuenta la Figura 70, en la que se indican el p_1 como píxel a analizar y de p_2 a p_9 como píxeles a comprobar en los tests.

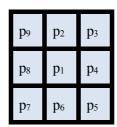


Figura 70. Nombres de los píxeles para los test del adelgazamiento de Zhang y Suen.

Además, hay que tener en cuenta que:

- $S(p_1)$ es el número de transiciones 0-1 en la secuencia ordenada $\,p_2,p_3,...,p_9\,.$

(1.5)

-
$$N(p_1) = \sum_{i=2}^{9} p_i$$

Un ejemplo de cálculo de $S(p_1)$ y $N(p_1)$ sería el siguiente: para el píxel p_1 de la Figura 71, el valor de $S(p_1)$ es 3 y el valor de $N(p_1)$ es 4.

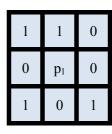


Figura 71. Ejemplo para el cálculo de S(p1) y N(p1).

Condiciones del TEST1:

a)
$$2 \le N(p_1) \le 6$$

b)
$$S(p_1) = 1$$
 (1.6)

c)
$$p_2 \cdot p_4 \cdot p_6 = 0$$
 (1.7)

d)
$$p_4 \cdot p_6 \cdot p_8 = 0$$
 (1.8)

Condiciones del TEST2:

a)
$$2 \le N(p_1) \le 6$$
 (1.9)

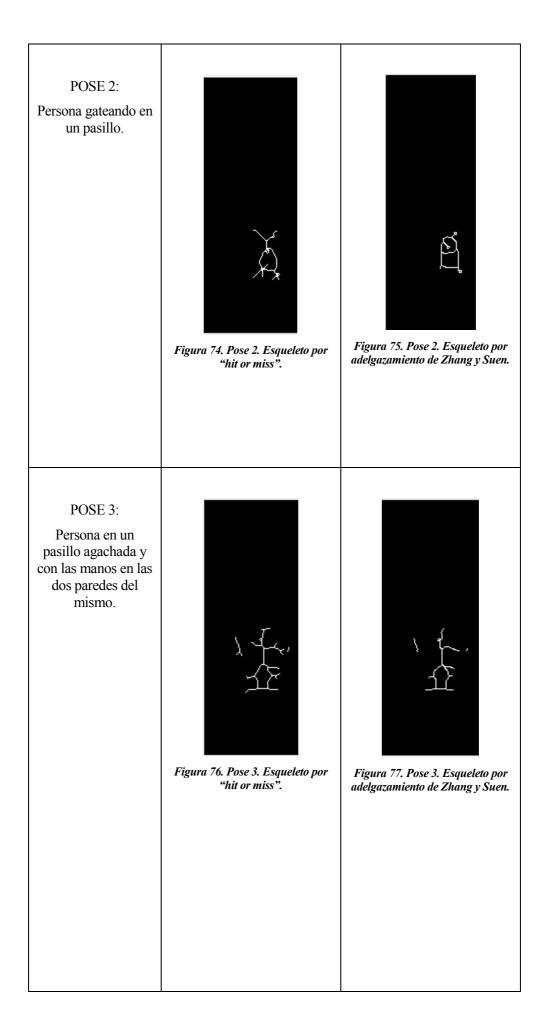
b)
$$S(p_1) = 1$$
 (1.10)

c')
$$p_2 \cdot p_4 \cdot p_8 = 0$$
 (1.11)

$$d') p_2 \cdot p_6 \cdot p_8 = 0 \tag{1.12}$$

A continuación, se explica cómo repercute en el cálculo del esqueleto cada condición de los TEST 1 y 2.

36


- La condición (a) permite conservar los puntos finales de la silueta.
- La condición (b) permite conservar los trazos de un píxel de grosor.
- Las condiciones (c) y (d) hacen que se marquen los puntos de la derecha e inferiores y también los puntos de la esquina superior izquierda, para en el paso 2 borrarlos.
- Las condiciones (c') y (d') hacen que se marquen los puntos de la izquierda y superiores y también los puntos de la esquina inferior derecha, para en el paso 4 borrarlos.

Los resultados de aplicar el algoritmo de adelgazamiento de Zhang y Suen a las siluetas que se obtuvieron en el apartado 2.2 de cada una de las poses, se muestran en la segunda columna de la Tabla 5 en el siguiente subapartado.

3.3 Comparativa de resultados en la obtención de los esqueletos de las siluetas

En este subapartado se muestran los resultados obtenidos en el cálculo de los esqueletos de las siluetas. Para ello se recogen los resultados de probar ambos procedimientos, a las mismas muestras de los apartados anteriores (una muestra de ejemplo para cada pose), en la Tabla 5.

POSES	"HIT OR MISS"	ADELGAZAMIENTO DE ZHANG Y SUEN
POSE 1: Persona agachada en un pasillo y girada hacia el lateral derecho de este.	Figura 72. Pose 1. Esqueleto por "hit or miss".	Figura 73. Pose 1. Esqueleto por adelgazamiento de Zhang y Suen.

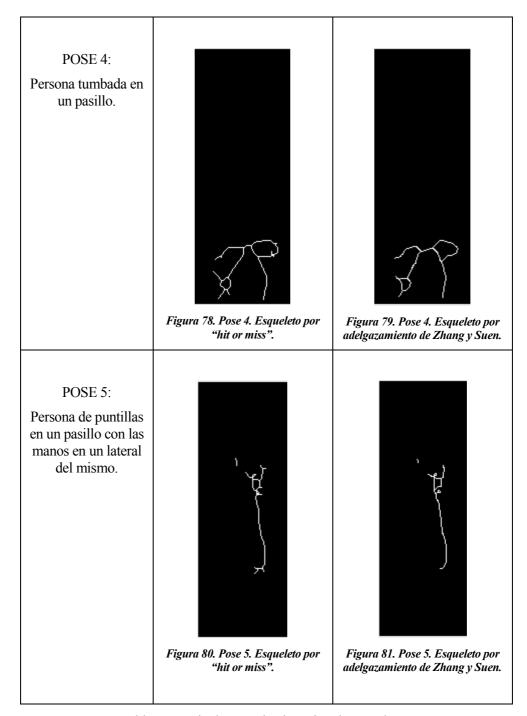


Tabla 5. Resultados para la obtención de esqueletos.

Se puede comprobar que en las poses 1 y 2 hay más diferencia entre usar la operación "hit or miss" o el algoritmo de adelgazamiento de Zhang y Suen, que en el resto. Los esqueletos de las siluetas obtenidos mediante el algoritmo de adelgazamiento de Zhang y Suen consiguen eliminar zonas que son indeseables para el estudio que se realizará en apartados posteriores en comparación con las obtenidas mediante "hit or miss". con esto se quiere decir que mientras más ramas haya en el esqueleto a utilizar en el clasificador que se explicará en el apartado 5, más dificil será encontrar semejanzas entre imágenes y con ello se empeoran los resultados. Lo ideal sería tener siempre el mismo esqueleto para imágenes que tengan la misma postura, pero esto no se puede conseguir debido a que con tan sólo hacer un leve movimiento (conque haya una leve variación en algún píxel), ya no se obtendrían resultados idénticos. Por ello se parte de obtener simplemente un esqueleto que se diferencie entre poses distintas, aún cuando estas poses sufran leves variaciones. Es por ello por lo que de momento se plantea que los esqueletos seleccionados para el desarrollo del clasificador sean los obtenidos mediante adelgazamiento de Zhang y Suen. Como se verá más adelante estos esqueletos por parecerse más a la postura real adoptada por la persona en cuestión, no tienen por qué necesariamente ser los mejores.

4 INVARIANTES DE HU

na vez se tienen los esqueletos, en este apartado se describirá cómo obtener los invariantes de Hu y el por qué son necesarios sus cálculos. Para finalizar se mostrarán los resultados obtenidos. Referencias [9], [10], [11], [12], [20] y [21].

4.1 Descripción y aplicación de los invariantes de Hu

Para poder clasificar imágenes, es necesario poder encontrar las características que las agrupan dentro de una clase específica. Para ello existen muchos métodos de obtención de los rasgos propios de las imágenes que hacen que se puedan clasificar dentro de una u otra clase. Por ejemplo, se podría disponer de una base de datos en la que se encuentren todas las posibles imágenes con todas las posibles degradaciones, conteniendo todas las versiones deformadas, rotadas y escaladas. Este método no sería útil en el caso del clasficador porque basta con que no se disponga de la imagen que se quiere analizar para que deje de funcionar. Además, es muy caro a nivel computacional. En vez de utilizar lo anterior se podría también trabajar con las imágenes normalizadas y así siempre obtendríamos resultados comparativos. Aún así, un mejor método sería poder extraer propiedades cuantificables de las imágenes. Un método muy útil para poder obtener características cuantificables de las imágenes, son los invariantes de Hu. Un invariante permite identificar una imagen, aunque esta se vea sometida a cualquier tipo de deformación. Como se puede observar en la Figura 82, para objetos diferentes, los valores son diferentes.

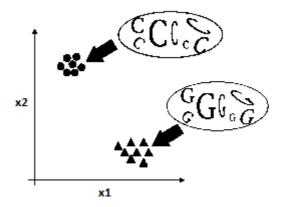


Figura 82. Espacio de invariantes.

Para poder explicar con más detalle el cálculo de los invariantes hay que definir en primer lugar los momentos de una imagen. Los momentos describen la forma en la que los píxeles de un objeto se distribuyen por el plano de la imagen. Los momentos permiten la cuatificación de las características de objetos en la imagen. Estos no deben verse afectados por las transformaciones geométricas como son traslación, rotación o escalado. Además, deben de poder diferenciarse las características de los objetos diferentes. Así se podría reconocer los objetos con más facilidad.

El momento de orden (p+q) se define por la ecuación (1.13):

$$m_{pq} = \sum_{x=1}^{M} \sum_{y=1}^{N} x^{p} \cdot y^{q} \cdot P(x, y)$$
 (1.13)

Donde las dimensiones de la imagen son M y N, el producto $x^p y^q$ es la función base y P(x,y) es el valor del píxel (x,y). El momento de orden cero m_{00} se define como la masa total de la imagen. Si la imagen a la que se le

aplica es binaria, lo que se realiza con la ecuación (1.14) es la cuenta del número de píxeles que componen el objeto.

$$m_{00} = \sum_{x=1}^{M} \sum_{y=1}^{N} P(x, y)$$
 (1.14)

Utilizando los dos momentos de primer orden $(m_{10} \text{ y } m_{01})$ se calcula el centro de masa (COM) de la imagen. Si se aplica a una imagen binarizada y se normalizan los resultados con respecto a m_{00} , se obtienen las coordenadas centrales del objeto (1.15).

$$\overline{x} = \frac{m_{10}}{m_{00}}$$
 $\overline{y} = \frac{m_{01}}{m_{00}}$ (1.15)

A partir del COM se puede obtener el momento centralizado de orden (p+q) de una imagen según la ecuación (1.16):

$$\mu_{pq} = \sum_{x=1}^{M} \sum_{y=1}^{N} (x - \overline{x})^{p} (y - \overline{y})^{q} P(x, y)$$
 (1.16)

Este momento es invariable a la posición del objeto en la imagen. Si se utiliza el momento centralizado, se puede calcular dividiendo por μ_{00} , el momento central normalizado de orden (p+q). El momento central normalizado se muestra en la ecuación (1.17) y es invariable ante cambios de escala.

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\gamma}}$$
, donde $\gamma = \frac{p+q}{2} + 1$ para $\forall (p+q) \ge 2$ (1.17)

A partir de los momentos centrales normalizados se derivan 7 momentos invariables a traslaciones, rotaciones y cambios de escala. Además, los 7 primeros momentos centralizados normalizados (η_{11} , η_{20} , η_{02} , η_{21} , η_{12} , η_{30} , η_{03}) posibilitan el reconocimiento de caracteres basado en propiedades de simetría. El reconocimiento de la simetría se lleva a cabo analizando el signo de los momentos centralizados normalizados, y la magnitud de estos nos dan descripciones de cantidad (tamaño y densidad). Las formas que son simétricas a la vez sobre el eje x y sobre el y hacen que η_{11} sea 0. Para formas simétricas sobre el eje y se da que η_{12} y η_{30} son 0. Para formas simétricas sobre el eje x se da que η_{03} es 0 y que η_{12} es positivo. Con esto se llega al planteamiento siguiente (1.18) para formas simétricas sobre el eje x:

$$\eta_{pq} = 0 \quad \forall p=0,2,4... ; q=1,3,5...$$
(1.18)

Para formas no simétricas sobre el eje x se obtiene (1.19) y (1.20):

$$\eta_{pq} < 0 \quad \forall p=0,2,4... ; q=1,3,5...$$
(1.19)

$$\eta_{p0} > 0, \quad \eta_{0p} > 0 \quad \forall p=0,2,4... \quad P(x,y) > 0$$
(1.20)

En la Figura 83 se muestra simetría sobre el eje y. En la Figura 84 se muestra simetría sobre el eje x. En la Tabla 6 se aprecia las cacterísticas que indican la simetría.

Figura 83. Simetría sobre el eje y.

Figura 84. Simetría sobre el eje x.

Carácter	η_{11}	η ₂₀	η_{02}	η_{21}	η_{12}	η_{30}	η_{03}
M	0	+	+	-	0	0	-
С	0	+	+	0	+	+	0

Tabla 6. Características de las simetrías.

Los 7 momentos invariables derivados de los momentos centrales normalizados son denominados invariantes de Hu. Las ecuaciones que permiten su cálculo son las siguientes (1.21), (1.22), (1.23), (1.24), (1.25) y (1.26):

$$I_{1} = \eta_{20} + \eta_{02}$$

$$I_{2} = (\eta_{20} - \eta_{02})^{2} + 4\eta_{11}^{2}$$

$$I_{3} = (\eta_{30} - 3\eta_{12})^{2} + (3\eta_{21} - \eta_{03})^{2}$$

$$I_{4} = (\eta_{30} + \eta_{12})^{2} + (\eta_{21} + \eta_{03})^{2}$$

$$I_{5} = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2}] + (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}]$$

$$(1.25)$$

$$I_{6} = (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2} + 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03})]$$

$$(1.26)$$

Los invariantes de Hu recogen valores similares para imágenes similares. Es por ello que es de gran utilidad su uso a la hora de querer clasificar e identificar distintas poses. Una vez conocido cómo calcular los invariantes de Hu, se procede a la evaluación de los mismos en las imágenes. Para ello se han calculado los invariantes a cada una de las 120 muestras de cada pose disponibles en la base de datos creada. En la Tabla 7 se han recogido los valores medios de los invariantes calculados para las 120 muestras de cada una de las poses. En ella, aunque se recojan los valores medios no se aprecian grandes diferencias cuantitativas salvo en la pose 5, que tiene valores mucho más altos por ser una pose en la que la persona se haya de pie al contrario que en el resto de las poses. Aún habiendo analizado esto, el cálculo de todos los invariantes se puede consultar en el "Anexo A", donde se puede apreciar que se obtienen resultados parecidos para los mismos invariantes de las mismas poses.

POSE	Media I1	Media I2	Media I3	Media I4	Media I5	Media I6	Media I7
1	2.8007	5.4161	3.6665	2.1186	23.7709	5.0649	1.0715
2	2.1019	3.1238	1.5601	0.7242	2.1286	0.9653	-0.1465
3	2.4455	2.1371	1.0778	1.6703	0.8173	1.6471	1.4324
4	2.9633	1.2589	1.5585	1.0026	-1.2222	-0.2580	-0.4167
5	7.7794	58.5765	42.1018	30.9601	1553.8	220.8567	30.7824

Tabla 7. Valores medios de los invariantes de Hu calculados para 120 muestras de cada una de las poses.

Para ver los resultados recogidos en el estudio de forma más clara y apreciar mejor la diferencia entre los valores obtenidos por las distintas poses, se grafican los distintos invariantes frente a los demás, de dos en dos (en un plano para cada dos invariantes). En el "Anexo B" se muestran los resultados de graficar los invariantes (menos el invariante 1 frente al invariante 2 ya que se muestra a continuación). Al graficar el invariante 1 frente al invariante 2 (Figura 85) y compararlo con el resto de las gráficas obtenidas, se aprecia que es la mejor gráfica a la hora de separar las poses. En ella se obtienen zonas más diferenciadas que permitirán al clasificador obtener mejores resultados, mientras que en el resto de las gráficas los resultados no son buenos y no se utilizarán.

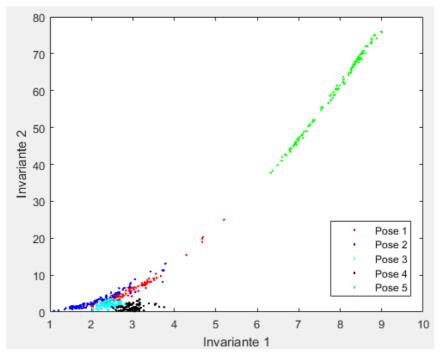


Figura 85. Invariantes 1 y 2.

Una vez realizado el análisis de todos los invariantes y habiendo encontrado una buena gráfica, se procederá en el apartado siguiente al desarrollo del clasificador de posturas humanas. Además, como se verá más adelante aplicando otros métodos se podría llegar incluso a mejores resultados.

5 CLASIFICADOR DE POSTURAS CON RNA

abiendo calculado en el apartado anterior los distintos invariantes de Hu para cada una de las 5 poses que se tienen en cuenta en este documento, se expondrá en este apartado cómo desarrollar un clasificador de posturas humanas en un pasillo. En primer lugar, se explicará el funcionamiento de las redes neuronales artificiales (RNA). En segundo lugar, se analizará la aplicación dada junto con los resultados obtenidos. Por último, se expondrán mejoras que permitirán obtener resultados más satisfactorios siguiendo un camino de actuación distinto. Referencias [6], [7], [8], [16], [17], [18] y [19].

5.1 Redes Neuronales Artificiales (RNA)

En el año 1888, Santiago Ramón y Cajal descubrió cómo se organizaba la estructura neuronal del sistema nervioso, situándo a las neuronas como sus elementos funcionales. Exponía que las neuronas eran entidades discretas que se comunicaban entre sí de forma paralela, que poseían gran conectividad y que juntas presentaban un comportamiento complejo. En la Figura 86 se muestra un dibujo de Santiago Ramón y Cajal en el que representan las neuronas del cerebelo de una paloma.

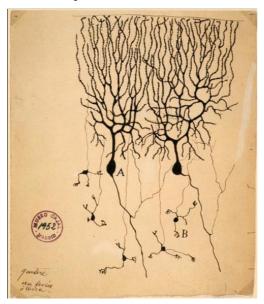


Figura 86. Dibujo de Santiago Ramón y Cajal. Neuronas del cerebelo de una paloma. Imagen tomada de https://www.pinterest.es/pin/194851121357163571/.

Las neuronas se componen de un canal de entrada (dendritas), un procesador (soma) y un canal de salida (axón). Estas neuronas se unen formando redes más complejas. Además, durante la transmisión los impulsos se ven modificados por la conexión en la que viajan y durante el aprendizaje estas conexiones se ven reforzadas o atenuadas. Siguiendo esta estructura, en el año 1986, Rumelhart y McClelland en su modelo definen la neurona artificial como un dispositivo que a partir de ciertas entradas (x) genera una única salida (y) (Figura 87), quedando de la forma $\hat{y} = RN(x)$.

Figura 87. Modelo básico de RNA como caja negra.

Existen muchos tipos de RNA, pero el que se pondrá en práctica en el presente trabajo es el tipo perceptrón

(Figura 88) por ser el más utilizado. Este tipo es una red acíclica de nodos, organizada en capas y densamente conectada. El modelo perceptrón se representa como un sumador lineal que se encarga de sumar los estímulos externos multiplicado por una ganancia en peso W_i que representa dicho factor que hace que se refuercen o atenúen las conexiones. Seguidamente se aplica la llamada función de activación que permite determinar la

actividad de salida de la neurona: $y = f(\sum_{i=1}^{n} w_i x_i)$. Este modelo se compone de varias capas y posee distintos

nodos por capa. En una misma capa, al igual que las neuronas naturales, los cálculos se realizan en paralelo (Figura 89). Además, en esta última figura, los nodos 1, 2 y 3 se encuentran en lo que se denomina capa oculta. Esta capa es simplemente otra capa más que no suministra ni recibe información directamente al/del medio. Otra cosa a tener en cuenta es que cada nodo de cualquier capa tiene como entrada todas las salidas de todos los nodos de la capa anterior. En el caso de los nodos de la primera capa, tienen como entradas las entradas externas hacia la red.

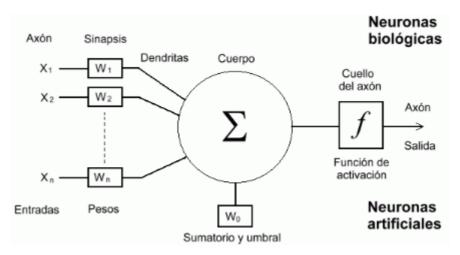


Figura 88. Modelo del Perceptrón. Comparativa entre neuronas biológicas y neuronas artificiales. Imagen tomada de [6]

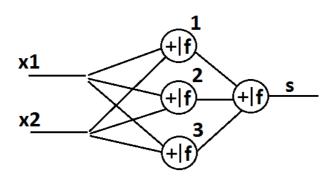


Figura 89. Ejemplo de RNA.

Cada nodo puede tener su propia función de activación, siendo lo normal usar la misma dentro de cada capa. Las funciones de activación pueden ser variadas, aunque existen algunas de uso general como son la función

lineal
$$(f(s) = s)$$
, la función logística $(f(s) = \frac{1}{1 + e^{-s}})$ y la tangente hiperbólica sigmoide (

$$f(s) = \frac{2}{1 + e^{-2s}} - 1$$
). En el perceptrón multicapa las funciones de activación deben cumplir que $\lim_{s \to +\infty} \neq \lim_{s \to -\infty}$,

siendo acotada cuando $s \to \infty$ (esto último a excepción de la función lineal). Normalmente se añade una entrada extra conectada a 1 (Figura 90). Los pesos que afectan a dicha entrada extra se denominan de tendencia o desplazamiento (representada por la letra b).

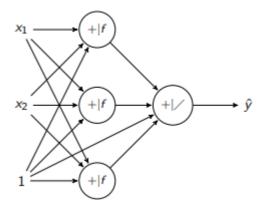


Figura 90. Ejemplo de RNA con entrada extra conectada a 1.

La función de red se obtiene combinando las contribuciones de cada nodo a_k de esta forma: $RN(x) = \sum_k W_k^s a_k$.Si se toma como ejemplo la Figura 90, se pueden escribir las ecuaciones (1.27) y (1.28):

$$\begin{cases}
s^{1} = x_{1}w_{1}^{1} + x_{2}w_{2}^{1} + 1b; & a_{1} = f(s^{1}) \\
s^{2} = x_{1}w_{1}^{2} + x_{2}w_{2}^{2} + 1b; & a_{2} = f(s^{2}) \\
s^{3} = x_{1}w_{1}^{3} + x_{2}w_{2}^{3} + 1b; & a_{3} = f(s^{3})
\end{cases}$$
(1.27)

$$RN\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = f(a_1 w_1^s + a_2 w_2^s + a_3 w_3^s)$$
(1.28)

La RNA puede obtener su contenido mediante aprendizaje. La red se irá entrenando hasta conseguir el comportamiento deseado. Pero ¿cómo se entrenan las RNA? Pues bien, el entrenamiento es un proceso iterativo, en el cual se van modificando los parámetros (pesos de conexión) de la red, mediante el análisis previo de cada uno de los patrones de entrada. Para entrenar a una RNA hay que mostrarle las respuestas a ciertos casos. Los parámetros se van reajustando en cada iteración en función al cálculo del error como se muestra en (1.29), donde 'y' es la salida correcta, ' \hat{y} ' és la salida de la red, y 'e' es el error cometido:

$$error = y - \hat{y} \Rightarrow \begin{cases} W_1^1 \leftarrow W_1^1 + \Delta W_1^1 \\ W_2^1 \leftarrow W_2^1 + \Delta W_2^1 \\ \dots \\ W_n^1 \leftarrow W_n^1 + \Delta W_n^1 \end{cases}$$

$$(1.29)$$

Para entrenar a la red se suele utilizar el error cuadrático medio ($ECM = \sqrt{\frac{1}{N} \sum_{i} (y_i - \hat{y}_i)^2}$). Los pesos se calculan iterativamente según (1.30):

 $P^* = \arg min_p ECM$ (CE, P); siendo CE el conjunto entrenado (1.30)

Partiendo de un valor aleatorio P₀ se modifican los pesos buscando el error mínimo. Cuando se alcanza un valor máximo prefijado el número de iteraciones o cuando se alcance el error objetivo, el proceso se detiene. También cabe la posibilidad de finalización temprana del entrenamiento por haber encontrado un punto de error mínimo. Hay que tener en cuenta que a lo largo del proceso puede haber problemas con los mínimos locales. Los incrementos de P están asociados al gradiente del error.

El proceso que llevan asociadas las muestras de ejemplo dadas a la red para que esta se forme se muestra en el esquema de la Figura 91. La población total se divide en datos muestreados y por otro lado estarían los datos futuros que serán los datos a clasificar. Los datos muestreados se dividen en tres conjuntos: un primer conjunto utilizado para el entrenamiento (CE, como ya se mencionó); un segundo conjunto utilizado para realizar pruebas sin darle las respuestas correctas (CP); y un tercer conjunto que se utiliza para validar los resultados obtenidos (CV). El conjunto de validación además se utiliza para comprobar la generalización de la red, ya que existe el peligro de que la RNA aproxime bien los datos conocidos, pero no los futuros.

Figura 91. Reparto de la población de conjuntos para la fase de entrenamiento de la RNA.

Para concluir este subapartado cabe decir que las RNA producen interpolación de los datos conocidos, pero pueden llegar a interpolar mal y no pueden extrapolar. En el siguiente subapartado se verá cómo se ha aplicado la RNA para el clasificador de porturas humanas. Además, se verán ejemplos del error cometido a lo largo del entrenamiento. Todo ello explicado sobre la red creada en MATLAB.

5.2 Aplicación de la RNA y resultados obtenidos

La creación de la RNA se ha desarrollado sobre MATLAB gracias a la Toolbox 'Neural Network Toolbox' que Mathworks ofrece. Se han desarrollado múltiples pruebas para encontrar la red con mayor porcentaje de acierto. Para ello se ha modificado el número de entradas, los invariantes a utilizar, el número de nodos de las capas ocultas y el número de capas ocultas. Todos los resultados se han ido recogiendo para evaluar las redes obtenidas y comprobar cuál es la mejor.

Aplicando el procedimiento explicado en apartados anteriores se obtienen los 7 invariantes de Hu para cada muestra de cada una de las poses. Estos invariantes sirven como vector de entradas a la red neuronal. Utilizando estas entradas se comprobó con cuántas capas ocultas funcionaría mejor la red para la aplicación concreta del clasificador. Se comprobró que redes con 1 capa oculta o redes con más de 2 capas ocultas no proporcionaban los mismos resultados que las redes que sólo tenían 2 capas. Esto indica que no por tener más capas ocultas se obtiene una red mejor.

A continuación, se realizaron pruebas con el número de nodos de las capas ocultas. Se obtuvo como resultado que lo mejor era utilizar en las dos capas 4 nodos en cada una. No obstante, en la Tabla 9 se recogen los datos de lo que ocurre cuando hay 3 nodos para la primera capa y 4 nodos para la segunda capa, para mostrar un ejemplo con otros resultados y destacar que se obtiene un porcentaje de acierto más bajo que en el caso anterior. Así una vez establecido el número de capas y el número de nodos se procedió a la búsqueda de las mejores entradas. Hay que ajustar tanto el número de entradas cómo los invariantes a utilizar. Por ejemplo, no es lo mismo tener 2 entradas y utilizar los invariantes 1 y 2, que utilizar los invariantes 4 y 5.

En la Tabla 8 se puede observar como los mejores resultados se obtuvieron cuando se utilizaron los 7 invariantes

como entradas, utilizando 2 capas ocultas con 4 nodos en cada una, dando un 94,1% de acierto. Se ha ido remarcando en la tabla los mejores valores obtenidos para cada número de entradas. En función de los remarcados se ha ido buscando incrementar el número de entradas, siguiendo este camino: $1,2 \rightarrow 1,2,7 \rightarrow 1,2,7,3 \rightarrow 1,2,7,3,4 \rightarrow 1,2,7,3,4,6 \rightarrow 1,2,7,3,4,6,5$ y descartando el resto de las opciones por tener peores resultados.

NÚMERO DE ENTRADAS	ENTRADAS (INVARIANTES DE HU)	PORCENTAJE DE ACIERTO MEDIO
2	1,2	89,55
2	1,3	76,43333333
2	1,4	71,73333333
2	1,5	75,41666667
2	1,6	75,45
2	1,7	71,25
2	2,3	68,31666667
2	2,4	73,16666667
2	2,5	64,38333333
2	2,6	74,91666667
2	2,7	65,28333333
2	3,4	60,56666667
2	3,5	52,01666667
2	3,6	66,18333333
2	3,7	52,65
2	4,5	66,78333333
2	4,6	74,26666667
2	4,7	54,41666667
2	5,6	65,4
2	5,7	58,31666667
2	6,7	66,65
3	1,2,3	91,38333333
3	1,2,4	90,53333333
3	1,2,5	89,4
3	1,2,6	90,2
3	1,2,7	92,8
4	1,2,7,3	93,26666667
4	1,2,7,4	92,63333333
4	1,2,7,5	92,9
4	1,2,7,6	92,35
5	1,2,7,3,4	93,98333333
5	1,2,7,3,5	93,21666667
5	1,2,7,3,6	93,73333333
6	1,2,7,3,4,5	93,38333333
6	1,2,7,3,4,6	93,9666667
7	1,2,7,3,4,6,5	94,1

Tabla 8. Porcentajes de acierto medio para una red con 2 capas ocultas y 4 nodos en cada capa.

Se puede observar que, en cada paso, al añadir una entrada más, los porcentajes de acierto van aumentando. Cuando se tienen 6 entradas disminuye algo con respecto a cuando tiene 5 entradas. Aún así con 7 entradas el resultado es mejor.

Si se observa la Tabla 9, se puede comprobar que el camino tomado es diferente: $1,2 \rightarrow 1,2,7 \rightarrow 1,2,7,3 \rightarrow 1,2,7,3,5 \rightarrow 1,2,7,3,5,4 \rightarrow 1,2,7,3,5,4,6$. Además, el porcentaje de acierto como se ha mencionado es menor que en el caso anterior alcanzando un 93,31666667% de acierto.

NÚMERO DE ENTRADAS	ENTRADAS (INVARIANTES DE HU)	PORCENTAJE DE ACIERTO MEDIO
2	1,2	89,2666667
2	1,3	75,41666667
2	1,4	72,01666667
2	1,5	74,48333333
2	1,6	75,58333333
2	1,7	71,63333333
2	2,3	68,08333333
2	2,4	73,26666667
2	2,5	64,21666667
2	2,6	73,03333333
2	2,7	65,23333333
2	3,4	59,83333333
2	3,5	53,61666667
2	3,6	66,21666667
2	3,7	51,81666667
2	4,5	65,88333333
2	4,6	74,01666667
2	4,7	53,3333333
2	5,6	65,8
2	5,7	57,2
2	6,7	65,23333333
3	1,2,3	91,38333333
3	1,2,4	90,28333333
3	1,2,5	89,38333333
3	1,2,6	89,88333333
3	1,2,7	92,01666667
4	1,2,7,3	92,9
4	1,2,7,4	92,3666667
4	1,2,7,5	92,23333333
4	1,2,7,6	92,46666667
5	1,2,7,3,4	92,13333333
5	1,2,7,3,5	93,11666667
5	1,2,7,3,6	92,68333333
6	1,2,7,3,5,4	93,06666667
6	1,2,7,3,5,6	92,98333333
7	1,2,7,3,5,4,6	93,31666667

Tabla 9. Porcentajes de acierto medio para una red con 2 capas ocultas y con 3 nodos en la primera y 4 nodos en la segunda.

Los porcentajes de acierto medio que se muestran en las dos tablas anteriores se calcularon a partir de crear 120 redes neuronales artificiales para cada una de sus filas, o lo que es lo mismo para cada vector de entradas introducido. Es necesario calcular la media de un conjunto de muestras de las redes ya que los pesos iniciales se toman de forma aleatoria, y no siempre se obtienen los mismos porcentajes de acierto. Es por ello que a veces con las mismas entradas los resultados obtenidos después de entrenar la red pueden llegar a ser muy malos, del orden del 40% de acierto. Para el cálculo del porcentaje de acierto medio se utilizaron los mejores resultados obtenidos, descartando los resultados con índice de acierto más bajo. Esto se puede hacer ya que se cumple que la red es tan buena como el mejor de los resultados obtenidos, pero no es tan mala como el peor de ellos, bastaría con volver a entrenarla para llegar a los mejores.

En la Figura 92 se muestran las gráficas de los porcentajes de error medio obtenidos según el número de entradas para los dos casos expuestos anteriormente. Como se puede apreciar, se ha cometido menos error en el caso de utilizar 4 nodos en cada una de las 2 capas ocultas, tal y como se mencionó anteriormente.

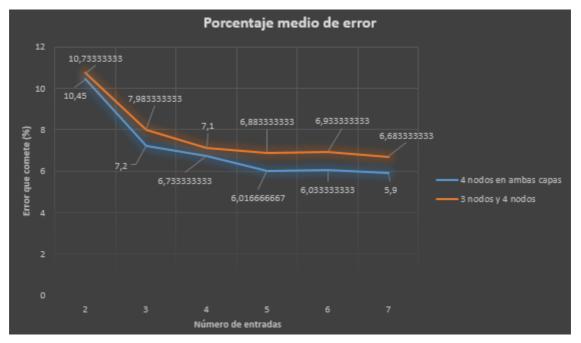


Figura 92. Comparativa de porcentajes de error medio.

Tomando como ejemplo la mejor red obtenida (que **realmente obtuvo un 94,8%** ya que los valores anteriores son valores promedio de las 120 redes neuronales creadas para cada caso), en la Figura 93 se muestra como queda la estructura de la red. Se puede observar como hay 7 entradas, 2 capas ocultas y 5 salidas. Cada una de las capas ocultas con 4 nodos. Las 5 salidas hacen referencia a las 5 clases para la clasificación (5 poses de las que se dispone).

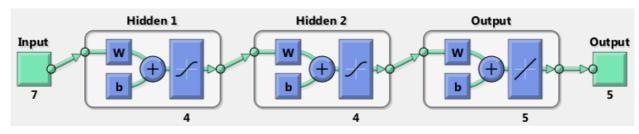


Figura 93. Estructura de red con: 7 entradas (invariantes de Hu), 2 capas ocultas (4 nodos en ambas capas) y 5 salidas (poses).

Cuando a la red se le muestran las salidas de las muestras para el CE, se establece un vector de la forma

```
\begin{pmatrix} -1+1+1+1+1\\ +1-1+1+1+1\\ +1+1-1+1+1\\ +1+1+1-1+1\\ +1+1+1+1-1 \end{pmatrix}, \text{ siendo cada fila una de las poses, e introduciendo en cada columna las 120 muestras de la columna la column
```

cada pose. El -1 indica que la muestra pertenece a una determinada pose. Además, a la red se le indica el porcentaje de muestras a utilizar en cada uno de los tres conjuntos (se utilizó para este caso, un 50% para CE, un 25% para CP y un 25% para CV), y también el número de iteraciones máximo (establecido en 2000 iteraciones).

Ahora se hará incapié en los resultados obtenidos durante el entrenamiento. Para ello se analizarán las trayectorias ECM (P_k, CE) y ECM (P_k, CP). Se tomará como ejemplo una red aleatoria con las mismas entradas que la mejor red obtenida. Más adelante en el apartado 6 se mostrarán los resultados de la mejor red obtenida detalladamente. En este caso la red aleatoria cuyos resultados del entrenamiento se muestran en la Figura 94, tiene un porcentaje de acierto del 92%. Se puede observar en esta figura que ha realizado 50 iteraciones antes de finalizar.

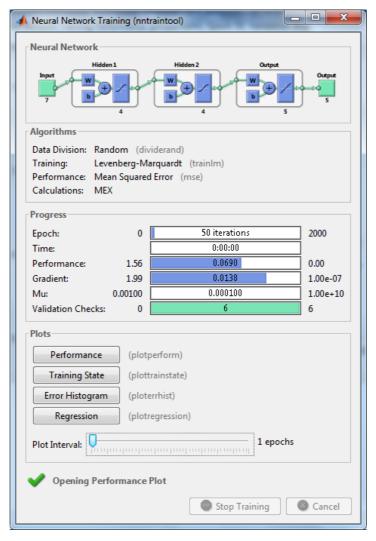


Figura 94. Resultados de un entrenamiento aleatorio de ejemplo.

En la Figura 95 se muestra el error cuadrático medio (ECM) cometido a lo largo de las 50 iteraciones para cada uno de los conjuntos. El ECM a lo largo del entrenamiento va disminuyendo. Cuando EL ECM de la fase de validación empieza a subir se toman 6 pasos más. Si a lo largo de esos 6 pasos seguidos sigue subiendo, el

"validation check" indica que se está llevando a cabo un sobreentrenamiento y que el sistema está actuando peor. El sobreentrenamiento conlleva a que el sistema se comporte peor y no se siga entrenando de igual forma que hasta entonces. Una vez detectado el sobreentrenamiento el sistema retrocede esas 6 iteraciones y se queda con los resultados obtenidos hasta este punto. En la Figura 96 se muestra como va avanzando el chequeo hasta que se encuentra 6 pasos seguidos en los que empeora el sistema. En esta misma figura se pueden apreciar también los valores del gradiente y de mu, que juegan su papel en el cálculo del incremento de P en la modificación de pesos. Estos valores van variando en cada iteración y así ajustando el valor que permite la modificación de los pesos. Por otro lado, en la Figura 97 se muestra el histograma de error cometido en cada una de las fases de entrenamiento.

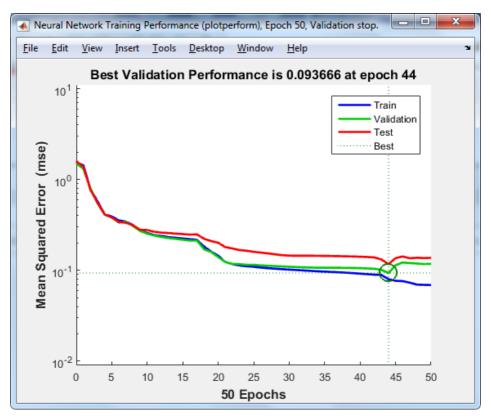


Figura 95. Error cuadrático medio (ECM) cometido a lo largo de las 50 iteraciones para cada uno de los conjuntos.

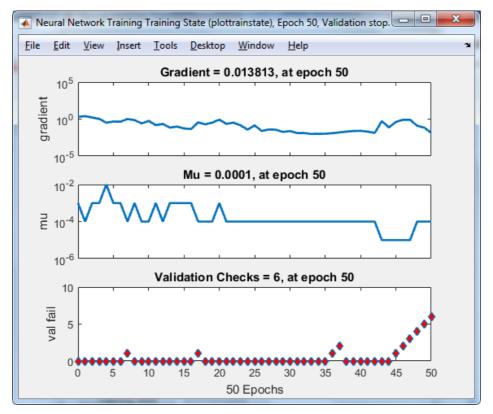


Figura 96. Variación del gradiente. Variación de mu. Comprobación de la validación.

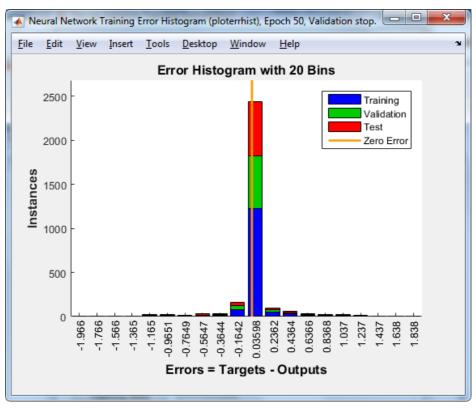


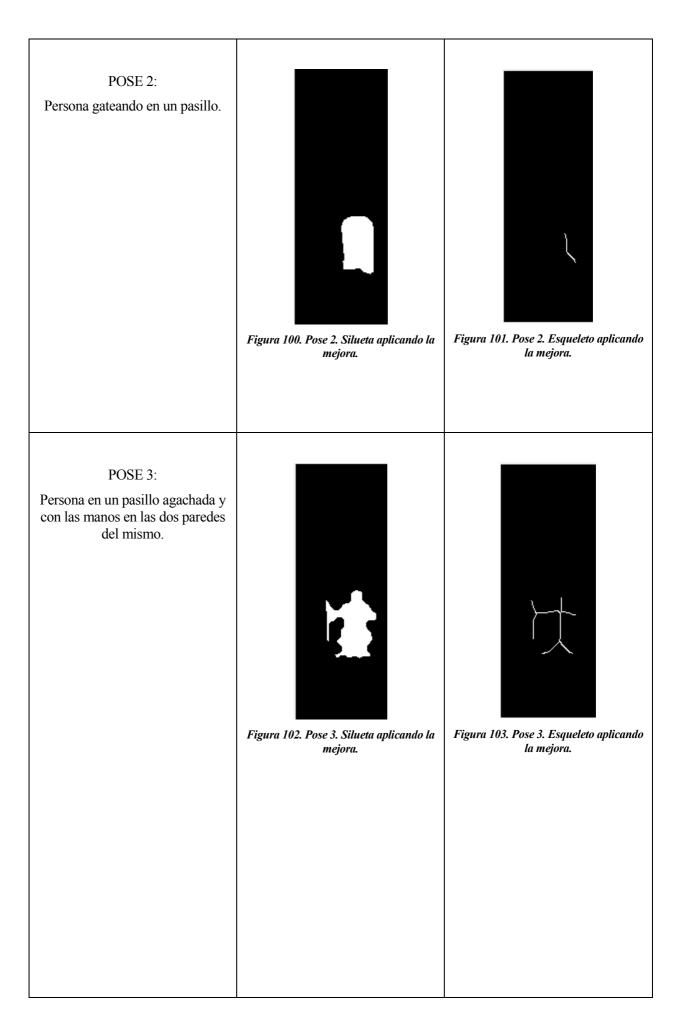
Figura 97. Histograma de error para cada uno de los conjuntos.

Una vez analizado cómo se ha creado el clasificador y los resultados obtenidos se puede probar su funcionamiento. Teniendo en cuenta que la mejor red se obtiene tomando los 7 invariantes de Hu, no se puede mostrar el resultado mediante una gráfica, ya que no se pueden visualizar 7 dimensiones. Aún así se ha pedido que el clasificador devuelva la pose a la que pertenece la imagen introducida y los resultados son los esperados.

Se puede observar mediante pruebas que en las poses 1, 2 y 3, son las que el sistema tiene mayor dificultad para clasificar. Aún así con un porcentaje de acierto medio del 94,1%, el resultado obtenido es bastante aceptable.

6 MEJORA DEL CLASIFICADOR

n este apartado se tratará una mejora estudiada para el sistema clasificador. Se mostrará cómo un pequeño cambio hace que los resultados se mejoren positivamente.


6.1 Desarrollo de la mejora y resultados obtenidos

En el presente trabajo se ha ido explicando paso a paso cómo crear de forma ordenada una red que permite clasificar posturas humanas en un pasillo. Recordando el planteamiento utilizado durante el cálculo de las siluetas se puede mencionar que se utilizó una extracción del fondo, seguida de una binarización con umbral 50 y por último una apertura. Pues bien, si en lugar de utilizar la apertura se utiliza la instrucción 'bwareaopen' de MATLAB y posteriormente un cierre, se consiguen resultados mucho mejores en el clasificador, obteniendo un 97,23% de acierto. La instrucción 'bwareaopen' permite eliminar pequeños elementos espurios de la imagen (regiones con menos de una cierta cantidad de píxeles, establecida a 30), aplicando conectividad-8. El cierre por otro lado es el efecto de realizar una dilatación y posteriormente una erosión a la imagen. La ecuación que define el cierre es la (1.31). En el caso del cierre aplicado, el elemento estructura utilizado ha sido un disco de radio 6 píxeles.

$$X \cdot B \equiv X^B = (X \oplus B)! B \tag{1.31}$$

Las siluetas obtenidas para cada pose se muestran en la Figura 98, Figura 100, Figura 102, Figura 104 y Figura 106de la Tabla 10, y como se puede observar son siluetas con menos detalle que las seleccionadas anteriormente. Una vez obtenidas las siluetas se ha aplicado el algoritmo de adelgazamiento de Zhang y Suen consiguiendo los esqueletos correspondientes (Figura 99, Figura 101, Figura 103, Figura 105 y Figura 107). Como se puede apreciar el esqueleto elimina muchas más ramificaciones en este caso. Con la eliminación de las ramificaciones como ya se dijo, se consigue hacer que haya menos variaciones entre los esqueletos de las mismas poses. Una vez se tienen los esqueletos se calculan los invariantes de Hu. Los datos se encuentran recogidos en la Tabla 11, donde se puede comprobar que los valores en el invariante 1 y 2 para cada pose se alejan más que en la Tabla 7 del primer caso. Observando para este caso la gráfica del invariante 1 frente al 2 (Figura 108), por tener como ya se dijo más separación entre las muestras de las distintas poses, se observa que la separación es algo más clara que en la Figura 85 del primer caso.

POSE	SILUETA	ESQUELETO		
POSE 1: Persona agachada en un pasillo y girada hacia el lateral derecho de este.	Figura 98. Pose 1. Silueta aplicando la mejora.	Figura 99. Pose 1. Esqueleto aplicando la mejora.		

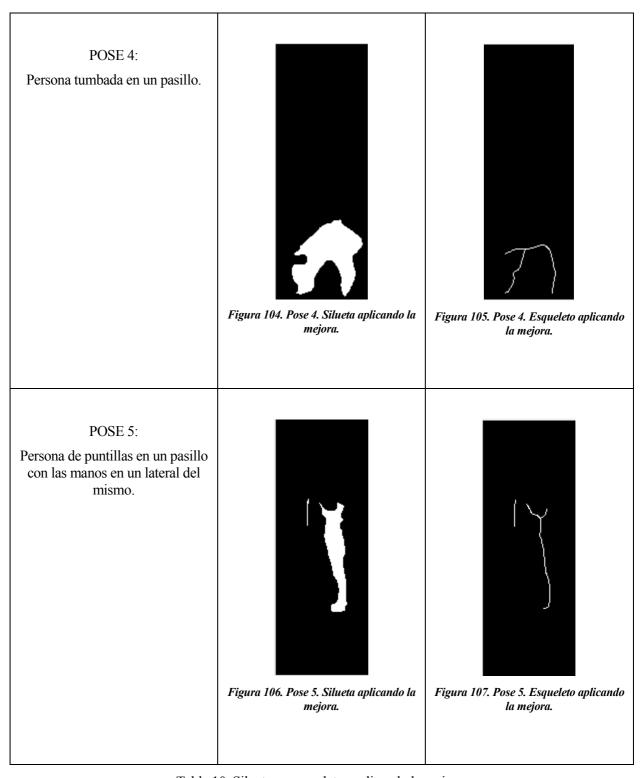


Tabla 10. Siluetas y esqueletos aplicando la mejora.

POSE	Media I1	Media I2	Media I3	Media I4	Media I5	Media I6	Media I7
1	3.5629	9.1968	14.4124	3.6988	53.5743	9.1346	9.7434
2	2.5487	6.3833	4.0459	1.0422	6.2846	1.5829	0.9642
3	2.8237	1.0478	10.0776	0.8543	4.3694	0.4320	3.8774
4	4.2099	1.8580	12.3872	6.4838	-30.9016	2.4124	-52.0338
5	9.0738	78.6060	53.7743	26.0218	1493.1	182.0421	253.6906

Tabla 11. Valores medios de los invariantes de Hu calculados para 120 muestras de cada una de las poses, aplicando la mejora.

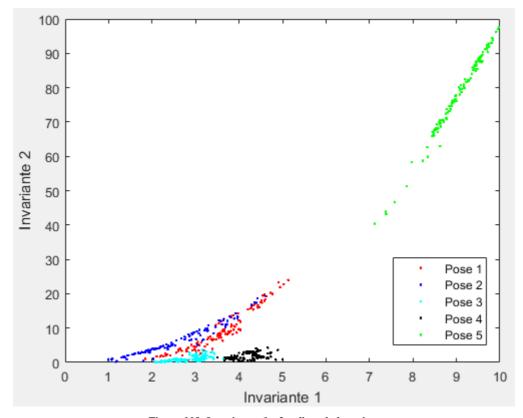


Figura 108. Invariantes 1 y 2 aplicando la mejora.

Una vez analizados los invariantes y comprobando las mejoras, se han creado las redes neuronales para la obtención del mejor clasificador. En este caso también se probó con 4 nodos en cada una de las dos capas ocultas, y con 3 nodos en la primera y 4 nodos en la segunda. Como resultado se obtuvieron las siguientes tablas (Tabla 12, correspondiente a utilizar 4 nodos en ambas capas; Tabla 13 correspondiente a utilizar 3 nodos en la primera y 4 nodos en la segunda):

NÚMERO DE ENTRADAS	ENTRADAS (INVARIANTES DE HU)	PORCENTAJE DE ACIERTO MEDIO
2	1,2	95,8333333
2	1,3	78,2
2	1,4	78,35
2	1,5	78,76666667
2	1,6	76,41666667
2	1,7	76,4
2	2,3	77,76666667
2	2,4	82,8666667
2	2,5	83,1
2	2,6	72,8666667
2	2,7	79,95
2	3,4	69,41666667
2	3,5	70,03333333
2	3,6	54,65
2	3,7	63,15
2	4,5	65,73333333
2	4,6	65,4666667
2	4,7	65,7
2	5,6	65,43333333
2	5,7	63,28333333
2	6,7	66,35
3	1,2,3	96,8
3	1,2,4	95,78333333
3	1,2,5	95,83333333
3	1,2,6	95,6
3	1,2,7	95,7
4	1,2,3,4	97
4	1,2,3,5	96,9666667
4	1,2,3,6	96,63333333
4	1,2,3,7	96,6666667
5	1,2,3,4,5	96,9666667
5	1,2,3,4,6	97,18333333
5	1,2,3,4,7	97,11666667
6	1,2,3,4,6,5	96,9333333
6	1,2,3,4,6,7	96,8666667
7	1,2,3,4,6,5,7	97,01666667

Tabla 12. Porcentajes de acierto medio para una red con 2 capas ocultas y 4 nodos en cada capa, aplicando la mejora.

NÚMERO DE ENTRADAS	ENTRADAS (INVARIANTES DE HU)	PORCENTAJE DE ACIERTO MEDIO
2	1,2	95,83333333
2	1,3	77,2
2	1,4	78,5666667
2	1,5	79,08333333
2	1,6	76,5
2	1,7	76,3333333
2	2,3	78,23333333
2	2,4	83,06666667
2	2,5	83,16666667
2	2,6	72,2
2	2,7	80,2
2	3,4	69,41666667
2	3,5	70,28333333
2	3,6	55,1
2	3,7	62,01666667
2	4,5	65,55
2	4,6	66,13333333
2	4,7	63,9333333
2	5,6	66,53333333
2	5,7	62,13333333
2	6,7	64,8
3	1,2,3	96,51666667
3	1,2,4	95,61666667
3	1,2,5	95,7
3	1,2,6	95,66666667
3	1,2,7	95,65
4	1,2,3,4	97,23333333
4	1,2,3,5	96,88333333
4	1,2,3,6	96,81666667
4	1,2,3,7	96,5666667
5	1,2,3,4,5	97
5	1,2,3,4,6	97,18333333
5	1,2,3,4,7	96,98333333
6	1,2,3,4,6,5	96,81666667
6	1,2,3,4,6,7	96,93333333
7	1,2,3,4,6,7,5	97,11666667

Tabla 13. Porcentajes de acierto medio para una red con 2 capas ocultas y con 3 nodos en la primera y 4 nodos en la segunda, aplicando la mejora.

En la Figura 109 se muestran las gráficas de los porcentajes de error medio obtenidos según el número de entradas para los dos casos. El porcentaje de error menor obtenido es 2.7666666667% teniendo 3 nodos en la primera capa oculta y 4 nodos en la segunda, y utilizando 4 entradas en lugar de las 7 como se hizo en el subapartado anterior.

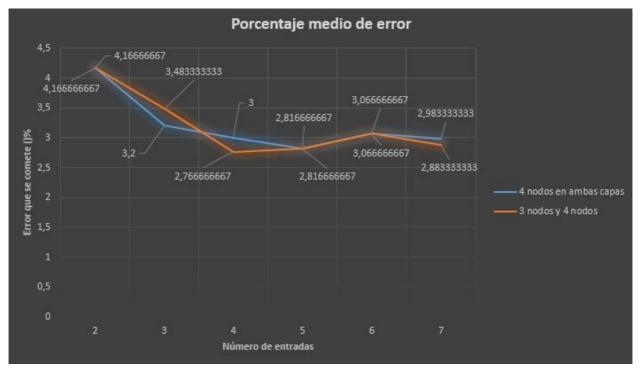


Figura 109. Comparativa de porcentajes de error medio aplicando la mejora.

Tomando como ejemplo la mejor red obtenida (que **realmente obtuvo un 97.5%** ya que los valores anteriores son valores promedio de las 120 redes neuronales creadas para cada caso), en la Figura 110 se muestra como queda la estructura de la red. Se puede observar como hay 4 entradas, 2 capas ocultas y 5 salidas. La primera capa oculta con 3 nodos y la segunda con 4. Las 5 salidas hacen referencia a las 5 clases para la clasificación (5 poses de las que se dispone).

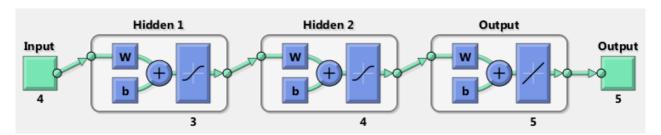


Figura 110. Estructura de red con: 4 entradas (invariantes de Hu), 2 capas ocultas (4 nodos en ambas capas) y 5 salidas (poses).

El mejor clasificador obtenido en el presente trabajo es el de este apartado. Es interesante ver cómo con peores siluetas al final se llega a un mayor índice de acierto gracias a la eliminación de ramas en la formación del esqueleto. Al final se ha conseguido una mejora del 2.7% modificando el método de obtención de las siluetas. Para una primera aproximación de las siluetas el resultado es bastante aceptable.

En la Figura 111 se muestra un resumen del entrenamiento realizado. Estas gráficas ya se explicaron en el subapartado 5.2, pero en este caso se mostrarán los resultados obtenidos con el mejor clasificador (97,5% de acierto). Para su entrenamiento han sido necesarias 75 iteraciones. Para entrar en más detalle se muestran a continuación una serie de gráficas de resultados: en la gráfica de la Figura 112 se muestra el que en la fase de entrenamiento el ECM es menor que en las otras fases, en la fase de prueba el ECM es mayor que en las otras fases, y en la fase de validación el ECM va disminuyendo hasta que el "validation check" detecta sobreentrenamiento. Para ver como el "validation check" va comportándose se muestra la Figura 113. Se parecia como en esta última figura, en la tercera gráfica el "validation check" detecta 6 iteraciones seguidas en las que el sistema empeora. Las otras dos gráficas de esta última figura indican las variaciones del gradiente y de mu a lo largo de las iteraciones. Para concluir se muestra el histograma de error con cada una de las fases en la Figura 114. En este caso el histograma se encuentra repartido en mayor parte en 2 columnas.



Figura 111. Resultados del entrenamiento de la mejor red obtenida.

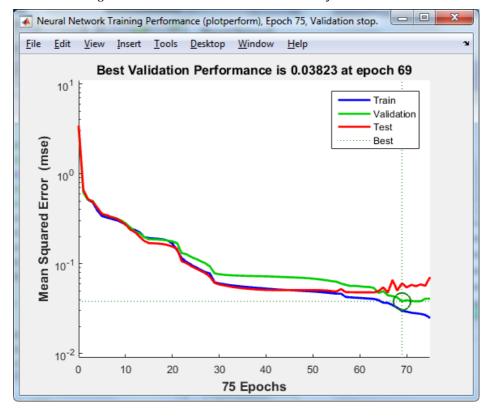


Figura 112. Error cuadrático medio (ECM) cometido a lo largo de las 50 iteraciones para cada uno de los conjuntos. Mejor red.

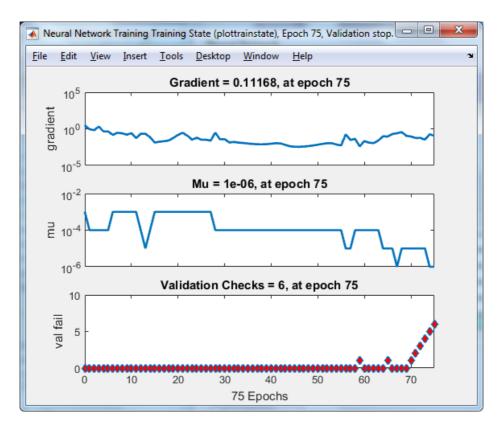


Figura 113. Variación del gradiente. Variación de mu. Comprobación de la validación. Mejor red.

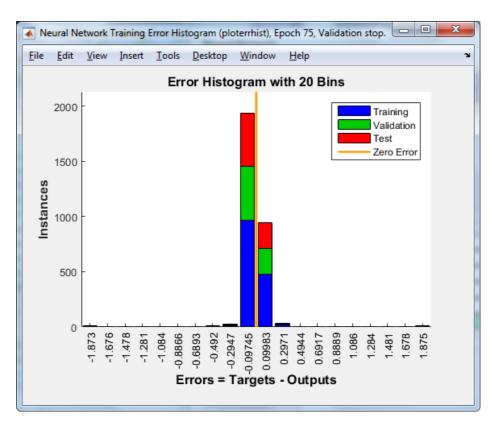


Figura 114. Histograma de error para cada uno de los conjuntos. Mejor red.

Para comprobar los resultados obtenidos mediante el método inicial y el método mejorado, se ha realizado la prueba de ambos clasificadores aplicados a las mismas imágenes. Las imágenes a utilizar han sido 80 muestras

de cada una de las poses, distintas de las que se tomaron para formar las redes neuronales correspondientes. Se han recogido los resultados en las siguientes tablas: Tabla 14 correspondiente al clasificador con un 94.8% de acierto y Tabla 15 correspondiente al clasificador con un 97.5% de acierto.

RESULTADOS DE CADA POSE POSE A COMPROBAR	POSE 1	POSE 2	POSE 3	POSE 4	POSE 5	PORCENTAJE DE ACIERTO PARA CADA POSE
POSE 1	52	23	5	0	0	65%
POSE 2	5	74	1	0	0	92.5%
POSE 3	17	14	46	1	0	57.5%
POSE 4	0	0	0	80	0	100%
POSE 5	4	0	0	0	76	95%
PORCENTAJE TOTAL DE ACIERTO				82%		

Tabla 14. Porcentajes de aciertos al comprobar el clasificador con un 94,8% de acierto.

RESULTADOS DE CADA POSE POSE A COMPROBAR	POSE 1	POSE 2	POSE 3	POSE 4	POSE 5	PORCENTAJE DE ACIERTO PARA CADA POSE
POSE 1	69	10	0	0	1	86.25%
POSE 2	0	80	0	0	0	100%
POSE 3	16	2	61	1	0	76.25%
POSE 4	0	0	0	80	0	100%
POSE 5	3	0	0	0	77	96.25%
PORCENTAJE TOTAL DE ACIERTO			9	01.75%		

Tabla 15. Porcentajes de aciertos al comprobar el clasificador con un 97,5% de acierto.

Como se puede observar se obtienen mejores resultados cuando se utiliza el mejor clasificador. No obstante, el valor obtenido en la recogida de los porcentajes de acierto son sólo los correspondientes a unas 80 muestras al azar, y es por ello que no son exactamente los valores que se pretendían, ya que depende de las muestras tomadas.

7 CONCLUSIONES Y AMPLIACIONES FUTURAS

n este apartado se llevará a cabo un análisis del trabajo realizado para indicar cómo se han ido abordando los objetivos propuestos y las conclusiones que se desprenden de ello. Se citarán también posibles ampliaciones a realizar sobre el trabajo para intentar conseguir mejores resultados en el clasificador.

7.1 Conclusiones

En cada apartado se han ido exponiendo los resultados tras aplicar diversas técnicas de procesamiento sobre las imágenes de la base de datos creada. Los objetivos se han cumplido satisfactoriamente, obteniendo un buen clasificador capaz de diferenciar entre distintas poses humanas en un pasillo, partiendo de la motivación de realizar clasificaciones de posturas en un supermercado. A continuación, se expondrán las conclusiones obtenidas al realizar cada uno de los pasos:

- Estudio de la obtención de siluetas aplicando diversas técnicas como han sido la binarización, la apertura, el cierre o la extracción del fondo a las imágenes. En este paso se obtuvo una buena aproximación sobre la que trabajar y realizar pruebas.
- Búsqueda de métodos de adelgazamiento y estudio de la aplicación en las siluetas ya obtenidas. Se consiguieron buenos resultados con ramificaciones espurias. Eliminando ramificaciones se consiguieron mejores resultados.
- Cálculo de los invariantes de Hu para utilizarlos como entradas en las redes neuronales artificiales. Así se ha buscado el mejor vector de entradas para conseguir el clasificador con mayor índice de acierto. Se han estudiado los resultados destacando los mejores.
- Creación de la mejor RNA y mejora de la misma mediante otras técnicas. Se han comparado los resultados y se ha obtenido una mejora del 2,7% a un sistema que de por sí ya tenía un índice de acierto bastante elevado.
- Por último, a nivel personal he tenido la oportunidad de utilizar por primera vez las RNA para realizar clasificadores. He podido ampliar mi conocimiento en el procesamiento de imágenes y llevar a cabo una aplicación con ellos. He sido capaz de encontrar mejoras a un sistema que en principio ya tenía buenas prestaciones.

7.2 Ampliaciones futuras

Posibles ampliaciones a realizar sobre el presente trabajo pueden ser:

- Mejorar las técnicas de obtención de siluetas, consiguiendo realzar más los detalles de contorno y aplicar estas técnicas en la mejora del clasificador.
- Utilizar técnicas más avanzadas como PCA para la separación de las zonas obtenidas por los invariantes de Hu.
- Integración del clasificador en cámaras de supermercados para detectar posibles robos o comportamientos inadecuados en sus pasillos.

8 ANEXOS

ANEXO A: Tabla de valores de los invariantes

Tablas de valores recogidos de los invariantes para cada una de las poses en el caso del apartado 4.

Invariantes recogidos para la pose 1: Tabla 16.

Invariantes recogidos para la pose 2: Tabla 17.

Invariantes recogidos para la pose 3: Tabla 18.

Invariantes recogidos para la pose 4: Tabla 19.

Invariantes recogidos para la pose 5: Tabla 20.

IMAGEN	I1	12	13	I 4	15	16	I 7
Imagen 1	2,74076779	4,73342894	1,14992115	0,05611778	-0,02604039	-0,01448486	0,00247829
Imagen 2	2,60665295	4,32685898	0,24014405	0,10593052	0,0064938	0,20637219	-0,01551718
Imagen 3	2,58966942	4,27151941	0,0475952	0,05572654	-0,00167752	-0,02871412	-0,00200553
Imagen 4	3,21768524	7,78863379	1,30799471	2,07454835	3,68900937	5,73437179	0,39423054
Imagen 5	2,88165979	6,57199872	0,22803214	0,1432505	0,02118414	0,24280549	-0,01689671
Imagen 6	2,83274778	5,86513683	0,09994201	0,00495442	0,00018835	0,01050789	6,00E-05
Imagen 7	3,28512111	7,47049157	0,55897047	0,06581718	0,00075987	0,16801435	0,01260317
Imagen 8	2,66192623	3,30390649	5,43028069	5,49576045	29,0119138	9,92153435	7,73068213
Imagen 9	2,28938339	2,37477359	2,06411434	1,6040566	2,81573254	2,35775395	0,93520497
Imagen 10	2,14329622	2,58622542	0,22762669	0,00044709	0,00042731	-0,00012787	-1,24E-07
Imagen 11	2,27297769	3,00993412	0,18563558	0,01204085	0,00019709	0,01906246	0,00051187
Imagen 12	1,62099492	1,05736047	0,25407476	0,01175166	0,00012105	0,00662219	0,00021826
Imagen 13	2,52571344	3,14491617	1,40583469	1,21786067	1,34203069	2,13272237	0,88875161
Imagen 14	1,71516068	1,13560272	1,51229572	0,48799067	0,42187344	0,43055373	0,11550889
Imagen 15	2,03839643	1,53073027	2,71146225	0,60037437	0,67153717	0,1232418	0,06888116
Imagen 16	2,62572088	3,21315971	4,89877889	2,30009927	8,25234528	3,30415898	1,0748416
Imagen 17	3,30809689	7,31368632	0,67024734	0,21559594	-0,04557725	0,27149058	-0,05281674
Imagen 18	2,91807726	5,49430599	1,14132713	0,01219192	-0,02339118	-0,01663293	0,00020056
Imagen 19	3,0254877	6,6633043	1,01253632	0,21665001	0,10054607	0,32698318	0,01350869

Imagen 20	3,67169929	9,71830082	1,61523395	0,90110936	0,79434631	2,79547134	0,79259802
Imagen 21	3,13064305	5,71644043	0,45456278	1,54584502	0,13567789	3,4310934	1,45859605
Imagen 22	3,50788955	9,05174251	1,33795616	3,22487332	7,16672518	9,70121268	0,65792357
Imagen 23	3,31180145	6,46568912	0,30075889	0,58071675	-0,02189936	0,21246403	-0,08673397
Imagen 24	3,57029773	9,24058217	3,2124154	1,00269861	1,07531051	-0,1947618	0,36477532
Imagen 25	3,42171444	8,09408403	1,71716159	0,53577905	0,30090986	-0,24947843	0,12879739
Imagen 26	3,00336372	6,48455831	1,97568767	0,95451833	1,09664877	1,73648851	-0,77266466
Imagen 27	3,02453894	6,04287439	0,26540767	1,66885887	1,18875554	3,66829529	-0,60047663
Imagen 28	3,00135802	6,54335871	3,17858558	2,72565041	9,34461085	6,32370577	-1,05290476
Imagen 29	2,34170417	2,50256245	3,13789473	3,25950454	8,99383098	5,06279659	5,4162671
Imagen 30	2,13596948	1,74561643	5,13561612	3,17203674	13,1653561	3,46018371	0,91758406
Imagen 31	2,6846875	3,45290801	3,78130559	2,43138772	5,60381466	4,17544865	4,79088254
Imagen 32	2,22249307	2,2034505	4,05909563	2,44302006	7,73421083	3,23401998	1,49823565
Imagen 33	2,70022547	4,37242752	1,38593923	0,14045008	0,03749515	0,24380881	0,03397833
Imagen 34	2,73377501	3,9904376	3,16258984	2,89516455	7,14137277	5,67987963	5,11006647
Imagen 35	2,59634393	3,70409927	5,61244218	1,81366253	6,24400223	2,63776756	-0,00679811
Imagen 36	2,33202253	2,50030148	2,95340767	0,17421457	-0,06731979	-0,03951102	-0,0296786
Imagen 37	2,4612605	3,12161184	3,67284376	0,98324405	1,94200604	1,32769296	0,21212827
Imagen 38	2,23415799	1,88168019	6,3551989	3,18457723	14,8265125	3,75412725	0,70959538
Imagen 39	2,72786704	4,50913231	2,2641567	0,85070892	1,05196101	1,70286495	0,53578441
Imagen 40	2,48539023	4,44518884	0,19982724	0,02582225	0,00090571	0,04244417	0,00136515
Imagen 41	2,06321995	2,30094087	1,12315741	0,21954139	0,10192923	0,28870036	-0,01449551
Imagen 42	2,05157471	2,22344855	0,64224126	0,02367524	-0,0048415	-0,03510201	0,00157557
Imagen 43	2,29179584	3,05852419	1,50213446	0,86203187	0,91968773	1,43541313	0,34106556
Imagen 44	3,55697778	10,3653939	0,62884622	0,50554171	0,24016158	1,56528981	0,15505166
Imagen 45	2,91731933	6,34283998	0,71333305	0,01259519	-0,01246279	-0,02726223	0,0002231
Imagen 46	3,38696992	8,15501036	4,98465506	1,54221183	3,65090039	4,25385854	-2,23004005
Imagen 47	3,43755302	8,24776436	3,67836554	0,76432319	1,03967469	2,14520254	-0,74761716
Imagen 48	3,23549267	7,14892327	0,91965308	0,02800607	-0,01050097	0,01949033	0,00247008

r							
Imagen 49	3,35535729	8,11075895	0,79900994	0,16079189	0,02649803	0,38385954	-0,05852697
Imagen 50	3,39011338	9,00284375	0,10893112	0,04542507	0,00058359	0,1336181	0,00323021
Imagen 51	2,92641901	5,78369047	1,26333706	0,58736314	0,46899194	1,40955366	0,1915771
Imagen 52	5,19868611	25,0435579	3,19169186	0,83571509	1,07638942	1,19800951	-0,01638829
Imagen 53	4,66827365	18,9982915	37,4097084	37,1876084	1485,93741	161,031344	-60,9264474
Imagen 54	3,50666667	8,66483408	0,32100496	0,22653092	0,05384504	0,63119477	0,04451747
Imagen 55	3,32925926	7,6896761	0,16222203	0,12501815	0,00028319	-0,15194763	-0,01422147
Imagen 56	3,4977552	9,13029889	0,61813156	0,21284737	0,02021149	-0,52623305	-0,01977731
Imagen 57	4,28809494	15,4866461	10,0895231	1,53282886	-1,38050436	-3,30282524	2,59688213
Imagen 58	2,92722952	6,15998716	1,15922401	0,52484963	0,34794158	0,99476913	-0,2219737
Imagen 59	2,62610649	4,58890909	5,23714073	2,43692621	9,27456137	4,66035653	0,12797857
Imagen 60	2,68658734	4,68313453	5,93636139	2,68596546	11,539922	5,12557061	0,11866507
Imagen 61	2,68658734	4,68313453	5,93636139	2,68596546	11,539922	5,12557061	0,11866507
Imagen 62	2,57544619	4,26815344	3,18577263	0,96546624	1,69086091	1,89514601	0,39584878
Imagen 63	2,58166577	4,3140095	3,19402464	0,97167711	1,7300547	1,89574131	0,35826086
Imagen 64	2,65850271	4,56228071	6,15249047	3,26225777	14,4743295	6,90326398	3,31318882
Imagen 65	2,91232943	5,80198118	9,08229744	5,77541856	41,2796815	13,8910585	7,99238978
Imagen 66	2,70148148	4,78317531	6,71843765	4,16659322	21,5806091	9,08634362	5,14938321
Imagen 67	2,69246914	4,75726269	6,56574824	4,01450282	20,1422966	8,73188145	4,90718163
Imagen 68	2,64614839	4,0746572	7,54648946	3,8125984	21,1596498	7,32045018	3,32817572
Imagen 69	2,64484877	4,08241762	7,75723146	3,82503188	21,6589838	7,31738547	3,24255919
Imagen 70	2,82761186	4,97878302	10,8674292	6,6564167	57,0590544	14,6645589	8,89522759
Imagen 71	2,82750558	5,01433138	10,9444785	6,57380192	56,1352027	14,5434347	8,78168218
Imagen 72	3,28180804	8,04401657	5,91435324	2,61617589	10,27982	7,37627419	1,38751294
Imagen 73	3,1255785	6,93118823	8,10483733	4,28867043	25,2459548	11,2228128	3,63959454
Imagen 74	3,07701009	6,51592462	9,54208645	6,02661004	45,0168088	15,3730072	8,12087097
Imagen 75	3,07597323	6,52324398	9,81217312	6,01871859	45,7635251	15,3426207	7,61105505
Imagen 76	3,26691938	7,52781072	9,45453181	5,8641295	43,8358938	15,8608166	2,7156186
Imagen 77	3,30418381	7,96099361	8,0221537	4,3596916	26,0911393	12,0173443	0,8939433
	_						

Imagen 78	2,95844404	5,65275487	8,3765508	4,80095873	30,9030176	11,0465252	2,13720236
Imagen 79	2,54119511	3,58039439	5,66167988	2,56838154	10,0653622	4,54753722	1,25683612
Imagen 80	2,56509695	3,72810743	6,51963731	3,83358262	19,185365	7,16720909	3,12092083
Imagen 81	2,60077562	4,334121	3,50706504	2,31013725	6,27178246	4,80098636	2,20854712
Imagen 82	3,28010412	7,24639957	22,617197	19,4742792	415,357642	52,4212572	50,4951805
Imagen 83	2,75600962	4,77111709	13,9962037	11,7541492	150,706931	25,3389359	12,3620997
Imagen 84	2,4385	3,37583501	5,06762899	3,46558864	14,1609693	6,31852479	3,25707102
Imagen 85	2,30125365	2,79955829	3,08724356	0,8861592	1,60139736	1,03477571	-0,18019117
Imagen 86	2,25596298	2,64040066	3,37561965	1,21530215	2,64564086	1,61345138	0,00444867
Imagen 87	2,48108844	3,63650724	2,87873779	1,38613925	2,67488657	2,59879147	0,73848314
Imagen 88	2,5933626	4,15987152	1,90396662	0,29636638	0,19569515	0,44786773	0,0609547
Imagen 89	2,54484854	3,96556535	3,11724322	2,02994444	5,92530447	3,83241999	0,2134792
Imagen 90	2,60308205	4,60245796	2,76011121	1,13489049	2,2028071	2,24774818	-0,0856041
Imagen 91	2,4345734	3,08688932	1,89966745	0,5111949	0,50164812	0,74554499	0,08598048
Imagen 92	2,69498707	4,2219184	1,56201835	0,03737591	0,00809567	0,02014121	-0,0050155
Imagen 93	2,70407896	4,15942359	0,10371412	0,0571612	-0,0032799	0,01385449	-0,00142881
Imagen 94	2,68678253	4,22899774	0,45991134	0,16192022	0,03606313	0,32711501	0,0265802
Imagen 95	3,21052145	7,27702437	0,49685274	0,07538841	0,00019659	0,06746192	-0,01587051
Imagen 96	2,40218935	3,27359914	2,33793414	0,26756785	0,07239683	0,04887179	-0,04524689
Imagen 97	1,80584969	1,24256174	1,77785483	0,25503755	0,06689335	0,02801739	-0,01201569
Imagen 98	2,52866495	3,7950321	1,80339573	0,65361603	0,6232837	1,21890036	0,37085625
Imagen 99	2,42165511	2,71559234	5,07768476	3,02589254	12,2545763	4,73542853	3,64458127
Imagen 100	2,535104	3,35217306	4,39216868	2,82744914	9,95315368	4,82899727	3,41129455
Imagen 101	2,27067669	2,82912877	1,90251228	0,88824906	1,02721934	1,46254491	0,55869571
Imagen 102	1,81194864	1,59882279	1,2850008	0,48063632	0,41743439	0,32414978	-0,00133322
Imagen 103	2,97894965	4,27307628	7,35494075	2,01693753	8,3607657	1,66192942	-0,27634985
Imagen 104	2,62396365	4,74708318	0,8840699	0,535438	0,36061449	0,93422576	0,07564873
Imagen 105	2,96801073	6,59311549	1,84369486	0,62459164	0,65212949	0,99802504	-0,20114154
Imagen 106	2,53152778	3,76834315	2,08015475	0,9314506	1,36416374	1,74392879	0,25838239

Imagen 107	2,87970344	4,51114918	7,4853305	3,24314497	16,5643552	6,65368192	2,60329828
Imagen 108	2,55069444	4,18343075	0,49245019	0,19828143	0,05066227	0,40008479	0,04285979
Imagen 109	3,34229263	8,5946416	0,35739623	0,02053822	0,00174186	0,02772519	-0,00074901
Imagen 110	2,77690116	4,34207133	2,79000798	0,85386077	1,04101965	1,70706473	-0,81277445
Imagen 111	2,33235767	2,98450821	1,93837002	0,14634277	-0,03386759	0,03276685	0,0011648
Imagen 112	2,10754043	2,3253205	1,10514402	0,17077564	0,07021613	0,20837656	0,00760417
Imagen 113	2,268032	2,40447955	0,97842063	0,3246364	0,11053078	0,50085768	0,14302456
Imagen 114	2,34438169	2,44865769	1,82423074	1,5257385	2,24589346	2,21136814	1,42765009
Imagen 115	2,31822485	2,55729494	0,84699451	0,53117772	0,11053029	0,84888961	0,33870218
Imagen 116	2,2217284	2,34153317	0,69982033	0,3440972	0,0587459	0,52611356	0,15811046
Imagen 117	2,22937323	2,36212178	1,04353064	0,69545076	0,38054552	1,06554554	0,45253645
Imagen 118	2,00406805	1,55041242	2,48956868	0,87003452	1,28981191	0,49441265	0,39659228
Imagen 119	3,39011338	9,00284375	0,10893112	0,04542507	0,00058359	0,1336181	0,00323021
Imagen 120	2,92641901	5,78369047	1,26333706	0,58736314	0,46899194	1,40955366	0,1915771

Tabla 16. Invariantes recogidos para la pose 1.

IMAGEN	I1	12	13	I 4	15	16	17
Imagen 1	2,04412736	2,39018187	2,10230074	1,31708987	2,1431573	1,82990415	-0,45897807
Imagen 2	1,93820984	2,05189255	1,23879034	0,50008769	0,38161045	0,6450296	-0,10162633
Imagen 3	2,58562902	5,05568926	3,99844427	3,09573604	10,8802558	6,13633242	-0,90469825
Imagen 4	2,6321875	5,25965664	1,49271636	0,56047598	0,55223266	1,24335059	-0,14613465
Imagen 5	1,79447888	2,04310041	1,60279879	1,13015901	1,57803663	1,61401984	-0,06381477
Imagen 6	2,52181953	4,18836072	1,07170893	0,70350531	0,57676835	1,33175019	2,62E-01
Imagen 7	2,58382716	4,91324672	0,05211955	0,01152397	-5,89E-05	-0,00066822	-0,00017067
Imagen 8	2,45464853	3,95883547	0,09583622	0,01090978	-5,40E-05	0,0216826	0,00034389
Imagen 9	1,74082647	1,5877093	0,21892495	0,16190832	0,02906476	0,20398968	0,01037531
Imagen 10	2,31170289	3,34908688	0,99712083	0,52909762	0,38472223	0,96536196	1,68E-02
Imagen 11	2,56077562	3,9893212	4,65337132	1,79664953	5,80655822	2,71492368	-0,98855864
Imagen 12	2,38113875	3,23214354	3,64537012	0,91060427	1,71287485	0,98127133	-0,75114353

Imagen 13	1,71104571	1,1812683	1,44583336	0,37462216	0,26409684	0,341472	-0,12358824
Imagen 14	1,71219592	1,18880179	1,11201431	0,1922659	0,08878893	0,2090426	0,00696515
Imagen 15	1,5337396	1,14395889	0,03154055	0,06535726	0,0027188	0,06988919	0,0011947
Imagen 16	1,79192421	2,18096234	0,04064067	0,02523884	-0,00032481	0,03662581	0,00082144
Imagen 17	1,49064429	1,38085793	0,1387891	0,05816299	0,00499655	0,02345046	0,00021875
Imagen 18	1,90674054	2,11949215	0,02683293	0,02645589	0,0007162	0,03851566	-0,00021651
Imagen 19	2,59518313	5,16371544	0,04697697	0,22884666	0,01403962	0,49668375	-0,01913753
Imagen 20	2,10191695	2,93884715	2,55071889	1,72530425	3,90335898	2,95468119	0,21958541
Imagen 21	2,2418127	3,22197365	2,25445458	1,05881549	1,77727766	1,88528061	0,03369523
Imagen 22	2,27033673	3,34926945	1,55984417	0,89990401	1,10006441	1,63316012	0,13019724
Imagen 23	2,11659726	2,9560229	1,85419072	1,26488026	1,99320381	2,14198708	0,2591941
Imagen 24	2,59829868	4,66035562	0,1198772	0,01676971	-0,00029076	-0,03590385	0,00017088
Imagen 25	2,2478145	3,32537354	0,74610726	0,98017672	0,86646415	1,78159513	0,07627088
Imagen 26	2,12436224	3,14869257	2,6500244	1,66242466	4,01399166	2,50395274	-0,02437374
Imagen 27	2,47646814	3,55881374	3,67060199	0,88483576	1,39293032	0,79483512	-0,34854398
Imagen 28	1,52071331	1,60218536	0,12002634	0,11606528	0,01491425	0,13855286	0,00354934
Imagen 29	1,55188957	1,67150724	0,37194475	0,14022362	0,03226712	0,0672095	-0,00471088
Imagen 30	1,99754115	2,37225915	0,08392464	0,00464909	-0,00010491	-0,00113228	1,25E-05
Imagen 31	3,71160357	11,3188626	12,367295	1,61035818	-5,15142838	-4,97440746	0,63121599
Imagen 32	3,74464923	11,2572112	8,40187086	1,11658309	-2,20277044	-3,18541357	0,72646482
Imagen 33	3,06042244	5,44486358	0,90493764	0,50373738	0,13704548	-0,84788849	-0,16498808
Imagen 34	2,94033447	5,04248979	0,45192488	1,07140494	0,85904154	1,65272696	-0,18437278
Imagen 35	3,71406587	8,20584661	2,1345647	1,93818107	2,00018022	-3,51437825	1,11064526
Imagen 36	2,94331066	7,80645924	7,55029087	2,28884019	10,0095967	2,80769748	4,33586682
Imagen 37	2,66620499	6,41705097	2,71768872	1,49364335	3,14746212	3,11069969	0,43016082
Imagen 38	2,9236	6,6983944	4,00152144	0,81167232	1,13505487	-0,08055076	-0,57606563
Imagen 39	2,91826923	6,71085749	7,91976279	1,87711817	6,32955626	0,29119551	-2,46019766
Imagen 40	2,7732438	6,40570172	1,50595168	0,22457061	0,07274439	-0,14357757	-0,05631611
Imagen 41	3,0470679	8,89407162	2,88551909	0,75789388	1,10512697	0,52471678	0,27611706
	_						

r							
Imagen 42	3,42249527	10,9452332	3,36721999	1,32064238	3,08990544	2,82776863	-0,62241823
Imagen 43	3,78533286	13,1094306	5,00069056	0,62747468	-0,57398889	-1,83910176	0,12717905
Imagen 44	2,47260332	5,22690148	1,77899094	1,6669716	3,02363096	3,69727659	-0,02000978
Imagen 45	2,6758494	5,06753868	7,00419722	5,44674633	36,3351566	10,6506629	-3,81983096
Imagen 46	2,67301939	5,40962042	7,37847241	5,24328202	35,7032574	10,4776755	-3,49398987
Imagen 47	2,75775872	6,01094946	7,50692434	5,22329705	35,8097705	10,8896997	-3,17844891
Imagen 48	2,80861002	6,51934273	6,95217959	6,17735944	42,3689018	14,6468783	-1,15355146
Imagen 49	2,2174331	3,99045078	3,63707995	2,79395851	8,91942606	5,38475845	-0,61424128
Imagen 50	1,48372497	1,12285839	0,1817859	0,07695151	0,00989351	0,06630227	-0,00082483
Imagen 51	1,75980975	0,97458281	0,082056	0,11850211	0,01168548	0,09227229	0,00230486
Imagen 52	1,89088847	1,70929036	0,79297726	0,35437969	0,20812034	0,32096054	0,01517977
Imagen 53	1,81011699	1,71067488	0,60959978	0,32180681	0,15932924	0,33228147	0,01604589
Imagen 54	1,81888572	1,87253443	1,8459761	0,96478895	1,44685262	0,96728984	-0,15139337
Imagen 55	2,37137241	4,25715217	3,31257492	3,46979755	11,8364038	6,78226235	0,07126529
Imagen 56	1,72236111	1,84362409	0,1701848	0,05003622	0,00448148	0,01486797	-9,34E-05
Imagen 57	1,74791111	1,73251244	0,165841	0,00144497	-2,63E-05	-0,00093313	8,02E-07
Imagen 58	1,50432256	1,20317086	0,42558681	0,12724722	0,02879822	0,13600313	0,01171568
Imagen 59	2,26661797	3,45967123	0,4789278	0,43341848	0,21963539	0,69949982	-0,00487245
Imagen 60	1,09866667	0,30971044	1,02911398	0,64297655	0,60068889	0,2570786	0,03313605
Imagen 61	1,9884	2,6175892	0,14568732	0,00734645	-4,65E-05	-0,00654695	-9,47E-05
Imagen 62	1,58375446	1,44801329	0,05171452	0,44427117	0,06927291	0,53356844	0,0069514
Imagen 63	1,49525306	1,22857385	0,05618184	0,2074484	0,02211269	0,22582638	0,00356498
Imagen 64	1,7314876	1,57265668	0,05871081	0,00104737	-7,35E-06	0,00124503	7,02E-06
Imagen 65	1,64824807	1,29700518	0,1555087	0,15151181	0,01813261	0,14299506	-0,0169453
Imagen 66	1,7522	1,54762964	0,03241438	0,08562938	0,00236686	0,10478626	-0,00422568
Imagen 67	1,90481325	2,37150773	0,23207618	0,0049556	4,85E-05	-0,00142376	-6,59E-05
Imagen 68	1,54315501	1,25196852	0,16778109	0,15220173	0,01984631	0,15270935	-0,01722127
Imagen 69	1,6451101	1,46703405	0,13525086	0,12484405	0,01478129	0,14570909	-0,00867489
Imagen 70	1,62490869	1,48863799	0,53991957	0,40518056	0,19688809	0,4501699	-0,02590274

r							
Imagen 71	1,56213018	1,15781738	0,26467356	0,07647548	0,01191692	0,05564001	0,00155266
Imagen 72	1,67432057	1,58964747	0,40601057	0,26140349	0,08410151	0,30873154	-0,02811495
Imagen 73	1,62736206	1,27469433	0,10048658	0,12613557	0,01107795	0,134989	-0,01005386
Imagen 74	1,56527778	1,29824788	0,02551195	0,01212672	-7,78E-05	0,0135868	-0,00019827
Imagen 75	1,59986544	1,05467137	0,04717383	0,11272873	0,00782368	0,11500758	-0,00383504
Imagen 76	1,71062382	1,59687643	0,04712527	0,00985862	0,00019026	0,00252274	-0,00013932
Imagen 77	1,20558012	0,43698826	0,0891837	0,05791499	0,00433967	0,0377745	-0,00081333
Imagen 78	1,4868713	0,9863366	0,16487297	0,04894381	0,00350448	0,02144098	-0,00109881
Imagen 79	2,02217415	2,16341058	0,50095944	0,29532335	0,12511132	0,38017071	-0,03140405
Imagen 80	1,97951557	2,00859396	0,29999259	0,05977336	0,00310269	0,0131619	0,00151484
Imagen 81	1,79985391	1,53534635	2,021627	0,74087152	0,90176158	0,91752794	-0,17000429
Imagen 82	1,66653061	1,26843815	1,15342407	0,14002813	0,05593226	0,15760875	-0,00861752
Imagen 83	2,35717032	4,52666654	4,1860869	1,28084424	2,46272381	1,34530982	-1,88207747
Imagen 84	2,35717032	4,52666654	4,1860869	1,28084424	2,46272381	1,34530982	-1,88207747
Imagen 85	2,07102041	2,93808996	3,10644286	2,29689759	6,07707769	3,64101609	-0,88099389
Imagen 86	1,83003827	1,15890972	0,65516048	1,36789866	1,51685268	0,19143195	-0,27709117
Imagen 87	1,59921064	1,26386722	0,2410225	0,03469803	0,00264577	0,03083422	0,00147233
Imagen 88	1,50514598	0,99038268	0,14176174	0,04094724	0,00298751	0,03750258	-0,00089847
Imagen 89	1,62706612	1,22626281	0,04033744	0,02981766	0,00048268	0,02036906	-0,00076737
Imagen 90	1,64274983	1,17613803	0,0067054	0,00969154	-7,99E-05	0,01043518	2,36E-05
Imagen 91	1,67272061	1,14553195	0,60307574	0,00368685	-0,00041839	0,00259943	0,00019285
Imagen 92	1,72099786	1,403268	0,62387234	0,00527304	-0,00233895	-0,00136465	5,64E-05
Imagen 93	1,86362409	1,14465541	1,67524111	0,20785282	0,11872905	0,22202751	-0,03054552
Imagen 94	1,77199954	0,97982535	2,04915813	0,32017014	0,26571322	0,30864793	0,05058953
Imagen 95	2,30771006	1,76525848	2,66136678	0,08455823	-0,00823667	-0,0611758	-0,00467162
Imagen 96	1,80513313	1,25601732	2,05829739	0,45397251	0,42120948	0,4697629	-0,21799142
Imagen 97	1,70746856	0,90663831	1,57973272	0,40003938	0,31900746	0,36530689	0,00474631
Imagen 98	1,53102841	0,78503486	0,89016373	0,21076631	0,09274645	0,18662682	-0,01479938
Imagen 99	1,63473251	0,90483715	1,06538481	0,236685	0,12531122	0,22205533	-0,02142384

Imagen 100	2,26657722	2,02533063	3,943386	0,35962641	0,42368599	0,3867608	-0,19836433
Imagen 101	2,14691198	3,25333026	0,34111884	0,07335077	0,00451468	-0,06680691	0,00752613
Imagen 102	2,13583333	3,0985686	1,63400606	0,79693161	1,02304416	1,23657234	0,07065646
Imagen 103	1,38429557	1,06923927	0,06441466	0,01185023	0,00026999	0,00375312	0,0002345
Imagen 104	1,54149145	1,12364632	0,13386384	0,09848061	0,00860945	0,08725901	0,00917517
Imagen 105	1,5166034	1,04468402	0,11456919	0,25956159	0,04005602	0,26332769	0,02097539
Imagen 106	1,61148789	1,16359792	0,12371776	0,17594177	0,02199284	0,1830324	0,01474534
Imagen 107	1,35555317	0,71396705	0,08812131	0,05914024	0,00389718	-0,01345409	-0,00064548
Imagen 108	2,04995675	2,15852319	0,0065045	0,02535756	-4,41E-05	-0,03593193	-0,0002265
Imagen 109	2,53357397	4,70042321	0,61276029	0,07270361	0,0126286	0,03324449	-0,00684292
Imagen 110	2,17590102	3,52739417	0,0266164	0,03152995	0,0008652	0,05015047	-0,00054533
Imagen 111	2,36794077	3,82677028	0,36508653	0,43225912	0,16791712	0,75658094	-0,06756824
Imagen 112	2,65952454	5,16566976	0,32870894	0,14092527	0,01809622	-0,09393243	0,00731336
Imagen 113	2,36680541	3,7523229	1,06574801	0,55619702	0,40881545	1,05168081	-0,17381549
Imagen 114	2,3604336	4,12541349	0,49507363	0,54538441	0,28215038	1,10401997	-0,05077179
Imagen 115	2,25858889	3,60170602	0,28682985	0,34506669	0,10570438	0,65472434	-0,02536855
Imagen 116	2,20717364	3,50727009	0,25559563	0,25525344	0,07352318	0,32503845	-0,00840707
Imagen 117	2,34510523	3,99114729	0,19306428	0,32172715	0,08577725	0,5430956	-0,00145357
Imagen 118	1,83427367	2,37090792	1,01119842	1,03256452	1,05605271	1,58716483	-0,04021324
Imagen 119	2,92606493	7,33922108	0,77493245	0,25158054	0,11394487	0,65055355	-0,03705417
Imagen 120	2,08757573	2,68084364	0,32560679	0,06390301	0,00924173	0,07034978	-0,00497123

Tabla 17. Invariantes recogidos para la pose 2.

IMAGEN	I1	12	13	I 4	15	16	17
Imagen 1	2,50039675	2,08239888	0,81486507	1,10993454	0,8507653	0,26523349	0,525504
Imagen 2	2,50619917	1,93299182	1,04463367	1,05588663	0,67689018	0,12732913	0,59476375
Imagen 3	2,51395252	1,96153738	1,42854871	0,88287101	0,53918544	-0,36250742	-0,01226973
Imagen 4	2,65075231	2,48997496	0,87608563	0,95520627	0,64393196	0,27865951	0,39107466
Imagen 5	2,57112029	2,18596111	0,62076859	1,46888106	0,93704892	1,36090935	1,26843823

-							
Imagen 6	2,58447188	1,81154617	1,06343596	2,80406472	3,45816569	2,24485285	4,25E+00
Imagen 7	2,686615	2,08804237	1,0994717	1,07647106	2,37E-01	0,70029989	1,12545854
Imagen 8	2,69882653	3,06809045	0,02003988	0,38760703	-3,42E-02	0,21033231	0,01477421
Imagen 9	2,71269464	2,73732752	0,01523607	0,95623658	0,06957272	0,67914237	0,10652357
Imagen 10	2,70139918	2,59213068	0,12400947	0,69198233	0,02047388	0,30991148	1,91E-01
Imagen 11	2,41119342	2,00126289	0,18266225	0,38703529	0,0901209	0,01247289	0,03887092
Imagen 12	2,4847196	1,94904988	0,62614929	0,41465477	0,10639322	-0,21388608	0,02306872
Imagen 13	2,51794901	2,05582143	0,1888905	0,5359044	-0,033098	0,42169349	0,18070721
Imagen 14	2,29611272	2,68895166	1,35043368	0,83801619	0,87416323	1,3151066	-0,17640945
Imagen 15	2,15224913	1,88339788	0,41437808	0,53898763	0,25792121	0,7283423	0,07545963
Imagen 16	2,29240076	1,88114791	0,60061387	0,76154448	0,33435873	0,65077104	-0,46573291
Imagen 17	2,37972094	2,07688028	1,03397364	1,54378993	1,66074201	1,89108169	-1,13029523
Imagen 18	2,16490785	1,69035217	0,81375631	0,8738068	0,66655641	1,01389198	-0,33484706
Imagen 19	2,36242741	1,38966177	0,30727016	1,05713698	0,05017231	1,14940275	-0,602103
Imagen 20	2,41039063	3,33224504	1,08696517	0,43725051	0,29629126	0,73168735	-0,09703078
Imagen 21	2,46405859	3,47304286	1,86006447	0,78895818	0,96716088	1,40568138	-0,09337705
Imagen 22	2,47357854	3,38593805	2,35253526	0,82636545	1,17832927	1,36990844	-0,26510419
Imagen 23	2,52120708	3,42660464	2,346614	1,81358316	3,79381605	3,04968417	-1,16866215
Imagen 24	2,41489656	3,12431257	1,1291335	0,39579949	0,27193871	0,53097421	-0,11478223
Imagen 25	2,38681223	3,06874316	1,09059779	0,5248259	0,40894233	0,81584453	-0,1038509
Imagen 26	2,31323947	2,57446412	6,3251245	4,16614013	21,2934595	6,19239732	-1,99231608
Imagen 27	2,22583008	2,11646177	3,11122944	2,38362224	6,36962589	3,02489169	-1,52693265
Imagen 28	2,24633136	2,52642789	3,33533404	1,37370984	2,95321031	1,80362627	-0,85622914
Imagen 29	2,21650888	2,45717275	3,02146942	1,68382284	3,81769208	2,42110913	-0,32765155
Imagen 30	2,22899408	2,55795062	3,20721263	1,78082955	4,2567383	2,62194469	-4,77E-01
Imagen 31	2,57272189	1,98621927	0,2287575	0,970967	-0,51694055	0,91302041	0,0389436
Imagen 32	2,645696	2,84616976	0,2584212	1,12435063	0,28691554	1,1143431	-0,61964477
Imagen 33	2,50261088	2,53635886	0,30597527	0,99035116	0,29179301	1,10286188	-0,53772949
Imagen 34	2,68436004	2,77836792	3,41395791	5,40343564	21,6839763	8,39073053	-9,66104759

Imagen 35 2,52079254 1,27039235 0,09434943 3,96088549 2,71689423 3,14926871 -0,4622157 Imagen 36 2,54279897 1,29490913 0,06842197 4,36962587 -2,59514309 3,49437568 0,82339789 Imagen 37 2,4461453 1,4089234 0,17455318 1,65022014 -0,97613356 1,33942376 -0,11646692 Imagen 38 2,3393165 1,13367884 0,57847453 1,57353884 -1,62723384 1,17099645 -0,07243997 Imagen 40 2,1266889 9,1047002 0,74781697 0,72973247 -0,11312091 0,17810869 0,6697007 Imagen 41 2,35138546 1,88111302 0,97097105 2,78827524 4,30911913 2,45473778 2,25982692 Imagen 43 2,24621582 2,09389594 1,68717317 1,78054219 2,3698735 1,77574389 -1,40843108 Imagen 44 2,4289226 2,2882206 0,70384636 1,0824971 0,97848775 0,6578005 -0,2325592 Imagen 45 2,3856933 2,0565886 0,8463711<		1						I
Imagen 37 2,44641453 1,4089234 0,17455318 1,65022014 -0,97613356 1,33942376 -0,11646692 Imagen 38 2,33793165 1,13367884 0,57847453 1,57553884 -1,62723384 1,1709645 -0,07243997 Imagen 39 2,20913872 1,02004162 0,62899442 1,08974382 -0,54629113 0,29391437 0,82322983 Imagen 40 2,1266889 0,91047002 0,74781697 0,72973247 -0,11312091 -0,17810869 0,4697907 Imagen 41 2,35138546 1,88111302 0,97097105 2,78827524 4,30911913 2,45473778 -2,25982692 Imagen 42 2,23995638 2,00277419 0,65380174 0,89837938 0,63730031 0,72675447 -0,34174177 Imagen 43 2,24621582 2,09389594 1,68717317 1,78054219 2,83698735 1,77574389 -1,4084108 Imagen 45 2,38754951 2,005197 0,30011267 0,9125971 0,44347757 0,69788005 -0,32355925 Imagen 52 2,38617979 3,46139297 1	Imagen 35	2,52079254	1,27039235	0,09434943	3,96088549	-2,71689423	3,14926871	-0,46225157
Imagen 38 2,33793165 1,13367884 0,57847453 1,57353884 -1,62723384 1,17099645 -0,07243997 Imagen 39 2,20913872 1,02004162 0,62899442 1,08974382 -0,54629113 0,29391437 0,82322983 Imagen 40 2,1266889 0,91047002 0,74781697 0,72973247 -0,11312091 -0,17810869 0,46979007 Imagen 41 2,35138546 1,88111302 0,97097105 2,78827524 4,30911913 2,45473778 -2,25982692 Imagen 42 2,23995638 2,00277419 0,65380174 0,89837938 0,63730031 0,72675447 -0,34174177 Imagen 43 2,24621582 2,09389594 1,68717317 1,78054219 2,38698735 1,77574389 -1,40843108 Imagen 44 2,4289282 2,22892206 0,70384636 1,08249714 0,97848778 0,62583205 -0,32355925 Imagen 45 2,38754951 2,005197 0,30011267 0,9125971 0,44347757 0,69788005 -0,32355925 Imagen 45 2,38849717 2,1943968	Imagen 36	2,54279897	1,29490913	0,06842197	4,36962587	-2,59514309	3,49437568	0,82339789
Imagen 39 2,20913872 1,02004162 0,62899442 1,08974382 -0,54629113 0,29391437 0,82322983 Imagen 40 2,1266889 0,91047002 0,74781697 0,72973247 -0,11312091 -0,17810869 0,46979007 Imagen 41 2,35138546 1,88111302 0,97097105 2,78827524 4,30911913 2,45473778 -2,25982692 Imagen 42 2,23995638 2,00277419 0,65380174 0,89837938 0,63730031 0,72675447 -0,34174177 Imagen 43 2,24621582 2,09389594 1,68717317 1,78054219 2,38968735 1,77574389 -1,40843108 Imagen 44 2,4289282 2,22892206 0,70384636 1,08249714 0,97848778 0,62583205 -0,50067537 Imagen 45 2,38754951 2,005197 0,30011267 0,9125971 0,44347757 0,69788005 -0,32355925 Imagen 46 2,35806933 2,0566886 0,84653711 2,4056865 3,2130626 2,47449073 -1,69010227 Imagen 50 2,11821199 1,55240619 0,3	Imagen 37	2,44641453	1,4089234	0,17455318	1,65022014	-0,97613356	1,33942376	-0,11646692
Imagen 40 2,1266889 0,91047002 0,74781697 0,72973247 -0,11312091 -0,17810869 0,46979007 Imagen 41 2,35138546 1,88111302 0,97097105 2,78827524 4,30911913 2,45473778 -2,25982692 Imagen 42 2,23995638 2,00277419 0,65380174 0,89837938 0,63730031 0,72675447 -0,34174177 Imagen 43 2,24621582 2,09389594 1,68717317 1,78054219 2,83698735 1,77574389 -1,0843108 Imagen 44 2,4289282 2,22892206 0,70384636 1,08249714 0,97848778 0,62583205 -0,50067537 Imagen 45 2,38754951 2,005197 0,30011267 0,9125971 0,44347757 0,69788005 -0,32355925 Imagen 46 2,35806933 2,05668886 0,84653711 2,40565865 3,2130626 2,47449073 -1,69010227 Imagen 47 2,59617979 3,46139297 1,51056217 1,09119328 1,5097403 1,47089883 -0,46470675 Imagen 50 2,11821199 1,55240619 0,3	Imagen 38	2,33793165	1,13367884	0,57847453	1,57353884	-1,62723384	1,17099645	-0,07243997
Imagen 41 2,35138546 1,88111302 0,97097105 2,78827524 4,30911913 2,45473778 -2,25982692 Imagen 42 2,23995638 2,00277419 0,65380174 0,89837938 0,63730031 0,72675447 -0,34174177 Imagen 43 2,24621582 2,09389594 1,68717317 1,78054219 2,83698735 1,77574389 -1,40843108 Imagen 44 2,4289282 2,22892206 0,70384636 1,08249714 0,97848778 0,62583205 -0,50067537 Imagen 45 2,38754951 2,005197 0,30011267 0,9125971 0,44347757 0,69788005 -0,32355925 Imagen 46 2,35806933 2,0566886 0,84653711 2,40565865 3,2130626 2,47449073 -1,69010227 Imagen 47 2,59617979 3,46139297 1,51056217 1,09119328 1,5097403 1,47089883 -0,46470675 Imagen 49 2,19494629 1,54724276 0,16962388 1,35081979 0,54110132 0,90219265 -0,46478915 Imagen 50 2,11821199 1,55240619 0,3	Imagen 39	2,20913872	1,02004162	0,62899442	1,08974382	-0,54629113	0,29391437	0,82322983
Imagen 42 2,23995638 2,00277419 0,65380174 0,89837938 0,63730031 0,72675447 -0,34174177 Imagen 43 2,24621582 2,09389594 1,68717317 1,78054219 2,83698735 1,77574389 -1,40843108 Imagen 44 2,4289282 2,22892206 0,70384636 1,08249714 0,97848778 0,62583205 -0,50067537 Imagen 45 2,38754951 2,005197 0,30011267 0,9125971 0,44347757 0,69788005 -0,32355925 Imagen 46 2,35806933 2,05668886 0,84653711 2,40565865 3,2130626 2,47449073 -1,69010227 Imagen 47 2,59617979 3,46139297 1,51056217 1,09119328 1,5097403 1,47089883 -0,46470675 Imagen 48 2,38849717 2,1943968 1,79195677 2,9402018 6,70172464 3,10067705 -2,80143101 Imagen 50 2,11821199 1,55240619 0,31088821 1,06577596 0,42468447 1,09080506 -0,4664867 Imagen 51 2,32538896 2,06541308 0,994	Imagen 40	2,1266889	0,91047002	0,74781697	0,72973247	-0,11312091	-0,17810869	0,46979007
Imagen 43 2,24621582 2,09389594 1,68717317 1,78054219 2,83698735 1,77574389 -1,40843108 Imagen 44 2,4289282 2,22892206 0,70384636 1,08249714 0,97848778 0,62583205 -0,50067537 Imagen 45 2,38754951 2,005197 0,30011267 0,9125971 0,44347757 0,69788005 -0,23355925 Imagen 46 2,35806933 2,05668886 0,84653711 2,40565865 3,2130626 2,47449073 -1,69010227 Imagen 47 2,59617979 3,46139297 1,51056217 1,09119328 1,5097403 1,47089883 -0,46470675 Imagen 48 2,38849717 2,1943968 1,79195677 2,9402018 6,70172464 3,10067705 -2,80143101 Imagen 49 2,19494629 1,54724276 0,16962388 1,35081979 0,54110132 0,90219265 -0,46478015 Imagen 50 2,11821199 1,55240619 0,31088821 1,06577596 0,42468447 1,09080506 -0,46044867 Imagen 51 2,32538896 2,06541308 0,99	Imagen 41	2,35138546	1,88111302	0,97097105	2,78827524	4,30911913	2,45473778	-2,25982692
Imagen 44 2,4289282 2,22892206 0,70384636 1,08249714 0,97848778 0,62583205 -0,50067537 Imagen 45 2,38754951 2,005197 0,30011267 0,9125971 0,44347757 0,69788005 -0,32355925 Imagen 46 2,35806933 2,05668886 0,84653711 2,40565865 3,2130626 2,47449073 -1,69010227 Imagen 47 2,59617979 3,46139297 1,51056217 1,09119328 1,5097403 1,47089883 -0,46470675 Imagen 48 2,38849717 2,1943968 1,79195677 2,94020218 6,70172464 3,10067705 -2,80143101 Imagen 50 2,11821199 1,55240619 0,31088821 1,06577596 0,42468447 1,09080506 -0,4664867 Imagen 51 2,32538896 2,06541308 0,99429368 1,97855784 2,71828266 2,17509176 -0,92641374 Imagen 52 2,29924242 1,45197152 0,11757552 1,36549283 -0,43003232 1,03323426 -0,40604137 Imagen 53 2,42165627 2,42852317 0,4	Imagen 42	2,23995638	2,00277419	0,65380174	0,89837938	0,63730031	0,72675447	-0,34174177
Imagen 45 2,38754951 2,005197 0,30011267 0,9125971 0,44347757 0,69788005 -0,32355925 Imagen 46 2,35806933 2,05668886 0,84653711 2,40565865 3,2130626 2,47449073 -1,69010227 Imagen 47 2,59617979 3,46139297 1,51056217 1,09119328 1,5097403 1,47089883 -0,46470675 Imagen 48 2,38849717 2,1943968 1,79195677 2,94020218 6,70172464 3,10067705 -2,80143101 Imagen 49 2,19494629 1,54724276 0,16962388 1,35081979 0,54110132 0,90219265 -0,46478915 Imagen 50 2,11821199 1,55240619 0,31088821 1,06577596 0,42468447 1,09080506 -0,46064867 Imagen 51 2,32538896 2,0561308 0,99429368 1,97855784 2,71828266 2,17509176 -0,92641374 Imagen 52 2,29924242 1,45197152 0,11757552 1,36549283 -0,43003232 1,03323426 -0,40604137 Imagen 53 2,42165627 2,42852317 0,	Imagen 43	2,24621582	2,09389594	1,68717317	1,78054219	2,83698735	1,77574389	-1,40843108
Imagen 46 2,35806933 2,05668886 0,84653711 2,40565865 3,2130626 2,47449073 -1,69010227 Imagen 47 2,59617979 3,46139297 1,51056217 1,09119328 1,5097403 1,47089883 -0,46470675 Imagen 48 2,38849717 2,1943968 1,79195677 2,94020218 6,70172464 3,10067705 -2,80143101 Imagen 49 2,19494629 1,54724276 0,16962388 1,35081979 0,54110132 0,90219265 -0,46478915 Imagen 50 2,11821199 1,55240619 0,31088821 1,06577596 0,42468447 1,09080506 -0,4664867 Imagen 51 2,32538896 2,06541308 0,99429368 1,97855784 2,71828266 2,17509176 -0,92641374 Imagen 52 2,29924242 1,45197152 0,11757552 1,36549283 -0,43003232 1,03323426 -0,40604137 Imagen 53 2,42165627 2,42852317 0,4377096 0,8136468 0,52266755 0,59625129 -0,22237033 Imagen 55 2,36214585 2,00553291 0	Imagen 44	2,4289282	2,22892206	0,70384636	1,08249714	0,97848778	0,62583205	-0,50067537
Imagen 47 2,59617979 3,46139297 1,51056217 1,09119328 1,5097403 1,47089883 -0,46470675 Imagen 48 2,38849717 2,1943968 1,79195677 2,94020218 6,70172464 3,10067705 -2,80143101 Imagen 49 2,19494629 1,54724276 0,16962388 1,35081979 0,54110132 0,90219265 -0,46478915 Imagen 50 2,11821199 1,55240619 0,31088821 1,06577596 0,42468447 1,09080506 -0,46064867 Imagen 51 2,32538896 2,06541308 0,99429368 1,97855784 2,71828266 2,17509176 -0,92641374 Imagen 52 2,29924242 1,45197152 0,11757552 1,36549283 -0,43003232 1,03323426 -0,40604137 Imagen 53 2,42165627 2,42852317 0,4377096 0,8136468 0,52266755 0,59625129 -0,22223396 Imagen 54 2,34862202 2,09876984 0,25676081 0,67800604 0,2841961 0,35369321 -0,16149469 Imagen 55 2,36214585 2,00553291	Imagen 45	2,38754951	2,005197	0,30011267	0,9125971	0,44347757	0,69788005	-0,32355925
Imagen 48 2,38849717 2,1943968 1,79195677 2,94020218 6,70172464 3,10067705 -2,80143101 Imagen 49 2,19494629 1,54724276 0,16962388 1,35081979 0,54110132 0,90219265 -0,46064867 Imagen 50 2,11821199 1,55240619 0,31088821 1,06577596 0,42468447 1,09080506 -0,46064867 Imagen 51 2,32538896 2,06541308 0,99429368 1,97855784 2,71828266 2,17509176 -0,92641374 Imagen 52 2,29924242 1,45197152 0,11757552 1,36549283 -0,43003232 1,03323426 -0,40604137 Imagen 53 2,42165627 2,42852317 0,4377096 0,8136468 0,52266755 0,59625129 -0,2223396 Imagen 54 2,34862202 2,09876984 0,25676081 0,67800604 0,2841961 0,35369321 -0,16149469 Imagen 55 2,36214585 2,00553291 0,12404644 0,72354164 0,09293744 0,76314376 -0,22370333 Imagen 57 2,33768749 2,82455728	Imagen 46	2,35806933	2,05668886	0,84653711	2,40565865	3,2130626	2,47449073	-1,69010227
Imagen 49 2,19494629 1,54724276 0,16962388 1,35081979 0,54110132 0,90219265 -0,46478915 Imagen 50 2,11821199 1,55240619 0,31088821 1,06577596 0,42468447 1,09080506 -0,46064867 Imagen 51 2,32538896 2,06541308 0,99429368 1,97855784 2,71828266 2,17509176 -0,92641374 Imagen 52 2,29924242 1,45197152 0,11757552 1,36549283 -0,43003232 1,03323426 -0,40604137 Imagen 53 2,42165627 2,42852317 0,4377096 0,8136468 0,52266755 0,59625129 -0,22223396 Imagen 54 2,34862202 2,09876984 0,25676081 0,67800604 0,2841961 0,35369321 -0,16149469 Imagen 55 2,36214585 2,00553291 0,12404644 0,72354164 0,09293744 0,76314376 -0,22370333 Imagen 56 2,31511776 2,62908957 1,76966785 0,94833265 1,38E+00 1,05073264 -3,20E-01 Imagen 58 2,34926119 2,01664412 0,	Imagen 47	2,59617979	3,46139297	1,51056217	1,09119328	1,5097403	1,47089883	-0,46470675
Imagen 50 2,11821199 1,55240619 0,31088821 1,06577596 0,42468447 1,09080506 -0,46064867 Imagen 51 2,32538896 2,06541308 0,99429368 1,97855784 2,71828266 2,17509176 -0,92641374 Imagen 52 2,29924242 1,45197152 0,11757552 1,36549283 -0,43003232 1,03323426 -0,40604137 Imagen 53 2,42165627 2,42852317 0,4377096 0,8136468 0,52266755 0,59625129 -0,22223396 Imagen 54 2,34862202 2,09876984 0,25676081 0,67800604 0,2841961 0,35369321 -0,16149469 Imagen 55 2,36214585 2,00553291 0,12404644 0,72354164 0,09293744 0,76314376 -0,22370333 Imagen 56 2,31511776 2,62908957 1,76966785 0,94833265 1,32899583 0,90359199 -4,28E-01 Imagen 58 2,34926119 2,01664412 0,63154407 0,82917262 0,44896299 0,53166048 -0,51292803 Imagen 60 2,43615125 2,51966766	Imagen 48	2,38849717	2,1943968	1,79195677	2,94020218	6,70172464	3,10067705	-2,80143101
Imagen 51 2,32538896 2,06541308 0,99429368 1,97855784 2,71828266 2,17509176 -0,92641374 Imagen 52 2,29924242 1,45197152 0,11757552 1,36549283 -0,43003232 1,03323426 -0,40604137 Imagen 53 2,42165627 2,42852317 0,4377096 0,8136468 0,52266755 0,59625129 -0,22223396 Imagen 54 2,34862202 2,09876984 0,25676081 0,67800604 0,2841961 0,35369321 -0,16149469 Imagen 55 2,36214585 2,00553291 0,12404644 0,72354164 0,09293744 0,76314376 -0,22370333 Imagen 56 2,31511776 2,62908957 1,76966785 0,94833265 1,32899583 0,90359199 -4,28E-01 Imagen 57 2,33768749 2,82455728 2,09226116 0,9240085 1,38E+00 1,05073264 -3,20E-01 Imagen 59 2,39637877 2,06899527 0,92111617 1,39340006 1,22442403 1,32865299 -1,26772597 Imagen 60 2,43615125 2,51966766 0,834	Imagen 49	2,19494629	1,54724276	0,16962388	1,35081979	0,54110132	0,90219265	-0,46478915
Imagen 52 2,29924242 1,45197152 0,11757552 1,36549283 -0,43003232 1,03323426 -0,40604137 Imagen 53 2,42165627 2,42852317 0,4377096 0,8136468 0,52266755 0,59625129 -0,22223396 Imagen 54 2,34862202 2,09876984 0,25676081 0,67800604 0,2841961 0,35369321 -0,16149469 Imagen 55 2,36214585 2,00553291 0,12404644 0,72354164 0,09293744 0,76314376 -0,22370333 Imagen 56 2,31511776 2,62908957 1,76966785 0,94833265 1,32899583 0,90359199 -4,28E-01 Imagen 57 2,33768749 2,82455728 2,09226116 0,9240085 1,38E+00 1,05073264 -3,20E-01 Imagen 58 2,34926119 2,01664412 0,63154407 0,82917262 0,44896299 0,53166048 -0,51292803 Imagen 60 2,43615125 2,51966766 0,83439143 0,92945522 0,55280985 1,19570336 -0,67200987 Imagen 62 2,53974469 1,19955293 1,191	Imagen 50	2,11821199	1,55240619	0,31088821	1,06577596	0,42468447	1,09080506	-0,46064867
Imagen 53 2,42165627 2,42852317 0,4377096 0,8136468 0,52266755 0,59625129 -0,22223396 Imagen 54 2,34862202 2,09876984 0,25676081 0,67800604 0,2841961 0,35369321 -0,16149469 Imagen 55 2,36214585 2,00553291 0,12404644 0,72354164 0,09293744 0,76314376 -0,22370333 Imagen 56 2,31511776 2,62908957 1,76966785 0,94833265 1,32899583 0,90359199 -4,28E-01 Imagen 57 2,33768749 2,82455728 2,09226116 0,9240085 1,38E+00 1,05073264 -3,20E-01 Imagen 58 2,34926119 2,01664412 0,63154407 0,82917262 0,44896299 0,53166048 -0,51292803 Imagen 60 2,43615125 2,51966766 0,83439143 0,92945522 0,55280985 1,19570336 -0,67200987 Imagen 61 2,80023781 1,24533941 4,90422278 5,75880642 -1,34E+00 4,64437093 3,35E+01 Imagen 62 2,53974469 1,19955293 1,19142509	Imagen 51	2,32538896	2,06541308	0,99429368	1,97855784	2,71828266	2,17509176	-0,92641374
Imagen 54 2,34862202 2,09876984 0,25676081 0,67800604 0,2841961 0,35369321 -0,16149469 Imagen 55 2,36214585 2,00553291 0,12404644 0,72354164 0,09293744 0,76314376 -0,22370333 Imagen 56 2,31511776 2,62908957 1,76966785 0,94833265 1,32899583 0,90359199 -4,28E-01 Imagen 57 2,33768749 2,82455728 2,09226116 0,9240085 1,38E+00 1,05073264 -3,20E-01 Imagen 58 2,34926119 2,01664412 0,63154407 0,82917262 0,44896299 0,53166048 -0,51292803 Imagen 60 2,39637877 2,06899527 0,92111617 1,39340006 1,22442403 1,32865299 -1,26772597 Imagen 60 2,43615125 2,51966766 0,83439143 0,92945522 0,55280985 1,19570336 -0,67200987 Imagen 61 2,80023781 1,24533941 4,90422278 5,75880642 -1,34E+00 4,64437093 3,35E+01 Imagen 62 2,53974469 1,19955293 1,191425	Imagen 52	2,29924242	1,45197152	0,11757552	1,36549283	-0,43003232	1,03323426	-0,40604137
Imagen 55 2,36214585 2,00553291 0,12404644 0,72354164 0,09293744 0,76314376 -0,22370333 Imagen 56 2,31511776 2,62908957 1,76966785 0,94833265 1,32899583 0,90359199 -4,28E-01 Imagen 57 2,33768749 2,82455728 2,09226116 0,9240085 1,38E+00 1,05073264 -3,20E-01 Imagen 58 2,34926119 2,01664412 0,63154407 0,82917262 0,44896299 0,53166048 -0,51292803 Imagen 60 2,39637877 2,06899527 0,92111617 1,39340006 1,22442403 1,32865299 -1,26772597 Imagen 60 2,43615125 2,51966766 0,83439143 0,92945522 0,55280985 1,19570336 -0,67200987 Imagen 61 2,80023781 1,24533941 4,90422278 5,75880642 -1,34E+00 4,64437093 3,35E+01 Imagen 62 2,53974469 1,19955293 1,19142509 3,64923766 -3,31648597 2,47847943 7,87564036	Imagen 53	2,42165627	2,42852317	0,4377096	0,8136468	0,52266755	0,59625129	-0,22223396
Imagen 56 2,31511776 2,62908957 1,76966785 0,94833265 1,32899583 0,90359199 -4,28E-01 Imagen 57 2,33768749 2,82455728 2,09226116 0,9240085 1,38E+00 1,05073264 -3,20E-01 Imagen 58 2,34926119 2,01664412 0,63154407 0,82917262 0,44896299 0,53166048 -0,51292803 Imagen 59 2,39637877 2,06899527 0,92111617 1,39340006 1,22442403 1,32865299 -1,26772597 Imagen 60 2,43615125 2,51966766 0,83439143 0,92945522 0,55280985 1,19570336 -0,67200987 Imagen 61 2,80023781 1,24533941 4,90422278 5,75880642 -1,34E+00 4,64437093 3,35E+01 Imagen 62 2,53974469 1,19955293 1,19142509 3,64923766 -3,31648597 2,47847943 7,87564036	Imagen 54	2,34862202	2,09876984	0,25676081	0,67800604	0,2841961	0,35369321	-0,16149469
Imagen 57 2,33768749 2,82455728 2,09226116 0,9240085 1,38E+00 1,05073264 -3,20E-01 Imagen 58 2,34926119 2,01664412 0,63154407 0,82917262 0,44896299 0,53166048 -0,51292803 Imagen 59 2,39637877 2,06899527 0,92111617 1,39340006 1,22442403 1,32865299 -1,26772597 Imagen 60 2,43615125 2,51966766 0,83439143 0,92945522 0,55280985 1,19570336 -0,67200987 Imagen 61 2,80023781 1,24533941 4,90422278 5,75880642 -1,34E+00 4,64437093 3,35E+01 Imagen 62 2,53974469 1,19955293 1,19142509 3,64923766 -3,31648597 2,47847943 7,87564036	Imagen 55	2,36214585	2,00553291	0,12404644	0,72354164	0,09293744	0,76314376	-0,22370333
Imagen 58 2,34926119 2,01664412 0,63154407 0,82917262 0,44896299 0,53166048 -0,51292803 Imagen 59 2,39637877 2,06899527 0,92111617 1,39340006 1,22442403 1,32865299 -1,26772597 Imagen 60 2,43615125 2,51966766 0,83439143 0,92945522 0,55280985 1,19570336 -0,67200987 Imagen 61 2,80023781 1,24533941 4,90422278 5,75880642 -1,34E+00 4,64437093 3,35E+01 Imagen 62 2,53974469 1,19955293 1,19142509 3,64923766 -3,31648597 2,47847943 7,87564036	Imagen 56	2,31511776	2,62908957	1,76966785	0,94833265	1,32899583	0,90359199	-4,28E-01
Imagen 59 2,39637877 2,06899527 0,92111617 1,39340006 1,22442403 1,32865299 -1,26772597 Imagen 60 2,43615125 2,51966766 0,83439143 0,92945522 0,55280985 1,19570336 -0,67200987 Imagen 61 2,80023781 1,24533941 4,90422278 5,75880642 -1,34E+00 4,64437093 3,35E+01 Imagen 62 2,53974469 1,19955293 1,19142509 3,64923766 -3,31648597 2,47847943 7,87564036	Imagen 57	2,33768749	2,82455728	2,09226116	0,9240085	1,38E+00	1,05073264	-3,20E-01
Imagen 60 2,43615125 2,51966766 0,83439143 0,92945522 0,55280985 1,19570336 -0,67200987 Imagen 61 2,80023781 1,24533941 4,90422278 5,75880642 -1,34E+00 4,64437093 3,35E+01 Imagen 62 2,53974469 1,19955293 1,19142509 3,64923766 -3,31648597 2,47847943 7,87564036	Imagen 58	2,34926119	2,01664412	0,63154407	0,82917262	0,44896299	0,53166048	-0,51292803
Imagen 61 2,80023781 1,24533941 4,90422278 5,75880642 -1,34E+00 4,64437093 3,35E+01 Imagen 62 2,53974469 1,19955293 1,19142509 3,64923766 -3,31648597 2,47847943 7,87564036	Imagen 59	2,39637877	2,06899527	0,92111617	1,39340006	1,22442403	1,32865299	-1,26772597
Imagen 62 2,53974469 1,19955293 1,19142509 3,64923766 -3,31648597 2,47847943 7,87564036	Imagen 60	2,43615125	2,51966766	0,83439143	0,92945522	0,55280985	1,19570336	-0,67200987
	Imagen 61	2,80023781	1,24533941	4,90422278	5,75880642	-1,34E+00	4,64437093	3,35E+01
Imagen 63 2,53142012 1,94202584 0,41234066 1,06170813 -0,77456075 0,98278158 0,15450741	Imagen 62	2,53974469	1,19955293	1,19142509	3,64923766	-3,31648597	2,47847943	7,87564036
	Imagen 63	2,53142012	1,94202584	0,41234066	1,06170813	-0,77456075	0,98278158	0,15450741

Imagen 64	2,57745562	1,63048894	1,30109012	1,44806023	-1,45E+00	0,96677849	1,60E+00
Imagen 65	2,73497654	1,51780387	3,74521305	1,62983577	-0,91237137	0,82457078	3,31278147
Imagen 66	2,54816867	0,87522048	3,19285256	2,53181355	-5,45356189	1,77670924	6,07199449
Imagen 67	2,38177694	0,81617724	1,86919979	1,18999592	-1,35E+00	0,50008907	1,43E+00
Imagen 68	2,03540649	0,56226497	0,44797422	0,97917466	-0,70364531	0,55195453	-0,06192338
Imagen 69	2,15415578	0,51313605	0,9438292	1,56417634	-1,64520045	0,632861	1,34618644
Imagen 70	2,19763695	1,18694207	0,56957827	0,66453207	-0,33519076	0,44559994	-0,26727783
Imagen 71	2,25448993	0,85081611	0,8394291	1,26880866	-1,04378161	0,28610931	0,6392269
Imagen 72	2,41150138	1,7832455	0,83203187	0,93031064	-0,85287516	0,64815701	0,02491125
Imagen 73	2,43940539	1,57615219	1,22016588	0,8834067	-0,84993973	0,48756429	0,02512723
Imagen 74	2,41754253	0,53774596	3,19867007	1,5853316	-3,04E+00	0,62552874	2,42203135
Imagen 75	2,38307692	1,48014656	0,84817265	0,43281167	-0,21795743	0,19978688	-0,05028626
Imagen 76	2,05953749	0,6716054	0,31516548	1,26606795	-0,89679185	0,43496922	-0,06295865
Imagen 77	2,04839319	0,76353129	0,35894536	0,83989505	-0,45422322	0,39938265	-0,2117433
Imagen 78	2,43269887	2,82894886	0,72374992	0,381343	0,14329753	0,57368936	-0,14695731
Imagen 79	2,26328865	2,59639562	0,04419543	0,04813827	0,00095843	-0,0197636	-0,00015422
Imagen 80	2,23316544	2,62283975	0,16727009	0,01375057	-5,16E-06	0,00087504	-0,00059904
Imagen 81	2,19797797	2,64464171	0,12207078	0,00310701	3,02E-05	-0,00094918	-1,50E-05
Imagen 82	2,11873024	2,12111256	0,57077236	0,12452818	0,02686641	0,15194184	-0,02208057
Imagen 83	2,43392	2,73734255	1,05220048	0,27518517	0,1102504	0,34169642	-0,11392662
Imagen 84	2,45247701	2,35296614	0,22708371	0,42515078	-0,03225004	0,05373565	-0,13873892
Imagen 85	2,46485261	2,41502096	0,15666081	0,3489038	-0,02125413	-0,1279807	-0,06951618
Imagen 86	2,45223188	2,43752175	0,59322248	1,009915	0,14716884	1,06811013	-0,82974785
Imagen 87	2,40344178	3,40480891	2,89602235	1,45056517	2,84787757	2,36946584	-0,85460145
Imagen 88	2,39954668	3,0529169	2,26292967	1,48437557	2,20781852	1,98802401	-1,70661666
Imagen 89	2,49755102	2,39787666	0,40916592	0,3147567	-0,05853537	0,09287714	-0,10268561
Imagen 90	2,47145062	2,33431365	0,16997857	0,17593687	-2,09E-02	-0,05806035	-1,59E-02
Imagen 91	2,27789756	2,58464125	1,03078328	0,60175322	0,44011554	0,60763128	-0,26756428
Imagen 92	2,35960125	2,88876252	0,6947906	0,55158617	0,34198765	0,85863291	-1,64E-02
			· · · · · · · · · · · · · · · · · · ·				

I 02	2 20065524	2.67474615	0.05011026	0.52921002	0.20072064	0.44600542	0.17126212
Imagen 93	2,30065534	2,67474615	0,95011026	0,52831092	0,38873864	0,44699543	-0,17126212
Imagen 94	2,27901011	2,33534312	0,21462153	0,44800569	0,11653937	0,49042835	-0,09650236
Imagen 95	2,32071006	2,94803496	1,43711463	1,1118776	1,35499372	1,69344463	-0,42686501
Imagen 96	2,70750566	4,55250145	1,53091555	0,99841994	1,2616772	1,89174453	-0,21714252
Imagen 97	2,385728	2,15140619	0,03240394	1,54398999	0,16281513	1,26248794	-0,34956728
Imagen 98	2,68487024	2,3478671	0,02605314	4,30643037	-1,49060997	5,37829299	-0,48302841
Imagen 99	2,64265306	2,62679102	0,53079898	1,14336507	0,58911162	0,24317702	0,65915227
Imagen 100	2,57528268	3,10623372	0,12686021	0,74805128	0,00989246	1,0646673	-0,244143
Imagen 101	2,52908737	2,0059448	0,11188315	3,53836135	1,57165519	4,06980334	-1,84340164
Imagen 102	2,58163063	1,8369766	0,64902356	3,247148	1,2352216	3,40984567	5,22970372
Imagen 103	2,52950053	1,88768554	0,15778329	2,36785583	-0,64430837	2,79368434	1,44162125
Imagen 104	2,64724261	2,10562457	0,36141024	2,19916296	-0,6137337	2,51486535	2,10571546
Imagen 105	2,6823594	2,06105631	0,97024801	3,24095136	2,56609421	2,77028365	6,06024198
Imagen 106	2,68477366	2,32798629	0,1311335	4,12186114	0,7595688	5,27616936	3,25239531
Imagen 107	2,82820478	2,12292966	3,09285033	5,21020571	4,62061665	5,05420118	23,2129962
Imagen 108	2,54635851	2,05341635	0,62536002	1,95784539	-2,01E+00	2,35950746	1,16074499
Imagen 109	2,807168	2,33098728	1,30578682	6,03631746	7,44358941	6,28004329	18,0071302
Imagen 110	2,68828079	2,34655763	0,04217465	5,88146458	1,71013181	7,52204063	2,7008185
Imagen 111	2,56375974	1,94447517	0,5442815	3,93038322	1,62104438	3,76352379	6,34813175
Imagen 112	2,55831766	1,95446634	0,52969404	3,87318004	1,91427034	3,7127248	6,04117376
Imagen 113	2,654848	1,96669997	1,51559156	3,27044195	0,9780599	3,40643972	8,20552004
Imagen 114	2,72781946	2,06579518	3,20339358	2,99653073	3,46304787	2,15956128	9,39309948
Imagen 115	2,69268799	2,04032766	0,85908278	4,44772124	-0,58406181	4,85070991	9,74151452
Imagen 116	2,643776	2,02212952	0,69060228	4,64696857	-6,40759682	5,84838558	6,36526385
Imagen 117	2,81615693	2,00199195	4,41521442	5,54457389	-0,27403304	6,57371219	30,6124556
Imagen 118	2,68507839	2,49471116	1,30731959	1,32797087	-0,93016139	1,44239939	1,70737521
Imagen 119	2,58920738	1,82290008	1,42208342	2,85634496	-1,88471015	2,74336543	6,17897984
Imagen 120	2,5564204	2,81981101	0,13092041	0,73800272	-0,24989231	1,04949537	-0,03323783

Tabla 18. Invariantes recogidos para la pose 3.

IMAGEN	I1	I2	13	I4	15	16	I 7
Imagen 1	3,15894274	0,40003989	0,33695773	2,54776683	1,8855543	-0,03970336	-1,89469708
Imagen 2	2,99807664	0,43292796	0,41378179	1,00566808	-0,2296944	-0,47562065	0,64867488
Imagen 3	2,87668264	0,48164754	0,13157412	1,0402588	-0,1481635	-0,63651835	-0,38156287
Imagen 4	2,73703992	0,28987279	0,03013479	0,72668513	-0,03113928	-0,15652547	0,11351067
Imagen 5	2,93811728	0,60687474	0,20312441	0,79852884	0,10383532	-0,48908639	-0,30854819
Imagen 6	2,91172181	0,42935649	0,07524723	0,6027953	0,09767189	-0,36986026	-9,92E-02
Imagen 7	2,92378698	0,65262742	0,11025993	0,49679997	-7,26E-02	-0,34313494	-0,10132419
Imagen 8	2,87565097	0,62056622	0,02315305	0,49836328	-2,03E-02	-0,37289752	0,04966039
Imagen 9	2,87448188	0,61645514	0,02469974	0,49873577	-0,02086043	-0,37268937	0,05166514
Imagen 10	2,91861496	0,85628236	0,39296816	0,79519591	-0,36894378	-0,50112472	-2,55E-01
Imagen 11	2,94233084	0,86359894	0,40223035	0,82424121	-0,39522273	-0,51389806	-0,26974294
Imagen 12	2,92160421	0,70883451	0,08797273	0,53118358	-0,1040392	-0,43976701	0,07914581
Imagen 13	2,95430498	0,87368184	0,15601096	0,42920509	-0,12231987	-0,40116707	0,02085905
Imagen 14	2,92357659	0,94055035	0,13377019	0,45831777	-0,09130065	-0,35621542	0,01338125
Imagen 15	2,93726751	0,94505114	0,07904041	0,46395361	-0,05933814	-0,2982176	0,0233901
Imagen 16	2,94116343	0,79145998	0,11950714	0,46116878	-0,09001928	-0,36219036	0,05634689
Imagen 17	2,97935373	0,66907266	0,16652067	0,85732439	-0,27292425	-0,49222707	-0,17571084
Imagen 18	2,98179874	0,64302622	0,04878664	1,09748211	-0,29220273	-0,87500093	0,03475541
Imagen 19	2,93664791	0,50617001	0,08607002	0,51474442	-0,05730178	-0,36186738	0,10631854
Imagen 20	2,91240033	0,741716	0,19947333	0,54001137	-0,17174248	-0,46270012	0,10577774
Imagen 21	2,93598338	0,70740843	0,13443051	0,51672752	-0,09934943	-0,42942502	0,11442474
Imagen 22	2,95418294	0,91657734	0,22977904	0,92676271	-0,45929678	-0,85674902	-0,01316635
Imagen 23	2,99949609	0,92343675	0,2245647	0,96270682	-0,45538105	-0,86509354	-0,0652516
Imagen 24	2,92575796	0,76719036	0,10244318	0,38173087	-0,07570069	-0,33429908	0,04043048
Imagen 25	2,98134765	1,00252901	0,70806905	0,94275639	-0,82250004	-0,89922131	-0,09666987
Imagen 26	3,03255788	1,42207385	1,5633875	0,75338322	-0,60407853	-0,13978236	-0,57960506
Imagen 27	3,0114959	1,29307262	1,26015983	0,61927105	-0,54364897	-0,38999401	-0,11244625

Imagen 28	3,07260717	1,44787862	1,58542482	0,90060266	-0,92171031	-0,25253166	-0,56554173
Imagen 29	2,93342675	0,84231823	0,53309951	1,00133274	-0,65313842	-0,57484597	-0,3328345
Imagen 30	2,96961219	1,02989868	0,63422006	0,93122424	-0,71679744	-0,8178549	-2,12E-01
Imagen 31	2,97418843	2,09469821	1,46245485	0,44935108	-0,15545015	-0,64920628	0,27108048
Imagen 32	2,943385	2,10219514	1,29585629	0,29853347	-0,11984336	-0,42829786	0,13902749
Imagen 33	3,13816559	2,16798856	2,16037642	0,74139304	-0,97572569	-0,60288972	0,04670951
Imagen 34	2,96090446	2,10217439	1,30002947	0,67030595	-0,00219344	-0,83326079	0,20478088
Imagen 35	3,16609098	2,05752045	2,69474112	0,83335034	-1,29646035	-0,80658528	0,07990599
Imagen 36	3,14188543	1,97738112	2,50931792	0,79602174	-1,16376068	-0,85106902	0,22000956
Imagen 37	3,10519395	1,96363934	2,66228273	0,81975027	-1,20379688	-0,52738118	-0,22743633
Imagen 38	3,09003066	2,02153439	1,82763502	0,34456486	-0,1418381	-0,4885223	0,22606648
Imagen 39	3,00215972	2,22903364	1,27357672	0,36765122	0,06500387	-0,2748046	-0,09964316
Imagen 40	2,61309917	1,29846403	0,74811348	0,43109556	0,04399266	-0,37062537	0,0435682
Imagen 41	2,6302686	1,23129464	0,74215428	0,38188456	0,044445	-0,32040955	0,03964079
Imagen 42	2,64883006	1,26641266	0,83935292	0,49752981	-0,01251298	-0,48783778	0,11174151
Imagen 43	2,73196322	1,65933314	0,48298844	0,54645944	0,07581275	-0,26947134	-0,13549934
Imagen 44	2,66466942	1,56015687	0,69539618	0,34497915	0,04340774	-0,21964082	-0,06284235
Imagen 45	2,52548578	1,05051324	0,62027524	0,45595172	0,02032055	-0,3706236	0,05226228
Imagen 46	2,4970429	1,43530164	0,27945119	0,54039233	0,11760215	-0,0755549	-0,02301014
Imagen 47	3,16807656	2,59802802	1,76207557	0,54192535	0,02061074	-0,82628149	0,35641158
Imagen 48	3,09554219	3,01791294	1,63619225	0,51873369	0,1149136	-0,33938281	-0,30489757
Imagen 49	2,9185885	2,25091063	0,30274588	0,79260369	0,01022096	0,29477899	-0,38725234
Imagen 50	2,84884298	2,21073249	0,27922395	0,79585616	0,02064289	0,22164119	-0,37049593
Imagen 51	3,16406901	3,42648006	1,16447362	0,70845944	-0,05884597	0,71154104	-0,44020222
Imagen 52	3,10628519	2,98748079	2,2151014	0,29569759	0,06715417	-0,145876	-0,17561755
Imagen 53	3,12052726	3,0730246	1,30017043	0,91106638	0,03729978	0,14577845	-0,93916091
Imagen 54	3,12252216	3,0155295	1,51649862	0,81027274	0,01283223	0,26406336	-0,83128272
Imagen 55	2,74069787	1,44844986	0,87259167	0,84870881	0,07117399	-0,7632151	0,09388946
Imagen 56	2,89120327	2,07464922	0,4412753	0,59349463	0,04344416	0,14329726	-2,86E-01

Imagen 57	3,00586067	2,4634015	1,33380161	0,2799263	4,58E-02	-0,29684746	-1,77E-02
Imagen 58	2,70765831	1,28800274	0,6926748	0,4381374	0,07889666	-0,1592292	-0,12676528
Imagen 59	2,94613064	2,07775714	1,77294461	0,33873673	0,04643199	-0,09145218	-0,21996669
Imagen 60	2,89142177	2,13197799	2,12463079	0,34635132	-0,03912398	-0,48494188	0,17624851
Imagen 61	2,79478837	1,12468026	1,24399763	0,68206652	-6,27E-01	-0,20908368	-6,22E-02
Imagen 62	2,77709469	1,2224439	1,60359114	0,86548096	-0,84083378	0,19025472	-0,7625768
Imagen 63	2,8191625	1,4025231	1,53834702	0,59072058	-0,55656304	-0,19825034	-0,0862383
Imagen 64	2,6923356	1,52161943	1,42321741	0,26322711	-1,26E-01	0,0196323	-1,18E-01
Imagen 65	2,90561473	1,77483029	2,79799997	0,82734796	-0,45984484	0,52337653	-1,33457242
Imagen 66	2,89918566	1,52167628	1,30852068	0,8970928	-0,67311107	0,20971926	-0,82404693
Imagen 67	2,90574149	2,47387907	2,19950373	0,54660678	-4,99E-01	-0,11852689	-3,47E-01
Imagen 68	2,90625	2,47530326	2,20275767	0,54480179	-0,49822833	-0,11881127	-0,3440365
Imagen 69	2,85102162	2,35721935	1,59382126	0,40035556	-0,28496598	-0,18174534	-0,14612628
Imagen 70	2,89320043	2,10321079	1,71732881	0,65517364	-0,69233966	-0,33668286	-0,07756049
Imagen 71	2,7879094	0,82987716	0,46153099	0,73717955	-0,43132785	-0,3277139	0,03485926
Imagen 72	2,83823641	1,40210741	1,96934126	0,97968772	-0,85027943	0,54957228	-1,27446794
Imagen 73	2,87802282	1,43787947	1,71197522	0,72648567	-0,59232639	0,31297572	-0,69875448
Imagen 74	2,85737061	1,43966136	1,69283311	0,89515636	-5,86E-01	0,54914687	-1,09093239
Imagen 75	2,91213085	1,57170427	1,2784226	0,6186377	-0,5356738	-0,00928199	-0,20212844
Imagen 76	2,91464821	1,69170475	1,7479099	0,80250574	-0,65725104	0,42283371	-0,84903332
Imagen 77	2,86824177	1,92198274	0,91435759	0,34014628	-0,1898936	-0,22766754	0,04223174
Imagen 78	2,88665284	1,73892304	1,26642952	0,81763202	-0,77673867	-0,16010507	-0,30958348
Imagen 79	2,96805742	1,92108347	1,69424741	0,53533549	0,02661112	-0,69913769	0,26681995
Imagen 80	2,76530249	1,19619562	1,77902563	0,77254962	-7,62E-01	0,25877821	-0,67647147
Imagen 81	2,83400052	0,7899083	1,36138433	1,19079062	-1,50E+00	0,17369534	-6,78E-01
Imagen 82	3,14623838	1,72946072	1,44639727	0,64297893	-0,61421857	-0,19521249	-0,08900733
Imagen 83	3,12868481	1,04288166	0,92844756	1,11162026	-0,84714587	-0,64782581	0,79741262
Imagen 84	3,0509145	0,60861967	0,98663071	1,73898052	-0,18318723	-1,20503711	2,37476936
Imagen 85	2,69612856	0,46817596	0,10909246	0,80170352	0,10810202	-0,52288866	0,22089897

Imagen 86	3,05401235	0,86335972	0,88280712	1,04912028	-1,04328456	-0,88749515	0,41755515
Imagen 87	3,19356038	1,09369952	1,62209219	0,75087357	-0,80637629	-0,20638804	0,20042866
Imagen 88	3,26512101	1,61958375	1,93918529	0,93970717	-1,0769778	-1,03479184	0,93904079
Imagen 89	3,12042969	0,69979736	1,92158891	1,32274588	-1,25036298	-0,83451136	1,83183768
Imagen 90	2,78364082	0,47670438	0,50797152	1,27246829	4,93E-02	-0,85695388	1,13E+00
Imagen 91	2,58940697	0,54610489	1,29384073	1,16184452	-0,60423508	0,28820896	-1,4496445
Imagen 92	2,74750865	0,36668293	1,85825796	2,24465504	-3,24884409	0,34786422	-3,62E+00
Imagen 93	2,93458219	0,36045956	1,38458936	2,24417774	-4,27591246	-0,31539517	-0,21848466
Imagen 94	2,9248283	0,26561656	1,84809537	2,4131352	-5,37103348	-0,47507794	0,88494286
Imagen 95	3,0836805	0,40003972	1,91542452	2,72751881	-6,3857916	-0,23370375	-2,34152651
Imagen 96	3,05407223	0,67645393	1,94657416	2,40894025	-3,83626868	-0,29105277	-4,11673788
Imagen 97	3,05010381	0,7320089	2,23724583	3,67542407	-4,48947981	0,88118938	-10,8798246
Imagen 98	2,82834186	0,62438234	0,21350375	0,61683658	-0,20291408	-0,17453678	-0,13128519
Imagen 99	3,09910365	1,0953999	2,49133278	1,94719951	-2,1989825	0,10559985	-3,94939981
Imagen 100	2,88116606	0,68503178	1,37872099	1,21639638	-1,41781385	-0,12073	-0,91507452
Imagen 101	2,69345158	0,28335362	1,15448051	1,04800265	-0,52589417	0,38427809	-0,92747198
Imagen 102	2,65019722	0,34815256	0,9410904	1,43351361	-1,2049191	0,28574198	-1,45001027
Imagen 103	3,04831111	0,17211504	1,84823078	2,50304566	-3,68280688	-0,72936379	3,92579786
Imagen 104	2,89642909	0,41947972	1,24627186	1,75631396	-2,47457617	0,29100869	-1,58123899
Imagen 105	3,15301906	0,353335	2,24940278	2,14418494	-4,80302379	-0,09317247	-1,03926032
Imagen 106	2,72223268	0,27366132	1,76146858	2,21449587	-4,64728562	-0,57598717	0,27644987
Imagen 107	3,01244537	0,30070854	2,34539664	1,37999968	-2,42821587	-0,31929268	0,72333159
Imagen 108	3,04818659	0,43064844	1,89614943	2,0579509	-2,75E+00	-1,06961891	2,99877217
Imagen 109	3,15066431	0,33857522	2,99854751	1,10044383	-1,07130405	-0,3422674	1,77049984
Imagen 110	3,09777778	0,79110779	2,7159861	0,99384064	-1,48998173	-0,55624174	0,82733968
Imagen 111	3,04260021	0,80027274	3,29948424	0,83942774	-1,19690537	-0,40939209	0,75164356
Imagen 112	3,03957031	0,93406846	2,93931944	1,40986598	-2,85667674	-0,51114904	0,28245698
Imagen 113	3,14349467	0,85044948	3,14003959	1,87664501	-4,58925605	-0,37486589	-0,21055454
Imagen 114	3,38403181	2,27373131	5,07445502	0,34595801	0,05566396	-0,51815304	0,48025725

Imagen 115	3,5289893	2,00558073	8,73166182	0,75498053	-1,80211239	-0,2512976	0,6188234
Imagen 116	3,55589667	2,227824	5,22002758	1,27256391	-3,20306885	-0,51609595	0,70547418
Imagen 117	3,75167075	1,29371912	12,3862507	3,76893125	-19,9545703	2,39125363	-14,9031628
Imagen 118	3,63299001	1,46849937	9,62425351	2,35465984	-11,0703201	0,48688657	-2,79501502
Imagen 119	3,26497719	0,40480776	5,76002942	2,7549617	-10,8351014	-0,97323757	2,60915715
Imagen 120	3,17653559	1,11624392	2,06586824	3,4650596	-6,32751295	0,97846712	-8,02112276

Tabla 19. Invariantes recogidos para la pose 4.

IMAGEN	I1	12	13	I 4	15	16	17
Imagen 1	8,42280301	68,9385159	8,84941723	4,8874767	34,1530698	38,3884826	-3,4447485
Imagen 2	8,30666115	66,4777901	46,0331965	32,7355611	1275,77856	260,260121	60,6752659
Imagen 3	8,75521511	74,1425544	30,6242859	21,7946745	563,029296	185,848199	8,16231265
Imagen 4	8,61824778	72,0121876	14,8769595	8,92799233	102,915779	74,8002743	4,53999556
Imagen 5	8,50472222	70,0833357	3,42215551	0,94425264	1,69550533	7,8598706	0,08285094
Imagen 6	8,44696045	69,1705933	13,2565081	8,33390554	87,9960235	69,312077	-2,27E-01
Imagen 7	8,43121338	68,9169308	12,9117805	8,03302932	8,21E+01	66,681466	0,11144783
Imagen 8	8,81153943	74,9973131	11,2858575	3,08396961	1,92E+01	17,0025611	7,73268677
Imagen 9	8,33997284	67,019193	30,9905624	22,1561109	581,041995	180,574446	5,94254896
Imagen 10	8,51558421	70,0203991	38,1754413	28,7935124	957,132137	240,583061	4,65E-01
Imagen 11	8,43992859	68,6494284	35,1722996	25,9913067	791,09584	215,35084	-8,76845788
Imagen 12	8,30642322	66,5624518	54,2692927	43,8747401	2154,48998	357,946028	-16,8536356
Imagen 13	8,57132653	70,9339966	41,4800594	31,3963399	1133,23281	262,763454	13,6106378
Imagen 14	8,31775656	66,6256224	56,0086782	44,2981109	2209,23946	360,598333	2,79981617
Imagen 15	8,28734378	66,2138049	44,8141382	34,4369511	1355,06192	279,496513	1,92915881
Imagen 16	8,3593533	67,2564349	40,0464285	29,2754299	1002,49819	238,431074	12,4781063
Imagen 17	8,31401841	66,7313422	30,8249823	22,9603191	613,848957	187,492845	-4,53574899
Imagen 18	8,41921246	68,4458745	38,5994654	28,6791986	954,034437	235,011991	18,0096351
Imagen 19	8,7666941	73,8132245	36,814048	24,5212365	736,960667	207,491595	19,3803124
Imagen 20	8,74890137	73,1339239	19,6774097	7,45139004	93,6178513	55,3478061	22,3015569

Imagen 21	8,44361724	67,7084301	13,6956257	4,38178583	35,7793085	33,3552974	-7,46876474
Imagen 22	9,00704	75,7701524	30,3430485	9,88245056	172,749995	80,4465209	35,7640543
Imagen 23	8,98686264	75,9764867	17,8278404	2,88693339	19,7682546	13,9689214	12,9149488
Imagen 24	8,60131944	70,0797303	15,1602164	4,91255086	43,2725726	40,608734	-4,49019335
Imagen 25	8,83932818	74,981646	4,66045169	0,3788677	0,32138359	0,62837263	0,38859276
Imagen 26	8,87944067	74,2171212	32,0730333	11,5923932	229,457601	88,8269211	54,4595713
Imagen 27	8,47184717	68,4063235	11,7895694	4,00912403	27,6566602	32,1885308	4,18395256
Imagen 28	8,38828413	67,7517527	10,4033951	4,2193217	29,2907245	33,3634567	-3,68944593
Imagen 29	8,75469355	72,7532896	23,2618507	9,84354028	148,702986	83,4034535	12,383534
Imagen 30	8,2825	65,5713577	5,10902468	0,84693028	1,73843408	6,56500321	4,86E-01
Imagen 31	7,57674889	55,4191008	46,3647592	38,1070844	1626,26167	282,47055	-24,4531542
Imagen 32	7,33205104	51,5235545	60,1268552	49,9272581	2747,21375	358,343766	-11,8185309
Imagen 33	7,35038667	51,9321942	59,0388338	50,2874518	2754,90984	362,350345	-8,68250494
Imagen 34	6,88875556	45,3295607	70,6522155	58,040734	3735,74413	389,943964	41,7542546
Imagen 35	7,37407575	52,0255697	58,236612	44,2895157	2251,7631	316,576731	58,0806135
Imagen 36	8,19369501	64,2742026	37,7274273	25,9872621	823,541215	208,330878	0,74773602
Imagen 37	8,08455432	62,1229253	56,8791025	38,9732744	1834,38622	303,397072	70,8954645
Imagen 38	8,25568182	64,8933541	52,751858	36,45555	1607,90616	293,048819	24,0199406
Imagen 39	8,5176621	68,6480569	49,6936296	31,4334228	1244,70965	256,972975	31,8959328
Imagen 40	8,48006237	68,7038972	54,1436378	35,1470082	1530,83493	280,220477	93,1825285
Imagen 41	8,73151974	72,9184997	60,2367259	34,5218157	1581,09298	267,282179	204,239567
Imagen 42	8,65905365	71,9919817	42,4403569	24,9759592	814,130409	196,949055	84,7266312
Imagen 43	8,54400336	70,1157572	63,80049	48,5104603	2712,63129	400,357012	35,5711227
Imagen 44	7,91142012	60,3454518	48,6675962	38,0978872	1649,58563	294,760223	12,8963492
Imagen 45	7,98895264	61,350414	33,288665	22,8668483	631,643384	177,227858	18,3818222
Imagen 46	7,92117385	60,2884631	66,1645802	52,3279633	3099,63136	403,711109	26,4846035
Imagen 47	8,06331099	62,3754029	51,1432849	37,7816512	1668,42949	295,559148	22,8972792
Imagen 48	7,10037691	48,1492319	61,5471122	48,657838	2679,21428	336,780273	26,9728447
Imagen 49	7,25190474	50,5068719	61,4279314	49,9050654	2790,27807	354,406396	23,699002

Imagen 50	6,97879482	46,6823182	60,9496912	49,827624	2807,69607	340,016273	-2,29602552
Imagen 51	7,01002941	47,3174132	70,1890348	60,0931605	3957,25929	413,306377	24,027826
Imagen 52	7,02147658	47,4257168	69,7110394	59,2591674	3861,00889	408,014372	22,2965282
Imagen 53	7,12468299	48,8495115	56,7403759	46,0929469	2364,46192	319,444969	52,0237848
Imagen 54	7,23133891	50,3270431	63,8989537	52,2909789	3034,92333	368,487564	64,4127616
Imagen 55	7,06886846	47,9009852	63,2464326	49,1439659	2738,27821	333,943628	113,561081
Imagen 56	7,18648305	48,9762578	78,2739197	58,7666251	3986,30363	402,28991	1,52E+02
Imagen 57	6,94049967	45,8203658	84,1275071	67,429106	5,09E+03	450,876209	1,26E+02
Imagen 58	7,27346939	50,7890809	66,0212761	53,786223	3220,61213	381,709024	41,7889889
Imagen 59	8,41420317	68,665337	25,6274194	18,6722976	412,792685	154,55631	0,49796369
Imagen 60	8,53145964	70,5047657	16,1126549	10,2397704	134,236879	85,9677771	-1,86664994
Imagen 61	6,3675156	38,3179683	93,8207198	77,0620497	6,59E+03	471,707959	1,23E+02
Imagen 62	6,32158571	37,7329615	85,5440009	71,2901278	5644,80705	436,940741	34,3739918
Imagen 63	6,48862664	39,7797856	71,2605456	57,8969129	3784,3819	364,917903	9,68759469
Imagen 64	6,69535842	42,5441576	65,130095	50,7063312	2,92E+03	326,796942	7,40E+01
Imagen 65	6,58071111	41,0766119	99,5536714	85,2391258	7990,26308	545,083955	54,2351023
Imagen 66	6,91268045	45,5183725	65,769311	52,6752849	3124,80241	353,144876	52,6492743
Imagen 67	6,94192397	46,0082755	58,4446344	47,7013718	2,56E+03	323,046977	1,75E+01
Imagen 68	6,99136779	46,8001103	56,5189914	45,3884338	2304,49515	307,359042	54,5474557
Imagen 69	6,90590212	45,7331062	82,2045608	71,4507823	5552,7811	482,274297	41,3552468
Imagen 70	6,98609409	47,0124264	54,4294589	46,2687332	2347,05504	315,952749	27,0667184
Imagen 71	6,96536843	46,7021797	54,9744463	46,4316611	2367,27222	315,499567	33,1657767
Imagen 72	6,93363107	46,2099429	38,6704439	31,2516123	1113,14861	212,440192	14,6739469
Imagen 73	6,90971021	45,8214505	46,034453	37,0023566	1541,62308	249,131278	38,7456899
Imagen 74	6,97458517	46,6743914	78,1228593	65,281953	4,68E+03	438,947599	120,758507
Imagen 75	7,541568	54,7298199	35,6778354	20,7831673	567,777557	135,992939	90,7817392
Imagen 76	8,21097231	64,8049523	11,8048642	3,93423139	26,8520148	22,24718	11,715517
Imagen 77	7,5486929	55,3715183	27,7232187	19,5981419	457,569384	136,316116	38,2885581
Imagen 78	7,58111111	55,427217	15,8607066	9,97628061	124,83509	71,2357106	12,8958701

Imagen 79	7,96349112	60,4447997	58,8304303	38,4484002	1820,67038	280,361892	177,603696
Imagen 80	7,94966191	60,5864913	18,7572605	10,6611311	1,50E+02	80,1701988	14,9778535
Imagen 81	6,89898491	45,3573404	56,4928577	40,8796315	1,96E+03	266,545146	1,26E+02
Imagen 82	6,90793077	45,6602338	56,5165951	44,5092773	2248,60221	299,123188	56,1379975
Imagen 83	7,86985382	58,8282371	48,126596	30,2133047	1148,76864	224,877668	88,579804
Imagen 84	7,85002557	58,7851245	35,2710955	21,4063178	586,446151	159,517127	46,1222024
Imagen 85	7,77259215	57,3533013	23,3161111	12,3857353	217,237673	93,6648431	-1,4896739
Imagen 86	7,81510702	57,9839966	36,8783318	22,8683431	673,4031	173,927352	14,802626
Imagen 87	8,10076389	61,8200612	30,3830845	15,5609252	345,80478	122,287723	3,07617528
Imagen 88	6,7975454	43,4619822	60,3206756	43,9139846	2292,66588	288,869253	33,4298405
Imagen 89	6,95280943	45,2405124	63,3648736	43,1967777	2266,26392	286,616873	89,3256599
Imagen 90	7,71097255	56,5795986	44,3157531	27,3383364	9,49E+02	196,996678	7,54E+01
Imagen 91	8,47820794	69,7651869	9,32263769	1,08819391	-0,40348863	-8,23399849	-0,27560683
Imagen 92	8,39836714	68,2142851	7,93790366	1,05749066	-0,37399738	-6,6480704	-1,98E+00
Imagen 93	8,54583482	70,6896514	9,74640299	3,83754661	22,1701372	15,1046097	6,03480865
Imagen 94	8,43129227	68,9498341	10,3845231	2,41299816	7,11259848	0,23382344	-1,06741232
Imagen 95	8,31845576	67,1742054	10,430696	2,32912047	6,29375098	-0,61786399	-1,42798632
Imagen 96	8,07750994	63,6679948	13,5373595	9,92801289	116,285275	77,8301862	5,28414927
Imagen 97	8,5248309	70,4826409	8,50680567	2,36126938	7,86861644	3,0188985	0,85373206
Imagen 98	8,34589817	67,8745795	25,0632928	18,1267292	388,117851	146,18678	22,5411621
Imagen 99	8,26525128	66,0705323	23,8589009	15,7287793	306,332015	125,567921	16,7504338
Imagen 100	8,33359226	67,0671932	15,1805637	8,719149	102,190554	71,1261847	3,64335756
Imagen 101	8,0790782	62,94572	18,2235611	11,1454611	170,811706	87,044585	-2,85074599
Imagen 102	8,2594119	65,4314173	43,167699	31,0060813	1152,91012	248,752119	18,657434
Imagen 103	6,81967864	44,2742699	66,0048193	52,7858942	3154,08144	350,537839	49,808593
Imagen 104	6,65964335	42,72236	50,0156346	41,5417397	1988,20547	268,562859	2,0508036
Imagen 105	6,60144266	41,0605139	95,9922655	78,6051168	6957,23192	502,528479	56,3972701
Imagen 106	7,10307708	47,1287121	58,6428625	35,5368163	1615,19718	235,987095	151,599558
Imagen 107	6,9966585	46,4997558	63,3889606	49,225345	2821,65483	335,632487	8,42350311

Imagen 108	6,93313609	45,8886334	50,7285614	38,4837087	1,77E+03	259,804996	8,55231635
Imagen 109	6,86907117	44,9291897	54,4248648	41,9137851	2023,44637	280,586589	50,613531
Imagen 110	6,8960355	45,478669	50,0511154	37,9333091	1730,96415	253,953456	7,92360452
Imagen 111	6,78917313	44,2338053	50,9343952	39,9960275	1919,7583	261,025236	2,41567651
Imagen 112	6,60353892	41,9390285	48,0820313	39,0879936	1789,1009	250,132683	6,58185908
Imagen 113	6,77771769	43,9124988	35,1468069	25,514098	769,798204	168,458203	31,9615002
Imagen 114	7,83457194	59,551944	35,9239086	28,4067037	961,151453	217,379601	5,45698964
Imagen 115	7,88227147	60,5123253	23,150882	18,8612132	413,651988	146,329108	4,26777589
Imagen 116	7,89672508	60,3631392	22,4190317	15,9971847	308,422526	123,950726	11,5421857
Imagen 117	7,75325534	58,5766967	18,572156	14,1655174	231,811434	107,419321	9,79666328
Imagen 118	7,778496	59,0639145	40,0767373	34,4000161	1291,60765	261,977297	32,3820652
Imagen 119	7,92623438	61,2873593	26,8047685	20,2298531	470,615344	152,430188	26,2894791
Imagen 120	7,55531519	55,5236559	30,6961794	26,0421537	752,536255	192,854179	13,9698528

Tabla 20. Invariantes recogidos para la pose 5.

ANEXO B: Gráfica de los invariantes

Gráficas de los invariantes para las distintas poses como se indica en el apartado 4. Se representan los invariantes entre sí de dos en dos.

Invariantes 1 y 3: Figura 115

Invariantes 1 y 4: Figura 116

Invariantes 1 y 5: Figura 117

Invariantes 1 y 6: Figura 118

Invariantes 1 y 7: Figura 119

Invariantes 2 y 3: Figura 120

Invariantes 2 y 4: Figura 121

Invariantes 2 y 5: Figura 122

Invariantes 2 y 6: Figura 123

Invariantes 2 y 7: Figura 124

Invariantes 3 y 4: Figura 125

Invariantes 3 y 5: Figura 126

Invariantes 3 y 6: Figura 127

Invariantes 3 y 7: Figura 128

Invariantes 4 y 5: Figura 129

Invariantes 4 y 6: Figura 130

Invariantes 4 y 7: Figura 131

Invariantes 5 y 6: Figura 132

Invariantes 5 y 7: Figura 133

Invariantes 6 y 7: Figura 134

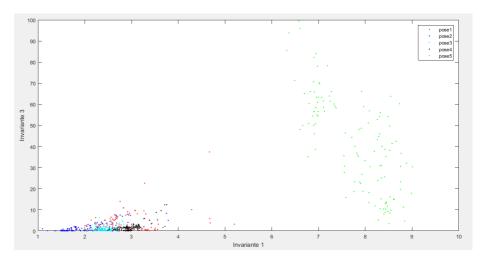


Figura 115. Invariantes 1 y 3.

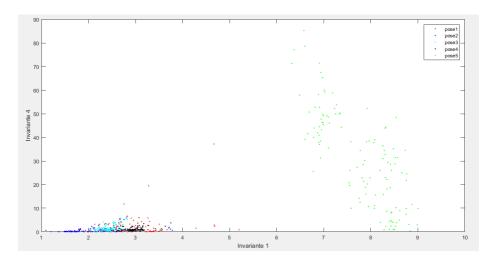


Figura 116. Invariantes 1 y 4.

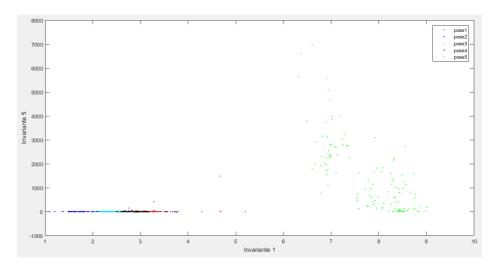


Figura 117. Invariantes 1 y 5.

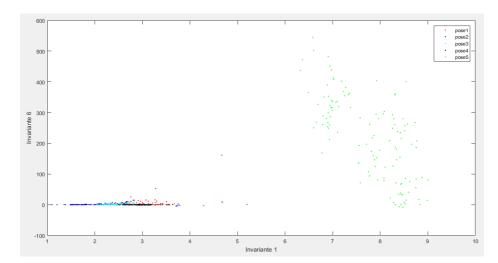


Figura 118. Invariantes 1 y 6.

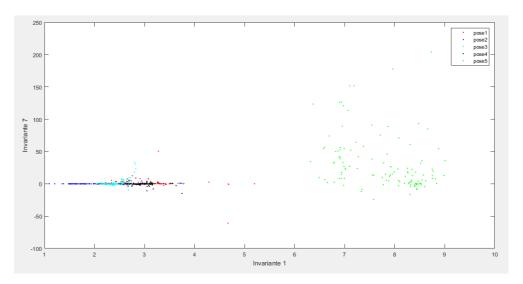


Figura 119. Invariantes 1 y 7.

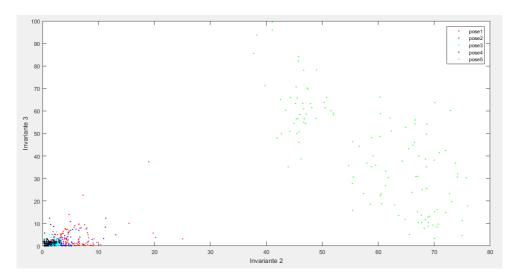


Figura 120. Invariantes 2 y 3.

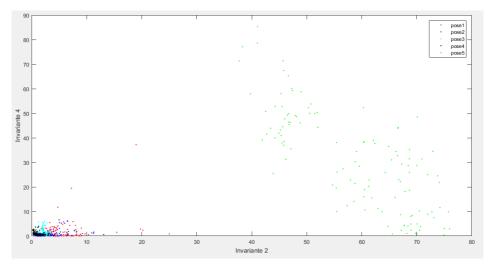


Figura 121. Invariantes 2 y 4.

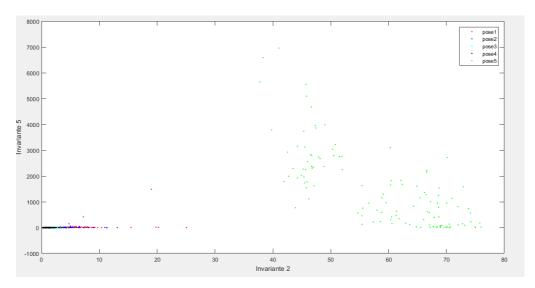


Figura 122. Invariantes 2 y 5.

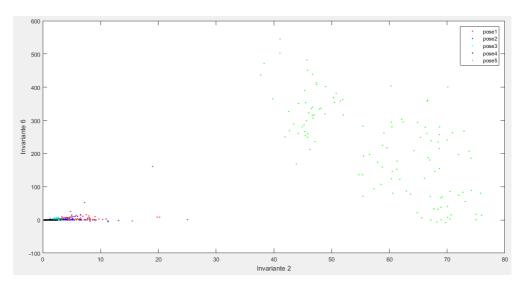


Figura 123. Invariantes 2 y 6.

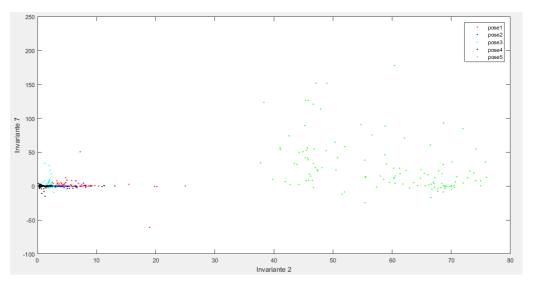


Figura 124. Invariantes 2 y 7.

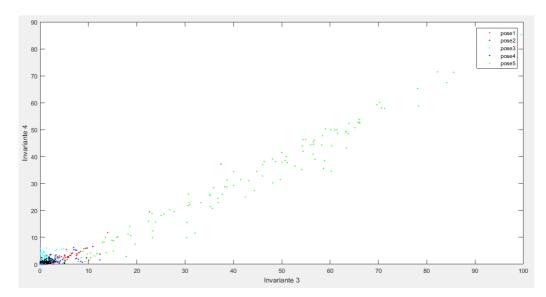


Figura 125. Invariantes 3 y 4.

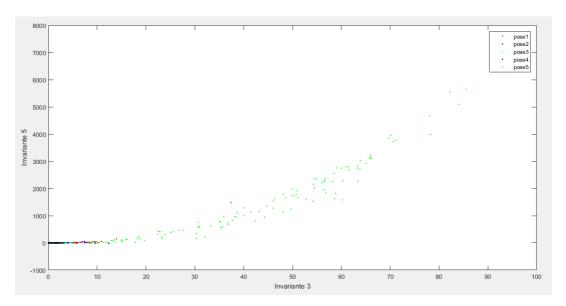


Figura 126. Invariantes 3 y 5.

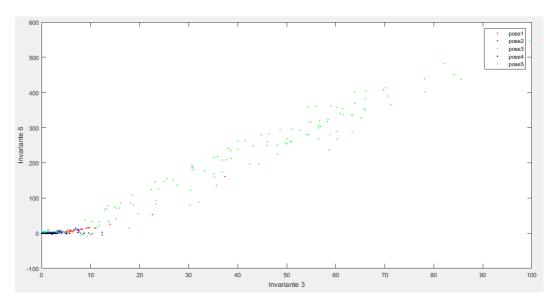


Figura 127. Invariantes 3 y 6.

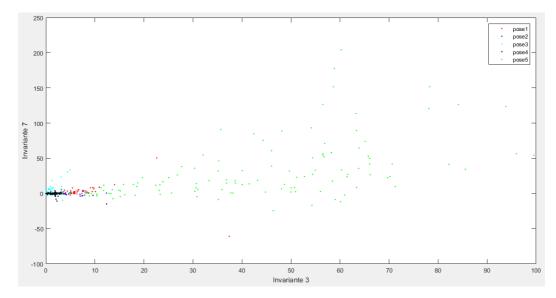


Figura 128. Invariantes 3 y 7.

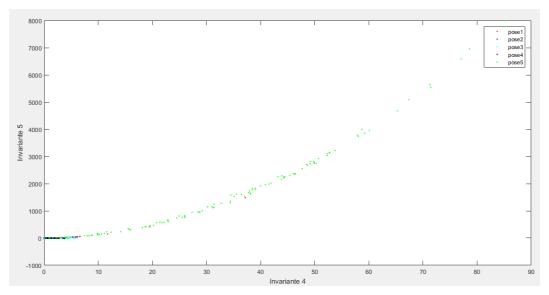


Figura 129. Invariantes 4 y 5.

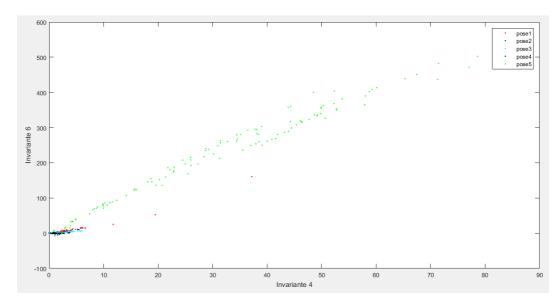


Figura 130. Invariantes 4 y 6.

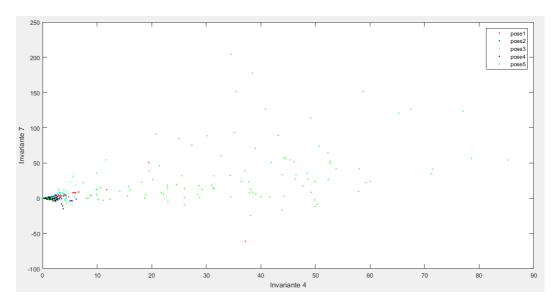


Figura 131. Invariantes 4 y 7.

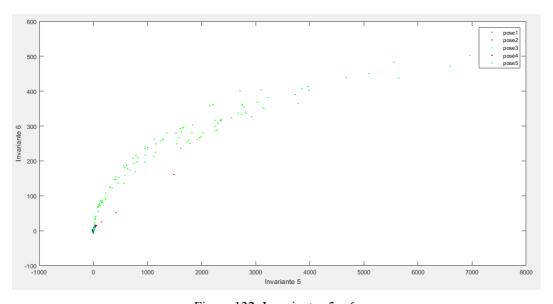


Figura 132. Invariantes 5 y 6.

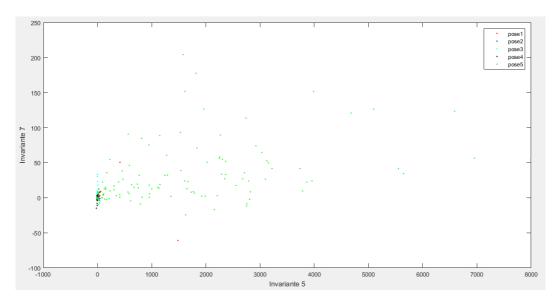


Figura 133. Invariantes 5 y 7.

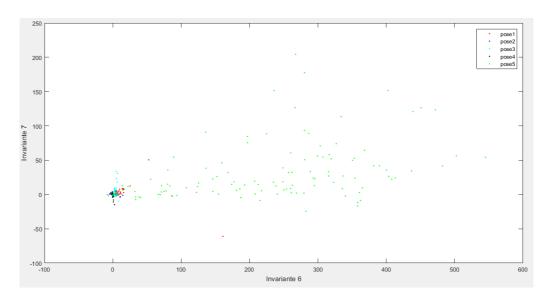


Figura 134. Invariantes 6 y 7.

9 REFERENCIAS

- [1] MODELOS DE INTERACCIÓN LATERAL EN COMPUTACIÓN ACUMULATIVA PARA LA OBTENCIÓN DE SILUETAS (Antonio Fernández Caballero) Available: http://www.dsi.uclm.es/personal/AntonioFdez/download/papers/phd/PhD Antonio Fernandez Caballero.pdf. [Accessed: 16-02-2018].
- [2] Tratamiento de imágenes mediante Matlab (Universidad de Navarra) [Online]. Available: https://proyectojefer.wikispaces.com/file/view/Identificacion+de+colores+y+objetos.pdf. [Accessed: 16-02-2018].
- [3] Imágenes binarias (Universidad de Valladolid) [Online]. Available: http://www.librovision.eii.uva.es/pdf/cap4.pdf [Accessed: 18-02-2018].
- [4] Ejemplo práctico: borde y relleno de imágenes binarias utilizando operaciones morfológicas (Pablo Roncagliolo B.) [Online]. Available: http://www2.elo.utfsm.cl/~elo328/PDI12 EjemploMorfoBordeRelleno.pdf [Accessed: 18-02-2018].
- [5] Introducción al Procesamiento de imágenes con Matlab. (Andrea Manna) [Online]. Available: https://www.dc.uba.ar/materias/t1/2016/c1/archivos/2016/introimagenes [Accessed: 18-02-2018].
- [6] Redes Neuronales: una visión superficial (Fernando Sancho Caparrini) [Online]. Available: http://www.cs.us.es/~fsancho/?e=72 [Accessed: 07-04-2018].
- [7] La predicción del dato: Redes Neuronales Artificiales (Sergio Ruiz) [Online]. Available: http://www.analiticaweb.es/la-prediccion-del-dato-redes-neuronales-artificiales/ [Accessed: 07-04-2018].
- [8] Redes Neuronales (Universidad de Salamanca) [Online]. Available: http://avellano.fis.usal.es/~lalonso/RNA/index.htm [Accessed: 07-04-2018].
- [9] Extracción de características (Gonzalez & Woods, Digital Image Processing, cap. 8) [Online]. Available: http://www.sc.ehu.es/ccwgrrom/transparencias/pdf-vision-1-transparencias/capitulo-8.pdf [Accessed: 08-04-2018].
- [10] Clasificación de objetos rígidos a partir de imágenes digitales empleando los momentos invariantes de Hu (Cuernavaca Morelos, México)) [Online]. Available: https://www.researchgate.net/publication/236898970 Clasificacion de objetos rigidos a partir de imagene s digitales empleando los momentos invariantes de Hu [Accessed: 14-03-2018].
- [11] Reconocimiento de objetos en fotografías (Dr. Wilfrido Gómez Flores) [Online]. Available: http://www.tamps.cinvestav.mx/~wgomez/toptamps/tutorial.pdf [Accessed: 09-03-2018].
- [12] Trabajo de momentos (Universidad de Sevilla) [Online]. Available: http://grupo.us.es/gtocoma/pid/pid10/doc.htm [Accessed: 11-03-2018].
- [13] Comparación de métodos de adelgazamiento de imágenes (Prof. Ing. Marisa R. De Giusti1 A.C. Maria Marta Vila2 , A.C. Gonzalo Luján Villarreal3) [Online]. Available: http://sedici.unlp.edu.ar/bitstream/handle/10915/5534/Documento_completo.pdf?sequence=1 [Accessed: 22-02-2018].
- [14] Algoritmo de Zhang-Suen (Luis Flores Soberón) [Online]. Available: http://www.tecnohobby.net/ppal/index.php/vision-computacional/topicos-generales/2-algoritmo-de-zhang-suen [Accessed: 29-02-2018].
- [15] Obtener esqueleto de imagen binaria (http://acodigo.blogspot.com.es) [Online]. Available: http://acodigo.blogspot.com.es/2018/01/obtener-esqueleto-de-imagen-binaria.html [Accessed: 20-02-2018].
- [16] Inteligencia Artificial.Redes Neuronales y Aplicaciones. (Alexandra Martínez Bowen) [Online]. Available: http://www.it.uc3m.es/jvillena/irc/practicas/10-11/06mem.pdf [Accessed: 10-04-2018].
- [17] Redes Neuronales Artificiales (Fernando Izaurieta y Carlos Saavedra) [Online]. Available: http://www.uta.cl/charlas/volumen16/Indice/Ch-csaavedra.pdf [Accessed: 10-04-2018].
- [18] Fundamentos de Redes Neuronales Artificailes (Felipe Lara Rosano) [Online]. Available:

http://conceptos.sociales.unam.mx/conceptos final/598trabajo.pdf [Accessed: 09-04-2018].

- [19] Redes Neuronales Artificiales aplicadas a la Predicción del Precio del Oro[Online]. Available: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-07642016000500016 [Accessed: 12-04-2018].
- [20] Introducción al reconocimiento de objetos (Universidad de Sevilla) [Online]. Available: http://grupo.us.es/gtocoma/pid/tema7.pdf [Accessed: 24-03-2018].
- [21] Detección y clasificación de objetos dentro de un salón de clases empleando técnicas de procesamiento digital de imágenes (Elías García Santillán) [Online]. Available: http://newton.azc.uam.mx/mcc/01 esp/11 tesis/tesis/terminada/080513 garcia santillan elias.pdf [Accessed: 02-04-2018].
- [22] Marketing data collection From Face images using neural networks (M. Nakano, F. Yasukata y M. Fukumi) [Online]. Available: https://ieeexplore.ieee.org/document/1502242/ [Accessed: 06-02-2018].
- [23] Hit-or-miss transform (Norwegian University of Science and Technology) [Online]. Available: http://www.cs.tau.ac.il/~turkel/notes/hit-or-miss.pdf [Accessed: 23-02-2018].