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Abstract. Various aspects of shape phase transitions in even as well as odd systems are
reviewed. Firstly, the case of an odd j = 3/2 particle coupled to an even-even boson core that
undergoes a transition from spherical limit (U(5)) to the y-unstable limit (O(6)) is illustrated.
Energy spectrum and electromagnetic transitions, in correspondence of the critical point, display
behaviors qualitatively similar to those of the even core and they agree qualitatively with
the model based on the E(5/4) boson-fermion symmetry. Secondly, we describe a study on
two-particle transfer reactions: the evolution of the transfer spectroscopic intensities within
the interacting boson model is analyzed as a possible signature of shape phase transitions.
In correspondence to the critical points characterizing the phase transitions, the two-particle
transfer matrix elements to both ground and excited 07 states display a rapid discontinuity
that might help validating the experimental search for the critical point.

1. Introduction

We will report in the following on various results obtained by our collaboration during recent
years [1, 2, 3] on the theme of shape phase transitions in even and odd systems. In particular we
will concentrate on i) a brief introduction to shape phase transitions in the collective model and
in the IBM , ii) the analysis of the y-unstable case in odd systems and iii) two-particle transfer
intensities and other signatures of the shape phase transition.

The collective model of Bohr and Mottelson treats quantistically the collective properties
of nucleons in a nucleus as vibrations and rotations of an ellipsoidal surface (namely the
quadrupole d.o.f.) within a single formalism that is based on a Hamiltonian operator (Bohr
hamiltonian) expressed in the deformation coordinates 8 and . The Bohr hamiltonian can be
solved analytically in a few cases (reviewed in Ref. [5] ) depending on the potential term V' (3,7)
and analytic solutions correspond to algebraic structures that have their common origin in the
U(6) underlying symmetry of the collective model. In particular the y-independent harmonic
oscillator potential generates a solution that has U(5) has its underlying dynamical symmetry,
while the y-unstable rotor has O(6). A third case, the axial symmetric rotor is associated with
SU(3). Each of the three mentioned cases is also associated with certain spectral properties
(energy spectra, electromagnetic transitions, etc.) and with a given ellipsoidal shape that
characterize a given phase. Although good examples of each paradigm can be found, most
nuclei do not strictly match these ideal limits, but sit somewhere in the middle between them,
therefore people has studied transitions from one phase to another. Critical point for this shape
phase transitions can be found.
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Figure 1. Evolution of the potential V(3) along the spherical to y-unstable shape phase
transition, passing through the critical point 8* potential. This is approximated with a square
well that is analytically solvable and gives a novel dynamical symmetry, E(5) that is associated
with an energy spectrum with precise rules.

Recently three papers of Iachello introduced the so-called critical point symmetries in the
framework of the collective model for even nuclei. Namely he has identified the path from one
phase to another with a change in the parameters of the potential and he has approximated the
potential at the critical point with a solvable one that can be associated with a new algebraic
structure. As an example we discuss the E(5) case (see figure 1): in the transition from the U(5)
spherical limit (harmonic oscillator) to the O(6) y—unstable limit (champagne bottle or mexican
hat potential) one sees that the evolution of the potential goes from a pure 3?2 to a combination
of A2 and f8* that has a deformed minimum. At the critical point of this second order transition
the potential is a pure $* that is not analytically solvable. This potential is approximated with
a square well that is analytically solvable and is associated with a E(5) structure, the Euclidean
group in five dimensions.

2. Odd-even phase transitions
Until now most of the work has been carried out for even-even nuclei, using either the Bohr
Hamiltonian and the surface collective variables or algebraic approaches like the interacting
boson model. Review articles with references to the original works can be found in Refs. [6, 7, 8].
In the case of odd-even nuclei, with an odd particle coupled to an even core undergoing a phase
transition, attention has been put on the shape transition from spherical to deformed gamma-
unstable shapes. In correspondence to the critical point in the even core two new boson-fermion
critical point symmetries have been proposed, in the case of an odd particle moving in a single
j = 3/2 shell (E(5/4) symmetry [9]) or in the j = 1/2,3/2,5/2 shells (E(5/12) symmetry [10]).
Characteristic sequences of levels and ratios of electromagnetic transitions are predicted in both
cases.

We consider here, within the Interacting Boson Fermion Model, the particular case of an odd
j = 3/2 particle coupled to an even-even boson core that undergoes a transition from spherical
U(5) to y-unstable O(6) situation. The choice of the j = 3/2 orbital preserves in the odd case
the condition of gamma-instability of the system.

Within the IBM this can be obtained, for example, from the Hamiltonian of the even-even
part, as

Qs , (1)

which produces, varying the parameter z from 1 to 0, a transition between the two extreme
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situations characteristic of U(5) and O(6) symmetries with a second order phase transition. The
operators appearing in the Hamiltonian above are given by

Ay = Y. did, (2)
w
Qp = (s'xd+d x5? | 3)

and N is the total number of bosons. For any value of x this Hamiltonian maintains the typical
degeneracies of the O(5) symmetry. At the critical point, the energy surface acquires a 3*
behaviour, which is approximated by an infinite square well in the E(5) critical point symmetry
[4] within the framework of the collective Bohr Hamiltonian.

The odd-even system is described by

H = Hp+ Hp + Vg, (4)

where the term Vpr couples the bosonic and fermionic parts, namely

11—z

Ver = -2 N Q3B - dr , (5)

where Qp (taken of the form given in Eq.(3)) and §r = (ag /o X3 /2)(2) are the boson and fermion
quadrupole operators, respectively.
The part Vgr, has to be diagonalized and its eigenvalues, doubly degenerate, turn out to be
~v-independent,
(1—=)p

TR ©)

In other words, the addition of the odd particle does not destroy the y-instability of the system,
giving rise to energy surfaces for the different odd intrinsic states that are still y-independent.

The resulting energy spectra in the odd system are shown in the right panel of figure 3 as
a function of the control parameter 1 — z. The total number of bosons, N, has been assumed
to be equal to 7. For a better comparison, we also show in the left panel of the figure the
corresponding evolution of the spectrum in the even core.

The level evolution in the odd case shows a behaviour qualitatively similar to that of the even
case. The group structure of Spin®F (5) with respect to O(5) simply leads to a richer pattern
for the fermion case and slightly different ratios for the energy levels.

The position of the 3/2 state (or better the (1 = 1/2,79 = 1/2)j = 3/2 state ) is the key
element to characterize the particular situation and its position along the transitional path. The
position of this state plays the same role as the key position of the first excited 0T state in even
nuclei.

Transition probabilities, state by state, for the odd nucleus at the critical point situation are
shown in figure 2. It can be observed that E2 transitions are stronger between states with the
same ¢ value and A7, = 1. Transitions between states pertaining to families with different ¢
are one or two orders of magnitude smaller. Transitions between states with the same ¢ and 7y
values, but different spins, corresponding to the same multiplets are also one or two orders of
magnitude smaller than the ones between different multiplets in the same band.

To summarize, we have considered, within the Interacting Boson Fermion Model, the coupling
of an odd j = 3/2 particle to a boson core that undergoes a transition from spherical U(5) to
v-unstable O(6) character. The particular choice of the Hamiltonian and of the j = 3/2 orbital
preserves in the odd case the condition of y—instability of the system, and it is reflected in the
preservation of the degeneracies associated with the Spin®F (5) symmetry. As a consequence,
the energy spectrum and the electromagnetic transitions for the odd nucleus with a critical core
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Figure 2. Energy levels (normalized to the energy of the first excited state) for the even and
odd systems are displayed as a function of the parameter (1 — z) for the boson (1) and boson-
fermion (4) Hamiltonians. A number N = 7 of bosons has been assumed in both cases, while
the odd particle has been taken in the j = 3/2 orbital. In the left panel (even case) we indicate
for each level the 7 quantum number (in parenthesis), spin and parity. In the right panel (odd
case) we quote the (71,72) quantum numbers (in parenthesis) and spin. In the extreme z = 0
case we also indicate the o1 quantum number. The position of the even critical point is marked.

display behaviours qualitatively similar to those characterizing the phase transition in the even
core. We have compared our results with the recently proposed E(5/4) approach, based on the
Bohr hamiltonian. Both approaches display similar qualitative pictures, although we evidence
a number of quantitative differences, that can be traced back to the different nature of the two
schemes.

3. Two-neutron pair transfer in even-even nuclei
Pair-transfer reactions are also useful in the study of nuclear shape phase transitions, i.e.,
the rapid evolution of nuclear structure with mass number, such as from sphericity to axial-
symmetric deformed or from sphericity to deformed y-unstable nuclei. In our study, we have
used the original version of the interacting boson model, the IBM-1 [9], which describes nuclei by
assuming nucleon pairs as basic building blocks and treats them as bosons (without distinction
between protons and neutrons). The transfer of one boson to a nucleus thus corresponds to the
transfer of a nucleon pair, which makes the IBM model exceptionally well suited to describing
two-nucleon transfer reactions.

Arima and Tachello defined the most general boson equivalent of the I = 0 pair-transfer

operator Pio,z), taking into account up to cubic terms, that can be put in the form

PO = arst + aa[V x 5@ + a3[Q x df)® (7)
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Figure 3. Energy levels and quadrupole transition rates B(E2]) for the odd system at the core
critical point. For illustration purposes the various multiplets, labeled by the (71, 72) quantum
numbers in parenthesis, have been arbitrarily split according to their ;7 quantum number. The
label on the extreme left is the energy in relative units. B(E2/)’s have been normalized to the
value 100 for the transitions (with equal strengths) between the states of the first multiplet and
the ground state.

where Q is the quadrupole operator. We calculate transfer matrix elements and intensities
(see [2] for details) in the Boson Coherent State formalism, obtaining exact results in terms
of simple algebraic formulas that only need as input the quadrupole deformation 5 and ' of
the nuclei between which the pair transfer takes place. We first carried out our study in a
general way between each of the three dynamic limits of the IBM symmetry triangle: U(5),
0O(6), and SU(3). Next, we applied our results to some specific series of isotopes that are known
to display phase transitions of first and second order (the ®*Nd, 92Sm, ®4Gd and %Dy series,
and the **Ru series, respectively). Some of our results are shown in figure 4 for the Z ~ 60 — 66
region. In this region, nuclear shapes evolve from spherical to axial-symmetric deformed Both
transfer intensities from ground-to-ground and from ground-to-quasi-8 bandheads are plotted.
Solid lines give the exact IBM calculationswhile dashed lines give the results produced by the
boson coherent-state framework (mean field). In all the isotope chains studied, a drop down is
observed in ground-to-ground pair-transfer intensities at the mean-field level for a given value of
N, reflecting that the structures of the isotopes involved are changing rapidly. A complementary
increase in the ground-to-quasi-8 pair-transfer intensity at the mean-field level is also observed.
Abrupt drops in ground-to-ground transfer intensity with the complementary increments in the
ground-to-f intensities clearly mark the phase transition in the case of the Nd, Sm, Gd, and Dy
isotope series.

In conclusion, the intensity for pair transfer between two ground states is in general much
larger than the intensity for transfer between the ground state and the S-vibrational or higher
phonon 07 excited states. At the critical point, however, for U(5) to O(6) and U(5) to SU(3)
(second-order and first-order transitions, respectively) both the IBM and the boson coherent-
state framework predict sudden changes in the evolution of the transfer intensity: the gs to gs
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Figure 4. Two-particle transfer intensities for the 144~154Nd (with 5 proton bosons and 1 to 6
neutron bosons), 146=10Sm (p = 6 and n = 1-8), 48-162Gd (p = 7 and n= 1-8), and '59-166Dy
(p = 8 and n = 1-9) isotope chains vs the total number of bosons N, for the gs to gs and gs to
bv transfers.

transfer loses in strength, whereas the intensity for gs to bv and gs to dbv transfer show a peak
(gs means ground state, bv means beta vibrational state and dbv means double beta vibrational
state). This feature is especially present in the first-order phase transition, where in some cases
the population of the ground states becomes even smaller than those to the B-vibrational 07"
state.
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