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RESUMEN 
En este trabajo consideramos un modelo de juego multicriterio en el que se tienen en 
cuenta las interacciones entre jugadores. El problema se analiza como un juego 
cooperativo para alcanzar soluciones de consenso que se valoran con respecto a 
varios criterios simultáneamente. La idea fundamental consiste en estudiar los juegos 
finitos n-personales multicriterio como juegos de negociación multicriterio. Para ello, 
establecemos el concepto de pagos garantizados Pareto-óptimos como una 
generalización de los valores maximin de los juegos escalares y, a continuación, 
proponemos dos conceptos de solución diferentes que se caracterizan como 
soluciones de problemas lineales multicriterio. Esto permite la incorporación de 
información adicional sobre las preferencias de los agentes en el proceso de obtención 
de una solución final de consenso. 
 
Palabras clave: Juegos finitos multicriterio. Juegos de negociación. Análisis 
multicriterio. 
 
 
ABSTRACT 
In this paper we consider a multi-criteria game model which allows interactions between 
players. The problem addressed is considered as a cooperative game in order to 
achieve consensus solutions which are evaluated with respect to several criteria 
simultaneously. The main idea consists of analyzing finite multi-criteria n-person games 
as multi-criteria bargaining games. The notion of Pareto-optimal guaranteed payoffs as 
a generalization of the maximin values of scalar games is proposed, together with two 
different solution concepts which can be characterized as the solutions of multi-criteria  
linear programming problems. A procedure to incorporate additional information about 
the agents’ preferences in order to reach a final consensus is also provided. 
 
 
Keywords: Finite multi-criteria games. Bargaining games. Multi-criteria analysis. 
JEL classification: C72, C78, C61. 
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1 Introduction

The theory of multi-criteria games is concerned with situations in which a

number of players must take into account several criteria, each of which de-

pends on the decision of all players. This situation arises in many economic,

social and political contexts.

The first publication on multi-criteria normal form games was Blackwell

(1956) and different formulations of multi-criteria games have since been intro-

duced, (Zeleny (1976), Bergstresser an Yu (1977), Li(1998), Cubiotti (2000)).

Multi-criteria finite n-person games are usually analyzed in the framework of

noncooperative game theory. Two different notions are considered in order to

establish a solution for these games: equilibrium concepts and security strate-

gies. In the literature, the solutions proposed (such as Wierzbicki (1990), Zhao,

(1991), Ghose and Prasad (1989), Fernández and Puerto (1996), Fernández

et al. (1998a), (1998b), Voorneveld (1999), Puerto et al.(1999), Borm et al.

(2003), Allevi et al. (2003)) are vector extensions of the solutions for the single

criterion case. Therefore, they exhibit the same inconveniences inherited from

the classic game theory, together with the additional difficulties derived from

the multi-dimensional nature of the vectors representing the outcomes.

Due to these problems, it would be interesting to try a different analysis

which takes into account the fact that the players may decide together what

is a reasonable outcome of the game and then agreeing to implement that

outcome. In this paper, the application of bargaining procedures to find a

consensus solution for this cooperative situation is proposed. Thus, we analyze

the n-person finite multi-criteria game as a multi-criteria bargaining game.

A multi-criteria bargaining game is a generalization of the classic bargaining

problem where each player has a set of criteria to value any decision. In these

situations, there are two decision problems to be jointly considered: one related
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to the preferences of the players with respect to their own criteria and the other

related to the problem of selecting a solution that could be accepted by all the

rational players.

The literature on multi-criteria bargaining is scarce. Hwang and Lin(1987)

reduce the multi-criteria bargaining game to a single criterion game by consid-

ering the number of agents equal to the sum of the number of criteria of all the

agents. In the analysis proposed by Krus and Bronisz(1993) and Krus(2002),

each agent, by first solving his multi-criteria problem in an earlier stage, estab-

lishes a utopian outcome and then an n-person conventional bargaining game is

derived by aggregating a utility function for each agent. In these approaches,

the solution concepts for classic bargaining games can be applied, however,

there is the possibility that some information in the multi-criteria game may

be lost.

In Hinojosa et al.(2004), Hinojosa et al.(2005), Mármol et al.(2005), a more

general framework is presented which differs from the existing literature in that

the analysis proposed maintains the multi-dimensional nature of each agents’

payoff.

The purpose of this paper is to model the multi-criteria bargaining game

derived from the finite n-person multi-criteria game and to introduce solution

concepts which lead to consensus results that may be accepted by the agents

in a cooperative context.

The set of feasible outcomes of the model proposed is a polyhedron, and

as a consequence, the solutions can be computed by solving multi-criteria

linear problems. Furthermore, the characterization of the solutions as the

efficient outcomes of multi-criteria linear problems enables the introduction of

information on the preferences of the agents so that a final consensus solution

can be obtained.

Finally, we show how our model can be applied to formalize and analyze
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the consequences of the interactions of economic agents.

The paper is organized as follows. Section 2 provides the mathematical

model for the non-cooperative multi-criteria finite n-person game. In Section

3 a brief outline of multi-criteria bargaining games is presented. In Section 4

we establish the multi-criteria game derived from the finite n-person game and

propose and characterize the solutions to solve these problems. In Section 5

we present a strategic decision problem in publicity in order to illustrate the

model and the methodology proposed. Section 6 is devoted to the conclusions.

2 Multi-criteria finite n-person games

The class of n-person non-zero sum finite games in normal form models a deci-

sion making process similar in nature to that modelled by bimatrix games, but

with n(> 2) interacting decision makers. Each player desires to maximize his

own payoff, without regard for the welfare of others, and under the assumption

that all other players will behave similarly. Decisions are made independently

and out of a finite set of alternatives for each player, nevertheless they act

in an environment where other players’ decisions influence their outcomes. In

scalar games the payoff is represented by an n-dimensional vector whose com-

ponents are the payoffs to each player. For multi-criteria games, the payoff

to each player is a vector with as many components as the number of criteria

considered by the player. Thus, the outcome of a multi-criteria game is repre-

sented by a set of vectors. Although a matrix formulation on the plane is not

possible, a precise formulation can be established.

For multi-criteria finite n-person games, N = {1, . . . , n} denotes the set

of players, and each player is assumed to value the same m criteria. There is

a finite number of alternatives or pure strategies, ri, i ∈ N , for each player

to choose from. The set of pure strategies of player i is denoted by Ei =
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{e1
i , . . . , e

ri
i }. A pure strategy combination is (ek1

1 , . . . , ekn
n ), that is, a pure

strategy eki
i ∈ Ei for each player i ∈ N , determines an outcome given by

an m × n matrix, A = (ak1,...,kn

ij ), i = 1, . . . , n, j = 1, . . . , m, where ak1,...,kn

ij

represents the payoff to player i in the criterion j.

We denote the mixed strategy space for player i ∈ N by Yi ,

Yi = {yi ∈ IR ri ,

ri∑

k=1

yk
i = 1, yk

i ≥ 0,∀k = 1, . . . , ri}

where yk
i , k = 1, . . . , ri are the components of vector yi, i.e., yi = (y1

i , . . . , y
ri
i ).

If players do not cooperate, each player selects a strategy from his mixed

strategy space, yi ∈ Yi, and thus the payoff function is defined in the carte-

sian product ×n
i=1 Yi ⊆ IR r, where r =

∑n
i=1 ri. An element in ×n

i=1 Yi is

represented as (y1, . . . , yn), where yi = (y1
i , . . . , y

ri
i ). The payoff function is a

multilinear vector function, fNC :×n
i=1Yi → IR m×n, given by

fNC(y1, . . . , yn) =

(
r1∑

k1=1

. . .

rn∑

kn=1

yk1
1 yk2

2 . . . ykn
n ak1,...,kn

ij

)

i=1,...,n
j=1,...,m

The solution concepts established for these games are based on notions

of equilibrium and on security strategies. Unfortunately, these solutions have

some unattractive and problematical properties. However, despite these dif-

ficulties, it is still possible to deal with this problem by using an alternative

analysis. If all the players are willing to cooperate in order to pursue poten-

tially better results, then bargaining procedures can be applied in order to

obtain solutions which are, in some sense, “fair” to all the players.

In the next section we introduce multi-criteria bargaining games as a frame-

work for the cooperative analysis.
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3 Multi-criteria bargaining games

Formally, an n-person multi-criteria bargaining game is described as the set of

players N = {1, 2, . . . , n} such that each player considers the same m criteria

to value the possible agreements, and a pair (S, D) where S ⊆ IR m×n is the

set of all feasible outcomes and D is an outcome in D ⊆ IR m×n where D is the

set of the players’ possible disagreement points.

The outcomes in S are obtained as the result of a joint decision of all the

players. Therefore, if X = (x1, . . . , xn) ∈ S, there exists an agreement, that

gives player i ∈ N an outcome vector xi = (x1
i , x

2
i , . . . , x

m
i )t ∈ IR m, where xj

i

is the payoff for player i in criterion j, j = 1, . . . , m. Thus, an outcome in S

can be represented by an m × n matrix, where xi ∈ IR m denotes the payoff

for player i in each of the m criteria, i = 1, . . . , n, and xj ∈ IR n denotes the

payoff for each player in the jth criterion, j = 1, . . . , m.

The points in D are the obtainable results if the players fail to reach an

agreement. For conventional bargaining games, there is a unique disagreement

point. However, in the multi-criteria case, due to the multi-dimensional na-

ture of each agent’s payoff, several disagreement points may exist. That is to

say, the players can consider different results from which only higher levels of

outcomes are acceptable.

For a multi-criteria bargaining game (S, D), a bargaining solution specifies

a non-empty subset of the possible outcome set, S, that would be accepted

by all the players under certain reasonable principles. There are two basic

principles which a bargaining solution should satisfy: individual rationality

and Pareto optimality.

In a multi-criteria game, individual rationality establishes that each player

will only negotiate at or above those outcomes that improve upon the dis-

agreement point D. Thus, the set of outcomes where players will negotiate is
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D≥ = {X ∈ IR m×n, X = D}.1

In relation to Pareto optimality, the bargaining solution must provide an

outcome that cannot be simultaneously improved for all players. The terms

Pareto-optimality and weak Pareto-optimality will be used for the following

extensions to matrices of these concepts for vectors.

Definition 3.1 X ∈ IR m×n is Pareto-optimal in S ⊂ IR m×n if there does not

exist Y ∈ S such that Y ≥ X .

Definition 3.2 X ∈ IR m×n is weakly Pareto-optimal in S ⊂ IR m×n if there

does not exist Y ∈ S such that Y > X.

Moreover, the following non-dominance concept is proposed between ma-

trices which is specific for the analysis presented in this paper.

Definition 3.3 X ∈ IR m×n is Pareto-optimal by criteria in S ⊂ IR m×n if

there does not exist Y ∈ S such that Y ≥ X with yj > xj for some j.

Observe that this last non-dominance condition is stronger than that of weak

Parto-optimality and weaker than that of Pareto-optimality.

Note that a bargaining solution assumes that only the set of feasible out-

comes S and the disagreement outcome D matter in order to obtain the final

payoffs to the players.

4 The cooperative approach

To apply bargaining procedures to a n-person finite multi-criteria game in

normal form, it is necessary to obtain the associated bargaining model. Thus,

the set of possible outcomes and the set of disagreement points that can be

derived from the finite game, have to be specified.

1Given X, Y ∈ IR m×n, we denote X = Y if xj
i ≥ yj

i , ∀i, j; X ≥ Y if xj
i ≥ yj

i , ∀i, j and

X 6= Y ; X > Y if xj
i > yj

i , ∀i, j.

6

C
en

tr
o

 d
e 

E
st

u
d

io
s 

A
n

d
al

u
ce

s



4.1 The feasible set

Assuming cooperation between all the players, they agree on coordinate their

different actions. In this case the game has R =
∏n

i=1 ri joint pure strategies

consisting of

E =×n
i=1Ei = {(ek1

1 , . . . , ekn
n ), ki = 1, . . . , ri, ∀i = 1, . . . , n}.

and therefore a jointly mixed strategy is a probability distribution on the

cartesian product ×n
i=1Ei. The joint decision space for the finite n-person

cooperative game becomes

Y = {y ∈ IR R,

R∑

k=1

yk = 1, yk ≥ 0}.

Note that each component of y ∈ Y , yk1,...,kn , ki ∈ {1, . . . , ri} represents the

probability that the group of players selects the joint pure strategy (ek1
1 , ek2

2 , . . . , ekn
n ).

The payoff function in the jointly randomized space, Y , is a vector linear

function fC : Y → IR m×n that can be written as

fC(y) =

( ∑

k1,...,kn

yk1,...,knak1,...,kn

ij

)

i=1,...,n
j=1,...,m

where
∑

k1,...,kn
is the sum for all jointly mixed strategies of the players, ks ∈

{1, . . . , rs}, s = 1, . . . , n.

As the jointly randomized space, Y , is a closed and convex set and the payoff

function, fC , is a vector linear function, then by using jointly mixed strategies,

any convex combination of pure strategy payoff vectors can be generated in

the game. Thus, the convexification of the payoff space can be obtained and

fC(Y) is a convex set. In fact, it is a convex polyhedron whose extreme points

are the payoffs corresponding to the pure strategies. Therefore, the feasible

set of the bargaining game associated with the multi-criteria finite n-person

game is S = fC(Y) ⊆ IR m×n.
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4.2 The set of disagreement points

In order to extend the idea of the maximin values to the multi-criteria bargain-

ing problem, we determine which are the best outcomes that the agents can

guarantee themselves by analysing the problem as a non-cooperative multi-

criteria game.

For i ∈ N the set N−{i} is considered as a unique player that acts against

player i. Therefore, this is a two-person non-cooperative game where the set

of pure strategies, E−i, and the mixed strategy space, Y−i, for N − {i} are

E−i =×n
j=1
j 6=i

Ej

Y−i = {y−i ∈ IR qi/

qi∑

k=1

yk
−i = 1, yk

−i ≥ 0, ∀k = 1, . . . , qi}

where qi =
∏

k 6=i rk is the number of pure strategies for N − {i}. That is to

say, Y−i is the set of jointly mixed strategies for all players except i.

As the game is a finite game, the payoff for player i can be represented

by m matrices, Ai = (Ai(1), . . . , Ai(m)), where Ai(j) = (ast
i (j))s=1,...,ri

t=1,...,qi

is a

matrix of order ri× qi, with ri as the number of pure strategies of player i and

qi =
∏

k 6=i rk as the number of joint pure strategies of the players in N − {i}.
The element ast

i (j) is the payoff to player i in the j-criterion when strategies

es
i ∈ Ei and et

N−{i} ∈ E−i are played, where ast
i (j) = ak1,...,kn

ij for s = ki and

t = (k1, . . . , ki−1, ki+1, . . . , kn).

The payoff function for this two-person non-cooperative game is a bilinear

function fNC : Yi×Y−i → IR m given by

fNC(yi, y−i) = (yt
iAi(1)y−i, . . . , y

t
iAi(m)y−i).

In order to determine the disagreement points for player i, the notion of

Pareto Optimal Security Strategies is applied for two-person multi-criteria fi-

nite games (Ghose and Prassad(1989), Fernández and Puerto(1996)) to this

8

C
en

tr
o

 d
e 

E
st

u
d

io
s 

A
n

d
al

u
ce

s



particular game. To this end, each strategy yi ∈ Yi is valued by a vector whose

components are the lowest payoff in each one of the criteria that the player

could possibly obtain by choosing yi.

Definition 4.1 The guaranteed payoff vector for each strategy of player i ∈ N ,

yi ∈ Yi, is Vi(yi) =
(
miny−i∈Y−i

yt
iAi(1)y−i, . . . , miny−i∈Y−i

yt
iAi(m)y−i

)
.

The best payoffs that player i can guarantee for himself, irrespective of the

actions of the other players, are obtained from strategies which maximize the

guaranteed payoff vector in the multi-criteria sense, that is, those that cannot

be improved componentwise.

Definition 4.2 Vi = (V 1
i , . . . , V m

i ) is a Pareto optimal guaranteed payoff vec-

tor for player i ∈ N , if Vi = Vi(yi), where yi ∈ Yi, and there does not exist

y′i ∈ Yi such that Vi(y
′
i) ≥ Vi(yi).

The set of all Pareto optimal guaranteed payoff vectors for player i ∈ N is

denoted by Di. Vectors in Di provide lower bounds of the payoffs that the

player will obtain independently from the actions of the other players, by

using the corresponding strategy. This set of assured payoffs for each of the

players plays the role of the maximin values in the conventional bargaining

game, that is, when each player values a unique criterion.

To characterize the set of Pareto optimal guaranteed payoff vectors for

player i ∈ N we consider the following vector linear problem associated to the

two-person non-cooperative game, whose players are {i, N −{i}}, denoted by

(P (i)),

max V 1
i , V 2

i , . . . , V m
i

s.t. yt
i Ai(1) ≥ (V 1

i , . . . , V 1
i )

...

yt
i Ai(m) ≥ (V m

i , . . . , V m
i )

yi ∈ Yi

The following proposition establishes the relationship between the set of
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Pareto optimal guaranteed payoff vectors and the set of efficient solutions of

(P (i)).

Proposition 4.1 V ∗
i is a Pareto optimal guaranteed payoff vector for player

i ∈ N and y∗i ∈ Yi is the corresponding strategy, if and only if (V ∗
i , y∗i ) is an

efficient solution of problem (P (i)).

Proof: From Definition 4.2, it follows that the set of Pareto optimal guaran-

teed payoff vectors for agent i ∈ N can be obtained by solving the following

vector maximization problem:

max V 1
i (yi), . . . , V

m
i (yi)

s.t. yi ∈ Yi

which is equivalent to (P (i)). ¤

Due to the linearity of problem (P (i)), existing algorithms valid for the

determination of efficient solutions of vector linear problems and the corre-

sponding software, such as ADBASE (Steuer, 1995), can be applied to obtain

the set of Pareto-optimal guaranteed payoffs associated to each player.

Once the set of disagreement points for each player, Di, is determined, we

obtain the disagreement set for the bargaining game associated to the multi-

criteria finite n-person games as D = ×n
i=1Di. The outcomes in this set

are those outcomes that the agents can achieve if a consensus solution is not

reached. Therefore, cooperation should lead them to an improved outcome

with respect to the selected disagreement point from this set.

4.3 Multi-criteria bargaining solutions

Two solution concepts will be applied in order to solve the bargaining prob-

lem proposed, the multi-criteria maximin solution and the multi-criteria Kalai-

Smorodinsky solution which can be considered as a generalization of the Kalai-
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Smorodinsky solution for conventional bargaining games, (Kalai and Smorodin-

sky, 1975).

First, we introduce the concept of multi-criteria maximin solution and the

results which characterize this family of solutions are established.

Consider the multi-criteria bargaining game (S, D), where S = fC(Y) ⊆
IR m×n and D ∈ D = ×n

i=1Di, D = (dj
i ), i = 1, . . . , n, j = 1, . . . , m. For

each feasible outcome X ∈ S, we denote X̃ = (x̃j
i ) i ∈ N, j = 1, . . . , m,

where x̃j
i = xj

i − dj
i , i ∈ N, j = 1, . . . , m, represents the utility gains from the

disagreement point, obtained by player i in criterion j.

To establish the multi-criteria maximin solution for this class of games,

each feasible outcome is going to be valued by a vector in terms of its worst

utility gains with respect to each one of the criteria.

Definition 4.3 In the multi-criteria bargaining game (S, D), for each feasible

outcome X ∈ S, Z(X) = (Z1(X), Z2(X), . . . , Zm(X)), is the minimum utility

gains vector, where Zj(X) = min1≤i≤n{x̃j
i}.

Zj(X) is the guaranteed minimum utility gains to the agents in the jth crite-

rion and vector Z(X) represents the minimum utility gains that all the agents

can attain in each criterion. This vector can be obtained from different feasible

outcomes in S.

The multi-criteria maximin solution concept is based on the idea that the

agents jointly agree on those outcomes whose minimum utility gain levels can-

not be simultaneously improved with respect to all the criteria. Therefore, the

players will choose an outcome such that the associated minimum utility gain

vector is as good as possible, in the sense that there is no other outcome whose

minimum utility gain vector is better componentwise.

Definition 4.4 For the multi-criteria bargaining game (S, D), a feasible out-

come X ∈ S ∩D≥ is a multi-criteria maximin solution if there does not exist

11
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Y ∈ S ∩D≥ such that Z(Y ) ≥ Z(X).

It is now shown that, in general, multi-criteria maximin solutions verify a

condition which is stronger than that of weak Pareto-optimality and weaker

than that of Pareto-optimality in S ∩D≥.

Proposition 4.2 The multi-criteria maximin solutions for (S, D) are Pareto-

optimal by criteria in S ∩D≥.

Proof: Consider a multi-criteria maximin solution X∗ and suppose that is

not Pareto-optimal by criteria in S ∩D≥, then ∃Y ∈ S ∩D≥ such that Y ≥
X∗ and ∃j = 1, . . . , m such that yj > x∗j. Therefore, Z(Y ) ≥ Z(X∗), and

Zj(Y ) = min1≤i≤n{ỹj
i } > min1≤i≤n{x̃j

i} = Zj(X∗). This is a contradiction to

X∗ being a multi-criteria maximin solution of (S,D). ¤

In order to obtain the multi-criteria maximin solutions and the associated

minimum utility gain vector, the following multiobjective problem is consid-

ered, and is denoted by (PM)

max z1, . . . , zm

s.t. x̃1
i ≥ z1 ∀i = 1, . . . , n

...

x̃m
i ≥ zm ∀i = 1, . . . , n

X ∈ S ∩D≥

The following result characterizes multi-criteria maximin solutions as efficient

solutions of problem (PM).

Proposition 4.3 If (X∗, z∗) is a nondominated solution of (PM), then X∗

is a multi-criteria maximin solution for (S,D) and z∗ its associated minimum

utility gains vector. Conversely, if X∗ is a maximin solution for (S,D), then

(X∗, Z(X∗)) is a nondominated solution of (PM).

Proof: From Definition 4.5, it follows that multi-criteria maximin solutions
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are the nondominated solutions of the vector maximization problem

max Z1(X), . . . , Zm(X)

s.t. X ∈ S ∩D≥

where Zj(X) = min1≤i≤n{x̃j
i} ∀j = 1, . . . , m. This problem is equivalent to

the problem (PM). ¤

As the feasible set, S = fC(Y), is a convex polyhedron, the bargaining

game associated to the finite game is a linear bargaining game and (PM) is

a multi-criteria linear problem. Thus, the concepts and tools of multi-criteria

linear programming can be applied in order to solve these games.

On the other hand, this characterization of the multi-criteria maximin so-

lutions enables us to obtain them in terms of optimal solutions of appropriated

scalar linear optimization problems. In this process, weights λj, j = 1, . . . , m

are introduced on players’ minimum utility gain levels zj, j = 1, . . . , m and a

real-valued function is formed by summing the m weighted minimum levels.

The parametric problem denoted by P (λ) is

max
∑m

j=1 λjz
j

s.t. x̃1
i ≥ z1 ∀i = 1, . . . , n

...

x̃m
i ≥ zm ∀i = 1, . . . , n

X ∈ S ∩D≥

where λ ∈ Λ = {λ ∈ IR m,
∑m

j=1 λj = 1, λ > 0}.

Proposition 4.4 X∗ is a maximin solution for (S, D) and z∗ is its associated

minimum utility gain vector if and only if there exists λ∗ ∈ Λ such that (X∗, z∗)

is an optimal solution of the problem P (λ∗).

Proof: The result follows from the characterization of maximin solutions given

in Proposition 4.3 and the equivalence between nondominated solutions of a
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multiobjective linear problem and the solutions of the associated weighted-sum

problems, (Zeleny, 1976). ¤

If the players are able to specify a vector of weights λ for their minimum

utility gain levels, then the scalar function is determined and the solution,

according to this information, can be computed. Unfortunately, precisely es-

tablishing the weights of the criteria is not an easy task. However, the players

can provide partial information by estimating a range of the weights for the

criteria. When this information can be incorporated into the model, the set

of maximin solutions is reduced and the players will find it easier to choose a

consensus solution in accordance with their preferences.

Mármol et al.(1998) propose a procedure to incorporate partial information

on the importance of the criteria in multi-criteria linear problems which is

based on the extreme points of different information sets. Furthermore, it is

possible to perform an analysis of the sensitivity of the solutions with respect

to changes in the weights that generate the result. This analysis is based on

the reduced-cost matrix associated to the optimal basic solution of the multi-

criteria linear problem and permits to decompose the set of all possible weights

into a finite number of subsets such that weights corresponding to a certain

subset generate the same solutions.

The second solution concept that we propose in this paper, the multi-

criteria Kalai-Smorodinsky solution, can be derived by a similar process. In

this case, we take into account the players’ most optimistic expectations with

respect to the criteria, which are represented by the ideal outcome of the game.

This ideal outcome, denoted as I = (Ij
i ), i ∈ N, j = 1, . . . , m, is obtained by

solving the following linear optimization problems, Ij
i = max{xj

i , X ∈ S∩D≥}.

The multi-criteria Kalai-Smorodinsky solution is achieved by replacing the

utility gains of the agents by the proportion with respect to their most op-

timistic expectations. Therefore, if for each feasible outcome X ∈ S we

14

C
en

tr
o

 d
e 

E
st

u
d

io
s 

A
n

d
al

u
ce

s



consider the quotients
xj

i − dj
i

Ij
i − dj

i

, i ∈ N, j = 1, . . . , m, and let K(X) denote

the minimum proportional utility vector whose components are Kj(X) =

min1≤i≤n{xj
i−dj

i

Ij
i−dj

i

}, ∀j = 1, . . . , m, the following definition emerges.

Definition 4.5 For the multi-criteria bargaining game (S, D), a feasible out-

come X ∈ S ∩D≥ is a multi-criteria Kali-Smorodinsky solution if there does

not exist Y ∈ S ∩D≥ such that K(Y ) ≥ K(X).

Similar results as those stated for the multi-criteria maximin solutions can

be established for the multi-criteria Kali-Smorodinsky solution. Hence, this

solution is Pareto-optimal by criteria in S ∩D≥ and the efficient solutions of

the following multi-criteria problem

max z1, . . . , zm

s.t.
x1

i−d1
i

I1
i −d1

i
≥ z1 ∀i = 1, . . . , n

...

xm
i −dm

i

Im
i −dm

i
≥ zm ∀i = 1, . . . , n

X ∈ S ∩D≥

provide the set of multi-criteria Kali-Smorodinsky solutions for the multicrite-

ria bargaining game (S, D).

5 Strategic advertising decisions

This section is devoted to illustrating the concepts and results obtained in

previous sections, showing that the cooperation between agents permits them

to obtain outcomes that improve their individual expectations.

A company is established in two regions. Three different departments,

which can decide on their own advertising policies, want to promote their

products in the two regions. Each department can place two advertisements

on television which focus on different aspects of the products. It has been
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observed that the effect of the adverts is different in the two regions and that

the publicity of each product has an indirect effect on the sales of the others.

The estimation of the increase in the net profits generated under the two

advertising campaigns are shown in Table 1.

e1
3 e2

3

e1
1 e1

2


 5 1 2

1 2 4





 1 1 2

1 2 4




e1
1 e2

2


 3 1 4

2 1 4





 1 1 3

1 2 6




e2
1 e1

2


 2 3 5

0 3 5





 2 3 5

3 1 5




e2
1 e2

2


 5 4 1

2 1 3





 1 0 5

0 0 4




Table 1: Increase in the net profits

For instance, if the three departments place their first advertisement, the

effect in the first region consists of an increase in the net profits corresponding

to the first product of 5 monetary units, of 1 monetary unit for the second

product and of 2 monetary units corresponding to the third product. In the

second region the increases in the net profit corresponding to the three products

are respectively 1 monetary unit, 2 monetary units and 4 monetary units.

The company aims to achieve an equitable increase in the profits generated

by the three departments in both regions. On the other hand, each department

wishes to maximize the effects of the advertising campaign on the sales of its

own products. For this reason, they are willing to negotiate with the other

departments to determine the most appropriate combinations of adverts.

As a consequence of the interdependency between the departments, this
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strategic situation can be analyzed as a game with three players (the depart-

ments), each of whom has two strategies (to place the first or the second

advertisement). The results of the decisions, i.e., the payoffs they attain when

they play these strategies against each other, are measured in relation to two

criteria corresponding to the increase in the net profits obtained in each of the

two regions.

Cooperation between the players guarantees that the results they obtain

will improve on the payoffs attained under non-cooperation. If it is possible

to consider different combinations of the joint strategies of the three depart-

ments, this problem can be formalized as a multi-criteria bargaining game, and

solutions are obtained by applying bargaining procedures.

For the cooperative situation the set of joint pure strategies for the three

departments is

E =×3
i=1Ei = {(ek1

1 , ek2
2 , ek3

3 ), ki = 1, 2∀i = 1, 2, 3}.

Each of these strategies represents a combination of advertisements of the

three departments. A jointly randomized strategy is a probability distribution

on these different combinations.

The set of feasible payoffs of the associated bargaining game is a polyhedron

whose extreme points are the payoffs corresponding to the joint pure strategies:

S = {X =
8∑

k=1

yjP k,

8∑

k=1

yk = 1, yk ≥ 0, ∀k = 1, . . . , 8}

where P 1, . . . , P 8 denote the payoff matrices defining the game, and the payoffs

corresponding to the jointly randomized strategies are the convex combination

of these matrices.
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5.1 The set of disagreement points

In the first step of the analysis of the problem, the set of disagreement points

has to be determined. The set of Pareto optimal guaranteed payoff vectors for

each department is obtained by solving a finite multi-criteria non-cooperative

game.

For Department 1 the matrices for this game are

A1(1) =


 5 1 3 1

2 2 5 1


 A1(2) =


 1 1 2 1

0 3 2 0




and represent the payoff to Department 1 when the two other departments

consider their joint pure strategies. It follows from Proposition 4.1 that the

set of Pareto optimal guaranteed payoff vectors is obtained by solving the

following multi-criteria linear programming problem.

max V 1
1 , V 2

1

s.t. (y1
1, y

2
1)


 5 1 3 1

2 2 5 1


 ≥ (V 1

1 , V 1
1 , V 1

1 , V 1
1 )

(y1
1, y

2
1)


 1 1 2 1

0 3 2 0


 ≥ (V 2

1 , V 2
1 , V 2

1 , V 2
1 )

y1 ∈ Y1

This problem has a unique efficient solution, that is, a unique Pareto-

optimal guaranteed payoff vector, D1 = {(1, 1)}. Therefore, if Department

1 does not cooperate then the guaranteed increase in the net profit in each

of the two regions is 1 unit, independently of the joint actions of the other

departments.

The Pareto-optimal guaranteed payoff vectors for the other departments

are D2 = {(1, 1)}, D3 = {(2, 4)}. It follows that the disagreement point for
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this game is

D =


 1 1 2

1 1 4


 .

In the second step of the analysis, the focus is on determining the consensus

solutions on which the departments will agree and the corresponding jointly

mixed strategies. The multi-criteria maximin solutions and the multi-criteria

Kalai-Smorodinsky solutions are analyzed for this situation as two represen-

tative solutions which enables the consideration of different aspects of the

cooperation.

5.2 Multi-criteria maximin solutions

The maximin criterion is considered the most appropriate to seek out equitable

solutions. In this context, the multi-criteria maximin solution will provide re-

sults such that the minimum level of increase in the profits of the three de-

partments cannot be improved in both regions simultaneously. It follows from

Proposition 4.3 that maximim solutions are obtained by solving the following

multi-criteria linear programming problem.

max z1, z2

s.t. x̃1
i ≥ z1 ∀i = 1, 2, 3

x̃2
i ≥ z2 ∀i = 1, 2, 3

X ∈ S ∩D≥

where x̃1
i = x1

i − d1
i and x̃2

i = x2
i − d2

i ∀i = 1, 2, 3

The problem has been solved with the software package ADBASE (Steuer,

1995). Table 2 shows the efficient extreme solutions and the jointly mixed

strategies corresponding to these results2.

2ch{A} we denotes the convex hull of A.
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z S(z) Strategy Probability

(1)

0@ 1.66

0.75

1A 8<:
0@ 2.66 2.66 4.31

1.75 1.75 4.75

1A9=;
e1
1, e1

2, e1
3

e2
1, e1

2, e1
3

e2
1, e1

2, e2
3

e2
1, e2

2, e1
3

0.19

0.28

0.5

0.03

(2)

0@ 1.6

0.76

1A 8<:
0@ 2.6 2.6 4.4

1.76 1.76 4.8

1A9=; e1
1, e1

2, e1
3

e2
1, e1

2, e1
3

e2
1, e1

2, e2
3

0.2

0.28

0.52

(3)

0@ 1

0.8

1A 8<:
0@ 2 3 5

1.8 1.8 5

1A9=; e2
1, e1

2, e1
3

e2
1, e1

2, e2
3

0.4

0.6

(4)

0@ 1.91

0.52

1A ch

8<:
0@ 2.91 2.91 3.91

1.52 1.83 4.52

1A ,

0@ 2.91 2.91 3.91

1.99 1.52 4.52

1A9=;
e1
1, e1

2, e1
3

e2
1, e1

2, e1
3

e2
1, e1

2, e2
3

e2
1, e2

2, e1
3

0.13

0.2 + 0.15t, t ∈ [0, 1]

0.5− 0.15t, t ∈ [0, 1]

0.17

Table 2: Multi-criteria maximin solutions.

However, the resolution of the multi-criteria decision problem must finish

with a unique solution. At this point, it is necessary to incorporate additional

information about the agents’ preferences into the process.

In this case, agents may be able to provide imprecise a priori information

about the weights that represent the importance of the minimum levels of

increase in profits in both regions and this information can be incorporated

into the model. If the agents agree on the exact values of the weights, λ1, λ2,

then a maximin solution is obtained by solving the corresponding weighted

problem. However, it is not always the case that the agents are able to achieve

a consensus about these values. Nevertheless, even if only partial information

about the weights that each agent would accept is available, then the set

of solutions could be reduced so that the selection of a result becomes easier.

Table 3 shows the effect of different assumptions about the relative importance

of the minimum levels on the profits in both regions. Numbers in brackets

correspond to the solutions in Table 2.

Note that the set of solutions obtained when the same importance is at-
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λ1 = λ2 λ1 ≥ λ2 λ2 ≥ λ1 3λ1 ≥ λ2 ≥ λ1

(4) (4) (1),(2),(3),(4) (1), (4)

Table 3: Maximin solutions for different preference information assumptions.

tached to the minimum levels of benefits in both regions coincides with the set

of solutions obtained for the case in which the importance of the first region

is not less than the importance of the second region. On the other hand, if

the weight associated to the minimum level of profits is not less for the sec-

ond region than for the first region, the whole set of maximin solutions is still

obtained. Nevertheless, if the information is refined so that the importance

attached to the second region does not exceed three times the importance

attached to the first region, a significant reduction in the set of consensus

solutions is achieved.

An analysis of the sensitivity of the solutions with respect to changes in the

weights have also been performed. Table 4 shows how the set of information

weights is decomposed in this example, and the maximin solutions associated

to the different sets of weights.

Weights Solutions

λ2 ≤ 1.125λ1 (4)

1.125λ1 ≤ λ2 ≤ 5.625λ1 (1)

5.625λ1 ≤ λ2 ≤ 15λ1 (2)

λ2 ≥ 15λ1 (3)

Table 4: Sets of weights and solutions
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5.3 Multi-criteria Kalai-Smorodinsky solutions

The concept of maximin multi-criteria solutions is aimed at obtaining equitable

results without taking into account the most optimistic expectations of the

agents. The concept of multi-criteria Kalai-Smorodinsky solution enables these

expectations to influence the final results.

To obtain the multi-criteria Kalai-Smorodinsky solutions we compute the

ideal point of the game, I =


 5 3.5 5

3 2.3 6


, and the disagreement point

D =


 1 1 2

1 1 4


, thus I −D =


 4 2.5 3

2 1.3 2


.

By solving the corresponding multi-criteria linear problem, (PM),

max z1, z2

s.t.
x1

i−d1
i

I1
i −d1

i
≥ z1 ∀i = 1, 2, 3

x2
i−d2

i

I2
i −d2

i
≥ z2 ∀i = 1, 2, 3

X ∈ S ∩D≥

the set of multi-criteria Kalai-Smorodinsky solutions is obtained. This set

consists of those payoffs such that the proportions with respect to the most

optimistic expectations of the agents cannot be improved simultaneously. The

extreme points of the set of minimum level of increase profits and the corre-

sponding outcomes are shown in Table 5.

In order to compare the results obtained when applying the concept of

multi-criteria maximin solution with those for the concept of multi-criteria

Kalai-Smorodinsky solutions, we consider, for instance, the case in which the

agents agree on importance weights such that λ2 ≥ 20λ1. The maximin and

the Kalai-Smorodinsky solutions obtained are:

Xmax−min


 2 3 5

1.8 1.8 5


 XK−S =


 1.99 2.99 4.99

2.01 1.66 5.01


 .
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z S(z)

(1)


 0.42

0.45









 2.69 2.05 3.76

1.89 1.58 4.89








(2)


 0.25

0.5









 1.99 2.99 4.99

2.01 1.66 5.01








(3)


 0.55

0.26









 3.22 2.39 3.70

2.25 1.33 4.52








(4)


 0.56

0.25


 ch






 3.24 2.4 3.68

1.5 1.83 4.5


 ,


 3.24 2.4 3.68

2.24 1.33 4.5








(5)


 0.52

0.32


 ch






 3.06 2.29 3.93

1.64 1.78 4.64


 ,


 3.06 2.29 3.93

2.19 1.41 4.64








Table 5: Multi-criteria Kalai-Smorodinsky solutions.

Note that both results provide nearly the same increase in the profits that

each department obtains in the two regions. However, while the maximin

solution equates the levels of profits corresponding to the first and second

department in the second region, the Kalai-Smorodinsky solution provides a

higher increase in the department with more optimistic expectations.

6 Conclusions

In this paper we show that finite multi-criteria n-person games can be ana-

lyzed as multi-criteria bargaining games when the agents cooperate in order to

achieve consensus outcomes which improve on the individual outcomes. The

two main points in this study are the determination of the set of disagreement

points and the proposal of solutions for these games. In both cases, multi-

criteria linear optimization techniques have been proved to be an effective tool
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in order to characterize the solutions and obtain the outcomes of multi-criteria

games.

The model and procedures that we propose can also be applied to scalar

games with uncertain payoffs. In these cases, the payoffs associated to different

states of nature can be identified with the different criteria of our model.

Finally, it is interesting to mention that the methodology proposed requires

information from the agents in two phases of the process. They have to provide

individual information about their preferences with respect to the criteria in

order to determine the disagreement point, and collective information to direct

the procedure towards that solution which is most in accordance with the joint

preferences of the agents.
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