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1 Algebraic Model

We present a symmetry-adapted version of the vibron model [1]. The model exploits
the isomorphism of the U(2) Lie Algebra and the one dimensional Morse oscillator [4].
A U(2) algebra is assigned to each relevant interatomic interaction. The operators in
the model are expressed in terms of the generators of the molecular dynamical group
[3], which in the case of triatomic molecules is given by the product

U1(2)⊗ U2(2)⊗ U3(2) . (1)

A simple realization for those generators is given in terms of angular momentum
Ĵν,i and number N̂i operators

{N̂i, Ĵx,i, Ĵy,i, Ĵz,i}, i = 1, 2, 3 . (2)

Instead of working with the generators in Eq. (2) we introduce a new set of generators
with well-defined tensorial properties under the point group [2]. The choice of carte-
sian coordinate system, irreducible representations and Clebsch-Gordan coefficients
is given in Ref. [3].

The use of the symmetry-adapted generators allows the connection between the
algebraic and the configuration space calculations clarifying the geometrical content
of the algebraic approach [2].

The relevant symmetry projected generators for D3h triatomic molecules are

T̂A1

µ,1 =
1√
3

(

Ĵµ,1 + Ĵµ,2 + Ĵµ,3

)

,

T̂E
µ,1 =

1√
6

(

2Ĵµ,1 − Ĵµ,2 − Ĵµ,3

)

, T̂E
µ,2 =

1√
2

(

Ĵµ,2 − Ĵµ,3

)

, (3)

with µ = +,−, 0.
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The algebraic Hamiltonian is constructed by repeated couplings of these tensors
to a total symmetry A1. Terms quadratic in the generators and its products can be
expressed in terms of Casimir operators used in former algebraic approaches [4,5].
However, other couplings, which are physically relevant, like l̂2 written below cannot
be expressed in terms of Casimir operators and consequently are not in previous
algebraic approaches.

According to this we obtain the Hamiltonian

Ĥ = αĤA1
+ βĤE + γV̂A1

+ δl̂2 + α[2]Ĥ2
A1

+ β [2]Ĥ2
E + ξ[2]ĤA1E + ǫ(T̂ 3

+ + T 3
−
) , (4)

where

ĤΓx
=

1

2Nx

∑

γ

(

T̂ Γx

−,γ T̂
Γx

+,γ + T̂ Γx

+,γ T̂
Γx

−,γ

)

, V̂Γx
=

1

Nx

∑

γ

T̂ Γx

0,γ T̂
Γx

0,γ , (5)

and

l̂ = −i
√
2
1

Nb

[T̂E
−
× T̂E

+ ]A2 , T̂± = T̂E
1 ± iT̂E

2 ,

ĤA1E ≡ (ĤA1
ĤE + ĤEĤA1

)

2
. (6)

The Hamiltonian diagonalization and parameter fitting procedures are enhanced us-
ing a symmetry-adapted basis [3].

2 Application to H+
3 , Be3 and Na+

3

The three D3h symmetric chosen molecules exhibit a wide range of behaviours, from
the very anharmonic spectrum of H+

3 to the almost harmonic of Na+3 .
We present in Table I a least square fit calculation to the ab initio calculated

vibrational spectrum for these molecules, using an optimal set of parameters of the
Hamiltonian. In the H+

3 case, due to its anharmonicity, we had to include the full
set of interactions in Eq. (4) to reproduce the spectrum. The relationship between
operators and anharmonicity is clear once the harmonic limit of the AOSM model is
explored [2] and the link to configuration space calculations is analyzed.

In addition to the 8 parameters in Eq. (4), the value of the boson number N [4]
has to be fixed and it was taken to be NNa+

3
= NBe3 = NH+

3
= 30.

This work suggests that the AOSM represents a systematic, simple and accurate
alternative to configuration space methods when the integro-differential approach
becomes too complex to be applied.
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Table I: Least square energy fit to ab initio calculations [6] for Na+3 , Be3 and H+
3 using

Hamiltonian (4). We show the energy differences ∆E = Eabinit − Ealg. All energies are

given in cm
−1.

Na+3 Be3 H+
3

(vA1
vlE) Γ ∆E ∆E ∆E

(011) e 0.93 0.51 -1.55
(100) a1 1.95 0.02 0.42
(020) a1 0.37 -0.74 7.48
(022) e 0.84 0.17 -5.69
(111) e 1.68 0.82 -0.61
(200) a1 1.26 -0.04 -0.11
(031) e -1.19 -2.05 -4.46
(033) a1 -0.34 -1.23 3.18
(033) a2 -0.33 0.61 2.44
(120) a1 -0.01 1.90 0.66
(122) e 0.34 -1.36 -5.00
(211) e -0.19 0.79 4.07
(300) a1 -2.06 -1.66 -1.23

rms 1.33 1.24 5.84

α 142.40 458.91 3193.60 α[2] -14.86
Parameters β 100.32 396.27 2507.16 β [2] -27.75

γ 21.31 209.74 2807.83 ξ[2] -28.04
δ -0.19 -0.95 -13.44 ǫ -0.90
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