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ABSTRACT: C−H bond activation at cationic [(η5-
C5Me5)Ir(PMe2Ar′)] centers is described, where PMe2Ar′
are the terphenyl phosphine ligands PMe2Ar

Xyl
2 and

PMe2Ar
Dipp

2. Different pathways are defined for the
conversion of the five-coordinate complexes [(η5-C5Me5)-
IrCl(PMe2Ar′)]+, 2(Xyl)+ and 2(Dipp)+, into the
corresponding pseudoallyls 3(Xyl)+ and 3(Dipp)+. In
the absence of an external Brønsted base, electrophilic,
remote ζ C−H activation takes place, for which the
participation of dicationic species, [(η5-C5Me5)Ir-
(PMe2Ar′)]2+, is proposed. When NEt3 is present, the
PMe2Ar

Dipp
2 system is shown to proceed via 4(Dipp)+ as

an intermediate en route to the thermodynamic, isomeric
product 3(Dipp)+. This complex interconversion involves
a non-innocent C5Me5 ligand, which participates in C−H
and C−C bond formation and cleavage. Remarkably, the
conversion of 4(Dipp)+ to 3(Dipp)+ also proceeds in the
solid state.

Cyclopentadienyls, C5R5, and tertiary phosphines, PR3, are
unquestionably two of the most important classes of

ligands in organometallic chemistry and catalysis.1 Although in
most cases C5R5 and PR3 behave strictly as spectators, in some
reactions they can also directly participate. As PR3 and C5R5
continue to be increasingly employed in homogeneous
catalysis, knowledge of these unforeseen reactions is crucial
because they might strongly influence catalytic outcomes2 or
lead to catalyst deactivation.3 Certain aryl phosphines undergo
facile cyclometalation,4,5 and recently, nickel- and palladium-
mediated dearomatization of dialkylbiaryl phosphines has been
reported.2,6 With cyclopentadienyl ligands, in particular
C5Me5, ring methyl activation implying either deprotonation
or hydride abstraction,7,8 as well as metal-to-ring hydride
transfer,9,10 have all been documented.
Transition metal mediated C−H bond activation is a very

important transformation with great potential for the
functionalization of hydrocarbons. Decisive mechanistic
advances have been made with the investigation of electro-
philic C−H bond activation at (η5-C5Me5)Ir(III) centers,11

revealing, among other details, the influence of coligands, in

particular their ability to act as a base to accept the generated
proton.12 Here, we targeted the synthesis of cationic (η5-
C5Me5)Ir(III) complexes of the terphenyl phosphines13

PMe2Ar
Xyl

2 and PMe2Ar
Dipp

2 (Scheme 1). In particular, we

report that the five-coordinate complexes [(η5-C5Me5)IrCl-
(PR2Ar′)]+, 2(Xyl)+ and 2(Dipp)+, promote facile electro-
philic C−H activation at remote ζ C−H bonds of the
phosphine ligand to form 3(Xyl)+ and 3(Dipp)+. Moreover,
for 2(Dipp)+, the observed ζ C−H activation in the presence
of NEt3 occurs through a complex mechanism that implies
reversible η5-C5Me5 deprotonation and reversible C−C bond
formation between the resulting tetramethylfulvene terminal
methylene group, and one of the flanking Dipp rings of the
phosphine, that itself undergoes dearomatization.2,6 The
resulting intermediate, 4(Dipp)+, contains a 10-membered
phospha-iridacycle. Intriguingly, this complex transforms
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readily into the isomeric ζ C−H activation species, 3(Dipp)+,
not only in solution, but also in the solid state.
Treatment of [(η5-C5Me5)IrCl2]2 with PMe2Ar

Xyl
2 in

CH2Cl2 yielded the expected [(η5-C5Me5)IrCl2(PMe2Ar
Xyl

2)]
product, 1(Xyl), in high yields (∼90%). Chloride abstraction
by NaBArF was also straightforward and allowed isolation of
the cationic complex [(η5-C5Me5)IrCl(PMe2Ar

Xyl
2)]

+ (2-
(Xyl)+, Scheme 1) as its BArF salt, which appeared as a very
dark red crystalline solid. Because of the high solution
reactivity of this low-coordinate complex under ambient
conditions, its synthesis and characterization were performed
at −20 °C. Microanalytical and spectroscopic data (see the
Supporting Information (SI)) were in agreement with the
formulation indicated in Scheme 1, which was subsequently
confirmed by X-ray crystallography (Figure 1, left). The short

Ir−Cl bond length of 2.2785(9) Å (cf. the 2.396(1) Å average
distance in 1(Xyl)), coupled with the distinct, intense dark
color,14−16 suggests chloride acts as a π-donor in this formally
16e complex; similar Ru−Cl shortening was also reported in
[(η5-C5Me5)RuCl(P

iPr3)].
17

At room temperature, dichloromethane solutions of 2(Xyl)+

underwent further chemical changes, as evidenced by a color
change from the initial dark red to yellow-red. This process was
accelerated by the presence of water and product crystallization
from CH2Cl2/Et2O solvent yielded mixtures of a new iridium
complex, 3(Xyl)+, along with [(η5-C5Me5)IrCl2]2 and
[HPMe2Ar

Xyl
2]BArF. 3(Xyl)

+ was unequivocally characterized
as a pseudoallylic species formed via remote ζ C−H activation
of a benzylic C−H bond of one of the Xyl substituents. It thus
appears that the HCl released in the formation of 3(Xyl)+

decomposed unreacted 2(Xyl)+ to yield the above-mentioned
side products.
Given that increased coligand steric demands often confer

enhanced kinetic stability and hinder undesirable side
reactions, (η5-C5Me5)Ir(III) complexes of the bulkier
phosphine PMe2Ar

Dipp
2 (Scheme 1) were considered.

Although the dichloride analogue of 1(Xyl) could not be
generated, possibly because of steric hindrance, cationic
2(Dipp)+ formed rapidly when [(η5-C5Me5)IrCl2]2 and
PMe2Ar

Dipp
2 were allowed to react in the presence of NaBArF.

The similar properties of the two 2(PMe2Ar′)+ complexes,
including the observation for 2(Dipp)+ of a 31P{1H} NMR
singlet with a Δ(δ) shift relative to free PMe2Ar

Dipp
2 practically

identical to the corresponding value for 2(Xyl)+, strongly
supported a five-coordinate structure analogous to that of

2(Xyl)+. Notwithstanding the structural similarity, 2(Dipp)+

possesses much superior solution stability.
As the formation of cationic pseudoallyls, 3(PMe2Ar′)+,

from the corresponding chlorides, 2(PMe2Ar′)+, implies
electrophilic C−H activation and elimination of HCl, we
considered it of interest to study (i) the generation of
dicationic [(η5-C5Me5)Ir(PR2Ar′)]2+ species by chloride
abstraction from 2(PMe2Ar′)+ with NaBArF and (ii) the use
of an external Brønsted base such as NEt3 to facilitate HCl
elimination. The first approach actually constitutes the best
procedure for the high yield synthesis of complexes 3(Xyl)+

and 3(Dipp)+ (see Scheme 2). Focusing on the PMe2Ar
Dipp

2

analogues for additional solution reaction studies, it was found
that the formation of 3(Dipp)+ promoted by NaBArF was very
slow at room temperature, probably due to the absence of an
effective base. Consistent with this hypothesis, reaction of
PMe2Ar

Dipp
2 with [(η5-C5Me5)Ir(H2O)3](SO4)

18 proceeded
rapidly to afford 3(Dipp)+.
The BArF salts of the two pseudoallyl complexes 3(Xyl)+

and 3(Dipp)+ were fully characterized by microanalysis and
multinuclear NMR spectroscopy. For 3(Xyl)+ distinct 1H
NMR resonances corresponding to the anti and syn
pseudoallylic protons are seen as multiplets at 3.14 and 1.04
ppm, with 2JHH = 3.9 and 3JHP = 1 and 14 Hz, respectively. The
corresponding carbon atom gives a 13C{1H} signal at 26.3 ppm
(2JCP = 4 Hz), whereas the Cortho and Cipso involved in the η3-
bonded unit appear at 89.1 and 83.2 ppm, respectively. Single-
crystals of [3(Dipp)]BArF were also investigated by X-ray
crystallography (Figure 1, right) that confirms that a Dipp ring
in 2(Dipp)+ has undergone ζ C−H activation to give a
pseudoallylic product (Ir−CMe2 = 2.224(3), Ir−Cortho =
2.197(3) and Ir−Cipso = 2.257(3) Å).
The mechanism of the C−H bond activation to form the

3(PMe2Ar′)+ complexes was also investigated by DFT
methods.19 The most accessible pathway involves initial Cl−

dissociation to afford an ion-pair comprising dicationic [(η5-
C5Me5)Ir(PMe2Ar′)]2+, in which the phosphine is bound in a
κ-P, η3-Carene fashion (Figure S1), and Cl

−, which resides in the
outer coordination sphere. For 2(Xyl)+, this process entails a
barrier of 18.4 kcal/mol and gives a species at +16.5 kcal/mol.
Facile rearrangement then forms ζ C−H agostic intermediate
at +19.3 kcal/mol (Scheme 3). The acidity of the agostic
proton in this dicationic species promotes its facile abstraction
by the Cl− ion via a transition state at +22.0 kcal/mol, this
representing the overall barrier to the C−H activation
process.20 In contrast, chloride-mediated deprotonation in
2(Dipp)+ does not occur at the agostic complex, but requires
an additional C−H oxidative cleavage step to form an Ir(V)
hydride, which is then deprotonated by Cl−. The overall barrier

Figure 1. ORTEPs of the cations of complex [2(Xyl)]BArF and
[3(Dipp)]BArF. Hydrogen atoms are excluded for clarity, and
thermal ellipsoids are set at 50% probability. Gray lines represent
Dipp iPr substituents.

Scheme 2. Electrophilic ζ C−H Activation in Complexes 2+

To Give the Pseudoallylic Species 3+; S Represents a
Solvent Molecule

Journal of the American Chemical Society Communication

DOI: 10.1021/jacs.8b11752
J. Am. Chem. Soc. 2019, 141, 2205−2210

2206

http://dx.doi.org/10.1021/jacs.8b11752


in this case is 24.7 kcal/mol, 2.7 kcal/mol higher than that in
2(Xyl)+ and so consistent with the observed enhanced solution
stability of the former (see the SI for details). The formation of
[HPMe2Ar′]BArF and [(η5-C5Me5)IrCl2]2 from 2+ and HCl
seems to be the driving force of the reaction in both systems.
The addition of a slight excess of NEt3 to solutions of

2(Dipp)+ highlighted the remarkable chemical and structural
changes that occur en route to 3(Dipp)+. The latter formed
quantitatively by 1H NMR after stirring at room temperature
for about 24 h. However, following the reaction by NMR
demonstrated the formation of an intermediate, 4(Dipp)+,
responsible for a 31P{1H} singlet resonance at −4.4 ppm,
clearly distinguishable from those of 2(Dipp)+ and 3(Dipp)+

at 6.6 and 9.8 ppm, respectively. After careful NMR analysis of
reaction temperature and time, we found that intermediate
4(Dipp)+ formed as the only observable product when
2(Dipp)+ and NEt3 were allowed to react at −20 °C for 2 h
(Scheme 4).

Although 3(Dipp)+ and 4(Dipp)+ are isomers, the latter
exhibits a very different chemical constitution, for it contains a
10-membered metallacyclic unit resulting from deprotonation
of the C5Me5 ring,

7 followed by nucleophilic attack7a,b at the
para carbon atom of the coordinated Dipp ring, which is
dearomatized.2,6 Unequivocal structural evidence was gained
from variable temperature multinuclear NMR and X-ray
studies (Figure 2). In solution, two degenerate pseudoallylic
structures undergo fast exchange at room temperature, but

reach the slow-exchange regime at −30 °C. At this temper-
ature, the diastereotopic C5Me4CH2 protons resonate as
doublets of doublets centered at 3.27 and 2.46 ppm, as a
consequence of additional coupling to the adjacent para CH
nucleus. The X-ray structure in Figure 2 reveals that, beyond
the η5 coordination of the C5Me4CH2 moiety, the now
activated phosphine ligand binds to iridium through the
phosphorus atom and three adjacent carbon atoms of the
dearomatized ring (Ir−C bond distances of 2.166(4) (to
Cipso), 2.178(4) (Cortho), and 2.255(5) Å (Cmeta)), whereas the
newly formed C−C bond has a length of 1.560(6) Å.
The isomerization of 4(Dipp)+ to 3(Dipp)+ required neither

base (NEt3) nor acid (HNEt3
+) catalysis. Instead, it occurred

cleanly in CH2Cl2 solution (Scheme 4) following first-order
kinetics (t1/2 ≈ 6 h; see the SI for details). It was, however,
most notable to find that the 4(Dipp)+ to 3(Dipp)+

isomerization occurred also easily in the solid state (2 days,
30 °C).21,22 Periodical sampling and NMR monitoring
disclosed no observable intermediates.
The conversion of 2(Dipp)+ into 3(Dipp)+ through

4(Dipp)+ was also studied computationally (Figure 3).
Amine-mediated C5Me5 deprotonation (17.4 kcal/mol,
TS2−A) led to the formation of a neutral, Ir(I) fulvene complex
(12.0 kcal/mol, A). The thus generated triethylammonium
cation then facilitates chloride release (20.2 kcal/mol, TSA−B)
to yield intermediate B (1.0 kcal/mol). B is a cationic fulvene
complex for which metal unsaturation is compensated by
means of a π-arene interaction with one of the flanking aryl
rings of the phosphine, and presents an appropriate geometry
to undergo C−C bond formation via TSB−4 at 17.7 kcal/mol.
We propose this ring dearomatization step proceeds with
concomitant metal reoxidation to give Ir(III) complex
4(Dipp)+ at −2.1 kcal/mol. Isomerization of 4(Dipp)+ to
3(Dipp)+ involves the reversible formation of Ir(I) complex B
via TSB−4. Attack of the fulvene moiety in B at the C−H of an
isopropyl group of the proximate aryl ring (19.4 kcal/mol,
TSB−C) reoxidizes the metal center to Ir(III) and gives the η1-
allyl complex C (see the SI) at 7.6 kcal/mol. Isomerization to
the corresponding η3-allyl occurs via TSC−3 (18.9 kcal/mol)
and yields 3(Dipp)+ at −11.5 kcal/mol. It is striking that both
the classically innocent ligands (C5Me5 and PR3) play a
fundamental role in these transformations (C−H activation
and reversible C−C bond formation), whereas the metal
center participates by means of the Ir(I)−Ir(III) redox cycle
(see the SI for details).

Scheme 3. Proposed Mechanism for the Electrophilic C−H
Activation in 2(PMe2Ar′)+ Complexes (ΔG50°, kcal/mol, R
= H, Me)

Scheme 4. NEt3-Assisted Formation of Complex 4(Dipp)+

from 2(Dipp)+, and Solution and Solid-State Isomerization
of 4(Dipp)+ to 3(Dipp)+a

aBArF anions omitted for clarity.

Figure 2. ORTEP of the cation of complex [4(Dipp)]BArF.
Hydrogen atoms are excluded for clarity, and thermal ellipsoids are
set at 50% probability. Gray lines represent Dipp iPr substituents.
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In conclusion, chloride abstraction from complexes 2-
(PMe2Ar′)+ (Ar′ = ArXyl2, Ar

Dipp
2) fosters electrophilic, remote

C−H bond activation at dicationic intermediates [(η5-
C5Me5)Ir(PMe2Ar′)]2+, to give the pseudoallyl products
3(PMe2Ar′)+ shown in Scheme 2. In the presence of NEt3,
complex 2(Dipp)+ converts into the same C−H activation
product 3(Dipp)+, though through an unforeseen intermedi-
ate, 4(Dipp)+. The latter participates in a complex reaction
path involving a non-innocent C5Me5 ligand that undergoes
reversible C−H and C−C bond formation and cleavage at one
of the methyl termini. The 4(Dipp)+-to-3(Dipp)+ conversion
occurs both in solution and in the solid state. The latter
observation represents, we believe, a valuable contribution to
the field of solid state organometallic chemistry, which, despite
its importance as a bridge between molecular and solid-state
chemistry, and hence between homogeneous and heteroge-
neous catalysis, is still underdeveloped.21a
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