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1 Introduction

We study the following three-dimensional (3D) system of globally modified Navier-

Stokes equations

∂u

∂t
− ν∆u+ FN (‖u‖V )(u · ∇)u+∇p = g(x, t) in (0,+∞)× Ω, (1.1)

∇ · u = 0, (1.2)

u = 0 on (0,+∞)× ∂Ω, (1.3)

u(x, 0) = u0(x), x ∈ Ω, (1.4)

where the unknown functions u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) and p = p(x, t)

denote, respectively, the velocity field of the fluid and the kinematic pressure; g(x, t) =

(g1(x, t), g2(x, t), g3(x, t)) is the density of volume forces and ν > 0 is the viscosity

coefficient. In (1.1), ‖u‖V = ‖∇u‖(L2(Ω))3 , and the function FN (·) : (0,+∞) 7→ (0, 1] is

defined as

FN (r) = min
{

1, N/r
}
, r ∈ (0,+∞),

where N > 0 is given. In addition, x = (x1, x2, x3) ∈ Ω and Ω ⊂ R3 is an open bounded

subset and smooth enough such that the Poincaré inequality holds true.

The above globally modified Navier-Stokes equations were initiated in the paper [3].

The modifying factor FN (‖u‖V ) depends on the norm ‖u‖V = ‖∇u‖(L2(Ω))3 , which in

turn depends on ∇u over the whole domain Ω and not just at or near the point x ∈ Ω

under consideration. Essentially, it prevents large gradients dominating the dynamics

and leading to explosions ( [3, 4]).

The globally modified Navier-Stokes equations are interesting themselves, but, more

importantly, can be used to obtain useful information about the Navier-Stokes equa-

tions. We know that the Navier-Stokes equations are valid for accurate description of

the motion of the fluid only in the case that |∇u| is relatively small (see [18]). Ob-

viously, if ‖∇u‖(L2(Ω))3 6 N , then equations (1.1)-(1.2) reduce to the incompressible

Navier-Stokes equations. So the number N is the threshold value for ∇u. Also, the

globally modified Navier-Stokes equations were used as an intermediate step by Kloe-

den and Valero in [16] to prove that the attainability set of the weak solutions of the 3D

Navier-Stokes equations which satisfy an energy constraint is compact and connected

set in the weak topology.

Nowadays, the globally modified Navier-Stokes equations have been widely studied

by several researchers in some articles, including the existence and uniqueness of weak

and strong solutions [3, 5, 10, 15, 25, 27]; well-posedness and pullback attractor with

infinite delays [23,24], invariant measures and statistical solutions [4, 17,22,37], etc.

The invariant measures and statistical solutions have proven to be very useful in

the understanding of turbulence in the case of Navier-Stokes equations (see Foias et

al. [12]). The main reason is that the measurements of several aspects of turbulent

flows are actually measurements of time-average quantities. Statistical solutions have
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been introduced as a rigorous mathematical object to formalize the notion of ensemble

average in the conventional statistical theory of turbulence. There are two main notions

of statistical solutions, one introduced by Foias and Prodi [11] (will be called Foias-Prodi

statistical solution) and the other by Vishik and Furshikov [29] (will be called Vishik-

Furshikov statistical solution). The Foias-Prodi statistical solution defined in [11] is a

family of Borel measures parametrized by the time variable and defined on the phase

space of the Navier-Stokes equations, representing the probability distribution of the

velocity field of the flow at each time. While the Vishik-Furshikov statistical solutions

given in [29] is a single Borel measure on the space of trajectories, representing the

probability distribution of the space-time velocity field.

We recognize that the Foias-Prodi statistical solutions are associated to some in-

variant measures defined on the phase space (independent of time t) of the addressed

system, while the Vishik-Furshikov statistical solutions are associated to some invari-

ant measures defined on the trajectory space (dependent of time t) of solutions. The

invariant measures for well-posed dissipative systems were studied in a series of refer-

ences (see [6, 19–22, 26, 33]). For instance,  Lukaszewicz, Real and Robinson [21] used

the notion of Generalized Banach limit to construct the invariant measures for general

continuous dynamical systems on metric spaces. Later, Chekroun and Glatt-Holtz [6]

improved the results of [21] to construct invariant measures for a broad class of dissi-

pative autonomous dynamical systems. Recently,  Lukaszewicz and Robinson [22] ex-

tended the result of [6] to construct invariant measures for dissipative non-autonomous

dynamical systems.

The construction of invariant measures in [6] depends heavily on the existence of

global attractor of the continuous semigroup generated by the solution operators, and

in [22] the construction depends heavily on the pullback attractor of the continuous

process associated to the solutions operators. The original motivation of this article is

to use the natural translation semigroup and trajectory attractor to construct invariant

space-time measure and Vishik-Furshikov statistical solution for the globally modified

Navier-Stokes equations in trajectory space.

The first main result in this article is the existence and regularity of the trajec-

tory attractor for the globally modified Navier-Stokes equations (1.1)-(1.2). For the

existence we will employ the theory of Vishik and Chepyzhov [8, 31]. Consider the

natural translation semigroup {S(t)}t>0 defined on the trajectory space T tr
H and on the

regular trajectory space T tr
V (see notations in §2). We will first prove that {S(t)}t>0

possesses respectively a trajectory attractor Atr
H in T tr

H and Atr
V in T tr

V , and then reveal

the regularity and structure of the trajectory attractor by showing

Atr
H = Atr

V = Π+KX = {u(·)|[0,+∞)

∣∣u ∈ KX}, (1.5)

where KX , which is called the weak kernel (with X = H) or strong kernel (with X = V )

of equations (1.1)-(1.2), is the set of all bounded complete trajectories of equations

(1.1)-(1.2):

KX = {u(t), t ∈ R
∣∣u(t) is a weak solution of (1.1)− (1.2) and ‖u(t)‖X 6 Cu for t ∈ R}.
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Equality (1.5) implies the trajectory asymptotic smooth effect of the globally modified

Navier-Stokes equations in the sense that all bounded weak solutions u(t) are in fact

strong solution when t ∈ R+.

The theory of trajectory attractor was studied systematically by Vishik and Chep-

yzhov in [8]. Now this theory has been applied to several concrete nonlinear par-

tial differential equations, including the 3D Navier-Stokes equations [30, 31], 2D and

3D non-Newtonian fluids [34, 35], 3D dissipative Euler equations [9], the convective

Brinkman-Forchheimer equations [36].

The second main result in this article is concerned with the existence of invariant

Borel probability measure and trajectory statistical solution for the globally modified

Navier-Stokes equations in the trajectory space. We want to remark that the approach

of [6, 22] to construct invariant measure can not be applied directly here. But our

ideas are originated from [6, 22]. The main difference is that we consider the invariant

measure on the trajectory space Atr
H (or Atr

V ) other than on the phase space H. It is

worth mentioning that our approach for constructing invariant measure and trajectory

statistical solution can be raised to an abstract level for a broad class of evolutionary

equations displaying the property of global existence of weak solutions without a known

result of global uniqueness, such as the 2D dissipative Euler equations [9], the 3D

MHD equations [7, 14, 32, 38] and the 3D convective Brinkman-Forchheimer equations

[36]. The fundamental hypotheses on the concrete evolutionary equations is that the

trajectory space is a metrizable normal topological space and the natural translation

semigroup possesses a compact trajectory attractor.

The paper is arranged as follows. In section 2, we first introduce some notations

and operators, then recall some known results concerning the existence, uniqueness and

regularity of the solutions. In section 3, we prove the existence and regularity of the

trajectory attractor. In section 4, we use the trajectory attractor and translation semi-

group to construct the invariant Borel probability measure and trajectory statistical

solution. Finally, we summarize the article and provide a remark in section 5.

2 Preliminaries

In this section, we first introduce some notations and operators. Then we present

some preliminaries including the existence and uniqueness of solutions, and a compact

embedding theorem which is essential in our applications.

In this paper we use the following notations:

R = (−∞,+∞), R+ = [0,+∞);

Lp(Ω) = (Lp(Ω))3–the 3D Lebesgue space with norm ‖ · ‖Lp(Ω); ‖ · ‖L2(Ω) = ‖ · ‖;
Hm(Ω) = the 3D Sobolev space {φ ∈ L2(Ω)| ∇kφ ∈ L2(Ω), k 6 m} with norm ‖·‖Hm(Ω);

H1
0(Ω)= closure of {φ|φ ∈ (C∞0 (Ω))3} in H1(Ω) with norm ‖ · ‖H1(Ω);

V= {φ ∈ (C∞0 (Ω))3 |∇ · φ = 0};
H= closure of V in L2(Ω) with norm ‖ · ‖; H ′= dual space of H;

V= closure of V in H1(Ω) with norm ‖ · ‖V = ‖ · ‖H1(Ω);
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V ′= dual space of V with norm ‖ · ‖V ′ ;
(·, ·)– the inner product in H, 〈·, ·〉– the dual pairing between V and V ′;

distM (X,Y )– the Hausdorff semidistance between X ⊆M and Y ⊆M defined by

distM (X,Y ) = sup
x∈X

inf
y∈Y
‖x− y‖M .

“ −→ ” and “ ⇀ ” denote the strong and weak convergence, respectively.

To write problem (1.1)-(1.4) as a functional form, we next introduce some operators.

Firstly, we consider the operator A : V 7→ V ′ defined as

〈Au, v〉 = (∇u,∇v), u, v ∈ V.

Denoting D(A) = H2(Ω) ∩ V , then Au = −P∆u, ∀u ∈ D(A), is the Stokes operator,

where P is the Leray-Helmholtz projection from L2(Ω) onto H. Secondly, we define a

continuous trilinear form

b(u, v, w) =
3∑

i,j=1

∫
Ω
ui
∂vj
∂xi

wj dx, u, v, w ∈ H1
0(Ω).

Note that V ⊆ H1
0(Ω) is a closed subspace, b(u, v, w) is continuous on V × V × V , and

b(u, v, w) = −b(u,w, v), b(u, v, v) = 0, ∀u, v, w ∈ V.

For any u, v ∈ V ,

〈B(u, v), w〉 = b(u, v, w), ∀w ∈ V,

defines a continuous function B(u, v) on V × V . We further set

bN (u, v, w) = FN (‖v‖V )b(u, v, w), ∀u, v, w ∈ V.
〈BN (u, v), w〉 = bN (u, v, w), ∀u, v, w ∈ V.

Note that the form bN (u, v, w) is linear in u and w, but it is nonlinear in v. Obviously,

bN (u, v, v) = 0, ∀u, v ∈ V. (2.1)

For above introduced operators, we select the following estimations.

Lemma 2.1. ( [4, 17]) There exist two positive constants c1 and c2 depending only on

Ω such that

|bN (u, v, w)| 6 c1N‖u‖V ‖w‖V , ∀u, v, w ∈ V, (2.2)

|bN (u, v, w)| 6 c2N‖Au‖‖w‖, ∀u ∈ D(A), v ∈ V,w ∈ H. (2.3)

With the above notations, we can express, excluding the pressure p, the functional

form of problem (1.1)-(1.4) in the solenoidal vector field as following (see e.g. [4, 17]):

u′(t) + νAu(t) +BN (u(t), u(t)) = g(t) in D′(0,+∞;V ′), (2.4)

u(x, 0) = u0, x ∈ Ω, (2.5)

where u′(t) =
∂u(t)

∂t
.

We next specify the definition of solutions to problem (2.4)-(2.5).
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Definition 2.1. Let u0 ∈ H and g ∈ L2(0, T ;H) for any T > 0. A weak solution of

problem (2.4)-(2.5) is any function u(x, t) ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) for all T > 0,

with u(x, t)|t=0 = u0, such that

d

dt
(u(t), φ) + ν〈Au(t), φ〉+ 〈BN (u(t), u(t)), φ〉 = (g(t), φ), ∀φ ∈ V,

holds in the distribution sense of D′(0,+∞). If u(x, t) is a weak solution and further-

more u(x, t) ∈ L∞(0, T ;V )∩L2(0, T ;D(A)) for all T > 0, then u(x, t) is called a strong

solution of problem (2.4)-(2.5).

For the existence and uniqueness of solutions to problem (2.4)-(2.5), we have the

following result. We want to remark that the result of Lemma 2.2 (1) can be found

in [27, Theorem 1.1] and [3, Theorem 7(b), (c)], and the result of Lemma 2.2 (2) is

from [3, Theorem 7(a)].

Lemma 2.2. ( [3,27]) Suppose that g(t) ∈ L2(0, T ;H) for all T > 0 and let u0 ∈ H be

given. Then

(1) If u0 /∈ V , there exists a unique weak solution u of problem (2.4)-(2.5) satisfying

u ∈ C([ε, T ];V ) ∩ L2(ε, T ;D(A)), for all T > ε > 0,∀ ε > 0. (2.6)

(2) If u0 ∈ V , there exists a unique strong solution u of problem (2.4)-(2.5) satisfying

u ∈ C([0, T ];V ) ∩ L2(0, T ;D(A)), for all T > 0. (2.7)

We conclude this section with the following useful results.

Lemma 2.3. ( [8]) Let Y be a Banach space and E ↪→ E0 ⊆ Y . Also let the embedding

E ↪→ E0 be compact. Set

W∞,p(0, T ;E, Y ) =
{
φ(t), t ∈ [0, T ]

∣∣ φ(t) ∈ L∞(0, T ;E), φ′(t) ∈ Lp(0, T ;Y )
}
,

with the norm ‖φ‖W∞,p = esssup
t∈[0,T ]

{‖φ(t)‖E} +
( ∫ T

0
‖φ′‖pY

) 1
p , where p > 1. Then

W∞,p(0, T ;E, Y ) ↪→ C([0, T ];E0) with compact embedding.

Lemma 2.4. ( [8]) Let y(s),K(s) ∈ L1
loc(0,+∞) and let

−
∫ +∞

0
y(s)φ′(s)ds+ β

∫ +∞

0
y(s)φ(s)ds 6

∫ +∞

0
K(s)φ(s)ds

holds for any φ(s) ∈ C∞0 (R+), φ(s) > 0, where β ∈ R. Then for any t, τ ∈ R+, t > τ

there holds

y(t)eβt − y(τ)βτ 6
∫ t

τ
K(s)eβsds.
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3 Existence and regularity of trajectory attractor

In this section, we will introduce the definitions of trajectory space T tr
H and regular

trajectory space T tr
V for equation (2.4), as well as the definitions of trajectory attractor

Atr
H in T tr

H and Atr
V in T tr

V , respectively. The main result of this section is the existence

and regularity of trajectory attractor.

We set Hη = (−∆)−η/2H in this paper, where η > 0 and the Laplace operator

∆ is taken with zero boundary condition u
∣∣
∂Ω

= 0. We use H−η to denote the dual

space of Hη. In the whole article, we take 0 < η < 1 and thus the embeddings

H ↪→ H−η and V ↪→ H1−η are compact. Therefore, we can use the compact embedding

result in Lemma 2.3. In addition, we use Π+ to denote the restriction operator (with

respect to time variable) to the semi-infinite interval R+. Analogously, ΠT stands for

the restriction operator to the interval [0, T ]. For example, if u(·) ∈ C(R+;H−η) ∩
L∞(R+;H), then ΠTu(·) ∈ C([0, T ];H−η) ∩ L∞(0, T ;H); ΠTu(t) = u(t) if t ∈ [0, T ].

Definition 3.1.

(1) (Trajectory space) The trajectory space T +
H of equation (2.4) consists of functions

u ∈ L∞(R+;H) ∩ L2
loc(R+;V ) such that for any T > 0 the function ΠTu(t) is a

weak solution of (2.4) on [0, T ].

(2) (Regular trajectory space) The regular trajectory space T +
V of equation (2.4) con-

sists of functions u ∈ L∞(R+;V ) ∩ L2
loc(R+;D(A)) such that for any T > 0 the

function ΠTu(t) is a strong solution of (2.4) on [0, T ].

In the sequel, we let C([a, b];H−η) be the space of continuous H−η-valued functions

on [a, b] endowed with the metric

dC([a,b];H−η)(u, v) = sup
t∈[a,b]

dH−η(u(t), v(t)).

Also we denote by C([a,+∞);H−η) the space of continuous H−η-valued functions on

[a,+∞) endowed with the metric

dC([a,+∞);H−η)(u, v) =
∑
T∈N

1

2T
sup{dH−η(u(t), v(t)) : a 6 t 6 a+ T}

1 + sup{dH−η(w(t), φ(t)) : a 6 t 6 a+ T}
. (3.1)

We will adopt the topology of Cloc(R+;H−η) as the topology of the trajectory space

T tr
H , where Cloc(R+;H−η) is endowed with the compact open topology. Endowed with

this topology, the trajectory space T tr
H is metrizable. Similarly, the regular trajectory

space T tr
V is also metrizable with the following metric

dC([0,+∞);H1−η)(u, v) =
∑
T∈N

1

2T
sup{dH1−η(u(t), v(t)) : 0 6 t 6 T}

1 + sup{dH1−η(w(t), φ(t)) : 0 6 t 6 T}
. (3.2)

In addition, the natural translation semigroup {S(t)}t>0 on T tr
H and T tr

V is defined as

S(t)u(·) = u(t+ ·), ∀u ∈ T tr
H or T tr

V .

We next specify the definition of trajectory attractor.
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Definition 3.2.

(1) A set Atr
H ⊆ T

+
H is called the trajectory attractor of equation (2.4) with respect to

the topology Cloc(R+;H−η) if

(i) Atr
H is compact in Cloc(R+;H−η) and bounded in L∞(R+;H);

(ii) S(t)Atr
H = Atr

H , ∀ t > 0;

(iii) For any bounded (in L∞(R+;H) norm) set BH ⊂ T +
H and ∀T > 0,

lim
t→+∞

distC([0,T ];H−η)

(
ΠTS(t)BH ,ΠTAtr

H

)
= 0.

(2) A set Atr
V ⊆ T

+
V is called the trajectory attractor of equation (2.4) with respect to

the topology Cloc(R+;H1−η) if

(i) Atr
V is compact in Cloc(R+;H1−η) and bounded in L∞(R+;V );

(ii) S(t)Atr
V = Atr

V , ∀ t > 0;

(iii) For any bounded (in L∞(R+;V ) norm) set BV ⊂ T +
V and ∀T > 0,

lim
t→+∞

distC([0,T ];H1−η)

(
ΠTS(t)BV ,ΠTAtr

V

)
= 0.

We remark that a set Atr
H satisfying property (1)(iii) of Definition 3.2 is called a

trajectory attracting set of {S(t)}t>0 in T +
H . Similarly, a set Atr

V satisfying property

(2)(iii) of Definition 3.2 is called a trajectory attracting set of {S(t)}t>0 in T +
V . To

prove the existence of the trajectory attractor in T +
H and T +

V respectively, we shall

establish, according to the theory of Vishik and Chepyzhov [8], that T +
H and T +

V are

translation invariant under the action of {S(t)}t>0, and {S(t)}t>0 possesses a compact

attracting set in T +
H and T +

V , respectively.

From Lemma 2.2 and Definitions 3.2, we are ready to establish

Lemma 3.1. Let g ∈ L2(0, T ;H) for any T > 0.

(1) (i) For any u0 ∈ H, there exists a trajectory u(t) ∈ T +
H such that u(0) = u0;

(ii) T +
H is translation invariant under the action of {S(t)}t>0, i.e.,

S(t)T +
H ⊆ T

+
H , ∀ t > 0. (3.3)

(2) (i) For any u0 ∈ V , there exists a trajectory u(t) ∈ T +
V such that u(0) = u0;

(ii) T +
V is translation invariant under the action of {S(t)}t>0, i.e.,

S(t)T +
V ⊆ T

+
V , ∀ t > 0. (3.4)

Further, we have the following inclusion relations. This is the reason that we en-

dow T +
H with the topology of Cloc(R+;H−η), and endow T +

V with the topology of

Cloc(R+;H1−η).
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Lemma 3.2. Let g ∈ L2(0, T ;H) for any T > 0.

(1) T +
H ⊆ Cloc(R+;H−η) ∩ L∞(R+;H).

(2) T +
V ⊆ Cloc(R+;H1−η) ∩ L∞(R+;V ).

Proof. To prove item Lemma 3.2(1), we first verify that

t 7→ Au ∈ L2(0, T ;V ′), ∀u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), ∀T > 0; (3.5)

t 7→ BN (u, u) ∈ L2(0, T ;V ′), ∀u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), ∀T > 0. (3.6)

In fact, for any v ∈ V ,

|〈Au, v〉| = |〈∇u,∇v〉| 6 ‖u‖V ‖v‖V , ∀u ∈ V,

thus ∫ T

0
‖Au(t)‖2V ′dt 6 ‖u‖2L2(0,T ;V ), ∀u ∈ L

2(0, T ;V ), (3.7)

and (3.5) is proved. Also, by (2.2),∫ T

0
‖BN (u(t), u(t))‖2V ′dt 6 c1N‖u‖2L2(0,T ;V ) (3.8)

and (3.6) is established. Since g ∈ L2(0, T ;H) for any T > 0, we conclude from (3.5)-

(3.6) and equation (2.4) that ∂tu(·) ∈ L2
loc(R+;V ′). Since H ↪→ H−η ⊆ V ′ and the

embedding H ↪→ H−η is compact, we infer from Lemma 2.3 that u(·) ∈ Cloc(R+;H−η).

The inclusion relation in item Lemma 3.2(1) follows.

To prove item Lemma 3.2(2), we check that

t 7→ Au ∈ L2(0, T ;H), ∀u ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)), ∀T > 0; (3.9)

t 7→ BN (u, u) ∈ L2(0, T ;H), ∀u ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)), ∀T > 0. (3.10)

Indeed, for any u ∈ D(A) = H2(Ω) ∩ V , we have Au ∈ H and ‖Au‖ 6 ‖u‖D(A). Thus

|(Au, v)| 6 ‖u‖D(A)‖v‖, ∀ v ∈ H,

and, consequently,∫ T

0
‖Au(t)‖2dt 6

∫ T

0
‖u(t)‖2D(A)dt = ‖u‖2L2(0,T ;D(A)), ∀u ∈ L

2(0, T ;D(A)). (3.11)

We obtain (3.9). At the same time, (2.3) implies that

‖BN (u, u)‖ 6 c2N‖Au‖ 6 c2N‖u‖D(A), ∀u ∈ D(A),

and thus ∫ T

0
‖BN (u(t), u(t))‖2dt 6 c2N‖u‖2L2(0,T ;D(A)). (3.12)

We obtain (3.10). Note that g ∈ L2(0, T ;H) for any T > 0, we infer from (3.9)-

(3.10) and equation (2.4) that ∂tu(·) ∈ L2
loc(R+;H). Since V ↪→ H1−η ⊆ H and

the embedding V ↪→ H1−η is compact, we infer also from Lemma 2.3 that u(·) ∈
Cloc(R+;H1−η). The proof of Lemma 3.2 is completed.
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We next estimate the solutions in T +
H and T +

V . Let λ1 be the first eigenvalue of

the Stokes operator A. Also, we will employ the notation a . b to mean that a 6 cb

for a universal constant c > 0 that only depends on the parameters coming from the

problem.

Lemma 3.3. Suppose g ∈ H and set γ = νλ1.

(1) For any trajectory u ∈ T +
H , there exists a positive constant RH which is indepen-

dent of u, such that

‖S(t)u‖L∞(R+;H) + ‖S(t)u‖L2(0,1;V ) + ‖S(t)∂su‖L2(0,1;V ′)

= esssup
s>t

‖u(s)‖+
( ∫ t+1

t
‖u(s)‖2V ds

) 1
2 +

( ∫ t+1

t
‖∂su(s)‖2V ′ds

) 1
2

.‖u‖L∞(0,1;H)e
− γt

2 +RH , ∀ t > 1. (3.13)

(2) For any trajectory u ∈ T +
V , there exists a positive constant RV which is indepen-

dent of u, such that

‖S(t)u‖L∞(R+;V ) + ‖S(t)u‖L2(0,1;D(A)) + ‖S(t)∂su‖L2(0,1;H)

= esssup
s>t

‖u(s)‖V +
( ∫ t+1

t
‖u(s)‖2D(A)ds

) 1
2 +

( ∫ t+1

t
‖∂su(s)‖2ds

) 1
2

.‖u‖L∞(0,1;V )(1 + t+ t2)1/2e−
γt
2 +RV , ∀ t > 1. (3.14)

Proof. We first prove (3.13). Let u ∈ T +
H . Using u to take dual pairing 〈·, ·〉 with

equation (2.4) and also using (2.1) yield the following energy equality

1

2

d

dt
‖u(t)‖2 + ν‖∇u(t)‖2 = (g, u(t)), ∀ t > 0. (3.15)

By the Schwartz inequality and the following Poincaré inequality

λ1‖φ‖2 6 ‖∇φ‖2, ∀φ ∈ H1
0(Ω), (3.16)

we deduce from (3.15) that
1

2

d

dt
‖u(t)‖2 + ν‖∇u(t)‖2 6

‖g‖2

2νλ1
+
νλ1

2
‖u(t)‖2, that is

d

dt
‖u(t)‖2 + ν‖∇u(t)‖2 6

‖g‖2

νλ1
, ∀ t > 0. (3.17)

Note that the energy inequality (3.17) is interpreted in the following sense

−
∫ T

0
‖u(t)‖2ψ′(t)dt+ ν

∫ T

0
‖∇u(t)‖2ψ(t)dt 6

∫ T

0

‖g‖2

νλ1
ψ(t)dt,

for any T > 0 and any ψ ∈ C∞0 ([0, T ]). Set γ = νλ1, then (3.17) and above inequality

imply

−
∫ +∞

0
‖u(t)‖2ψ′(t)dt+ γ

∫ +∞

0
‖u(t)‖2ψ(t)dt

6
∫ +∞

0

(‖g‖2
γ
− ν(‖∇u(t)− λ1‖u(t)‖2

)
ψ(t)dt, ∀ψ ∈ C∞0 (R+). (3.18)
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Now (3.16), (3.18) and Lemma 2.4 yield

‖u(t)‖2eγt − ‖u(τ)‖2eγτ 6
1

γ

∫ t

τ
‖g‖2eγsds, ∀ t > τ, t, τ ∈ R+,

which implies that

‖u(t)‖ 6 ‖u(τ)‖eγ(τ−t)/2 +
‖g‖
γ

6 eγ/2 sup
τ∈(0,1)

‖u(τ)‖e−γt/2 +
‖g‖
γ

. ‖u‖L∞(0,1;H)e
−γt/2 + ‖g‖, ∀t > 1. (3.19)

Now, by (3.16) and (3.17),

‖S(t)u(s)‖2L2(0,1;V ) =

∫ t+1

t
‖u(s)‖2V ds =

∫ t+1

t
(‖u(s)‖2 + ‖∇u(s)‖2)ds

.
∫ t+1

t
‖∇u(s)‖2ds . ‖u(t)‖2 + ‖g‖2,

which, together with (3.19) gives directly that

‖S(t)u(s)‖L2(0,1;V ) . ‖u‖L∞(0,1;H)e
−γt/2 + ‖g‖. (3.20)

It then follows from (2.4), (3.7), (3.8) and (3.20) that

( ∫ t+1

t
‖∂su(s)‖2V ′ds

)1/2
.
( ∫ t+1

t
‖Au(s)‖2V ′ds

)1/2
+
( ∫ t+1

t
‖BN (u(s), u(s))‖2V ′ds

)1/2
+ ‖g‖

.‖u(s)‖L2(t,t+1;V ) + ‖g‖ = ‖S(t)u(s)‖L2(0,1;V ) + ‖g‖. (3.21)

We then obtain (3.13) from (3.19)-(3.21). Obviously the positive constant RH depends

only on ν, λ1, N and ‖g‖.
Next we prove (3.14). Let u ∈ T +

V corresponding to the initial value u0 ∈ V . Using

Au to take inner product (·, ·) with equation (2.4) yields the following entropy equality

1

2

d

dt
‖∇u(t)‖2 + ν‖Au(t)‖2 + bN (u(t), u(t), Au(t)) = (g,Au(t)), ∀ t > 0. (3.22)

Recall that we have the following estimate (cf. [3, (2.7)])

|b(u, v, w)| 6 c2‖u‖1/2V ‖Au‖
1/2‖v‖V ‖w‖, ∀u ∈ D(A), v ∈ V, w ∈ H. (3.23)

By Young’s inequality,

|bN (u, u,Au)| 6 c2
N

‖u‖V
‖u‖3/2V ‖Au‖

3/2 .
ν

4
‖Au‖2 + ‖u‖2V , (3.24)

|(g,Au(t))| . ν

4
‖Au‖2 + ‖g‖2. (3.25)
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Notice that ‖∇u‖ is a norm in V equivalent to the usual norm ‖u‖V . We then obtain

from (3.22) and (3.24)-(3.25) the following entropy inequality

d

dt
‖u(t)‖2V + ν‖Au(t)‖2 . ‖u‖2V + ‖g‖2. (3.26)

Note also that the entropy inequality (3.26) is interpreted in the following sense

−
∫ T

0
‖u(t)‖2V ψ′(t)dt+ ν

∫ T

0
‖Au(t)‖2ψ(t)dt .

∫ T

0
(‖g‖2 + ‖u(t)‖2V )ψ(t)dt,

for any T > 0 and any ψ ∈ C∞0 ([0, T ]). Hence, using the Poincaré type inequality

‖Au(t)‖2 > λ1‖u(t)‖2V ,

−
∫ +∞

0
‖u(t)‖2V ψ′(t)dt+ γ

∫ +∞

0
‖u(t)‖2V ψ′(t)dt

.−
∫ +∞

0
(‖Au(t)‖2 − λ1‖u(t)‖2V ]ψ(t)dt+

∫ +∞

0
(‖g‖2 + ‖u(t)‖2V )ψ(t)dt

.
∫ +∞

0
(‖g‖2 + ‖u(t)‖2V )ψ(t)dt, ∀ψ ∈ C∞0 (R+).

Again by Lemma 2.4,

‖u(t)‖2V eγt − ‖u(τ)‖2V eγτ .
∫ t

τ
(‖g‖2 + ‖u(s)‖2V )eγsds, ∀ t > τ, t, τ ∈ R+,

which gives

‖u(t)‖2V . ‖u(τ)‖2V eγτe−γt + e−γt
∫ t

τ
(‖g‖2 + ‖u(s)‖2V )eγsds

. ‖u‖2L∞(0,1;V )e
−γt + ‖g‖2 +

∫ t

τ
‖u(s)‖2V eγsds. (3.27)

Inserting the following inequality (see [3, (4.41)])

‖u(t)‖2V 6 (‖u0‖2V + C(N)t‖u0‖2)e−γt +
‖g‖2

ν2λ1
(2 + C(N)ν2λ1)

into (3.27) yields

‖u(t)‖2V .‖u‖2L∞(0,1;V )e
−γt + ‖g‖2

+ e−γt
∫ t

τ

(
(‖u‖2L∞(0,1;V ) + s‖u‖2L∞(0,1;V ))e

−γs + ‖g‖2
)
eγsds

.‖u‖2L∞(0,1;V )(1 + t+ t2)e−γt +R2
V , ∀ t > τ > 0, (3.28)

where RV is a positive constant depends only on ν, λ1, c2, N and ‖g‖. Now by (3.16),

(3.20), (3.26) and (3.28),

‖S(t)u(s)‖2L2(0,1;D(A)) =

∫ t+1

t
‖u(s)‖2D(A)ds .

∫ t+1

t
‖Au(s)‖ds

. (‖u(t)‖2V + ‖g‖2 +

∫ t+1

t
‖u(s)‖2V ds)

. ‖u(t)‖2V + ‖g‖2 + (‖u‖2L∞(0,1;H)e
−γt +R2

H)

. ‖u‖2L∞(0,1;V )(1 + t+ t2)e−γt +R2
V , ∀ t > 1. (3.29)
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We then deduce from (3.12) and (3.29) that

‖S(t)BN (u(s), u(s))‖2L2(0,1;H) =

∫ t+1

t
‖BN (u(s), u(s))‖2ds .

∫ t+1

t
‖u(s)‖2D(A)ds

. ‖u‖2L∞(0,1;V )(1 + t+ t2)e−γt +R2
V , ∀ t > 1. (3.30)

Taking (2.4) and (3.28)-(3.30) into account, we have

‖S(t)∂su(s)‖L2(0,1;H) . ‖S(t)Au(s)‖L2(0,1;H) + ‖S(t)BN (u(s), u(s))‖L2(0,1;H) + ‖g‖

. ‖u‖L∞(0,1;V )(1 + t+ t2)1/2e−
γt
2 +RV , ∀ t > 1. (3.31)

Therefore, (3.14) is obtained from (3.28), (3.29) and (3.31). The proof of Lemma 3.3

is completed.

We next use the estimates obtained in Lemma 3.3 to construct the trajectory at-

tracting set for {S(t)}t>0 in T +
H and T +

V , respectively.

Lemma 3.4. Suppose g ∈ H.

(1) There exists a bounded (in the norm of L∞(R+;H)) trajectory absorbing set ΛH ⊂
T +
H , i.e., for any bounded (in the norm of L∞(R+;H)) subset BH ⊂ T +

H , there

exists a time tH = tH(B) such that S(t)u ∈ ΛH , ∀u ∈ BH , ∀ t > tH .

(2) There exists a bounded (in the norm of L∞(R+;V )) trajectory absorbing set ΛV ⊂
T +
V , i.e., for any bounded (in the norm of L∞(R+;V )) subset BV ⊂ T +

V , there

exists a time tV = tV (B) such that S(t)u ∈ ΛV , ∀u ∈ BV , ∀ t > tV .

Proof. Set

ΛH =
{
u ∈ T +

H

∣∣ sup
t>0

{
‖u‖L∞(t,t+1;H) + ‖∂su‖L2(t,t+1;V ′)

}
6 2RH

}
, (3.32)

ΛV =
{
u ∈ T +

V

∣∣ sup
t>0

{
‖u‖L∞(t,t+1;V ) + ‖∂su‖L2(t,t+1;H)

}
6 2RV

}
, (3.33)

where RH and RV are the positive constants come from Lemma 3.3.

We claim that ΛH is a bounded trajectory absorbing set (thus is a bounded trajec-

tory attracting set) for {S(t)}t>0 in T +
H . Indeed, let BH be a bounded (in L∞(R+;H)

norm) subset of T +
H . Then from (3.13) we infer that for ∀u ∈ BH ⊂ T +

H , there exists a

t0 = t0(BH) > 1 such that ‖u‖L∞(0,1;H)e
−γt/2 6 RH as long as t > t0. Therefore,

‖u‖L∞(t,t+1;H) + ‖∂tu‖L2(t,t+1;V ′) 6 2RH , ∀ t > t0 + 1, (3.34)

and S(t)BH ⊆ ΛH , ∀ t > tH = t0 + 1, which implies that ΛH is a trajectory absorbing

set for {S(t)}t>0 in T +
H . Obviously, ΛH is bounded (in L∞(R+;H) norm) in T +

H .

Similarly, ΛV is a bounded trajectory absorbing set (thus is a bounded trajectory

attracting set) for {S(t)}t>0 in T +
V . The proof is completed.

To prove the existence of trajectory attractor for {S(t)}t>0 in the trajectory space

T +
H , we now need establish that the trajectory absorbing set ΛH is compact in Cloc(R+;H−η).
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Lemma 3.5. Suppose g ∈ H. Then the trajectory absorbing set ΛH is compact in

Cloc(R+;H−η).

Proof. Step One We prove that T +
H is closed in Cloc(R+;H−η). Let {un} be a bounded

(in the norm of L∞(R+;H)) sequence in T +
H and there exists a function u∗ ∈ Cloc(R+;H−η)

such that

un −→ u∗ in the topology of Cloc(R+;H−η) as n→∞. (3.35)

We shall prove that u∗ ∈ T +
H . To this end, we need to show that u∗ ∈ L∞(R+;H) ∩

L2
loc(R+;V ), and ∀T > 0, ΠTu

∗(t) is a weak solution of (2.4) on the interval [0, T ].

Indeed, since {un} ⊂ T +
H and is bounded in L∞(R+;H), by (3.13) we conclude that

{un} is bounded in L2
loc(R+;V ) and {∂tun} is bounded in L2

loc(R+;V ′). Using the

diagonal procedure we deduce that there exist a function u ∈ L∞(R+;H)∩L2
loc(R+;V )

and a subsequence {un′} of {un} such that

ΠTun′ ⇀ ΠTu weakly in L2(0, T ;V ) as n′ →∞, (3.36)

un′ ⇀ u weakly star in L∞(R+;H) as n′ →∞, (3.37)

∂tΠTun′ ⇀ ∂tΠTu weakly in L2(0, T ;V ′) as n′ →∞. (3.38)

Obviously, ∂tu ∈ L2
loc(R+;V ′). By Lemma 2.3 we obtain ΠTu ∈ C([0, T ];H−η) since

the embedding H ↪→ H−η is compact. From (3.35) and the uniqueness of limit we have

u = u∗. Next we verify that ΠTu
∗ is a weak solution of (2.4) on the interval [0, T ]. For

this purpose, we check the following convergent relations

AΠTun′ ⇀ AΠTu
∗ weakly in L2(0, T ;V ′) as n′ →∞, (3.39)

BN (ΠTun′ ,ΠTun′) ⇀ BN (ΠTu
∗,ΠTu

∗) weakly in L2(0, T ;V ′) as n′ →∞. (3.40)

In fact, the convergence of (3.39) is classical (see e.g. [28]), while the derivation of (3.40)

is almost the same as that as [3, (3.20)]. With the convergent relations (3.38)-(3.40) in

hand, we can pass the limit in equation (2.4) as n′ → ∞. This shows that ΠTu
∗ is a

weak solution of equation (2.4) on [0, T ].

Step Two We prove that the trajectory absorbing set ΛH is compact in Cloc(R+;H−η).

Indeed, from (3.32) we see that ΠTΛH is bounded in W∞,2(0, T ;H,V ′) and thus ΠTΛH
is pre-compact in C([0, T ];H−η) (thanks to Lemma 2.3). Hence, it suffices to show

that ΠTΛH is closed in C([0, T ];H−η) for any T > 0. Assume that {un} ⊂ ΛH and

ΠTun −→ ΠTu in the metric of C([0, T ];H−η) as n → ∞. we see from Step one that

u ∈ T +
H . Moreover, in the proof of Step one we know ∂tΠTun ⇀ ∂tΠTu weakly in

L2(0, T ;V ′) and un ⇀ u weakly star in L∞(R+;H) as n→∞. Thus

‖u‖L∞(t,t+1;H) + ‖∂tu‖L2(t,t+1;V ′)

6 lim inf
n→∞

‖un‖L∞(t,t+1;H) + lim inf
n→∞

‖∂tun‖L2(t,t+1;V ′) 6 2RH , ∀ t > 0.

Therefore u ∈ ΛH and ΠTu ∈ C([0, T ];H−η). The proof is completed.

Similarly, in order to obtain the existence of trajectory attractor for {S(t)}t>0 in

the regular trajectory space T +
V , we need prove that the trajectory absorbing set ΛV is

compact in Cloc(R+;H1−η).
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Lemma 3.6. Suppose g ∈ H. Then the trajectory absorbing set ΛV is compact in

Cloc(R+;H1−η).

Proof. The procedure of the proof is analogous to that of Lemma 3.5, which is divided

into two steps.

Step One We prove that T +
V is closed in Cloc(R+;H1−η). Let {un} be a bounded (in

the norm of L∞(R+;V )) sequence in T +
V and there exists a function u∗ ∈ Cloc(R+;H1−η)

such that

un −→ u∗ in the topology of Cloc(R+;H1−η) as n→∞. (3.41)

We next prove that u∗ ∈ T +
V . To this end, we need to show that u∗ ∈ L∞(R+;V ) ∩

L2
loc(R+;D(A)), and ∀T > 0, ΠTu

∗(t) is a strong solution of (2.4) on the interval [0, T ].

In fact, since {un} ⊂ T +
V and is bounded in L∞(R+;V ), by (3.14) we conclude that

{un} is bounded in L2
loc(R+;D(A)) and {∂tun} is bounded in L2

loc(R+;H). Using the

diagonal procedure we see that there exist a function u ∈ L∞(R+;V )∩L2
loc(R+;D(A))

and a subsequence {un′} of {un} such that

ΠTun′ ⇀ ΠTu weakly in L2(0, T ;D(A)) as n′ →∞, (3.42)

un′ ⇀ u weakly star in L∞(R+;V ) as n′ →∞, (3.43)

∂tΠTun′ ⇀ ∂tΠTu weakly in L2(0, T ;H) as n′ →∞. (3.44)

Obviously, ∂tu ∈ L2
loc(R+;H). By Lemma 2.3 we have ΠTu ∈ C([0, T ];H1−η) since the

embedding V ↪→ H1−η is compact. From (3.41) and the uniqueness of limit we have

u = u∗. Next we verify that ΠTu
∗ is a strong solution of (2.4) on the interval [0, T ].

Since we have the following convergent relations

AΠTun′ ⇀ AΠTu
∗ weakly in L2(0, T ;H) as n′ →∞; (3.45)

BN (ΠTun′ ,ΠTun′) ⇀ BN (ΠTu
∗,ΠTu

∗) weakly in L2(0, T ;H) as n′ →∞, (3.46)

which were proved in [3], we can pass the limit in equation (2.4) as n′ → ∞ and

conclude that ΠTu
∗ is a strong solution of equation (2.4) on [0, T ].

Step Two We prove that the trajectory absorbing set ΛV is compact in Cloc(R+;H1−η).

From (3.33) we see that ΠTΛH is bounded in W∞,2(0, T ;V,H). Thus ΠTΛV is pre-

compact in C([0, T ];H1−η) due to Lemma 2.3. Hence, it suffices to show that ΠTΛV is

closed in C([0, T ];H1−η) for any T > 0. Assume that {un} ⊂ ΛV and ΠTun −→ ΠTu

in the metric of C([0, T ];H1−η) as n→∞. Then u ∈ T +
V . Moreover, ∂tΠTun ⇀ ∂tΠTu

weakly in L2(0, T ;H) and un ⇀ u weakly star in L∞(R+;V ) as n→∞. Thus

‖u‖L∞(t,t+1;V ) + ‖∂tu‖L2(t,t+1;H)

6 lim inf
n→∞

‖un‖L∞(t,t+1;V ) + lim inf
n→∞

‖∂tun‖L2(t,t+1;H) 6 2RV , ∀ t > 0.

Therefore u ∈ ΛV and ΠTu ∈ C([0, T ];H1−η). The proof is completed.

Remember that we have introduced the notation KX with X = H or X = V in the

Introduction. The main result of this section reads as follows.
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Theorem 3.1. Suppose g ∈ H.

(1) The natural translation semigroup {S(t)}t>0 possesses a trajectory attractor Atr
H

in T +
H satisfying Definition 3.2(1)(i)-(iii) and possessing the following structure

Atr
H = Π+KH = {Π+u(·)

∣∣ u ∈ KH} ⊂ T +
H . (3.47)

(2) The natural translation semigroup {S(t)}t>0 possesses a trajectory attractor Atr
V

in T +
V satisfying Definition 3.2(2)(i)-(iii) and possessing the following structure

Atr
V = Π+KV = {Π+u(·)

∣∣ u ∈ KV } ⊂ T +
V . (3.48)

(3) The following regularity of the trajectory attractor holds

Atr
H = Π+KH = Atr

V = Π+KV . (3.49)

Proof. The results in items (1) and (2) are obtained directly by employing Lemma 3.1,

Lemmas 3.4-3.6 and the abstract theory [31, Theorem 4.1].

We next prove (3.49). To this end, we first establish that any trajectory u(·) issuing

from any bounded subset of H will becomes eventually bounded in L∞(R+;V ). Indeed,

consider any bounded subset BH of H and any u0 ∈ BH . Let u(·) = S(·)u0 be a

trajectory issuing from u0. Then by Lemma 2.2(1), there exists some t0 ∈ (0, 1) such

that u(t0) ∈ V . Then the function v(t) = u(t+ t0) is a weak solution of equation (2.4)

with initial value v(0) = u(t0) ∈ V . By [3, (4.41)] we have

‖u(t+ t0)‖2V = ‖v(t)‖2V . (‖v(0)‖2V + t‖v(0)‖2)e−σt + ‖g‖
= (‖u(t0)‖2V + t‖u(t0)‖2)e−σt + ‖g‖. (3.50)

Set

Ψ = {u(·) ∈ T +
H

∣∣u(·) issues from u0 ∈ BH}.

Then for above t0 we see that both sup
u(·)∈Ψ

‖u(t0)‖V and sup
u(·)∈Ψ

‖u(t0)‖ depend only on

BH . We then deduce from (3.50) that there exists some time t∗(BH) > t0 such that

‖u(t)‖2V 6 c, ∀ t > t∗(BH), (3.51)

where the positive constant c depends only on ‖g‖ and BH . Now, (3.51) and the

invariance property of the trajectory attractor tell us that there is some time t∗(Atr
H)

such that Atr
H = S(t∗(Atr

H))Atr
H is bounded in L∞(R+;V ). Also by the invariance

property and attracting property of the trajectory attractor, we obtain for any T > 0

that

distC([0,T ];H−η)(ΠTAtr
H ,ΠTAtr

V )

=distC([0,T ];H−η)

(
ΠTS(t)Atr

H ,ΠTAtr
V

)
(∀ t ∈ R+)

6distC([0,T ];H1−η)

(
ΠTS(t)Atr

H ,ΠTAtr
V

)
(∀ t > t∗(Atr

H))

= lim
t→+∞

distC([0,T ];H1−η)

(
ΠTS(t)Atr

H ,ΠTAtr
V

)
=0,
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which implies Atr
H ⊆ Atr

V . At the same time, since all strong solutions are weak solutions,

(3.47) and (3.48) give Atr
V ⊆ Atr

H . The proof is completed.

4 Invariant measure and trajectory statistical solution for
the 3D globally modified Navier-Stokes equations

In this section we will investigate the existence and uniqueness of invariant Borel

probability measure and trajectory statistical solution for the 3D globally modified

Navier-Stokes equations. Our idea originates from [6]. Here we extend the approach

of [6] and use the trajectory attractor to construct the invariant measure and trajectory

statistical solution.

According to [2, Definition 3.1], we now give the concept of the trajectory statistical

solution for the addressed 3D globally modified Navier-Stokes equations. For brevity,

we denote

F+ = C([0,+∞);H−η),

which has been endowed with the metric (see (3.1))

dF+(u, v) = dC([0,+∞);H−η)(u, v) =
∑
T∈N

1

2T
sup{dH−η(u(t), v(t)) : 0 6 t 6 T}

1 + sup{dH−η(w(t), φ(t)) : 0 6 t 6 T}
.

Definition 4.1. We say a Borel probability measure ρ on F+ is a T +
H -trajectory sta-

tistical solution over [0,+∞) (or simply a trajectory statistical solution) for equations

(1.1)-(1.2) if

(1) ρ is tight for any B ∈ B(F+) (the collection of Borel sets of F+) in the sense that

ρ(B) = sup
{
ρ(E)

∣∣E ∈ B(F+) and E ⊂ B
}

;

(2) ρ is supported by a Borel subset of F+ included in T +
H .

To construct the invariant Borel probability measure and trajectory statistical so-

lution, we first establish two lemmas. Let C(F+) be the set of all continuous functions

from F+ to R. For any ε > 0, denote Kε = {w ∈ F+ | inf
v∈K

dF+(w, v) < ε}.

Lemma 4.1. Let K be some compact subset of F+. Then for every ψ ∈ C(F+), there

exists some ε > 0 such that

sup
w∈Kε

|ψ(w)| < +∞.

Proof. Fix some ψ ∈ C(F+). For every w ∈ K we can choose δ = δw > 0 such

that for every v ∈ B(w; δw) = {Φ ∈ F+ | dF+(w,Φ) < δw} there holds |ψ(w) −
ψ(v)| < 1. Picking numbers δw > 0 in this way we can construct an open covering

Λ = {B(w; δw3 ) | w ∈ K} for K. Since K is compact in F+, we may extract from this

open covering a finite one

Λm =
{
B(w1;

δw1

3
),B(w2;

δw2

3
), · · · ,B(wm;

δwm
3

)
}
.
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Set

ε =
min{δw1 , δw2 , · · · , δwm}

3
, C = 1 + max

16j6m
|ψ(wj)|.

Given any w ∈ Kε we can choose v ∈ K so that dF+(w, v) < 2ε. Since Λm covers K

we can choose wj such that dF+(v, wj) <
δwj
3 . Hence we obtain

dF+(w,wj) < dF+(w, v) + dF+(v, wj) < 2ε+
δwj
3

6 δwj

and conclude that |ψ(w)| 6 C. By the arbitrariness of w ∈ Kε, we end the proof.

Lemma 4.2. Let K be some compact subset of F+ and let ψ, φ ∈ C(F+) satisfying

ψ(w) = φ(w) for every w ∈ K. Then for every ε > 0 there exists a δ = δ(ε) > 0 such

that sup
w∈Kδ

|ψ(w)− φ(w)| < ε.

Proof. Consider given ε > 0. For every w ∈ K we pick γw > 0 so that |φ(w)− φ(v)|+
|ψ(w)−ψ(v)| < ε whenever v ∈ B(w; γw). Due to the compactness of K in F+, we can

cover K with a finite collection

Λk =
{
B(w1;

γw1

3
),B(w2;

γw2

3
), · · · ,B(wk;

γwk
3

)
}

withwj ∈ K, j = 1, 2, · · · , k.

Set 3δ = min{γw1 , γw2 , · · · , γwk}, then for every v ∈ Kδ we can choose w ∈ K so

that dF+(v, w) < 2δ. Notice that K is covered by Λk, we may take wj such that

dF+(w,wj) <
γwj

3 . Thus

dF+(v, wj) 6 dF+(v, w) + dF+(w,wj) 6 2δ +
γwj
3

6 γwj .

Therefore for arbitrary v ∈ Kδ, there exists some j such that v ∈ B(wj ; γwj ). Keeping

in mind that ψ(wj) = φ(wj), we have

|ψ(v)− φ(v)| 6 |ψ(v)− ψ(wj)|+ |φ(wj)− φ(v)| < ε.

The proof is completed.

We next recall the definition of generalized Banach limit and a useful property.

Definition 4.2. ( [12, 22]) A generalized Banach limit is any linear functional, which

we denote by LIMt→+∞, defined on the space of all bounded real-valued functions on

[0,+∞) that satisfies

(1) LIMt→+∞h(t) > 0 for nonnegative functions h(·) on [0,+∞);

(2) LIMt→+∞h(t) = lim
t→+∞

h(t) if the usual limit lim
t→+∞

h(t) exists.

Let B+ be the collection of all bounded real-valued functions on [0,+∞). For any

generalized Banach limit LIMt→+∞, the following useful property

|LIMt→+∞h(t)| 6 lim sup
t→+∞

|h(t)|, ∀h(·) ∈ B+, (4.1)

is presented in [12, (1.38)] and in [6, (2.3)].

The main result of this section reads as follows.
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Theorem 4.1. Let LIMt→+∞ be a given generalized Banach limit. Then for any u ∈
T +
H , there exists a unique Borel probability measure ρu on F+ such that∫

F+

ψ(v)dρu(v) = LIMt→+∞
1

t

∫ t

0
ψ(S(s)u)ds, ∀ψ ∈ C(F+). (4.2)

Moreover, this Borel probability measure ρu is a trajectory statistical solution for the

3D globally modified Navier-Stokes equations (1.1)-(1.2) and ρu satisfies the following

invariant property and regularity∫
F+

ψ(S(τ)v)dρu(v) =

∫
F+

ψ(v)dρu(v) =

∫
Atr
H

ψ(v)dρu(v)

=

∫
Atr
V

ψ(v)dρu(v), ∀ τ > 0, ∀ψ ∈ C(F+). (4.3)

Proof. Let LIMt→+∞ be a given generalized Banach limit. Consider given u ∈ T +
H and

ψ ∈ C(F+). Since the translation semigroup {S(s)}s>0 possesses a trajectory attractor

Atr
H ⊂ T

+
H ⊂ F+, we see from the attracting property of the trajectory attractor that

for every ε > 0, there exists a time tε > 0 such that

S(s)u ∈ Atr
H,ε = {Φ ∈ F+ | inf

v∈Atr
H

dF+(Φ, v) < ε}, for every s > tε. (4.4)

By Lemma 4.1 we can pick ε > 0 such that

C1 = sup
v∈Atr

H,ε

|ψ(v)| < +∞. (4.5)

Notice that the interval [0, tε] is compact and that s 7−→ |ψ(S(s)u)| is continuous, we

can take tε as required in (4.4) for the picked ε, and see that

C2 = sup
s∈[0,tε]

|ψ(S(s)u)| < +∞. (4.6)

Hence, we conclude for every t > 0 that

1

t

∫ t

0
ψ(S(s)u)ds 6 C1 + C2 < +∞,

which implies that the map defined by t 7−→ 1

t

∫ t

0
ψ(S(s)u)ds is bounded over [0,+∞).

Therefore, we claim that

Lu(ψ) = LIMt→+∞
1

t

∫ t

0
ψ(S(s)u)ds (4.7)

is well defined as a positive linear functional on C(F+). We next establish that the

positive linear functional Lu(ψ) depends only on the values of ψ on the trajectory

attractor Atr
H . In other words, we will prove that if ψ(v) = ψ̃(v) for every v ∈ Atr

H
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then Lu(ψ) = Lu(ψ̃). In fact, for any given ε > 0, we can choose, by Lemma 4.2 a

corresponding δ > 0 such that

sup
v∈Atr

H,δ

|ψ(v)− ψ̃(v)| < ε, (4.8)

where Atr
H,δ = {Φ ∈ F+ | inf

v∈Atr
H

dF+(Φ, v) < δ}. We now pick tδ > 0 such that S(s)u ∈

Atr
H,δ for every s > tδ. Set

Cδ = sup
s∈[0,tδ]

(|ψ(S(s)u)|+ |ψ̃(S(s)u)|).

Similar to (4.6), we find that Cδ < +∞. Applying (4.1), (4.6) and (4.8), we have

|Lu(ψ − ψ̃)| =
∣∣∣LIMt→+∞

1

t

∫ t

0
(ψ(S(s)u)− ψ̃(S(s)u))ds

∣∣∣
6 lim sup

t→+∞

1

t

∣∣∣ ∫ t

0
(ψ(S(s)u)− ψ̃(S(s)u))ds

∣∣∣
6 lim sup

t→+∞

1

t

∫ tδ

0

∣∣ψ(S(s)u)− ψ̃(S(s)u)
∣∣ds

+ lim sup
t→+∞

1

t

∫ t

tδ

∣∣ψ(S(s)u)− ψ̃(S(s)u)
∣∣ds

6 lim sup
t→+∞

tδCδ
t

+ lim sup
t→+∞

(t− tδ)ε
t

6 ε.

By the arbitrariness of ε > 0, we obtain the desired assertion that the positive linear

functional Lu(ψ) depends only on the values of ψ on the trajectory attractor Atr
H .

We now define G(ψ) = Lu(`(ψ)) for ψ ∈ C(Atr
H), where `(ψ) is an extension of

ψ from C(Atr
H) to C(F+) given by the Tietze theorem (see [12, Theorem A.7]). By

Definition 4.2(1) and (4.7), we can prove that G(·) is a positive linear functional on

C(Atr
H). Since Atr

H ⊂ T
+
H , and T +

H is a locally compact topological space, we see, by the

Kakutani-Riesz Representation Theorem (see [12, Theorem A.1]), that there exists a

unique positive, finite, Borel measure ρu on Atr
H such that

G(ψ) =

∫
Atr
H

ψ(v)dρu(v). (4.9)

We extend ρu (by zero) to a Borel measure on F+ by taking ρu(E) = ρu(Atr
H ∩ E) for

E ∈ B(F+). So for every ψ ∈ C(F+),

G(ψ) = Lu(ψ) = LIMt→+∞
1

t

∫ t

0
ψ(S(s)u)ds =

∫
Atr
H

ψ(v)dρu(v) =

∫
F+

ψ(v)dρu(v),

and clearly ρu(F+\Atr
H) = 0. At the same time, since F+ is a metrizable space (cf. [13,

Proposition 2.1(2)]), every finite Borel measure is tight in the sense of Definition 4.1(1)

(see [1, Theorem 12.5]. Therefore, ρu is a trajectory statistical solution for the 3D

globally modified Navier-Stokes equations.
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We next prove that ρu is invariant under the action of {S(t)}t>0. To this end, we fix

any t∗ > 0 and any ψ ∈ C(F+). Since the interval [0, t∗] is compact and s 7→ |ψ(S(s)u)|
is continuous, we have

LIMt→+∞
1

t

∫ t∗

0
ψ(S(s)u)ds = 0. (4.10)

At the same time, we use (4.1) and (4.5) to get∣∣∣LIMt→+∞
1

t

∫ t+t∗

t
ψ(S(s)u)ds

∣∣∣ 6 lim sup
t→+∞

t∗

t
C1 = 0. (4.11)

Therefore, (4.10) and (4.11) give∫
F+

ψ(S(t∗)v)dρu(v) =LIMt→+∞
1

t

∫ t

0
ψ(S(t∗)S(s)u)ds

=LIMt→+∞
1

t

∫ t

0
ψ(S(t∗ + s)u)ds

=LIMt→+∞
1

t

∫ t+t∗

t∗
ψ(S(s)u)ds

=LIMt→+∞
1

t

∫ t+t∗

t
ψ(S(s)u)ds− LIMt→+∞

1

t

∫ t∗

0
ψ(S(s)u)ds

+ LIMt→+∞
1

t

∫ t

0
ψ(S(s)u)ds

=LIMt→+∞
1

t

∫ t

0
ψ(S(s)u)ds =

∫
F+

ψ(v)dρu(v),

which is the desired invariant property. Finally, remember that the regularity of the

trajectory statistical solution means that it is supported by a set in the trajectory space

in which all weak solutions are in fact strong solutions. This is a directly conclusion

of the regularity of the trajectory attractor which has been proved in Theorem 3.1(3).

The proof is completed.

5 Summary and Remark

In this article, we first prove the existence and regularity of the trajectory attractor

for a 3D system of globally modified Navier-Stokes equations. The regularity of the

trajectory attractor reveals the trajectory asymptotic smoothing effect of the addressed

equations in the sense that the trajectories become eventually more smoother than the

initial values. We then use the natural translation semigroup and trajectory attractor

to construct trajectory statistical solution for the 3D globally modified Navier-Stokes

equations. The constructed trajectory statistical solution is a tight Borel probability

measure, which is supported by the trajectory attractor and is invariant under the

action of the translation semigroup. Moreover, the constructed trajectory statistical

solution is asymptotic regular in the sense that it is supported by a set in the trajectory

space in which all weak solutions are in fact strong solutions.
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We believe that the approach using trajectory attractor to construct trajectory

statistical solution here can be raised to an abstract level for a broad class of evolu-

tionary equations displaying the property of global existence of weak solutions without

a known result of global uniqueness, such as the 2D dissipative Euler equations [9],

the 3D MHD equations [7, 14, 32, 38] and the 3D convective Brinkman-Forchheimer

equations [36]. The fundamental hypotheses on the concrete evolutionary equations

is that the trajectory space is a metrizable normal topological space and the natural

translation semigroup possesses a compact trajectory attractor.

We end this article with a remark. If we set µt = S(t)ρu (where ρu is the Borel

probability measure obtained in Theorem 4.1) and rewrite equation (2.4) as

du

dt
= G(u)

for G(u) = g−Au+BN (u, u), then we can prove the following Liouville-type equation

in Statistical Mechanics

d

dt

∫
F+

Φ(v)dµt(v) =

∫
F+

(G(v),Φ′(v))dµt(v),

for all “test” functions Φ (cf. [12, P178, Definition 1.2]). We will investigate this issue

in another paper.

References

[1] C. D. Aliprentis, K. C. Border, Infinite Dimensional Analysis, A Hithhiker’s Guide,
third editon, Springer-Verlag, 2006.

[2] A. Bronzi, C. F. Mondaini, R. Rosa, Abstract framework for the theory of statistical
solutions, J. Differential Equations, 260(2016), 8428-8484.

[3] T. Caraballo, J. Real, P. E. Kloeden, Unique strong solutions and V -attractor
of a three dimensional system of globally modified Navier-Stokes equations, Adv.
Nonlinear Studies, 6(2006), 411-436.

[4] T. Caraballo, G.  Lukaszewicz, J. Real, Invariant measures and statitical solu-
tions of the globally modified Navier-Stokes equations, Discrete Cont. Dyn. Syst.-B,
10(2008), 761-781.

[5] T. Caraballo, J. Real, P. E. Kloeden, Unique strong solutions and V -Attractors
of a three dimensional system of globally modified Navier-Stokes equations, Adv.
Nonlinear Studies, 10(2010), 245-247.

[6] M. Chekroun, N. E. Glatt-Holtz, Invariant measures for dissipative dynamical sys-
tems: Abstract results and applications, Comm. Math. Phys., 316(2012), 723-761.

[7] C. Cao, J, Wu, Two regularity criteria for the 3D MHD equations, J. Differential
Equations, 248(2010), 2263-2274.

[8] V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics.
American Mathematical Society Colloquium Publications, 49, Providence, R.I., 2002.

22



[9] V. V. Chepyzhov, M. I. Vishik, S. V. Zelik, Strong trajectory attractor for dissipa-
tive Euler equations, J. Math. Pures Appl., 96(2011), 395-407.

[10] B. Dong, J. Song, Globally regularity and asymptotic behavior of modified Navier-
Stokes equations with fractional dissipation, Discrete Cont. Dyn. Syst.-A, 32(2012),
57-79.

[11] C. Foias, G. Prodi, Sur les solutions statistiques equations de Navier-Stokes, Ann.
Math. Pura Appl., 111(1976), 307-330.

[12] C. Foias, O. Manley, R. Rosa, R. Temam, Navier-Stokes Equations and Turbulence,
Cambridge University Press, Cambridge, 2001.

[13] C. Foias, R. Rosa, R. Temam, Properties of time-dependent statistical solutions
of the three-dimensional Navier-Stokes equations, Annales de L’Institut Fourier,
63(2013), 2515-2573.

[14] X. Jia, Y. Zhou, On regularity criteria for the 3D incompressible MHD equations
involving one velocity component, J. Math. Fluid Mech., 18(2016), 187-206.

[15] P. E. Kloeden, J. A. Langa, J. Real, Pullback V -attractors of the three dimensional
system of nonautonomous globally modified Navier-Stokes equations: existence and
finite fractal dimension, Comm. Pure Appl. Anal., 6(2007), 937-955.

[16] P. E. Kloeden, J. Valero, The weak connecttedness of the attainability set of weak
solutions of the 3D Navier-Stokes equations, Proc. Roy. Soc. London A, 463(2007),
1491-1508.
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