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Abstract

This work can serve the reader as an initiation in numerical continuation through the AUTO software, which
is specialized in bifurcation analysis and has proved to be extremely versatile and efficient in calculating
ordinary differential system solutions that would otherwise be much more difficult to obtain. A brief review
is made about the concepts of non-linear dynamics that rest on the basis of the problem under study, the
circular restricted three body problem. Then, the bases of the numerical continuation are presented, as well
as the concrete strategies that will be used for the calculation of periodic solutions and their manifolds. After
this, the reader finds a guide to the basic concepts that would allow him to use the AUTO software, as well as
to understand the subsequent study that is carried out with it. Finally, AUTO is used to generate the families
of periodic orbits that arise from the Lagrange points in the circular restricted three body problem, in addition
to the associated stable and unstable manifolds when possible. This analysis is used to comment on the
characteristics of the orbits considered to be the best candidates for the Deep Space Gateway project, which
aims to use near rectilinear Halo orbits.
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Resumen

Este trabajo puede servir al lector como iniciación en continuación numérica a través del software AUTO,
especializado en análisis de bifurcaciones y que demuestra ser extremadamente versátil y eficiente en el
cálculo de soluciones a sistemas diferenciales ordinarios que de otra forma serían mucho más difíciles de
obtener. Se hace un breve repaso por los conceptos de dinámica no lineal que descansan en la base del
tema principal bajo estudio, el problema circular restringido de los tres cuerpos. Después se plantean las
bases de la continuación numérica, así como las estrategias concretas que se usarán para el cálculo de
soluciones periódicas y sus variedades. Tras esto, el lector se encuentra con una guía de los conceptos básicos
que le permitirían utilizar el software AUTO, así como comprender el posterior estudio que se realiza con
este. Finalmente, se utiliza AUTO para calcular las familias de órbitas periódicas que nacen de los puntos
de Lagrange en el problema circular restringido de los tres cuerpos, además de las variedades estables e
inestables asociadas cuando procedan. Este análisis se aprovecha para comentar las características de las
órbitas consideradas como mejores candidatas para el proyecto Deep Space Gateway (Portal de espacio
profundo), que pretende utilizar órbitas Halo casi rectilíneas.
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1 Introduction

It is trhough science that we prove, but through intuition that we
discover.

Henri Poincaré

The three-body problem is a classical problem in physics and mechanics that, in contrast to the Keplerian
two-body problem, doesn’t have an analytical solution in general. The gravitational problem dates from 1687,
when Newton published his "Principia" and set out the problem of the movements of three masses subjected
to the influence of each other, he also tried to apply his results to study the motion of the moon under the
influence of the Earth and the Sun. The longitude problem was of great importance in the 1720s and an
accurate solution to the three body problem would have been an alternative answer to the marine chronometer.
In 1747 Jean le Rond d’Alembert and Alexis Clairaut both submitted their analyses to the Académie Royale
des Sciences, in which they used differential equations to be solved by successive approximations. The name
"three-body problem" (Problème des Trois Corps) began to be used in the 1740s Paris due to this research.
It was Lagrange in 1772 who demonstrated analytical solutions do exist if certain restrictions are imposed,
as discused hereinafter. Finally, in 1887, Heinrich Bruns and Henri Poincaré showed that no analytical
solutions given by algebraic expressions and integrals can exist in general, and even though the words "chaotic
behaviour" weren’t used in this context until the sixties, in [1] Poincaré does describe exactly this when
considering an unstable solution in a two degrees of freedom Hamiltonian system:

If on tries to represent the figure formed by these two curves with an infinite number of intersec-
tions whereas each one corresponds with a double asymptotic solution, these intersections are
forming a kind of lattice-work, a tissue, a network of infinite closely packed meshes. Each of the
two curves must not cut itself but it must fold onto itself in a very complex way to be able to cut
an infinite number of times through each mesh of the network.
One will be struck by the complexity of this picture that I do not even dare to sketch. Nothing is
more appropriate to give us an idea of the intricateness of the three-body problem and in general
all problems of dynamics where one has not a uniform integral and where the Bohlin series are
divergent. (Henri Poincaré)

For the general case the system is 18th-order, and 10 analytical integrals can be written, corresponding to
conservation of momentum (three integrals), energy (one integral), and motion of the system’s mass center
(six integrals). Together, this integrals and special case conditions allow for some solutions to be analytically
studied (Lagrange’s three-body Solutions [2]). In one of those solutions the masses lie at the vertices of a
rotating equilateral triangle, with varying angular velocity and size (figure (1.1)). Another case is that of the
three masses collinear with each other at any moment (figure (1.2)). Sub-solutions of the previous types can
be found if the motion of the bodies is restricted to be circular, instead of a general conic (figures (1.3) and
(1.4)).

Others special restricted forms of the problem have been studied, but so far the previous cases shown are
the only ones with analytical solution. Here, the sub-problem to be addressed is that of one of the masses to be
negligible for the motion of the other two, the restricted three-body problem. In particular, the case of study
impose the two massive bodies to be in circular motion around their center of mass, and so it is called Circular

1



2 Chapter 1. Introduction

Figure 1.1 General equilateral triangle solution. From [2].

Figure 1.2 General invariant collinear solution. From [2].

Figure 1.3 Equilateral triangle solution with circular orbits. From [2].
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Figure 1.4 Collinear solutions with circular orbits. From [2].

restricted three-body problem, CR3BP from here on out. The problem itself has been extensively studied, and
analytical solutions for stationary points can be deducted from the equations of motion (Lagrange Libration
Points, a degenerate case of the previously shown circular solutions of the general problem viewed from a
rotating frame), but the main interest is in the periodic orbits around two body systems as the Earth-Moon
or Sun-Earth systems, in order to design missions that makes use of such practical orbits. Because of this,
the main goal of this work is to find said periodic orbits and study the invariant manifolds associated, all of
which can be applied to the design of missions, such as the Deep Space Gateway [3]. To do this we have to
rely on numerical methods, and continuation, as we will see, has many advantages over other approaches.
Continuation techniques rely on much of the work of Henri Poincaré, an so we will review its more relevant
elements as a mean of historical introduction for the mathematical aspects treated here.

1.1 Poincaré’s dynamical system theory

Henri Poincaré (1854-1912) was a famous mathematician that today is know as the last polymath [4], because
he made significant contributions in multiple areas of mathematics and the physical sciences. His work in
dynamical systems and topology is specialy important, and it will be the aspect to be commented in this
chapter. His most important inventions [5] regarding dynamical systems are algebroid functions, index theory
for plane ODEs, the Poincaré-Bendixon theorem, convergence of series solutions of ODEs, the use of the
implicit function theorem, bifurcation theory (the Hopf bifurcation), asymptotic series, fixed point theorems
for dynamical systems, homoclinic chaos...
Poincaré was educated mainly in geometry and analysis, but as has been stated, he didn’t focus on one

particular discipline. Still, his most important works are characterized by the interaction of analytical and
geometrical thinking.

The Mémoire, 1881-82

It is concerned with two-dimensional problems. The Mémoire focus on autonomous second order equations,
as many articles on ODEs at the time, but with an approach that differs broadly form others, to such point that
today the philosophy of the study in nonlinear dynamics hasn’t change much in it’s generality and strategies.
In here, Poincaré remarks the impossibility of integrating ODEs in general with known functions, and so
divides the study of these systems in two parts:

1. Qualitative part, study of the geometry defined by the function

2. Quantitative part, numerical calculations

Here, Poincaré uses gnomic projection to analyse systems, which leads to the definition of the nowadays
well-known saddle, node, focus and centre, the singularities of first type. This also develops in the basis of
index theory, a tool for the study of cycles.
Another useful tool is the ’théorie of conséquents’, what is now called the theory of Poincaré maps, this

helps to understand high-dimensional ODEs and will be useful later.
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The Prize Essay for Oscar II, 1888-89

This essay contains already fundamental theorems, and important results involve series expansions, periodic
solutions and bifurcations. At the time, series expansions with respect to a small parameter were the main
tool in celestial mechanics. Poincaré gave explicit criteria for the convergence and divergence of such series
based on the implicit function theorem (IFT) and holomorphic expansion theorems. He also set-up a field
of study which is centric in the present work, such us bifurcation theory. As it will be clear later on,
bifurcations are the mathematical key to the Halo orbits that will be studied in some depth here.
Another basic result that develops in here, which in fact was a correction of the first version of the essay,

is the non-integrability of conservative systems. At the time, it was thought that finding an integral of, for
instance, the three-body problem, was a matter of analytical skill, and that all Hamiltonian systems were
always integrable. In the first version he proved integrability of the CR3BP, identified an unstable periodic
solution and approximated its stable and unstable manifolds by series expansions. Poincaré called these
invariant manifolds asymptotic surfaces. He incorrectly concluded that the continuation of stable and unstable
manifolds could be glued together to form a second first integral of the system. After finding about his
mistake, he found out that this gluing was not possible in this particular case, and that there was in fact an
infinite number of intersection between the manifolds (instead of merging).

Les Méthodes Nouvelles de la Mécanique Céleste, 1892-1899

This work contains the first general theory of dynamical systems describing both conservative and dissipative
systems by analytical and geometrical methods. Despite the title, celestial mechanics is only used as a mean
to illustrate the methods, and it is not the subject of study.

Poincaré used the IFT to demonstrate conditions for the convergence of series expansions in ODEs, with
consequences for the bifurcation solutions, all off which was a new use for the IFT. He also introduces the
notion of bifurcation set, which in Chap. 3 leads to a general discussion of what is now called the Hopf
bifurcation. In this same chapter he implicitly points out the "chaotic nature" of the behaviour of an unstable
periodic solution in a two degrees of freedom Hamiltonian system, as was previously shown.

1.2 Halo orbits and the Deep Space Gateway

Leaded by NASA and supported by the main space agencies in the world (ESA, JAXA, Roscosmos and
CSA), the next step that will be taken in order to advance in the exploration of space starts by building a new
space station in cislunar space1, the Deep Space Gateway (DSG). The principal goal of this station is for the
astronauts and the agencies to test the systems needed for missions in deep space (Mars, asteroids...), and this
area of the Earth-Moon system offers a great opportunity to gain experience. It could also serve as a middle
point between Earth and a Moon base. For this space station to be of practical use it needs to be placed in an
orbit such that it’s easily accessible and relatively cheap to maintain, and at the same time it has to serve as
the gateway for the future missions of exploration in the Solar System. The study of periodical orbits in the
CR3BP may shed some light on this issue.

Later it will be shown that many families of periodic orbits exist in the CR3BP, and one of these families is
known for having a peculiar shape as seen from Earth. They are the Halo orbits, and as their name suggests
they are seen as a halo around the Moon. There is also a great variety of halo orbits themselves, and they
have been extensively studied in the context of space exploration [6]. Inside this group of orbits there is a
subset that stands out for the purpose of having an inhabited station with deep space access [7], which are
the Near Rectilinear Halo Orbits, or NRHOs. These orbits are at the edge of Earth’s gravity well from an
energetic point of view, which makes them ideal as stepping stone for deep space missions, and their stability
properties are quite promising.

1.3 Objectives and scope of work

Continuation will serve here as a tool for studying these orbits and their dynamical properties in the CR3BP
framework, in order to stablish the foundations for later studies with more detailed models. Although a
complete mathematical justification of continuation isn’t the scope of this work, some of the bases it relies on
have been plainly established. This work tries to serve as a how-to basic guide in the ways the AUTO software
could be used in the context of computing the dynamical structures around the CR3BP with continuation. It
1 It is the volume within the Moon’s orbit, beyond cislunar space lies translunar space
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shows the basic utilisation of AUTO with the Python interface, the calculation of fixed points, cycles and
finally the manifolds, as well as how to extract the relevant information of them from the output files that
AUTO provides.

1.4 Structure of the document

Aside from this introduction, this work is composed of 4 more different chapters that address relevant aspects
of the topics regarding the CR3BP. Chapter 2 serves as a revision of nonlinear dynamics theory that helps
to understand concepts used later on, it also explains very few important concepts regarding bifurcation
theory. Chapter 3 serves as a mathematical overview of continuation as a tool, it also explains some of the
internal workings of the software AUTO, in order to help understand what happens inside the black box that
this software will ultimately be for us. This chapter also exemplifies the strategies that will be used later to
compute cycles, and specially manifolds, from a numerical point of view. Chapter 4 serves as a starting point
for the reader to familiarise himself with the AUTO environment and capabilities, it tries to be the minimum
amount of information needed for someone that wants to use the software in the context of this work and
doesn’t want to deal with the complete official manual. Chapter 5 is the study concerning the CR3BP using
AUTO as main computational tool, it is fairly detailed in how the calculations have been done and it also
analyses the viability of the NRHO as the future destination of the DSG, only in the context of the idealised
circular restricted problem at hand.





2 Nonlinear dynamics and bifurcation
theory

This chapter tries to stablish the main ideas that are used in the study of non-linear dynamical systems, and
that will be useful in the later continuation study of the CR3BP. It will follow some of the topics discussed in
[8] and [9].

2.1 Dynamical systems

The idea of dynamical systems arise from the mathematical conceptualization of a deterministic process.
This means that given an initial state and the laws governing its evolution, the future states are completely
defined. Because of this, the concept of dynamical system includes a set of its possible states (state space)
and a law of the evolution in time. This way, if a point x that is part of the state space (or phase space) X is
given, it is enough to describe the system in its actual "position" and the ones following it.
In a general way, the evolution of the system comes from an evolution operator, which for a given t ∈ T

can be defined as a map ϕ
t in the phase space X that:

ϕ
t : X −→ X

It transforms an initial state x0 ∈ X in some state xt ∈ X at time t:

xt = ϕ
tx0

The map ϕ
t might be known explicitly, but in most cases it is defined only indirectly. When the governing

behaviour of the system does not change in time it is said that the system is autonomous, which can be
expressed as:

ϕ
t+s = ϕ

t(ϕsx)

2.1.1 Orbits and phase portraits

Orbits are geometrical objects associated with a dynamical system, and phase portraits are a composition of
these orbits. For a given x0, the associated orbit (or trajectory) is:

Or(x0) = {x ∈ X : x = ϕ
tx0, for all t ∈ T such that ϕ

tx0 is defined }

A point x0 ∈ X is called an equilibrium (fixed point) if ϕ
tx0 = x0 for all t ∈ T , thus, an evolution operator

maps an equilibrium onto itself. The term equilibrium is usually reserved for continuous-time dynamical
systems, while fixed point is more commonly used in discrete-time systems.

A cycle is a periodic orbit, so if L0 is the orbit, then any point x0 ∈ L0 will satisfy ϕ
t+T0x0 = ϕ

tx0 for some
T0 > 0 at any t ∈ T . If there are no other cycles in the neighbourhood then it is called a limit cycle. Finally,
a phase portrait is a partitioning of the state space into orbits, revealing the behaviour of the system. An
example of it can be seen in figure (2.1) for a continuous-time dynamical system.

7
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Figure 2.1 This image from [9] shows some of the most important features of a phase portrait: fixed points
(A, B, C), cycles (D) and the different types of behaviour near fixed points.

2.1.2 Invariant sets

An invariant set of a dynamical system {T,X ,ϕ t} is a subset S⊂ X such that x0 ∈ S implies ϕ
tx0 ∈ S for all

t ∈ T . Orbits Or(x0) are invariant sets, and we could consider closed invariant sets in X, such as equilibria
and cycles. The next more complex invariant sets are invariant manifolds, finite-dimensional hypersurfaces
in some space RK , like the invariant torus of figure (2.2).

Figure 2.2 This image from [8] shows an invariant two-dimensional torus T2 of a continuous-time dynamical
system in R3.

An invariant set S0 is called stable if for any sufficiently small neighbourhood U ⊃ S0 there exists a
neighbourhoodV ⊃ S0 such that ϕ

tx ∈U for all x ∈V and all t > 0; or if there exist a neighbourhoodU0 ⊂ S0
such that ϕ

tx→ S0 for all x ∈U0, as t→+∞. The first type of stability is called Lyapunov stability, and the
second asymptotic stability (figure (2.3) (a) and (b) respectively).

Figure 2.3 (a) Lyapunov stability versus (b) asymptotic stability. From [8].
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2.1.3 Differential equations

Differential equations are the most common way to define a continuous-time dynamical system. For a state
space X =Rn with coordinates (x1, x2, . . . , xn) the laws of evolution are given implicitly in terms of velocities
ẋi as functions of the coordinates:

ẋi = fi(x1, x2, . . . ,xn), i = 1, 2,..., n

or in the vector form

ẋ = f (x) (2.1)

where the vector-valued function f : Rn→ Rn is sufficiently differentiable (smooth). Equation (2.1) is a
system of n autonomous ordinary differential equations, ODEs for short. For an isolated energy-conserving
mechanical system with s degrees of freedom, the equations of motion can be determined by 2s Hamiltonian
equations:

q̇i =
∂H
∂ pi

, ṗi =−
∂H
∂qi

for i = 1, 2, . . . , s. The scalar function H = H(q,p) is the Hamilton function.
The conditions for existence, uniqueness and smooth dependence of the function x= x(t, x0), x :R1×Rn→

Rn that is solution to equation (2.1) are expressed with detail in [8]. The function of time x = x(t, x0) is
called solution starting at x0. It defines a solution curve Cr(x0) (time dependent), and an orbit, which is the
projection onto the state space of the solution curve. Here, the evolution operator ϕ

t can be defined as

ϕ
tx0 = x(t, x0)

in an interval of t. Dynamical systems theory tries to analyse the behaviour of a dynamical system defined
by ODEs. This can be done by simply computing many orbits numerically, however, this approach isn’t very
practical, and it is possible to predict some features of the phase portrait without actually having to solve
the system. The first thing that can be done is to study the number and positions of equilibria by finding the
solutions to

f (x) = 0 (2.2)

It is also possible to study the stability of an equilibrium, and sufficient conditions are given by the following
theorem (Lyapunov [1892]):

Consider a dynamical system defined by

ẋ = f (x), x ∈ Rn,

where f is smooth. Suppose that it has an equilibrium x0 (i.e., f (x0) = 0), and denote by A the Jacobian
matrix of f(x) evaluated at the equilibrium, A = fx(x

0). Then x0 is stable if all eigenvalues λ1,λ2, . . . ,λn of A
satisfy Re λ < 0.

Where the eigenvalues are the roots of the characteristic equation (det(A− λ I) = 0). More complex
properties such as cycles aren’t so easy to study by just solving algebraic equations, but as we’ll see later,
there is a way with continuation.

2.2 Poincaré maps

It is not uncommon that discrete-time dynamical systems (maps) appear in the study of continuous-time
systems defined by ODEs [10]. These maps arising from ODEs are called Poincaré maps.

2.2.1 Poincaré maps and stability of cycles

Consider a continuous dynamical system defined by
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ẋ = f (x), x ∈ Rn

with smooth f. Given a periodic orbit L0 and a point x0 ∈ L0 we introduce a cross-section Σ to the cycle at
this point, see figure (2.4).

Figure 2.4 The Poincaré map associated with a cycle. From [8].

The cross-section Σ is a smooth hypersurface of dimension n− 1, intersecting L0 at an nonzero angle.
Thus, the simplest choice of Σ is an hyperplane orthogonal to the cycle L0 at x0. Because L0 is a cycle, and
by definition of Σ, it starts at a point in Σ and returns to Σ at the same point. On the other hand, orbits near
the cycle L0 that start at a point x ∈ Σ sufficiently close to x0 also returns to Σ at some point x̃ ∈ Σ near x0.
Moreover, nearby orbits will also intersect Σ transversally. Thus, a map P : Σ→ Σ,

x→ x̃ = P(x),

is constructed. The map P is called a Poincaré map associated with the cycle L0. Let us introduce local
coordinates ξ = (ξ1,ξ2, . . . ,ξn−1) on Σ such that ξ = 0 corresponds to x0. Then the Poincaré map will be
characterized by a locally defined map P : Rn−1→ Rn−1, which transforms ξ (corresponding to x) into ξ̃

(corresponding to x̃),

P(ξ ) = ξ̃

.
Thus, the origin ξ = 0 is a fixed point of the map P : P(0) = 0. This way, studying the stability of the fixed

point ξ0 = 0 is the same as studying the stability of the cycle L0. Then, the cycle is stable if all eigenvalues
(multipliers) µ1,µ2, . . . ,µn−1 of the (n−1)× (n−1) Jacobian matrix of P,

A = dP
dξ

∣∣∣
ξ=0

are located inside the unit circle |µ|= 1. It is also possible to probe that the result of the stability analysis
is independent of the chosen cross-section Σ (see Lemma 1.3 of [8]).
There exists a relationship between the multipliers of a cycle and the differential equations (2.1), and for

that it is necessary to construct the dynamical system for the perturbed motion around the cycle.

2.2.2 Variational equations of the cycle

Let x0(t) denote a periodic solution of (2.1), x0(t +T0) = x0(t), for the cycle L0. Now consider a solution in
the form
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x(t) = x0(t)+u(t)

with u(t) a deviation from the periodic solution. Then, by linearising around x0(t)

u̇(t) = ẋ(t)− ẋ0(t) = f (x0(t)+u(t))− f (x0(t)) = A(t)u(t)+O(‖u(t)‖2)

Truncating the O(‖u(t)‖2) terms results in the linear T0-periodic system

u̇ = A(t)u, u ∈ Rn, (2.3)

where A(t) = fx(x
0(t)), such that A(t +T0) = A(t). The system (2.3) is called the variational equation

about the cycle L0. This is the linear part of the system governing the evolution of perturbations near the
cycle and, naturally, the stability of the cycle depends on the properties of the variational equations.
Now consider the matrix initial-value problem

Ẏ = A(t)Y, Y (0) = In,

where In is the unit n× n matrix. Its solution Y (t) is called the fundamental matrix of solutions of the
system, and at t = T0 is the monodromy matrix of the cycle:

M = Y (T0).

The determinant of the monodromy matrix can be calculated using the following Liouville formula in
terms of A(t):

det M = exp
{∫ T0

0 trA(t)dt
}
.

The monodromy matrix is nonsingular. Any solution u(t) to (2.3) satisfies

u(T0) = Mu(0). (2.4)

The eigenvalues of the monodromy matrix M are called the Floquet multipliers of the cycle

1,µ1,µ2, . . . ,µn−1,

where there is always a +1 and are the same as the multipliers of the Poincaré map associated with the
cycle L0. We also define the exponents associated as the λi such that µi = eλiT0 . Due to (2.4) any multiplier
µ satisfies ν(T ) = µν(0) with ν(0) 6= 0 or, equivalently, it is solution component of the following BVP [11]
on the unit interval: 

ν̇ = TA(t)ν ,
ν(1) = µν(0),
|ν |= 1.

Assuming µ > 0 we can write µ = eλ and ν(t) = eλ tw(t), so that w satisfies a periodic BVP such as
ẇ = TA(t)w−λw,
w(1) = w(0),
|w(0)|= 1,

where w(t) is the Floquet eigenfunction corresponding to the multiplier µ . This will be useful when
computing the unstable manifolds of the cycle.

2.3 Notes on bifurcation

The AUTO software is specialised in bifurcation analysis as we will see later on, but there is a special
type of bifurcation that will be very useful when computing cycles through continuation, and these are the
Hopf bifurcations. Suppose a three dimensional system has a stable fixed point, this can only mean that
the eigenvalues of the Jacobian evaluated at said point are in the left half-plane Re λi < 0. For the Hopf
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bifurcation to exists there has to be at least one pair of complex conjugated eigenvalues so that its stability
properties depend on a parameter µ , see figure (2.5). The Hopf bifurcation occurs when the eigenvalues cross
the imaginary axis so that the fixed point losses its stability. The system is first damped (small disturbances
decay over time), and as µ varies the decay becomes slower until it finally changes to a growth at a critical
value µc. There are various types of Hopf bifurcation, which are exemplified in [9], but all of them share the
crossing of imaginary axis property.

Figure 2.5 Hopf bifurcation representation.

The interesting property about this bifurcation is the fact that there is a value of µ at which the system
becomes neutrally stable at the fixed point. At this value of µ the aforementioned eigenvalues are purely
imaginary, which means that very close to the fixed point it is possible to linearise the system and express its
solution as a sinusoidal motion, in other words, a cycle. This is a property that will be take advantage of when
computing cycles in the CR3BP, as we will artificially transform the conservative system in a damped one,
and compute the different cycles when the parameter generates the Hopf bifurcation, as AUTO is specially
designed to detect them.

There are other bifurcations that will be important in our case of study, such as the families of orbits that
growth from bifurcations, which AUTO can detect through monitoring the dimension of the Jacobian of the
system.



3 Numerical continuation methods

This chapter will follow the topics discused in Chap. 1 and 9 of [12] to illustrate the internal workings of the
software AUTO in the continuation of solutions and the computation of periodic orbits, as well as the more
complex computation of invariant manifolds that will be shown later.

3.1 Theoretical support of continuation

When it comes to the study of stationary or periodic solutions of non-linear systems, numerical methods
stand over analytical approaches because of its versatility, but numerical integration isn’t always the way to
go. Instead, numerical continuation presents itself as a very powerful and efficient tool.
The theoretical background that supports continuation techniques in software packages like AUTO are

detailled in [12], but the basic pillars of it will be succinctly shown in this section.
First of all, let’s define a Banach space B as a complete, normed vector space, here assumed to be Rn. For

x0 ∈B, we denote by Sρ(x0) the closed ball of radius ρ centered at x0, that is,

Sρ(x0) = {x ∈B | ‖x−x0‖ ≤ ρ}

Then, the existence and uniqueness of solutions is obtained by using two theorems: Contraction Theorem
and Implicit Function Theorem, enunciated below.

Theorem 1: Contraction Theorem Consider a continuous function F : B→B on a Banach space
B and suppose that for some x0 ∈B, ρ > 0, and some K0 with 0≤ K0 ≤ 1, we have

‖F(u)−F(v)‖ ≤ K0‖u−v‖, ∀u, v ∈ Sρ(x0),

‖F(x0)−x0‖ ≤ (1−K0)ρ.

Then the equation

x = F(x), x ∈B,

has one and only one solution x∗ ∈ Sρ(x0), and x∗ is the limit of the sequence

xk+1 = F(xk), k = 0, 1, 2, . . . .

Theorem 2: Implicit Function Theorem Let G : B×Rm→B satisfy:

• G(u0,λλλ 0) = 000 for u0 ∈B and λλλ 0 ∈ Rm

• Gu(u0,λλλ 0) is not singular with bounded inverse,

‖Gu(u0,λλλ 0)
−1‖ ≤M

for some M > 0;

13
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• G and Gu are Lipschitz continuous, that is, for all u,v∈ Sρ(u0), and for all λλλ ,µµµ ∈ Sρ(λλλ 0) the following
inequalities hold for some KL > 0:

‖G(u,λλλ )−G(v,µµµ)‖ ≤ KL(‖u−v‖+‖λλλ −µµµ‖),

‖Gu(u,λλλ )−Gu(v,µµµ)‖ ≤ KL(‖u−v‖+‖λλλ −µµµ‖),

Then there exist δ , with 0 < δ ≤ ρ , and a unique function u(λλλ ) that is continuous on Sδ (λλλ 0), with
u(λλλ 0) = u0, such that

G(u(λλλ ),λλλ ) = 0,∀λλλ ∈ Sδ (λλλ 0).

If G(u,λλλ 0) = 0 and if Gu(u0,λλλ 0) is invertible with bounded inverse, then u0 is called an isolated solution
of G(u,λλλ 0) = 0. Hence, the IFT states that isolation (plus Lipschitz countinuity assumptions) implies the
existence of a locally unique solution family (or solution branch) u = u(λλλ ), with u(λλλ 0) = u0. It is also
possible to prove that the solution family u(λλλ ) is continuously differentiable [12].

3.2 Continuation of solutions

It is very common to face problems dependent of some parameters, or at least one. Because of this, and
without loss of generality, we can consider the continuation of a solution for the one-parameter equation

G(u,λ ) = 0, u, G(·,·) ∈ Rn, λ ∈ R.

With x≡ (u,λ ) the equation can be rewritten as

G(x) = 0, u, G : Rn+1→ R.

Let’s first see what are the conditions for a solution x0 to be regular, meaning that continues to exists in
its vicinity as a unique one-dimensional solution family (or solution branch). Given the n× (n+1) matrix
G0

x ≡Gx(x0), then x0 solution of G(x) = 0 is regular if G0
x has maximal rank, which is n. With the parameter

formulation we can differentiate two cases for G0
x having maximum rank:

Rank(G0
x) = Rank(G0

u|G0
λ
) = n⇔



(i) G0
u is non singular,

or

(ii)


dimN (G0

u) = 1,
and
G0

λ
/∈R(G0

u)

.

Where N (G0
u) is the null space of G0

u and R(G0
u) is the range of G0

u.
In the first case the IFT provides us proof of existence of the solution u = u(λ ) near x0. In the second case

it is possible to interchange columns in the Jacobian G0
x to see that the solution can be parametrized by one of

the components of u. Notice that this second case is that of a simple fold, which is exemplified in figure (3.1).

3.2.1 Parameter continuation

In this first case we’ll assume that the solution is solely define by the parameter λ and there are no folds (first
case). Suppose we have a solution (u0,λ0) of

G(u,λ ) = 0

as well as the direction vector u̇0 = du/dλ , and we want to compute the solution u1 at λ1 = λ0 +∆λ ; as
illustrated in figure (3.2). Then, we just apply the Newton’s method{

Gu(u
(ν)
1 ,λ1)∆uν

1 =−G(uν
1 ,λ1),

uν+1
1 = uν

1 +∆uν
1 , ν = 0, 1, 2, . . . .

Where the initial approximation comes from
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Figure 3.1 A solution branch with two folds. From [12].

Figure 3.2 Interpretation of parameter continuation. From [12].

u0
1 = u0 +∆λ u̇0.

The convergence of the iteration is guaranteed by the convergence theory for Newton’s method if Gu(u1,λ1)
is nonsingular. After that, the new direction vector u̇1 can be computed by solving

Gu(u1,λ1)u̇1 =−Gλ (u1,λ1),

Which comes from differentiating G(u(λ ),λ ) = 0 with respect to λ at λ = λ1.

3.2.2 Keller’s pseudo-arclength continuation

The previous was valid if the solution doesn’t have folds, so a new approach is required in general. To
overcome this problem AUTO uses Keller’s Pseudo-Arclength Continuation. Suppose we have a solution
(u0,λ0) of G(u,λ ), as well as the direction vectors (u̇0,λ̇0), where now the derivative is with respect to ∆s at
∆s = 0. Pseudo-arclength solves the following equations for (u1,λ1):{

G(u1,λ1) = 0,
(u1−u0)

∗u̇0 +(λ1−λ0)λ̇0−∆s = 0
(3.1)

This can be geometrically interpreted as seen in figure (3.3), which means that the projection of (u̇0,λ̇0)
over (u1−u0,λ1−λ0) is ∆s. The equations (3.1) can be solved using Newton’s method with the next iterative
system:
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(
(G1

u)
(ν) (G1

λ
)(ν)

u̇0∗ λ̇0

)(
∆u(ν)

1

∆λ
(ν)
1

)
=

(
G(u(ν)

1 ,λ ν
1 )

(u(ν)
1 −u0)

∗u̇0 +(λ
(ν)
1 −λ0)λ̇0−∆s

)
,

With the direction vector defined as:(
G1

u G1
λ

u̇∗0 λ̇0

)(
u̇1
λ̇1

)
=

(
0
1

)
,

After its computation the direction vector must be rescaled, so that its norm continues to be 1. This method
can be efficiently solved if correctly implemented as shown in [12].

Figure 3.3 Graphical interpretation of pseudo-arclength method. From [12].

3.3 Boundary value problem

In a general way, AUTO solves the BVP of the following shape:

u′(t)− f(u(t),µµµ,λ ) = 0, t ∈ [0,1],

where "′" is a derivative with respect to time, and

u(·), f(·) ∈ Rn, λ ∈ R, µµµ ∈ Rnµ

and subject to the next boundary conditions

b(u(0),u(1),µµµ,λ ) = 0, b(·) ∈ Rnb ,

and integral conditions if necessary for the problem∫ 1

0
q(u(s),µµµ,λ )ds = 0, q(·) ∈ Rnq

The goal is to solve the BVP for u(·) and µµµ . For the problem to be well posed the next condition has to be
true:

nµ = nb +nq−n≥ 0.

In this case the parameter λ is the continuation parameter in which the solution (u,µµµ) is continued. AUTO
solves BVP using the method of orthogonal collocation with piecewise polynomials, as it is very accurate
and allows adaptive mesh-selection. Here the general idea behind this method will be shown, for a more
detailed explanation see [13] and [14].

First, a mesh is introduced between t = 0 and t = 1 (AUTO can change this mesh through the iterations if
necessary):
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{0 = t0 < t1 · · ·< tN = 1},

with

h j = t j− t j−1, (1≤ j ≤ N).

Next, the space of (vector-valued) piecewise polynomials Pm
h is defined as:

Pm
h = {ph ∈C[0,1] | ph|[t j−1,t j ]

∈Pm},

where Pm is the space of (vector-valued) polynomials of degree m≤ 3. The collocation method consists
in finding ph ∈Pm

h and µµµ ∈ Rnµ , such that the collocation equations are satisfied:

p′h(z j,i) = f(ph(z j,i),µµµ,λ ), j = 1, · · · ,N, i = 1, · · · ,m,

and such that ph satisfies the boundary and integral conditions. The collocation points z j,1 in each
subinterval [t j−1,t j] are the roots of the mth-degree orthogonal polynomial (Gauss points). For a graphical
interpretation of it see the figure (3.4).

Figure 3.4 Here are shown the collocation points and the ’extended-mesh points’ for the case m=3. Also,
two of the local Lagrange basis polynomials are shown. From [12].

The implementation is done with Lagrange basis polynomials for each subinterval [t j−1,t j]. We define

{` j,i(t)}, j = 1, . . . ,N, i = 0,1, . . . ,m,

by

` j,i(t) =
m

∏
k=0,k 6=i

t− t j− k
m

t j− i
m
− t j− k

m

where

t j− i
m
= t j−

i
m

h j

Then, the local polynomials can be written as

p j(t) =
m

∑
i=0

` j,i(t)u j− i
m
.

Then the collocation equations are
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p′j(z j,i) = f(p j(z j,i),µµµ,λ ), i = 1, . . . ,m, j = 1, . . . ,N,

the discrete boundary conditions are

bi(u0,uN ,µµµ,λ ) = 0, i = 1, . . . ,nb,

and the integrals constraints can be discretized as

N

∑
j=1

m

∑
i=0

w j,iqk(u j− i
m
,µµµ,λ ) = 0,k = 1, . . . ,nq,

where the w j,i are the Lagrange quadrature coefficients. Given the solution of the previously computed
point on the solution branch, (u0,µµµ0,λ0) and the direction vector (u̇0,µ̇µµ0,λ̇0), the discretized pseudo-arclength
equation is

N

∑
j=1

m

∑
i=0

w j,i[u j− i
m
− (u0) j− i

m
]∗(u̇0) j− i

m
+(µµµ−µµµ0)

∗
µ̇µµ0 +(λ −λ0)λ̇0−∆s = 0.

The shape of the system is illustrated in figure (3.5), where the number of collocation equations, mnN,
continuity equations, (N− 1)n and constraints, nb + nq (= n+ nµ), match the total number of degrees of
freedom (m+1)nN +nµ (with λ fixed).

Figure 3.5 Structure of the system for the case of n = 2 differential equations with number of mesh intervals
N = 3, number o collocation points per mesh interval m = 3, the number of boundary conditions
nb = 2, and the number of integral constraints nq = 1, being the last row the pseudo-archlength
equation. From [12].

AUTO solves these systems with an efficient method that includes the condensation of parameters by
Gauss elimination done in parallel.

3.4 Computing cycles

Computing periodic solutions can be done using a boundary value approach. Consider the first order system

u′(t) = f(u(t),λ ), u(·),f(·) ∈ Rn, λ ∈ R.

In order to make the period of the solution 1 we apply the next transformation t → t
T , so the equation

becomes

u′(t) = T f(u(t),λ ), u(·), f(·) ∈ Rn, T,λ ∈ R. (3.2)
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This way, the solutions we seek are those in which

u(0) = u(1). (3.3)

The period T is one of the unknowns of the system. Suppose that we have already calculated a solution
(uk−1(·),Tk−1,λk−1) and we want to compute the next (uk(·),Tk,λk). Then, if it were only for the last two
equations, a translated solution from the last one is also a solution: uk(t) = uk−1(t +σ). Thus, a phase
condition is needed to arrive at the next solution. One option is to impose a displacement using the Poincaré
orthogonality condition (see figure (3.6)):

(uk(0)−uk−1(0))
∗u′k−1(0) = 0,

though a numerically more suitable phase condition is∫ 1

0
uk(t)

∗u′k−1(t)dt = 0. (3.4)

This is deducted in [12] and it’s called the integral phase condition, which is what AUTO has implemented.

Figure 3.6 Graphical interpretation of the Poincaré phase condition. From [12].

The continuation of a family of periodic solutions is also done with the pseudo-arclength method, as this
allows calculation past folds. It also has important applications to the computation of periodic solutions
to conservative systems, as it allows calculations of a ’vertical family’ of periodic solutions. For periodic
solutions the pseudo-arclength equation is:∫ 1

0
(uk(t)−uk−1(t))

∗u̇k−1(t)dt +(Tk−Tk−1)
∗Ṫk−1 +(λk−λk−1)λ̇k−1 = ∆s. (3.5)

Equations (3.2)-(3.5) are the ones AUTO solves for the continuation of periodic solutions in general. In
addition, during the continuation, the Flouquet multipliers of the cycles are monitored by computing a
special decomposition of the monodromy matrix that arises as a by-product of the decomposition of the
Jacobian of the collocation system.

3.4.1 Cycles in conservative systems, unfolding parameter

The approach shown until now for the continuation of periodic orbits in dynamical systems is valid in general,
but in the case of conservative systems with one conserved quantity the strategy followed uses a parameter
with a special meaning.

Rather than perform the continuation using the conserved quantity, which would be a reduction method,
product of the cylinder theorem, the alternative is about increasing the dimension of the system, adding an
unfolding parameter. The additional term is defined in a way that the periodicity of the solution can only
exist when the parameter is 0, so that looking for the cycle is equivalent to looking for a "vertical" Hopf
bifurcation.
The system with the unfolding term becomes:

u′(t) = T f(u(t),λ )+αd(u(t)), α ∈ R,
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where α is the unfolding parameter, which acts as a dissipation (positive or negative), and that will be
α = 0 in the periodic solution. The system can now be expressed as:

u′(t) = T f(u(t),α).

All the previous additional equations remains the same. With this set-up, the family of periodic solutions
will be that in which α = 0 (to numerical precision), so that the bifurcation diagram in α looks like the figure
(3.7).

Figure 3.7 Bifurcation diagram in α with the vertical branch of periodic solutions. From [12].

3.5 Computing manifolds

The method followed here is the one we will use in AUTO for the computation of manifolds in three
dimensional systems (as the CR3BP) even though it could be done for any kind of system with periodic
solutions.

We will first assume that the periodic orbit has a single, real Floquet multiplier outside the unit circle,
so that it gives rise to a two-dimensional unstable manifold of the cycle in phase space. In this case, the
eigenfunction associated to this multiplier gives a linear approximation to the manifold close to the periodic
orbit. As stated in chapter 2 this eigenfunction can be computed as a solution of the BVP


w′(t) = T fu(u(t),0)w(t)−λw(t),
w(0) = sw(1),
|w(0)|=√ρ,

where s =+1 if the multiplier is positive and s =−1 for a negative one. The Floquet multiplier is then
seλ . We have impose the norm on the normalized eigenfunction at t = 0 to be√ρ , where typically ρ = 1.
Only when there is one real and greater than one in absolute value Floquet multiplier then this problems
results in an unique unstable eigenfunction w(t). This algorithm applies equally well to stable manifolds,
in which case there would only be one real Floquet multiplier with absolute value less than one. We will
also restrict to the case s = 1, so that the Floquet multiplier is positive, and the corresponding manifold is
orientable rather than twisted. A liner approximation to the unstable manifold at time zero is given by

r(0) = u(0)+ εw(0) (3.6)

for ε small. Although this procedure would indeed result in the needed eigenfunction, the actual strategy
followed is a bit different. Given the periodic orbit u0(t), from which we want to compute the unstable
manifold, the system that is solved is the one given by
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u′(t) = T f(u(t),α),

u(0) = u(1),∫ 1

0
u(t)∗u′0(t)dt = 0.

w′(t) = T fu(u(t),0)w(t)−λw(t),

w(0) = w(1),
|w(0)|=

√
ρ,∫ 1

0
(ζζζ (t)−ζζζ 0(t))

∗
ζ̇ζζ 0(t)dt +(p−p0)

∗ṗ0 = ∆s, ζζζ (t) = (u(t),w(t)), p = (α,λ ,ρ),

where w(t) and ρ are initialized to zero. This way, the cycle corresponds to a bifurcation, where branch
switching gives the non-zero eigenfunction w(t). This method, although elaborate, allows for the calculation
of the eigenfunction in sensitive cases, as for example when the Floquet multipliers are either very large or
small. Now that we have the eigenfunction, the computation of the manifold is as proceed [15].
The method consists basically in integrating orbits that lie in the manifold until a certain condition is

matched. We start with the conditions in the linear approximation of the manifold (see equation (3.6)), and
perform continuation using the integration time as a free parameter, then stop the continuation when the
desired condition is achieved. To go down all the manifold it is important that the range of the parameter
ε corresponds to a fundamental domain [ε1,ε2), meaning that the orbit that starts at r(0) = u(0)+ ε1w(0)
closely passes the line given by r(0) = u(0)+ ε2w(0) for the first time. Given a certain ε1, that has to be
sufficiently small so that the manifold is correctly approximated, we can compute the corresponding linear
approximation of ε2 using ε2 = seλ

ε1. A possible stopping criteria could be that the orbit ends in a chosen
section Σ. The part of the manifold to be approximated is then given by the set of orbits:

{r(t) |u(0)+ εw(0) and r(1) ∈ Σ, for ε1 6 ε 6 ε2}

Where time has been rescaled so that the entire finite integration interval becomes the unit interval. The
boundary value problem for r(t) is given by:

r′(t) = Trf(r(t),0),
r(0) = u(0)+ εw(0),
r(1)x = xΣ,∫ 1

0
(r(t)− r0(t))

∗ṙ0(t)dt +(ε− ε0)
∗
ε̇0 +(Tr−Tr0)Ṫr0 = ∆s,

where α = 0 and Σ denotes the section x = xΣ. The last requires a starting orbit to be computed using time
integration.





4 AUTO

This chapter tries to exemplify the most important features of AUTO regarding non-linear dynamics and
shows how to use it with the Python interface, so that using this minimun information the reader should be
able to work with the software. It is a selection of the most relevant parts of the AUTO manual [16] regarding
the subject of this work, so a more detailed description of the software capabilities (quite extensive) can be
found in there if necessary.

4.1 Capabilities of the software

AUTO can perform bifurcation analysis of algebraic systems of the form

f (u,p) = 0, f (·,·),u ∈ Rn.

Although the main algorithms in AUTO are aimed at the continuation of solutions of ODE’s of the form

u′(t) = f (u(t),p), f (·,·),u(·) ∈ Rn,

subject to boundary and integral constrains as it has already be explained. Regarding algebraic systems
AUTO can:

• Compute solution of families.
• Locate branch points and automatically compute bifurcating families.
• Locate Hopf bifurcation points and detect its properties.
• Locate folds.
• Find extrema in an objective function and continue it in more parameters.

Regarding the study of ordinary differential equations the list is longer, but here there is a brief overview:

• Compute families of stable and unstable periodic solutions and compute the Floquet multipliers that
determines stability along these families. The starting data to compute this orbits can be generated
automatically at Hopf bifurcation points.

• Compute folds, period-doubling bifurcations, and bifurcations to tori, in two parameters, detecting 1:1,
1:2, 1:3 and 1:4 resonances.

• Follow curves of homoclinic orbits and detect and continue various codimension-2 bifurcations.
• Locate extrema along a family of periodic solutions and continue them in more parameters.

4.2 User-supplied elements

4.2.1 Files

AUTO needs two file types for a problem to be defined, one is the equations file, and the other is the constants
file.

23
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The equations file is either a xxx. f 90, xxx. f or xxx.c file, depending on the programming language utilised
(here xxx stands for the name of the problem). The termination (. f ) corresponds to fixed-form Fortran, (. f 90)
is in free-form Fortran and (.c) is written in C. All of them are valid but the format (. f 90) is the one used in
this work.
The file xxx. f 90 contains the Fortran routines that will be explained later, so that if any of them is ir-

relevant for the problem then it doesn’t have to be completed. Many examples can be found in the folder
auto/07p/demos. For a new problem, the simplest way to create its equation file is to copy the one corre-
sponding to a similar problem and modify the appropriate lines of code.
The constants file is a c.xxx file, where xxx doesn’t necessarily have to coincide with the name of the

equations file, because the constants file used can be specified when a problem is executed, though it has to
be contained in the same folder as the xxx. f 90 file. The meaning of many of these constants will be explained
in section (4.2.3).

4.2.2 Routines

The purpose of each of the user-supplied routines in the xxx. f 90 file is described bellow, although a good way
to familiarise yourself with them is to check the code of the demo problem cusp, as it is fully documented.

• FUNC: Defines the function f (u,p) of the problem.

• ST PNT : It defines the starting solution (u,p), which should not be a branch point. This routine is only
called when the constant IRS = 0, which is usually the case of the first run of the problem, otherwise it
sets the label of the solution where the computation is to be restarted.

• BCND: Defines the boundary conditions, see demo exp or kar.

• ICND: Defines the integral conditions, see demo int or lin.

• FOPT : Defines the objective functional if needed, see demo opt or ops.

• PV LS: This routine is for "solution measures", meaning that it is used when the user wants to specify
a given output function of the problem variables, such as norm of the solution, minimum, value at a
boundary...

4.2.3 Constants and parameters

As explained before, the constants that define the problem are expected to appear in the c.xxx file, but this file
is not strictly necessary when using the Python interface, because you can define all the constants inside the
scripts when calling for the problem to run.

In the case that the file is used, the format in it is free, with constant = value separated by comas or spaces.
An example with default values is in figure (4.1), though in real constant files you only need to specify the
values that differ from these.

A brief overview of some of the constants is next.

Problem constants

• NDIM: Dimension of the system of equations.

• NBC: Number of boundary conditions.

• NINT : Number of integral conditions.

• NPAR: Maximum number of parameters that can be used in all user-supplied routines.

• JAC: Used to indicate whether derivatives are supplied by the user or to be obtained by differencing,
such that when JAR = 0 no derivatives are provided by the user.

Discretization constants

• NT ST : The number of mesh intervals used for discretization, it remains fixed for any particular run
and it’s recommended to be as small as possible to maintain convergence.

• NCOL: The number of Gauss collocation points per mesh interval, (2 6 NCOL 6 7). NCOL = 4 is a
recommended value in most cases.

• IAD: It controls the mesh adaptation, IAD = 0 for fixed mesh and IAD > 0 to adapt mesh every IAD
steps along the family.
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Figure 4.1 Default values for the AUTO constants file.

Tolerances

• EPSL: Relative convergence criterion for equation parameters in the Newton/Chord method.

• EPSU : Relative convergence criterion for solution components in the Newton/Chord method.

• EPSS: Relative arc-length convergence criterion for the detection of special solutions.

• IT MX : Maximum number of iterations allowed in the accurate location of special solutions.

• NWT N: After NWT N Newton iterations the Jacobian is frozen, because AUTO uses full Newton
for the first NWT N iterations and the Chord method for iterations NWT N +1 to IT NW , which is the
maximum number of combined Newton-Chord iterations.

Continuation step size

• DS: It defines the pseudo-arclength step size to be used for the first attempted step along any family.

• DSMIN: Minimum allowable absolute value of the pseudo-arclength step size.

• DSMAX : Maximum allowable absolute value of the pseudo-arclength step size.

• IADS: It controls the frequency of the step size adaptation. Adapts the step size every IADS steps.

• T HL: Defines the parameters whose weights is to be modified in the pseudo-arclength continuation,
so that not all the parameters change in the same way (or cannot change at all).

Limit the continuation

• STOP: This adds stopping conditions, for example stopping at the third Hopf bifurcation.

• NMX : The maximum number of steps taken along any family.

• RL0: The lower bound on the principal continuation parameter.

• RL1: The upper bound on the principal continuation parameter.

• A0: The lower bound on the principal solution measure.

• A1: The upper bound on the principal solution measures.

Others stopping options will be shown later on.



26 Chapter 4. AUTO

Free parameters

The array ICP designates the free parameters of the problem. The parameters that appears first is the
principal continuation parameter. As an example, consider the case of the continuation of a solution to the
system f (u,p) = 0, where there is only one free parameter. In this case ICP = [1], so the variable PAR(1) is
designated the free parameter. Consider now the continuation of a family of periodic orbit, where there is
also a free parameter. In this case it is usual to consider ICP = [1, 11], as in AUTO the parameter PAR(11)
is reserved for the period of the solution. If the period is not specified in a periodic solution continuation
problem, AUTO will automatically add it, but it will not appear in the screen output or output-file (fort.7).
Other cases are specified in the AUTO manual.
Computation constants

• ILP: Controls the detection of folds. ILP = 1 for the detection of folds, recommended when fold
continuation is intended.

• ISP: Controls the detection of Hopf bifurcations, branch points, period-doubling bifurcations and torus
bifurcations. Look up the manual for more details.

• ISW : Controls the branch switching for the case of differential equations.

• s: Sets the name of the solution file from which the computation is to be restarted.

• IRS: This constant sets the label of the solution where the computation is to be restarted. As stated
before, it is IRS = 0 for the first run, and IRS > 0 to restart the computation at the previously computed
solution with label IRS.

• IPS: This is one of the most important constants to be set correctly, as it defines the problem type.
IPS = 0 for algebraic bifurcation problems, IPS = 1 for stationary solutions of ODEs with detection
of Hopf bifurcations, IPS = 2 for computation of periodic solutions (starting data can be a Hopf
bifurcation), and IPS = 4 for boundary value problem are the most used. Many more problem types
are considered.

Output control

• NPR: This constant is used to write fort.8 plotting and restarting data every NPR steps.

• IBR: This constant specifies the initial branch number BR that is used. If IBR = 0 then it is determined
automatically.

• LAB: This constant specifies the initial label number LAB that is used.

• UZR: This constant allows the setting of parameter values at which labeled plotting and restart
information is to be written in fort.8 output-file. It also allows the computation to terminate at such
point (with a − before the value of the variable).

• UZSTOP: To terminate the computation if any solution point that is specified is encountered at a given
parameter (works the same way that UZR with − before the values).

Many constants don’t appear in this document for the sake of brevity, and the ones that appear aren’t fully
described, for a more detailed description of the many options that AUTO offers the manual [16] is highly
recommended.

4.3 Output files

When an AUTO program is run it writes a standard output in the same window, where only special labelled
solutions are shown. Some of this solutions types are in the figure (4.3). The numbers corresponding to each
type are used internally in the fort.7 and fort.8 output-files described bellow.

The fort.7 output-file contains the bifurcation diagram, its format is the same as the standard output but it
is more extensive, as every solution has a line printed here.

The fort.8 output-file contains graphic and restart data for labelled solutions. Here the information is more
extensive than that in fort.7.

The fort.9 is for diagnostic messages, convergence history, eigenvalues and Floquet multipliers of periodic
solutions. The amount of diagnostic data can be controlled using the IID AUTO constant.
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4.4 Using the Python commands

There are several user interfaces to use AUTO, some of them are graphical (GUI94, PLAUT04), and others
are code based. For this work, the code based Python user interface has been chosen for its versatility and
because it is relatively easy to use (compared with the others code based user interface, as the Unix commands
or the PLAUT-commands). It also allows the user to create scripts with the instructions to perform a series of
runs, which will come very handy.

In order to use the AUTO command line user interface (CLUI), which is the object oriented Python based
command language for AUTO, the user has to call for it in the Unix shell by typing auto in the directory
where the equations file is contained (for a new problem call the CLUI in an empty directory). If successfully
executed, the prompt will appear as AUTO>.
To begin with this brief CLUI tutorial lets start with how to use any of the demo problems that AUTO

provides. First, by typing mkdir newfolder AUTO creates a folder called newfolder, then cd newfolder
changes the directory to that folder. Note that those commands are similar to the Unix commands of the
same function. Now by typing copydemo(’ab’) AUTO copies the demo files of the problem ab, in which
the equations that model an A→ B reaction are implemented. By typing ls the copied files are shown in the
terminal. There, the ab.f90 file and a series of constant files are present, in addition to other file types that
will be explained later. It is possible to see the content of those files in the terminal by typing cat filename,
where filename includes the termination, although a text editor is recommended for this.

Now lets proceed on how to run a problem in general, given the equations file and the constants file. One
possible method is to type the following commands one after the other in the CLUI:

ab = load(equation=’ab’)
ab = load(ab, constants=’ab.1’)
run(ab)

The first command creates a Python object named ab with the equations file of the problem associated to
it. The capacity to use variables in this way is something that differentiates the CLUI form the other user
interfaces. The second command adds the constants file that will be used in this run, which in this case
is the c.ab.1 file. Note that the command used is the same. This two commands could be replaced with a
sole ab = load(equation=’ab’, constants=’ab.1’), which creates the very same object. Finally the command
run(ab) executes the problem that has been defined in the object ab. Executing these three commands results
in what is shown in figure (4.2). The run command returns a bifurcation diagram structure. In this case we
can see that there is only one branch in the solution family (BR is always 1), and that all output solutions
are user requested except the first one, which is the starting point given in the SPTNT routine. The point
types are in the figure (4.3). Lastly, the problem was of the type IPS = 1, and so the given solutions are the
stationary solutions of the ODE system for the continuation of a certain parameter. This two commands, load
and run, are the most common, but if the intermediate variable ab is not needed then all of it can be done
with abSolution = run(e=’ab’, c=’ab.1’), where the resulting bifurcation diagram object has been stored in
a variable for later use, and the reserved words equation and constants have been contracted. The result is the
same that in the figure (4.2).

The next important feature of the CLUI is the scripting capability, which is now explained. It is basically
a feature that allows the user to place all the commands that need to be executed in an .auto file, and then
executing that file for those commands to be run all at once. Consider the example of a file named abDemo.auto
with the following code:

copydemo(’ab’)
ab = load(equation=’ab’)
ab = load(ab, constants=’ab.1’)
run(ab)
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Figure 4.2 Result of runing demo program with constans=’ab.1’. Image from [16].

Figure 4.3 Point types in a bifurcation diagram structure. Image from [16].

Then, by typing auto abDemo.auto in the Unix shell AUTO will execute the code in it as if it where in the
CLUI. The same result would be obtained by typing auto(’abDemo.auto’) in the CLUI itself.
As a final comment, the file autorc contains commands to control the behaviour of the PyPlaut plotting

options (some of them will be used), and the plaut04.rc controls the PLAUT04 user interface, which won’t
be of use in this work.

4.4.1 Other commands

• save: Save data files. By typing save(x,’xxx’) AUTO saves the bifurcation diagram x to the files b.xxx,
s.xxx and d.xxx. The file b.xxx contains the bifurcation diagram, s.xxx contains the solution and d.xxx
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contains the diagnostics. If x is a solution or does not contain any bifurcation diagram or diagnostic
data, then only the file s.xxx is saved to.

• append: Append data files. By typing append(x,’xxx’) AUTO appends the bifurcation diagram x to
existing data files b.xxx, s.xxx and d.xxx.

• plot: Plotting data. plot(x) runs the graphic program PyPlaut for the graphical inspection of bifurcation
diagram or solution data in x.

• clean: Clean the current directory of fort. and .exe files.

• floquet: Print the Floquet multipliers. floquet(x) lists the Floquet multipliers in the diagnostics of the
bifurcation diagram object x, floquet() lists the content of the fort.9 file and floquet(’xxx’) lists the
Floquet multipliers in the file d.xxx.

4.5 Problem example

The AUTO manual has many examples for the user to grasp the software potential. In this work we are
interested mainly in the way periodic solutions are calculated, and so a first example of the method we will
be shown in this section. This way, the later procedure to compute the cycles in the CR3BP will be very
straightforward to understand, though the computation of the manifolds will be explained on the fly.

4.5.1 The A→ B→C reaction

The dynamic of the reaction is given by the system:

u′1 =−u1 + p1(1−u1)e
u3 ,

u′2 =−u2 + p1eu3(1−u1− p5u2),

u′3 =−u3 + p3u3 + p1 p4ru3(1−u1 + p2 p5u2),

(4.1)

where p2 = 1, p3 = 1.55, p4 = 8 and p5 = 0.05. The free parameter is then p1. The implementation of the
equations in the FUNC subroutine can be seen in the figure (4.4), this scheme is valid for the implementation
of mostly any problem, aside from the name of the parameters and the number of equations. The STPNT
subroutine is shown in figure (4.5), where an equilibrium of the equations for p1 = 0 has been implemented
as the starting point. Notice that the rest of the routines haven’t been completed as they don’t serve any
purpose in this problem

The first step to compute cycles with AUTO is to detect stationary solutions from which they might emerge.
For this the c.abc.1 constants file, in figure (4.6), is to be used. The most important things to notice in here
are that IPS = 1, so the problem is defined to compute a family of stationary solutions, IRS = 0, so that
the starting point is the one defined in STPNT, ICP = [1], so that the free parameter is p1, and finally that
UZR = {1 : 0.4} with UZSTOP = [′UZ1′], which states that the computation ends once the free parameter
p1 = 0.4. With all of this, by executing abc = run(e=’abc’, c=’abc.1’) the screen output is the one in figure
(4.7). There we can see that aside from the starting point and the user requested one, there are 4 special
solutions in between with the type HB, which corresponds to Hopf bifurcation points in the bifurcation
diagram. This means that some eigenvalues of the Jacobian cross the imaginary axis at those points, which
is the same as saying that those points have eigenvalues with zero real part, and that very close to them
analytical periodic solutions do exist. This is the main foundation the computation of cycles in the AUTO
environment relies on. With plot(abc, stability=True, grid=True) the bifurcation diagram can be represented
using PyPlaut, this is in figures (4.8) and (4.9). Figure (4.8) represents the evolution of the L2-Norm of
the stationary solution (L2NORM =

√
u2

1 +u2
2 +u2

3) with the change of p1. Notice that the change between
solid and dashed line represents the change in stability of those solutions (solid lines are stable solutions).
Figure (4.9) on the other hand is the representation of those solutions in the phase space. Using the command
eigenvalues(abc) it is possible to see that, out of the three eigenvalues of the system, there is a pair of complex
conjugate eigenvalues whose real part change sign at those exact points, which indicates that a sole family of
periodic solutions emanate from the HP as a linear combination of the corresponding eigenvectors and eλ t .
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Figure 4.4 FUNC subroutine in the abc demo problem. Image from [16].

Figure 4.5 STPNT subroutine in the abc demo problem. Image from [16].
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Figure 4.6 Content of the constants file for the first run of the problem. Image from [16].

Figure 4.7 Result of running stationary solution family search in the A→ B→C problem.

Figure 4.8 L2-NORM of the stationary solution family in A→ B→C problem.

The next run use the c.abc.2 constants file, in figure (4.10), where IPS = 2, as now the problem is a search of
a family of periodic solutions, ICP = [1 , 11], as now the period is also a free parameter andUZR = {1 : 0.25}
so the search of each solution family ends when p1 = 0.25. For this run the next python script will be used:

abc = run(e=’abc’, c=’abc.1’)
for solution in abc(’HB’)

abc = abc + run(solution, c=’abc.2’)
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Figure 4.9 Stationary solution family of A→ B→C problem in the phase space.

Figure 4.10 Content of the constants file for the second to last run of the problem. Image from [16].

The abc(’HB’) is a list of the Hopf bifurcation solutions in the python object abc, so the for loop goes
through all those solutions. Inside the loop the line abc = abc + run(solution, c=’abc.2’) executes a run in
which the solution acts as initial point (the Hopf bifurcations) from which the periodic solutions are continued,
and then concatenates the result with abc. The results of this calculations can be seen in the bifurcation
diagram of figure (4.11) and the solutions in (4.12). In this case the L2-Norm of the periodic solution families
corresponds to the maximum norm of the states through the orbits themselves. The orbits marked as L in
(4.11) correspond to folds. In figure (4.13) the period of the solution families are represented, notice that even
at the start of each of them the period isn’t zero. Finally, as to clarify how the periodic solutions emerge form
the Hopf bifurcations, a detail of this is represented in figure (4.14), where the family of periodic solutions
that comes from HB1 is pictured from the start.

This whole problem is a good example of the method that will follow, and will help to clarify some of the
details involved. The CR3BP is studied now with AUTO.
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Figure 4.11 L2-NORM of the periodic solution families in A→ B→C problem.

Figure 4.12 Some of the periodic solutions in A→ B→C problem.
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Figure 4.13 Period of the periodic solution families in A→ B→C problem.

Figure 4.14 Detail of the HB1 periodic solution family as it emerges from its Hopf bifurcation. The parameter
p1 changes from 0.204 (in the HB) to 0.207.



5 AUTO-based numerical study of the
CR3BP

In this chapter the tool AUTO is used to study the types of periodic orbits around the Earth-Moon system as
well as the invariant manifolds associated.

5.1 Problem definition

As stated in the introduction, the CR3BP describes the motion of a negligible mass in three dimensional
space as an effect of the gravitational attraction of two heavy bodies which orbit their common center of
mass in a perfect circular motion. The scheme of this situation for a given position of the mass under study
is in figure (5.1), where the parameter µ represents the ratio of the mass of the smaller primary to the total
mass of the system (µ = m2/(m1 +m2)). The problem will be studied in the non-dimensional form, so that
the distance between the two main bodies equals to 1 at all times (the time is also adimensionalized with de
angular velocity).

Figure 5.1 CR3BP scheme (a) and nomenclature of the five libration points (b). Image from [15].

Given the frame of reference centred in the barycentre of the two massive bodies that rotates with the same
speed as them (a constant of the problem), the adimensionalized equations of motion are well known [2]:

x′′ = 2y′+ x− (1−µ)(x+µ)r−3
1 −µ(x−1+µ)r−3

2 ,

y′′ =−2x′+ y− (1−µ)yr−3
1 −µyr−3

2 ,

z′′ =−(1−µ)zr−3
1 −µzr−3

2 ,

(5.1)

35
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where

r1 =
√
(x+µ)2 + y2 + z3,

r2 =
√

(x−1+µ)2 + y2 + z”.
(5.2)

The equation system (5.1) has one integral of motion, specifically the energy or Jacobi constant:

E =
x′2 + y′2 + z′2

2
−U(x,y,z)− µ(1−µ)

2
, (5.3)

where U(x,y,z) is the potential energy, combination of gravity and the rotation of the frame of reference:

U(x,y,z) =
1
2
(x2 + y2)+

1−µ

r1
+

µ

r2
.

As we are most interested in the case of the Earth-Moon system, throughout much of this document we
will consider µ = 0.01215.

5.2 Setting up the AUTO problem

The .f90 file that will be use in general is the corresponding to the AUTO demo r3b, which is explained
now. The FUNC subroutine is in figure (5.2), where the equations of motion are coded in free-form Fortran.
Notice that there are two explicit parameters in the equations, one is µ , and the other is multiplying the
velocities in the acceleration equations (F(4), F(5) and F(6) in the code), which is what we called unfolding
parameter in section (3.4.1). That last parameter will be the one used to continue the periodic orbits.
Next, the ST PT N subroutine is in figure (5.3). Here the state variables and the parameters are set up for

the first run that will be executed, which will be done to compute the stationary solutions with µ . Notice that
for the selected value of µ the chosen state is that in which the position is on the unit circle in the xy plane
and the velocities are zero. That is the degenerate case in which there is no secondary body in the system,
where any position in the unit circle is a stationary solution of (5.1).

Figure 5.2 FUNC subroutine in the CR3BP.
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Figure 5.3 ST PNT subroutine in the CR3BP.

Figure 5.4 PV LS subroutine in the CR3BP, part 1.

Finally, the PV LS is in figures (5.4) and (5.5). The first part calculates the energy of the solution state U
that comes as an input using equation (5.3). Notice that two parameters are created, one stores the energy of
the solution and the other the value of the position in y. The PAR(16) will be a solution measure. The second
part of the routine has two distinguishable functions, one is to calculate the maximum real Floquet multiplier
and to store it in PAR(4), this will be useful in discerning the stability of the periodic orbits. If PAR(4) = 0
then it means that two Floquet multipliers are outside of the unit circle, so no stability can be expected from
that solution. To achieve this it is necessary to use the function GETP, a more detailed description of its
usage is in figure (5.6). The second function retrieves the imaginary parts of the eigenvalues which only
have imaginary part, and stores the corresponding period (2π/w, where w is the imaginary part) in PAR(5),
PAR(6) and PAR(7). This will only be used in the stationary solution analysis at the beginning. For this
equations file no other subroutines will be used.
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Figure 5.5 PV LS subroutine in the CR3BP, part 2.

Figure 5.6 Description of GETP function extracted from cusp demo problem.
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5.3 Stationary solution analysis

First, and as stated in the example of section (4.5), we need the stationary solutions from which the periodic
orbits emerge. As it is well known, the CR3BP has 5 stationary solutions or libration points (figure (5.1) (b)).
Three of the libration points, denoted L1, L2 and L3, are collinear with the primary bodies. Each of the other
two libration points, L4 and L5, forms an equilateral triangle with the primaries.
The procedure will be to start at the stationary solution in the ST PNT subroutine and let AUTO search

from there until it finds the desired points at µ = 0.01215. To do that, the constants file in figure (5.7) is the
one utilized. The most relevant constants values to notice from there are:

• NDIM = 6, the dimension of the problem is now 6 once expressed as an ODE.

• IPS = 1 and IRS = 0, as we are looking for stationary solutions starting from the point in ST PNT .

• ICP = [2,16,5,6,7], the main continuation parameter is PAR(2) (µ in the code of r3b.f90), but PAR(16),
PAR(5), PAR(6) and PAR(7) will be solution measures. By knowing PAR(16) (the y coordinate of the
point) we can know if it is a collinear or triangular solution, but more importantly, it allows to continue
the solution in the unit circle when µ = 0. On the other hand, knowing the periods associated will tell
us the number and type of orbits that can emanate from them.

• NPAR = 16, this is necessary in order to use parameters until PAR(16).

• UZSTOP = {16 : 0.991, 2 : [−0.1,1.1]}, the conditions for the continuation to stop in each branch.

Figure 5.7 Constants file used for the analysis of stationary solutions in the CR3BP.

Maybe more important than the constants that are in the file, the lack of any reference to the value of µ at
which the output is needed for the problem to continue stands out. That will be solved when the program is
run.

Figure 5.8 Script that computes the libration points for the µ in the Earth-Moon system, as well as the number
of periodic orbits that emanate from them thorough the periods.

Then, to execute the search, the AUTO script in figure (5.8) has been used. Let’s focus first in the lines
before the import. A variable with the value of µ for the Earth-Moon system is created, then a message is
printed on the screen to indicate that the computation of the libration points begins. Then, by using r1 =
run(’r3b’, UZR={2:mu}), AUTO automatically sets the problem with the files called r3b (equations and
constants files), and adds the constant UZR={2:mu} to the problem, which is meant to force an output
for the value of µ previously given. This few lines are enough to make a complete analysis of stationary
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solutions in the CR3BP with AUTO, and it is a very complete analysis as the figure (5.9) shows, the result
of the plot command. The screen output is in figure (5.10), where we can see AUTO has unveil 4 branches
in the solution families. The first branch is the one of the starting point, the unit circle for µ = 0, as the
values of PAR(2) seems to indicate (zero to numerical precision). The 3 other branches are accessed through
the branching points with labels 2, 3 and 4. The second branch corresponds to the triangular points with
positive y coordinate, as the PAR(16) reveals, with the third branch being the triangular points with negative
y coordinate. The last branch is that of the collinear points, blue in figure (5.9). Next thing to notice is that
branch 4 has 3 user requested outputs with PAR(2) = 0.01215 to numerical precision. These are the three
collinear points for the value of µ requested, which we will call ”UZ7”, ”UZ8” and ”UZ6” (UZ because they
are user requested and the number comes from their order of appearance, they are L1, L2 and L3 respectively).
The triangular points are also in their corresponding branches with type ”UZ2” and ”UZ4” (L4 and L5).
These labels are needed for the next step. Finally, as expected from this particular problem, the triangular
points seem to have the three values of non-zero periods for µ = 0.01215, while the collinear points have
two. All of it tells us the number of periodic orbits that emerge from them, that is, 3 periodic orbits from L4
and L5 respectively, and 2 from L1, L2 and L3.
We now continue with the script. Next line imports a python script with a function inside called

write_lagrange(), which can be seen in figure (5.11). This function prints on the screen information regarding
the purely imaginary eigenvalues of the libration points, it is in figure (5.12). Although this last step is not
strictly necessary for the next one (calculation of periodic orbits), it summarizes the information gathered
about the periodic orbits that will be computed on forward, as for example the long period orbits that emanate
from L4 and L5.

Figure 5.9 Bifurcation diagram of the stationary solutions in the CR3BP.
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Figure 5.10 Screen output of the stationary solution analysis of the CR3BP.

Figure 5.11 Python function to inspect the stationary solutions properties.

Figure 5.12 Information given by the write_lagrange() function about the libration points on screen.
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5.4 Periodic orbits

For the study of the periodic orbits the equations file will be the same as for the stationary solutions (r3b.f90),
and the constants file will depend on the exact orbital family that has to be continued, as different families
will need different stopping conditions or continuation step size to detect bifurcations along the family.

The classification of the orbital familes an its nomenclature will be the same as in [17], where it is shown
that even though the equations of this system are apparently simple, the casuistry of the different orbital
families is quiet complex. The families that will be shown in this section are only the ones that emerge from
the libration points, with an explanation on how to compute them with AUTO and a brief commentary on its
stability properties. Along these families there are bifurcations to others that won’t appear here for the sake
of brevity (they are represented in [17]), with the exception of the Halo orbits, that will be studied in detail in
the next section. It is done this way because the Halo families can only be accessed through bifurcations as
will be explained later on.

5.4.1 The planar Lyapunov families

The planar Lyapunov families are orbits that emanate form the L1, L2 and L3 Lagrange points and remain in
the plane z = 0. First, we’ll focus on the planar orbits that emerge from L1, which will be denoted as the L1
orbital family. The constants file used will be the one in figure (5.13), where the most relevant changes from
the stationary case are:

• IPS = 2, for the computation of the periodic solutions.

• The main continuation parameter is now PAR(1), the unfolding parameter, as it was explained in section
(3.4.1). The other free parameters are the period (PAR(11) in the AUTO enviroment), the energy of
the orbit (PAR(3)) and PAR(4), which was defined as the biggest Floquet multiplier (0 if more than
one is outside the unit circle and 1 if all are inside or on the unit circle).

• The continuation step size and the maximum continuation step size are lower enough so AUTO can
detect the existing branching orbits (this is commented later).

• In this case the stopping condition is close to the collision with the Moon.

• There is a new variable, TY=’HB5’, which is there to choose the exact family that has to be continued.
In the example of section (4.5) it wasn’t necessary because there was only one pair of complex conjugate
eigenvalues, so there was only one possible periodic orbit to calculate. Now, and for the L1 point, there
are two possibilities (see figure (5.12)), so it has to be specified.

Figure 5.13 Constants file for the computation of the L1 family.

To compute the L1 family a new line has to be executed after the stationary solution analysis:

L1=run(r1(’UZ7’), c=’c.r3b.L1’),

so the point where the orbits are calculated from is L1. The screen output of this is in figure (5.14), where
we can see that two orbits are branches to other families, they are the Halo (H1) and Axial (A1) families that
emanate from L1. The results are stored using the save command, and the s. file has been used to extract the
information of the periodic orbits, which have been plotted using Matlab. This is in figures (5.15) and (5.16).
The two branching orbits are highlighted to better understand the result, and the Earth (left dot) and Moon
(right dot) are in real scale.
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By using the AUTO plotting function the period and biggest Floquet multiplier (PAR(4)) are represented
in figure (5.17). The data in this figure is the result of applying a relabel to the output of the run in figure
(5.14), so the labels don’t coincide. The time in the period plot is not in seconds but in the scaled time τ of the
non-dimensional equations of motion (τ = ωt, where ω is the rotational velocity of the frame of reference,
which for the Earth-Moon system is ω = 2.665 ·10−6 rad/s, so that for τ = 5 → t ≈ 20 days), which will
be the unit used in this document most of the time.

From figure (5.17) the stability properties of the L1 family can be deducted in some degree. First conclusion
is that, as suspected, no stable orbits exist in this family, as the parameter PAR(4) is either greater than one
or zero. Only the orbits where there is a sole multiplier outside the unit circle (o.u.c) are represented in
this figure, and it could seem that the most stable orbit is that with LAB = 6 (the one with the lowest only
multiplier o.u.c), but that may not be the case. Taking advantage of the fact that the information regarding the
Floquet multipliers is stored in the d. file, this has been exported to a Matlab script to extract this information,
so the absolute value of all the multipliers can be inspected. Although there is no plot, it has been found
out that multipliers 1 and 2 are always on the unit circle up to numerical precision. Only the information
of multipliers 3 to 6 have been represented in figure (5.18). This figure tells us that the first zero interval
of PAR(4) is due to M4 becoming greater than 1 in that interval, but its value is barely over 1.5, so it won’t
affect the stability of the orbits in a critical way (since they are already unstable and the other multiplier
greater than one is three orders of magnitude bigger). Next, the multipliers M5 and M6 interchange its values
in the branching orbits, so that together they are apparently continuous. The next zero interval (the one that
begins with the orbit LAB = 6 in figure (5.17)) is due to M4 having a spike, but the fact that PAR(4) remains
zero after the spike seems inexplicable with only the information in figure (5.18). To better understand why,
a detailed view of multipliers 5 an 6 has been represented in figure (5.19). There we can see that M5 starts
to increase after the spike of M4, so there are always two multipliers with absolute value greater than one.
The question remains if the most stable orbit is that of LAB = 6 or the one with the lowest M6 multiplier,
minM6 orbit on forward. For this matter to be answered a Matlab simulation of equations (5.1) has been set
up for three orbits to be compared: LAB = 1, LAB = 6 and minM6. Figure (5.20) shows the result for the
LAB = 1 and LAB = 6 orbits. There we can see that the stability of orbit LAB = 1 is non-existent, as it barely
completes one orbit before the particle breaks away from the expected path (the numerical precision of the
simulation is at its maximum and the starting data has all the decimals that AUTO provides). On the other
hand, orbit LAB = 6 clings close to the path for almost one orbit and a half before it goes away. Figure (5.21)
shows the result for the minM6 orbit, where it seems the particle remains close to the nominal orbit a bit
longer than LAB = 6 before breaking away. This shows us that the stability of the orbits may require more
information than the PAR(4) to completely discern the most stable of all.

Figure 5.14 Screen output of the L1 family.

This detailed study of the L1 family has been conducted so that the information on the following families
is understood right away, and only the Halo families will be analysed more closely due to the purpose of this
work.

The last two members of the planar Lyapunov families are the L2 and L3 that emanate from points L2
and L3 respectively. The process followed is the same as in the L1 family, with changes in the stopping
conditions and continuation step size, as well as the corresponding change in the run command, where the
initial point has to be chosen correctly (r1(’UZ8’) for L2 and r1(’UZ6’) for L3). Figures (5.22) to (5.23) show
some information of the L2 family, and figures (5.24) to (5.26) of the L3 family.

For the L2 family the only comments are that three bifurcations to other families are found (the bifurcation
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Figure 5.15 L1 solution family, general view.

Figure 5.16 L1 solution family, detailed views.

Figure 5.17 Period and biggest Floquet multiplier of the L1 family.

to the R2 family occurs after the collision with the Moon) and the the Floquet multipliers don’t show any
stable orbits whatsoever. The L3 family on the other hand shows some interesting stability properties, as it
has PAR(4) = 1 shortly after the last bifurcating orbit to the S3 family. This points out that there are stable
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Figure 5.18 Floquet multipliers 3, 4, 5 and 6 of the L1 family.

Figure 5.19 Detail of Floquet multipliers 5 and 6 of the L1 family.

Figure 5.20 Simulation of orbits LAB = 1 (left) and LAB = 6 (right) of the L1 family.

orbits along this family, as the simulation of figure (5.26) confirms, where the simulation time is 4 times the
orbital period and the path followed by the particle remains the same.

5.4.2 The Long-Period and Short-Period planar Lyapunov families

Emanating from the L4 and L5 libration points there are two symmetric families of planar orbits referred to
as the "Long-Period" and "Short-Period" families, here they are shown for the L4 point.
The Short-Period, here denoted as S3 connects the L4 to the L5, while in the middle it connects to the

L3 family (shown in the previous section). In order to compute it the run command has to start with the
r1(’UZ2’) data point, and the constants file has to specify TY=’HB6’. The result is in figures (5.27) and
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Figure 5.21 Simulation of orbit with lowest M6 of the L1 family.

Figure 5.22 L2 solution family, general view.

(5.28). As it is evident for the PAR(4) diagram the family is always stable, which is compatible with the
fact that the L3 family was stable at the branching with S3. The Long-Period family, here denoted as L4, is
computed similarly by specifying TY=’HB7’ in the constants file. The results are in figures (5.29) and (5.30).
Even though there are no branch points along this family, there is a reverse period-quadrupling bifurcation
at the end of it, where it connects with the S3 family (the special nature of the connecting orbit makes it
impossible to detect it from the S3 orbit with this approach). As mentioned before, similar orbits emerge
from L5 in a symmetric fashion.

5.4.3 The Vertical families

The Vertical families, here denoted as V1-V5 emanate from their respective libration points. To compute
them the initial point has to be set as the corresponding libration point in the run command, and the TY
variable has to be specified in the constants file as before (TY=’HB6’ for points L1 to L3 and TY=’HB5’ for
the L4 and L5). Families V1 to V4 are represented in figures (5.31) and (5.32), as V4 and V5 connect in the
middle and can be considered a single family, the V4/V5. The period and Floquet multipliers of families V1,
V3 and V4 are in figures (5.33) to (5.35), V2 is not represented because its properties are very similar to V1.
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Figure 5.23 Period and Floquet multipliers of the L2 family.

Figure 5.24 L3 solution family, general view.

Figure 5.25 Period and Floquet multipliers of the L3 family.
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Figure 5.26 Simulation of orbit LAB = 10 of the L3 family for several periods.

Figure 5.27 S3 solution family, general view.

5.5 The Halo Families

Up until now, all the orbital families that have been calculated are the result of continuing the cycles that
emerge from the five libration points as has been explained. But in the process AUTO has revealed that some
other paths of continuation are available through the bifurcating orbits. AUTO can detect other branches by
monitoring the rank of the system matrix and computes the bifurcation directions, more information on this
can be found in [18]. Now we use those branching orbits to accede to the Halo orbital families, which are the
subject of study.

To achieve the branch switching we need to feed the orbit to the run command as in the next example for
the Halo orbit H1, that which emerges from the L1 family:

H1 = run(L1(’BP1’), c=’c.H1’),

where, as in the case of the computation of emerging periodic orbits, the equations file isn’t necessary (it is
implicit in the solution orbit that we are feeding as input), and the L1(’BP1’) refers to the first bifurcating orbit
of the L1 family that we found, which was named after H1, the Halo family that emanates from the Planar
Lyapunov family of the L1 Lagrange point. For the constants file there are a couple of things to comment.
First is that the constant ISW has to be set to −1 so that AUTO automatically performs the branch switching,
and second that the continuation step size DS is now sign sensitive. This is because the Halo families have
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Figure 5.28 Period and Floquet multipliers of the S3 family.

Figure 5.29 L4 solution family, general view.

Figure 5.30 Period and Floquet multipliers of the L4 family.

two variants, the Northern and Southern case, a result of the symmetry in the z axis in the equations of the
system. The rest of the constants have the same role as in the previous cases, so we now proceed to show the
results of the Halo families.
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Figure 5.31 V1 (left) and V2 (right) solution family, general view.

Figure 5.32 V3 (left) and V4 (right) solution family, general view.

Figure 5.33 Period and Floquet multipliers of the V1 family.

The results for the H1 family are in figures (5.36) to (5.38). Figure (5.36) shows how the H1 family
emerges from the L1, then it develops to a near rectilinear orbit around the moon to finally intersect with the
C1 family. Had the family been continued then it would have resulted in the southern variant of this orbital
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Figure 5.34 Period and Floquet multipliers of the V3 family.

Figure 5.35 Period and Floquet multipliers of the V4 family.

family, whit the same properties. The Floquet multipliers in (5.37) only show that this family of orbits is
really unstable at the beginning, but rapidly goes to a near stable behaviour. Even more, figure (5.38) shows
how there is an actual stretch of the family with complete stability (in the CR3BP model). This orbits will be
studied in detail in the next subsection.

For the H2 family results see figures (5.39) to (5.41), where a similar behaviour for the Floquet multipliers
can be seen at the end of the family, more details in the next subsection.

Finally, the H3 family, though of less practical interest, has been represented in figures (5.42) to (5.43). A
closer look at the Floquet multipliers shows that it is quasi-stable at the beginning (low PAR(4)) but becomes
completely unstable later on.
Out of these three families the H1 and H2 have been proposed as suitable candidates for an inhabited

facility in cis-lunar space [19]. A narrow stretch where they are called Near Rectilinear Halo Orbits or
NRHOs presents some interesting properties, these are studied in some detail next.

5.6 Near rectilinear Halo orbits

As their name indicates, these subgroup of orbits are characterized by an elongated path as seen from Earth,
but we are now going to formally delimit the stretch of orbits in both the H1 and H2 families we are referring
to. In section (5.4.1) it was already commented that one of the properties of the Floquet multipliers is that
there is always a pair equal to 1 (the trivial pair), now another property is required for this classification. In
this context, the multipliers always appear in reciprocal pairs (µi,1/µi), so it is useful to define the stability
index νi =

1
2 (µi +1/µi) for the two non-trivial pairs. Similarly than with the Floquet multipliers, this metric
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Figure 5.36 H1 solution family.

Figure 5.37 Period and Floquet multipliers of the H1 family.

indicates stability when both of them are less than one in modulus. For an unstable orbit a larger value of the
stability index corresponds to a faster departure from the nominal path.

In general, the NRHOs are considered as the subset of Halo orbits possessing stability indices within some
small bound surrounding ±1 and similar in magnitude. For this work, the stability switches of this metric
will be use to delimit the boundaries of the NRHOs. Across the H1 and H2 families and near the Moon
region a number of stability switches occur from linearly stable to unstable when continuing the families
from the initial bifurcations. Unfortunately, this wasn’t easily seen with the PAR(4) vs PAR(3) plots in last
section, but the metric νi in relation with the closest distance to the Moon of each orbit will appear as a more
suitable way to discern the evolution of the stability properties. That is what is represented in figure (5.44)
for both the H1 and H2 families in the region near the Moon.

Then, for the H1 family the orbits are considered of the NRHO subset between the first and forth stability
switch (from right to left), marked with arrows in (5.44). This region starts with the orbits of around 17400Km
of closest distance and ends a bit after the collision orbit (after this the orbits are of no real practical interest).
For the H2 family the subset is considered between the first and third intersection, thus being the region
between 15500Km and 90Km of closest distance. This definition applies to both the northern and southern
members of the families. This plot also highlights the stable regions in green when both the indices are below
1 in modulus.
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Figure 5.38 Detail of the Floquet multipliers in the H1 family.

Figure 5.39 H2 solution family.

For this subset of orbits the period and energy values are represented in figures (5.45) and (5.46), with the
period now in days and the energy is non-dimensional (5.3).

The subset of orbits under study is now set, and the next step is to study its properties regarding the stability.
Figure (5.44) shows us that the stability inside the NRHO subset is significantly better than before it starts. In
order to estimate the temporal scale of the dominant diverging motion a new metric is derived by considering
the time constant, ψ , as the number of revolutions before departure:

ψ[rev] =
1

|Re(ln(µmax))|
As it has been defined the time constant is infinite for a marginally stable orbit (µmax = 1). The time

constant can be interpreted as an estimation of the number of revolutions for an initial perturbation to be
amplify by a factor of approximately 3. For both the NRHOs families ψ is plotted in figure (5.47). This
figure shows the previously indicated possibility of maintaining a station in NRHO motion over long periods
of time while consuming few propellant resources. In order to better show the behaviour of these orbits
simulations of some them are in figure (5.48). The 86 Km orbit has been included as an example of stable
orbit very close to the surface, and the 290 Km orbit, though unstable, shows that it is possible for these
kind of orbits to remain close to the reference for over a very long time, as the simulation shows very little
dispersion over the seven periods.
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Figure 5.40 Period and Floquet multipliers of the H2 family.

Figure 5.41 Detail of the Floquet multipliers of the H2 family.

Figure 5.42 H3 solution family.
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Figure 5.43 Period and Floquet multipliers of the H3 family.

Figure 5.44 Region of stability switches in the vicinity of the Moon for the H1 and H2 families.

Figure 5.45 Period in the NRHO subset.

Another important factor when designing an orbit for a space station that is going to be inhabited are
the thermal and power restrictions that come with the eclipsing of the sun. In this case the aforementioned
station can be eclipsed by both the Moon and the Earth. To study the first type of eclipsing it is necessary
to compare the period of the NRHO with the synodic period of the Moon (TM−S ≈ 29.5306 days), that is
represented in figure (5.49) for the y : 1 and y : 2 resonances in the H2 NRHO family. The y : 1 resonance
means that the orbit performs y revolutions over one synodic period, and y : 2 means y revolutions over two
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Figure 5.46 Energy in the NRHO subset.

Figure 5.47 Time constant in the NRHO subset.

synodic period. As can be seen there are only two y : 1 resonances in the NRHO subset for the H2 family
(the 4 : 1 and 3 : 1 resonances) and two y : 2 resonances (the 9 : 2 and 7 : 2), three of these orbits are in figure
(5.50). For this representation a Moon centred Sun oriented frame of reference has been used, as it makes the
resonances obvious. In this frame of reference the Sun is always in the same direction, and thus the orbits
with resonances of the y : 1 type allow for orientations such that the Moon’s shadow never casts over it, the
orbit orientation is set by choosing the insertion date correctly. The Earth’s shadow issue isn’t studied here,
but a possible strategy is to try set the spacecraft apoapsis during each full Moon phase, thus avoiding the
Earth’s shadow. On the other hand, the 9 : 2 resonance difficultly avoids the lunar eclipse because the shadow
doesn’t always cleanly pass through the gaps in the orbit, so epoch selection is more challenging in this case.
Finally, the 3 : 1 resonance has the added advantage of being stable in the CR3BP context, making it a very
interesting option for a space station orbit (if no other mission restrictions are considered).

It is also important to study the way in and out from these orbits, and for that the computation of manifolds
with AUTO will be shown in the next section.
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Figure 5.48 Simulation of various H2 NRHOs over 7 periods (slightly different in each of them).

5.7 Computation of manifolds with AUTO

Though the strategy to compute unstable manifolds has already been explained in section (3.5), the details
to do it in AUTO are now commented in some depth. The general idea was to compute the eigenfunction
associated to the only unstable multiplier. Once calculated, the manifold was approximated as the perturbed
state r(0) = u(0)+ εw(0). This state was continued using time integration until a certain condition was met
(some coordinate in the final state reaches a desired value), and the resulting orbit was used as the initial
iteration to continue the whole manifold. The process is now exemplified with an orbit in the H1 family.
The process starts with the already calculated family of periodic orbits H1. First step is to prepare the

initial solution for the eigenfunction computation, and in order to do that the python script in figure (5.51)
has been used. The code receives as input the solution file of the H1 family (previously saved), the label of
the desired orbit and the value of ε in the first approximation of the manifold that will be used (step variable
in the code). If no Floquet multiplier is introduced then the code uses the value of PAR(4), which in the
present case is different from zero and positive. For this example the chosen orbit has PAR(4) = 10.59 and
the closest distance to the Moon is 23600 Km.
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Figure 5.49 y : 1 and y : 2 resonances along the NRHOs in the H2 family.

Figure 5.50 Some resonant H2 NRHOs in a Moon-Sun rotating frame of reference.

Figure 5.51 Python code to extract the information of the periodic orbit and prepare it for the eigenfunction
calculation.

Next step is to compute the Floquet eigenfunction by solving the BVP outlined in section (3.5), and for
that it is necessary to create a new AUTO problem with different equations and the appropriate boundary and
integral conditions. In the equations file the FUNC subroutine is the same except for the added linearised
equations that extend the system in the eigenfunction variables, this is in figure (5.52). The boundary and
integral conditions are in figure (5.53), where PAR(5) is the adjoint variable ρ that acts eigenfunction modulus
and will be used to stop the continuation at ρ = 1. The constants file needs to specify IPS = 4 in order to set
a BVP, and the main continuation parameter is α , as in the periodic orbit computation.
The output of the eigenfunction calculation is then fed to the function in figure (5.54), so that the linear

approximation of the manifold is calculated for the next step. This code creates a series of parameters needed
for the following continuation problem, which is the time integration. For this, the equations file has the
same FUNC subroutine that the periodic orbit computation, but it includes some boundary conditions, as
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Figure 5.52 Added lines for the BVP in the eigenfunction computation.

the problem is set up like a BVP with the integration time (PAR(11)) as main continuation parameter. The
boundary conditions are in figure (5.55). The strategy followed has been to set the constant UZR as:

UZR = {21 : [−0.5,−0.25,0.0,0.25,0.5]},

and then choose which one of the solutions is the one used to compute the manifolds. Notice that they are
all the same orbit but with different x coordinate at the end of the integration.
The next and last step is to continue the orbits inside the manifold by changing the value of ε . For this

problem the equations file is the same as in the time integration problem, and the constants file differs
primarily in the ICP vector, where now PAR(6) (ε) appears first and PAR(21) can’t be seen, because now it
isn’t a free parameter (we want the rest of the orbits in the manifold to end in the same plane).
The result of applying this series of calculations to the aforementioned orbit in the H1 family is in figure

(5.56). A few comments are necessary for this solution. By looking at figure (5.44) we can see that in the
H1 family and for more than 20000 Km the stability index is positive and, as stated before, for this orbit
in particular PAR(4) = 10.59, which is a relatively big Floquet multiplier. This is important, as the chosen
absolute value of ε1 will determine the divergence speed of the state in the linear approximation of the
manifold. Because here the value of PAR(4) is big enough, we could choose a small value of |ε1|, and the time
integration will rapidly converge in the orbit that crosses the plane with x = 0, which is the stopping condition.
In this case we have chosen ε1 =−10−5, which will give a very good approximation of the manifold, as ε

indicates the distance in the direction of the eigenfunction (unit in modulus by construction) at which the
state of the manifold is approximated by r(0) = u(0)+ εw(0), and the non-dimensional distance of 10−5

corresponds to 4 Km approximately (very small in this context), the resulting orbit after the time integration
is in figure (5.57). Had we chosen a value of ε too small and AUTO wouldn’t have been able to complete the
integration to the plane x = 0, the reason for this is now explained. For this example the NT ST constant has
been set to 200, which means that every solution in this continuation problem is made of 200 mesh intervals
in the discretization, with 4 colocation points in them (NCOL = 4). With this set, AUTO can only stretch out
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Figure 5.53 Boundary and integral conditions for the BVP in the eigenfunction calculation.

Figure 5.54 Python code to compute the linear approximation of the unstable manifold.

the orbit up to a point while maintaining the tolerances. So if the initial point in the manifold is set so the
integration will stay close to the orbit for a very long time, then it won’t be possible to complete the orbit
to the desired plane. The only way to achieve both things at the same time (extremely good approximation
of the manifold and integration to the desired plane) would be to increment the discretization, which will
slow down the computation significantly, and will make it impractical. This whole consideration is important
when the chosen orbit has a smaller Floquet multiplier, as the chosen value of ε1 will have to match both
aspects of the problem. Another important aspect about ε1 that hasn’t been addressed is the sign, because
if it is chosen incorrectly the state r(0) = u(0)+ εw(0) won’t be on the manifold at all. In this particular
example the correct sign is negative.
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Figure 5.55 Boundary conditions in the time integration continuation problem and manifold computation
problem.

Figure 5.56 Unstable manifold computed for an orbit in the H1 orbital family.

To illustrate the importance of the absolute value of PAR(4) in the election of ε1 the next example of
unstable manifold is that of the orbit with 18800 Km as the closest distance to the Moon (it is at the limit
of the change in stability). In this case PAR(4)≈ 2, so even by perturbing the state in the direction of the
unstable manifold the divergence will be slow. The problem of convergence commented before is now very
relevant, and because of that the chosen value of the perturbation is ε1 =−0.025, which in reality gives a
poor linear approximation of the manifold. Nevertheless, the result in figure (5.58) shows that even with a
relatively bad approximation of the manifold it is possible to compute it.

A final comment about the last step of the computation (continue the manifold from the first orbit) is that
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Figure 5.57 Initial orbit in the manifold of the 23600 Km H1 orbit.

Figure 5.58 Unstable manifold computed for a quasi-stable orbit in the H1 orbital family.

the direction of continuation, positive or negative DS, is irrelevant as long as the absolute value is small
enough to swept all of it.
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5.7.1 Manifolds as the way in and out of NRHO’s

Until now only the unstable manifolds had been shown as the structure that results from forward time
integration of the perturbed state in the direction of the eigenfunction corresponding to the unstable Floquet
multiplier (absolute value greater than one). This dynamical structure is relevant in the sense that can be used
as a cheap way out of the periodic orbit to the vicinity of planet Earth, because only a small ∆V is needed to
access it (we are using here the inherent properties of the periodic orbit as a tool for escaping). The exact
position in the x = 0 plane where the unstable manifold leads to depends on the point around the periodic
orbit that is used as entrance to the manifold, in figure (5.59) this relation is shown for the 23600 Km orbit.

Figure 5.59 Unstable manifold of the 23600 Km orbit, H1 family, with the relation between the entrance
point to the manifold and the destination in the x = 0 plane.

On the other hand, each unstable Floquet multiplier has its corresponding stable one, which is the inverse
of it. With the same code that has been shown to compute the unstable manifold, the stable manifold can
be calculated by introducing the value of the stable Floquet multiplier in the function of the first step as the
fourth input (see figure (5.51)). This will create the initial solution for the calculation of the eigenfunction,
but with the corresponding value of Floquet multiplier, resulting in the eigenfunction that approximates the
stable manifold. There is another change, very simple but with an important consequence to the nature of
the time integration step. If nothing else is changed, a forward time integration of the perturbed state in
the direction of the stable manifold will lead the particle to the periodic orbit again (as it is the nature of
that particular direction). The necessary change is then to set a negative value of DS, in order to perform
backwards time integration, and stop it in the needed moment just like before. The resulting trajectory has
the first point close to the periodic orbit, and the last point in the plane used as stopping condition, though this
last point is the one that occurs first in time. The result of this calculation, compared to that of the unstable
manifold, is in figure (5.60). As can be seen, the stable manifold is symmetric with respect to the unstable
one. This structure has the opposite utility, as a spacecraft placed at the initial point (in time) of the manifold
will ultimately arrive at the periodic orbit without use of any more propellant (aside from course corrections).
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Figure 5.60 Stable and unstable manifold of the 23600 Km orbit, H1 family.

Another relevant aspect is the time required to access the orbit using this method. In figure (5.61) we can
see the orbit that starts closer to the Earth from those in the stable manifold of figure (5.60), which is about
80000 Km from the surface. The dots are placed one day of travel apart from each other, meaning that 10
days pass before the spacecraft reaches the top of the orbit for the first time (this pass is still far from the orbit
itself), a rather slow method to reach the orbit. A possible shortcut for this will be shown later on, though it
is even worse for the orbits in the H2 family, as it is shown now.
The process used until now has also been applied to an orbit in the H2 family with the closest distance

to the Moon of about 20000 Km, which has PAR(4)≈ 10, positive and relatively big, just as before for the
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Figure 5.61 Orbit in the stable manifold of the 23600 Km orbit with the days represented as dots .

H1 family. The result is in figure (5.62), where it is obvious that now the dynamic of both the manifolds is
quite different from the previous cases. Now, the manifolds grow from behind the orbit (as seen from the
Earth) and turn around until they face the x = 0 plane very far from the Earth’s surface (the closest orbit ends
farthest than the Moon itself).

The next case is the first example of orbit with negative PAR(4), it is the 6000 Km orbit of the H2 family
(this is inside the NRHO family as defined before). The only difference is the sign of the Floquet multiplier,
but this has a noticeable effect on the shape of the manifold’s surface. The result for this orbit is in figure
(5.63), where it is evident that now the surface is twisted rather than orientable.

5.7.2 An alternative path to the NRHOs

The alternative is explained in [20], and it consists in finding the trajectory that starts at the parking orbit
around the Earth and ends in the insertion point in the stable manifold that ultimately leads to the periodic
orbit. In order to do that one possible method is to fix the insertion point in the manifold and search for the
impulse that, by backwards time integration, makes the trajectory start at the desired orbit (defined by its
altitude, but with the inclination free). In particular, this work establish the insertion point in close proximity
to the Moon so that the the spacecraft takes advantage of the gravity pull.



66 Chapter 5. AUTO-based numerical study of the CR3BP

Figure 5.62 Stable and unstable manifold of the 20000 Km orbit, H2 family.
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Figure 5.63 Manifolds in the 6000 Km orbit of the H2 family.





6 Conclusions and future work

The original goal of showing how AUTO works and applying it in the context of studying the periodic
motion in the CR3BP has been accomplished. The main important concepts about non-linear dynamics and
bifurcations have been presented. This has been complemented whit a brief overview of the way continuation
is numerically performed inside the AUTO environment for the problem types at hand, which has set the
groundwork for the next chapter, the guide on the AUTO usage for the context of this work. AUTO has then
been used as a tool for studying the Circular restricted three body problem. This way, it has been relatively
easy to study the periodic motions that emerge from the Lagrange points which has ultimately lead to the
study of the Halo orbits and its properties. Inside of this group of orbits the Near rectilinear halo orbits have
been studied for the already proposed DSG project in some of the relevant aspects of this mission (stability,
departure times, synodic resonances, eclipsing...). In relation to the last, the manifolds associated to these
orbits have been calculated using AUTO as well, with some commentaries about its potential for being the
dynamical structure used as access to the cycles.

The AUTO software has presented itself as an extremely powerful and versatile software that can perform
otherwise complex calculations in a very simple way from the user side, up to a point that the computation of
periodic orbits can be done with a couple of Python code lines once the problem has been set up properly.
This has allowed for a very complete study of the dynamical properties of the cycles that emanate from the
equilibria in the CR3BP, as well as a more in depth study of the Halo orbits that are suppose to be the future
place for the Deep Space Gateway, all of it with detailed descriptions in how the computations have been
performed. On the other hand, this study has the drawback of being a simplification of the real dynamical
environment that the DSG will face, which includes the next added difficulties: The motion of the Moon
around the Earth has different from zero, albeit small, eccentricity, which changes the problem type from
autonomous (easily studied with AUTO) to non-autonomous. Although it is technically possible to study
time dependent problems with AUTO it adds difficulty in the sense that it would be necessary to include an
extra equation for the time (now a state variable), and the study of periodic motion has to be explicitly set as
a BVP of the type IPS = 4. It could then be faced as a continuation problem with the orbit for e = 0 as initial
iteration. The second difficulty to be addressed is that of the other perturbations that are potentially critical in
long term orbits, such as the Sun’s or even Jupiter’s. This could be studied separately whit higher fidelity
models on the orbits that have already been computed to see the consequences of this simplification.

Aside from the study that has been conducted here it could be interesting to go deeper in the understanding
on how to access the NRHOs and specifically how to perform rendezvous with a spacecraft already in it.
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