
0

Aerospace Engineering and Fluid Mechanics Department
Superior Technique School of Engineering

University of Seville
Seville, 2018

Author: Antonio González Carvajal

Tutor: Miguel Pérez-Saborid Sánchez-Pastor

Numerical Resolution of Supersonic Flow
using the MacCormack Method

Senior Research Project
Degree in Aerospace Engineering

1

2

Resolución numérica de flujo supersónico
usando el método de MacCormack

Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos
Escuela Técnica Superior de Ingeniería

Universidad de Sevilla
Sevilla, 2018

Trabajo de Fin de Grado
Grado en Ingeniería Aeroespacial

Autor:

Antonio González Carvajal

Tutor:

Miguel Pérez-Saborid Sánchez-Pastor

Profesor Titular

3

4

 Trabajo de Fin de Grado: Numerical Resolution of Supersonic Flow using
the MacCormack’s Technique

Autor: Antonio González Carvajal

Tutor: Miguel Pérez-Saborid Sánchez-Pastor

El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los
siguientes miembros:

Presidente:

Vocales:

Secretario:

Acuerdan otorgarle la calificación de:

Sevilla, 2018

El Secretario del Tribunal

5

6

A mi familia,

a mis amigos

y especialmente a mis abuelas y a Lorena.

7

8

Agradecimientos

Han sido varios meses los que le he dedicado a este trabajo y tengo que decir que a pesar de
todo mi esfuerzo, no habría podido conseguirlo sin muchas personas. Porque a veces he
estado al borde de un ataque de nervios, al borde de desistir, tirar la toalla, no verme capaz, y
ellos me han sado fuerzas para seguir intentándolo. Este trabajo no habría sido terminado sin
su apoyo.

En primer lugar mi familia, que siempre ha estado ahí dándome ánimos no solo en el tiempo
que he estado trabajando en el proyecto, sino durante toda la carrera. Han sido mis padres los
que han conseguido calmarme cuando perdía los nervios, sentía que no avanzaba y casi quería
llorar. Ha sido mi hermana la que me distraía y me hacía reír aun cuando tenía miles de
preocupaciones en la cabeza. Y han sido mis abuelas las que siempre se preocupaban por mí y
me han dado tanto, desde conversaciones tranquilizadoras con la perspectiva de la edad hasta
platos de cuchareo para comer en familia.

No solo a ellos tengo que agradecerles por supuesto. Tampoco habría conseguido terminar si
no fuese por mis amigos. Mis amigos en Sevilla me recordaban en Julio que aún tenía tiempo y
que vería las cosas mejor después de una cerveza en la Alameda. Amigos en Chipiona que
consiguen hacer de los veranos una auténtica pasada. Gente tan maravillosa que a veces
sientes que no las mereces de lo bien que lo pasas con ellos.

A todos ellos, gracias. Os lo debo todo y más.

9

10

Index

1 INTRODUCTION ... 12

1.1 OBJECTIVES AND MOTIVATION OF THE PROJECT .. 12
1.2 SUPERSONIC FLOW, BOUNDARY LAYERS AND SHOCK WAVES ... 13
1.3 STRUCTURE OF THE PROJECT... 15

2 THEORETICAL BASIS ... 17

2.1 CDF EQUATIONS .. 17
2.2 MACCORMACK’S METHOD FOR UNIFORM GRIDS ... 21
2.3 MACCORMACK’S METHOD FOR NON-UNIFORM GRIDS ... 27

3 NUMERICAL RESOLUTION .. 35

3.1 THE PROGRAM FOR UNIFORM GRIDS ... 35
3.2 NON-UNIFORM GRID MODIFICATIONS... 47

4 APPLICATIONS ... 57

4.1 PROOF OF CONCEPT: THE FLAT PLATE .. 57
4.1.1 Constant Temperature Plate ... 57
4.1.2 Adiabatic Plate .. 67
4.1.3 Flat plate with compressed grid ... 70
4.1.4 Auxiliary functions for the flat plate ... 71

4.2 FORWARD STEP ... 73
4.2.1 Auxiliary functions for the forward step ... 77

4.3 REARWARD STEP ... 79
4.3.1 Auxiliary functions for the rearward step ... 82

4.4 REARWARD SLOPE AND THE PRANDTL-MEYER EXPANSION WAVES ... 84
4.4.1 Prandtl-Meyer expansion waves... 87
4.4.2 Auxiliary functions for the rearward slope ... 92

4.5 LEADING EDGE: STUDY OF SHOCK WAVE ANGLE .. 95
4.5.1 Auxiliary functions for the leading edge ... 101

5 CONCLUSIONS AND FURTHER DEVELOPMENTS ... 104

6 REFERENCES .. 106

APPENDIX 1: RESUMEN EN LENGUA ESPAÑOLA ………….………………………………………………………………….108

11

12

1 Introduction

1.1 Objectives and motivation of the project

In the aerospace degree a lot of focus is put into the fluid dynamics field, and extensive
knowledge about fluid behaviour is acquired during the years that the student spends at the
university. This knowledge is so huge that it is necessary a wide range of subjects to develop it.
However, the necessity of evaluating the students, combined with the desire of showcasing
the theoretical knowledge learned, turns into the development of analytical solutions that can
be solved in class and subsequently be asked in the exam. To achieve these solutions, a
number of simplifications must be made to make the equations manageable and usually the
geometry of the problems is limited in order to simplify the problem even further. This turns
the fluid dynamic subjects into a complex exercise of manipulating equations, apply
simplifications and try to reach the analytical solution, losing in the process the relation to the
physics of the problem. Several times the ability to solve the chosen problem does not
increase the comprehension of the key concepts and does not develop an insight of the
physical behaviours that occur in the fluid.

With the fast development of computers this issue can be somewhat mitigated. Nowadays,
there are several programs that allow for an easy implementation of the equations that model
the behaviour of the fluid and the numerical simulation of the flow, that then can show the
solutions to the students. These programs increase the connection of the students to the
fundamental concepts of fluid dynamics due to the great power that visualising the results has
and makes them more involved as they are the ones that create the programs. Needless to say
that also the use of computational fluid dynamics extends greatly the problems that can be
solved, most of which do not count with an analytical solution. Following the stated by Pablo
José Ruiz Contreras in the introduction of “El Método de Colocación para el problema de
convección de Rayleigh-Bénard” [Ref 4], the fact that the program is created by the student
avoids the “black-box” interaction with commercial fluid dynamic programs, whose use would
not add nearly as much of learning value because the student is disconnected from the
physical equations of the flow.

With all that said, the main motivation of this project is that in all the problems solved in all
the subjects along the aerospace degree, always simplifications have been used, even when
using the computer to solve the program. Thus, since the complete Navier-Stokes equations
where presented to us, they have not been used fully in the resolution of a problem, there has
always been some modifications to make them more manageable. This has created in me a
desire of at least seen them once implemented completely and to really see, as much as
possible, that the fluids really behave corresponding to them. It is like if I needed to see a
simulated flow govern by those equations to really believe that they describe the behaviour of
a fluid.

This is how it was suggested by my tutor that the project could be dedicated to the resolution
of supersonic flows using computational fluid dynamics. The resolution of subsonic flows using
the complete equations had already been done by Manuel Carreño in [Ref 2], and it was

13

decided that this project could expand in that direction using the MacCormack’s method to
solve supersonic flows and more importantly, to apply them to non-uniform grids, which has
been by far the most difficult thing.

1.2 Supersonic Flow, Boundary Layers
and Shock Waves

Inside any physical medium there is a maximum velocity at which the perturbation of any
property at one point of the medium can be transmitted to the rest of it. It is the speed of the
sound, depends on the internal properties of the medium, and marks the limit at which the
information can travel through it. For instance, the speed of sound inside a fluid is:

𝑎 = 𝛾
𝑝

𝜌

Equation 1.1. Speed of sound in a fluid.

When a solid object travels faster through a fluid than the speed of sound, the fluid that is
ahead of it cannot receive the information that the object exists in time, and thus cannot
gradually adapt itself to the geometry of the incoming object. The result is that it has to make
the adaptation instantly, suddenly increasing its pressure in a physical mechanism called
“Shock Wave”.

Figure 1.1. Visible shock waves in a supersonic plane.

14

The angle of the shock wave depends on the Mach number, which is the velocity of the object
with respect to the speed of the sound.

𝑀 =
𝑉

𝑎

Equation 1.2. Mach number definition.

In real life, where the flow is in a three-
dimensional space, the shock wave creates a
cone known as the Mach cone, and it usually
creates condensation phenomena that allow
its visualization.

The way a shock wave affects the properties of
the flow depends greatly on the geometry of
the object, Mach number, the internal
properties of the unaltered flow, etc. and it is
the objective of this project to analyse these
dependencies.

It could also happen that the shock wave
somehow interacted with the boundary layer
created by the object.

The boundary layer is a region of space in which the velocity of the flow transitions between
zero, due to the no-slip condition that happens at the surface of the object, and the velocity of
the exterior flow.

The Fluid Mechanics professor Ludwig Prandtl
presented the concept in 1904 and proved that the
viscosity effects where confined to this small region
very close to the surface of the object. In the rest of
the flow field the viscosity effects can be considered
negligible.

It would also be interesting to investigate if the
supersonic flow can also suffer the phenomenon of
turbulence and boundary layer detachment.

The turbulence is a well-studied behaviour in which the viscosity is no longer able to mitigate
the small perturbations that affect the physical flow and the flow transitions from a laminar
state, where the flow is orderly divided in layers, to a turbulent state where there are
important fluctuations in the magnitudes and the layers merge.

Figure 1.2. Visualized Mach cone due to condensation.

Figure 1.3. Boundary layer in a flat plate.

15

On the other hand, the detachment of the boundary layer happens when the pressure
gradient in the boundary layer is against the direction of the flow, and is big enough to be
stronger than the momentum transmitted to the inner layers from the outer flow by viscosity
effects. When that happens, the inner layers stop moving and a recirculating area is created
around which the rest of the flow slips.

1.3 Structure of the project

This project will apply the numerical technique developed by McCormack into a program to
solve supersonic problems with different geometries and conditions. It will begin after this
introduction by explaining in the second chapter the theoretical knowledge that is needed to
understand the project. First, the equations of the flow that have been implemented, followed
by an explanation of the method used for uniform grids. After that, it will be explained the
changes in the method necessary to develop the program for non-uniform grids.

The third chapter will be focused on explaining the program that has been written section by
section, first for the uniform grids, and after that for the non-uniform grids. At the end of the
explanation of each section the program used in each case will be explicitly showed.

Figure 1.4. In the smoke of a candle it can be appreciated the jump from laminar to turbulent behaviour

Figure 1.5. Boundary layer detachment around a wing profile.

16

In the fourth chapter, the results of the different applications will be showed, beginning with
the flat plate. After the plate, the forward and rearward steps will be explained, followed by
the rearward slope, where it will be analysed the Prandtl-Meyer Expansion Waves. The last
application will be the study of a leading edge and the shock wave created around it.

Finally, the project will end with a brief discussion about conclusions and further
developments in the fifth chapter, the references in the chapter six, and the summary in
spanish language demanded by the University of Seville normative in Appendix 1.

17

2 Theoretical basis

From the multiple methods proposed by CFD, in this project it has been chosen a time
marching calculation using the MacCormack’s technique, for several reasons.

It was first introduced by Stanford University professor Robert W. MacCormack in 1969.
Among its advantages there is that it is one of the easiest and more understandable methods
that allows the solving of the complete Navier-Stokes equations, which is the goal of this
project, even though it is still as complex as expected for a full-on implementation of this
equations.

The current chapter is going to explain the method step by step as it has been used in this
project, and after that, the following chapter will explain the coding implementation by going
through the program used to obtain the results.

2.1 CDF equations

If the resolution of the complete Navier-Stokes equations by numeric means is required, first
an adaptation is recommended to make the equations more manageable. To begin with, the
equations for a bidimensional flow are remembered here.

 Conservation of mass:

𝜕𝜌

𝜕𝑡
+ 𝜌𝛻 ⋅ 𝑉ሬ⃗ = 0

Equation 2.1

 Conservation of momentum in the x and y directions:

𝜕(𝜌𝑢)

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝑢 ⋅ 𝑉ሬ⃗) = −

𝜕𝑝

𝜕𝑥
+

𝜕𝜏௫௫

𝜕𝑥
+

𝜕𝜏௬௫

𝜕𝑦
+ 𝜌𝑓௫

Equation 2.2

𝜕(𝜌𝑣)

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝑣 ⋅ 𝑉ሬ⃗) = −

𝜕𝑝

𝜕𝑦
+

𝜕𝜏௫௬

𝜕𝑥
+

𝜕𝜏௬௬

𝜕𝑦
+ 𝜌𝑓௬

Equation 2.3

 Conservation of energy:

𝜕

𝜕𝑡
ቈ𝜌 ቆ𝑒 +

𝑉ଶ

2
ቇ቉ + 𝛻 ⋅ ቈ𝜌 ቆ𝑒 +

𝑉ଶ

2
ቇ ⋅ 𝑉ሬ⃗ ቉

= 𝜌𝑞̇⃗ +
𝜕

𝜕𝑥
൬𝑘

𝜕𝑇

𝜕𝑥
൰ +

𝜕

𝜕𝑦
൬𝑘

𝜕𝑇

𝜕𝑦
൰ −

𝜕(𝑢𝑝)

𝜕𝑥
−

𝜕(𝑣𝑝)

𝜕𝑦
+

𝜕(𝑢𝜏௫௫)

𝜕𝑥
+

𝜕(𝑢𝜏௬௫)

𝜕𝑦

+
𝜕(𝑣𝜏௫௬)

𝜕𝑥
+

𝜕(𝑣𝜏௬௬)

𝜕𝑦
+ 𝜌𝑓 ⋅ 𝑉ሬ⃗

Equation 2.4

18

Just with a first glance of the equations, it can be recognised a simpler, more compacted way
of expressing them by grouping together the derivative terms with respect to the same
variable. The result would be an expression with the following form:

𝜕𝑈

𝜕𝑡
+

𝜕𝐹

𝜕𝑥
+

𝜕𝐺

𝜕𝑦
= 𝑆

Equation 2.5

Where U, F, G and S are vectors with one component for each of the equations that govern the
behaviour of the flow. For the bidimensional flow that is being discussed, their expressions are
shown here:

𝑈 =

⎩
⎪
⎨

⎪
⎧

𝜌
𝜌𝑢
𝜌𝑣

𝜌 ቆ𝑒 +
𝑉ଶ

2
ቇ

⎭
⎪
⎬

⎪
⎫

Equation 2.6

𝐹 =

⎩
⎪
⎨

⎪
⎧

𝜌𝑢

𝜌𝑢ଶ + 𝑝 − 𝜏௫௫
𝜌𝑣𝑢 − 𝜏௫௬

𝜌 ቆ𝑒 +
𝑉ଶ

2
ቇ 𝑢 + 𝑝𝑢 − 𝑘

𝜕𝑇

𝜕𝑥
− 𝑢𝜏௫௫ − 𝑣𝜏௫௬

⎭
⎪
⎬

⎪
⎫

Equation 2.7

𝐺 =

⎩
⎪
⎨

⎪
⎧

𝜌𝑣
𝜌𝑢𝑣 − 𝜏௬௫

𝜌𝑣ଶ + 𝑝 − 𝜏௬௬

𝜌 ቆ𝑒 +
𝑉ଶ

2
ቇ 𝑣 + 𝑝𝑣 − 𝑘

𝜕𝑇

𝜕𝑦
− 𝑢𝜏௬௫ − 𝑣𝜏௬௬

⎭
⎪
⎬

⎪
⎫

Equation 2.8

𝑆 =

⎩
⎪
⎨

⎪
⎧ 0

𝜌𝑓௫

𝜌𝑓௬

𝜌൫𝑢𝑓௫ + 𝑣𝑓௬൯ + 𝜌𝑞̇⃗⎭
⎪
⎬

⎪
⎫

Equation 2.9

This way it can be obtained a particularly suitable expression to manage with CFD methods.
This expression is often called the “Conservation Form”, and is extensively used throughout
several CFD methods, not only in the case of the MacCormack’s technique.

In the equations Equation 2.7 and Equation 2.8, an expression for 𝜏௫௫ , 𝜏௬௫ and 𝜏௬௬ is needed
to successfully evaluate the variable vectors F and G. Assuming a newtonian fluid, these are
given by the expressions obtained by Stokes for this kind of fluids:

19

𝜏௫௫ = 𝜆൫∇ ⋅ 𝑉ሬ⃗ ൯ + 2𝜇
𝜕𝑢

𝜕𝑥

Equation 2.10

𝜏௬௬ = 𝜆൫∇ ⋅ 𝑉ሬ⃗ ൯ + 2𝜇
𝜕𝑣

𝜕𝑦

Equation 2.11

𝜏௫௬ = 𝜏௬௫ = 𝜇 ൬
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
൰

Equation 2.12

In addition, it is going to be used the hypothesis made also by Stokes about the value of the

volumetric viscosity coefficient, 𝜆 = −
ଶ

ଷ
𝜇. So, the expressions Equation 2.10 and Equation

2.11 change into:

𝜏௫௫ =
2

3
𝜇 ൬2

𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
൰

Equation 2.13

𝜏௬௬ =
2

3
𝜇 ൬2

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑥
൰

Equation 2.14

With these expressions, the system consists of eight variables: 𝜌, 𝑢, 𝑣, 𝑝, 𝑇, 𝑒, 𝜇 and 𝑘; but
only has four equations. Thus, we must provide four more equations to be able to solve the
system, counting on the fact that we consider 𝑉 not an independent variable, as it can be
easily obtained from the velocity components 𝑢 and 𝑣. The first of them is the assumption of a
perfect gas, from which the perfect gas equation is derived:

𝑝 = 𝜌𝑅𝑇

Equation 2.15

Where R is the perfect gas constant of value 287 J/ (kg K). The second is an assumption built on
top of the previous one, the calorically perfect gas. The relation that describes this assumption
is the following:

𝑒 = 𝑐௩𝑇

Equation 2.16

Where 𝑐௩ is the specific heat at constant volume and is, by the calorically perfect definition,
considered constant. Given the value of the ratio of specific heats, 𝛾, equal to 1.4, it is
obtained with the following relation:

𝑐௩ =
𝑅

𝛾 − 1

20

 The next one is a model for the viscosity provided by the Sutherland’s law:

𝜇 = 𝜇଴ ൬
𝑇

𝑇଴
൰

ଷ/ଶ 𝑇଴ + 110

𝑇 + 110

Equation 2.17

In which 𝜇଴ and 𝑇଴ are reference values taken at standard sea level. The last equation is given
by assuming the Prandtl number constant and approximately equal to 0.71 in the case of air.
From the Prandtl number definition it is obtained:

𝑃𝑟 =
𝜇𝑐௣

𝑘
= 0.71

Equation 2.18

Where 𝑐௣ is the specific heat at constant pressure and is easily obtained as:

𝑐௣ = 𝛾𝑐௩

21

2.2 MacCormack’s Method for Uniform Grids

The MacCormack’s technique relies on transforming the governing equations into the
conservative form and then performs a two-phase discretization and combines them to assure
second order accuracy, as it is going to be demonstrated in this subchapter. From Equation 2.5,
by isolating the time derivative in one side, it is obtained:

𝜕𝑈

𝜕𝑡
= 𝑆 −

𝜕𝐹

𝜕𝑥
−

𝜕𝐺

𝜕𝑦

Equation 2.19

Now, the flow domain is discretised into points following an equispaced rectangular grid, with
each point being designated by its coordinates i and j. The number of points in the X and Y axis
are Nx and Ny respectively, as shown in Figure 2.1.

For each time step, the properties of the flow are calculated by finite difference approximation
only for the inner points of the grid. The properties of the flow in the boundary must be
treated differently and obtained by other means. That is, given by the boundary conditions or
extrapolated from the flow properties inside the domain.

The boundary conditions that have previously been mentioned have to be explicitly enforced
in the method. However, the Forward-Rearward steps that are going to be explained later
offer as their result the vector U. Moreover, the physical variables, that are going to be
referred as “primitive” from this point on, also have to be obtained to assess the final results.

The boundary conditions could be enforced by combining the enforced primitive variables and
by combining U values when an extrapolation is needed. Despite that, in this project it has

Figure 2.1. Computational domain and Uniform Grid

22

been chosen the more straightforward and comprehensible approach of decoding the
primitive variables in each step, then enforcing the boundary conditions on them, and after
that, recalculating the vectors U, F, G and S.

So, after each step, the primitive variables are decoded from U as follows:

𝜌 = 𝑈ଵ

Equation 2.20

𝑢 =
𝜌𝑢

𝜌
=

𝑈ଶ

𝑈ଵ

Equation 2.21

𝑣 =
𝜌𝑣

𝜌
=

𝑈ଷ

𝑈ଵ

Equation 2.22

𝑒 =
𝑈ସ

𝑈ଵ
−

𝑢ଶ + 𝑣ଶ

2

Equation 2.23

Using the Equation 2.15 the pressure is obtained, and from the Equation 2.16:

𝑇 =
𝑒

𝑐௩

Equation 2.24

After that, the viscosity is calculated from Sutherland’s law, Equation 2.17, and using Equation
2.18:

𝑘 =
𝜇𝑐௣

𝑃𝑟

Equation 2.25

For the first step, starting with Equation 2.19, the derivatives are approximated using finite
differences, with the values Δx, Δy and Δt substituting 𝜕𝑥, 𝜕𝑦 and 𝜕𝑡 respectively. Their
appropriate values are going to be discussed in the next chapter. The magnitudes are
projected in the forward direction for both space directions, and the result is the predicted
value of the vector U at the time 𝑡 + 𝛥𝑡, which is denoted by 𝑈ഥ௧ା௱௧. The result expression,
already solved for 𝑈ഥ௧ା௱௧, is:

𝑈ഥ௜,௝
௧ା௱௧ = 𝑈௜,௝

௧ −
∆𝑡

∆𝑥
൫𝐹௜ାଵ,௝

௧ − 𝐹௜,௝
௧ ൯ −

∆𝑡

∆𝑦
൫𝐺௜,௝ାଵ

௧ − 𝐺௜,௝
௧ ൯ + ∆𝑡 ⋅ 𝑆

Equation 2.26

Now, there is an important remark that has to be made. The vectors F and G are here finitely
differenced, but they are themselves formed by derivative terms. These terms also have to be
calculated using a finite difference approximation, but, to ensure the second order accuracy of

23

the method, these finite differences must be in the opposite direction that of the vector they
form part of. If the differentiation is not in the same direction, then central difference is used.

For example, in the forward step, the viscosity 𝜏௫௫, that forms part of the vector F, must be
calculated using rearward difference in the X direction, and using central difference in the Y
direction. Thus, the final expression for 𝜏௫௫ is the following:

𝜏௫௫
௧

௜,௝
=

2

3
𝜇௜,௝

௧ ቆ2
𝑢௜,௝

௧ − 𝑢௜ିଵ,௝
௧

𝛥𝑥
−

𝑣௜,௝ାଵ
௧ − 𝑣௜,௝ିଵ

௧

2 𝛥𝑦
ቇ

Equation 2.27

The same reasoning with 𝜏௬௬ conducts to:

𝜏௬௬
௧

௜,௝
=

2

3
𝜇௜,௝

௧ ቆ2
𝑣௜,௝

௧ − 𝑣௜,௝ିଵ
௧

𝛥𝑦
−

𝑢௜ାଵ,௝
௧ − 𝑢௜ିଵ,௝

௧

2 𝛥𝑥
ቇ

Equation 2.28

The case of 𝜏௫௬ is different. As it takes part in both F and G calculations, two different
calculations of 𝜏௫௬ have to be made, one for each vector, with distinct differentiation in each
case. Thus, the expressions reached for 𝜏௫௬ used in F and G are:

𝜏௫௬
௧

௜,௝
ቚ

ி
= 𝜇௜,௝

௧ ቆ
𝑣௜,௝

௧ − 𝑣௜ିଵ,௝
௧

𝛥𝑥
+

𝑢௜,௝ାଵ
௧ − 𝑢௜,௝ିଵ

௧

2 𝛥𝑦
ቇ

Equation 2.29

𝜏௫௬
௧

௜,௝
ቚ

ீ
= 𝜇௜,௝

௧ ቆ
𝑣௜ାଵ,௝

௧ − 𝑣௜ିଵ,௝
௧

2 𝛥𝑥
+

𝑢௜,௝
௧ − 𝑢௜,௝ିଵ

௧

𝛥𝑦
ቇ

Equation 2.30

Also, the terms referring heat conduction with the Fourier’s law are approximated with finite
differences:

𝜕𝑇

𝜕𝑥

௧

௜,௝
≈

𝑇௧
௜,௝ − 𝑇௧

௜ିଵ,௝

𝛥𝑥

Equation 2.31

𝜕𝑇

𝜕𝑦

௧

௜,௝

≈
𝑇௧

௜,௝ − 𝑇௧
௜,௝ିଵ

𝛥𝑦

Equation 2.32

It must be taken into account that these expressions cannot be used in the limits of the
computational domain, as some of them would require points that are outside of the
boundaries. So, for example, in the lower boundary the central and rearward differences done
in the Y direction are substituted by forward differentiation. In the upper border, the forward
and central are substituted with rearward ones, and the same logic applies to the left and the
right boundaries for the X direction, respectively. As stated by John D. Anderson in his book

24

“Computational Fluid Dynamics” [Ref 1], doing this only compromises slightly the second order
accuracy of the method.

After calculating the vectors F and G, the Equation 2.26 is applied, the primitive variables are
extracted as shown in equations Equation 2.20 to Equation 2.25 and the boundary conditions
are enforced onto these variables.

The second step proceeds in a similar manner. However, there is a clear difference. Now the
vectors F and G used are calculated using the predicted values of the variables. The equivalent
to Equation 2.26 now is the following expression:

𝑈ന௜,௝
௧ା௱௧ = 𝑈௜,௝

௧ −
∆𝑡

∆𝑥
൫𝐹ത௜,௝

௧ା௱௧ − 𝐹ത௜,௝ିଵ
௧ା௱௧൯ −

∆𝑡

∆𝑦
൫𝐺̅௜,௝

௧ା௱௧ − 𝐺̅௜,௝ିଵ
௧ା௱௧൯ + ∆𝑡 ⋅ 𝑆

Equation 2.33

Where 𝑈ന௧ା௱௧ is called the corrected value of U. As it can be seen in the Equation 2.33, the
vectors 𝐹ത௧ା௱௧ and 𝐺̅௧ା௱ are obtained using the predicted values calculated from the previous
step. Also, the finite differences are now projected rearward.

Similarly to what happened in the forward step, the derivative terms that form part of 𝐹ത and 𝐺̅
must be approximated using the opposite direction in their finite differences. So, the

expressions for 𝜏௫௫ , 𝜏௫௬ , 𝜏௬௬ , డ்

డ௫
 and డ்

డ௬
 used in the corrector step are similar to the

expressions Equation 2.27 to Equation 2.32, but with different differentiation. To avoid
excessive repetition in this theoretical chapter, these expressions are not explicitly stated.
However, if the reader so chooses, their implementation can be found in the section “Encode
variables for corrector step” of the script that appears at the end of subchapter 3.1.

Exactly as it happened in the predictor step, two calculations of 𝜏̅௫௬
௧ା௱௧ must be made, one for

the vector 𝐹ത and other for 𝐺̅. Also, the same considerations regarding the substitution of some
types of differences with others in the boundaries of the computational domain apply.

Once the value of 𝑈ന௧ା௱௧ is calculated, the primitive variables are decoded to apply the
boundary conditions on them, and then the vector 𝑈ന௧ା௱௧ is recalculated with the boundary
conditions already applied.

Having the values of 𝑈ഥ௧ା௱௧ and 𝑈ന௧ା௱௧ from the predictor and corrector steps respectively, the
value of 𝑈௧ା௱௧ is obtained as their arithmetic mean.

𝑈௜,௝
௧ା௱௧ =

1

2
൫𝑈ഥ௜,௝

௧ା௱௧ + 𝑈ന௜,௝
௧ା௱௧൯

Equation 2.34

Finally, the physical variables are obtained as the final result of the method at time 𝑡 + 𝛥𝑡. The
cycle is then restarted, advancing in time and capturing the behaviour of the flow.

25

To demonstrate the second order accuracy of the method, first it is going to be introduced the
Taylor expansion series for a generic function 𝜑(𝑥) around the point 𝑥଴ for both a positive and
a negative increase in x value.

𝜑(𝑥଴ + ∆𝑥) = 𝜑(𝑥଴) + ∆𝑥
𝑑𝜑

𝑑𝑥
(𝑥଴) +

∆𝑥ଶ

2

𝑑ଶ𝜑

𝑑ଶ𝑥
(𝑥଴) +

∆𝑥ଷ

6

𝑑ଷ𝜑

𝑑ଷ𝑥
(𝑥଴) + ⋯

Equation 2.35

𝜑(𝑥଴ − ∆𝑥) = 𝜑(𝑥଴) − ∆𝑥
𝑑𝜑

𝑑𝑥
(𝑥଴) +

∆𝑥ଶ

2

𝑑ଶ𝜑

𝑑ଶ𝑥
(𝑥଴) −

∆𝑥ଷ

6

𝑑ଷ𝜑

𝑑ଷ𝑥
(𝑥଴) + ⋯

Equation 2.36

The central finite difference is going to be treated first. Subtracting Equation 2.36 from

Equation 2.35 and solving for
ௗఝ

ௗ௫
(𝑥଴):

𝑑𝜑

𝑑𝑥
(𝑥଴) =

𝜑(𝑥଴ + ∆𝑥) − 𝜑(𝑥଴ − ∆𝑥)

2 ∆𝑥
−

∆𝑥ଶ

6

𝑑ଷ𝜑

𝑑ଷ𝑥
(𝑥଴) − ⋯

Equation 2.37

𝑑𝜑

𝑑𝑥
(𝑥଴) ≈

𝜑(𝑥଴ + ∆𝑥) − 𝜑(𝑥଴ − ∆𝑥)

2 ∆𝑥

Equation 2.38

Using the approximation given by Equation 2.38 the neglected terms are two derivative orders
inferior to the estimated value. That means that the central difference is by itself of second
order accuracy.

Continuing the analysis of the finite differences used, from the Equation 2.35 it can be
obtained:

𝑑𝜑

𝑑𝑥
(𝑥଴) =

𝜑(𝑥଴ + ∆𝑥) − 𝜑(𝑥଴)

∆𝑥
−

∆𝑥

2

𝑑ଶ𝜑

𝑑ଶ𝑥
(𝑥଴) −

∆𝑥ଶ

6

𝑑ଷ𝜑

𝑑ଷ𝑥
(𝑥଴) − ⋯

Equation 2.39

𝑑𝜑

𝑑𝑥
(𝑥଴) ≈

𝜑(𝑥଴ + ∆𝑥) − 𝜑(𝑥଴)

∆𝑥

Equation 2.40

So, when using the approximation given by Equation 2.40, the neglected terms are now one
derivative order inferior to the estimated value, thus proving the forward finite difference is of
first order accuracy.

From Equation 2.36:

𝑑𝜑

𝑑𝑥
(𝑥଴) =

𝜑(𝑥଴) − 𝜑(𝑥଴ − ∆𝑥)

∆𝑥
+

∆𝑥

2

𝑑ଶ𝜑

𝑑ଶ𝑥
(𝑥଴) −

∆𝑥ଶ

6

𝑑ଷ𝜑

𝑑ଷ𝑥
(𝑥଴) + ⋯

Equation 2.41

26

𝑑𝜑

𝑑𝑥
(𝑥଴) ≈

𝜑(𝑥଴) − 𝜑(𝑥଴ − ∆𝑥)

∆𝑥

Equation 2.42

So, as expected, the rearward finite difference is also of first order accuracy. Despite that,
MacCormack’s technique combines the forward and rearward differences into one single
approximation for the calculation of the variables at the next moment in time. Taking Equation
2.39 and adding Equation 2.41, the second order derivatives cancel each other.

𝑑𝜑

𝑑𝑥
(𝑥଴) =

𝜑(𝑥଴ + ∆𝑥) − 𝜑(𝑥଴ − ∆𝑥)

2 ∆𝑥
−

∆𝑥ଶ

6

𝑑ଷ𝜑

𝑑ଷ𝑥
(𝑥଴) − ⋯

Equation 2.43

The Equation 2.43 is identical to Equation 2.37, which means that the arithmetic mean of
forward and rearward differences is equivalent to a central difference, and so the method has
a second order accuracy, what this subchapter was trying to demonstrate.

As a final remark before assessing the non-uniform grids, it is worth mentioning that Manuel
Carreño, in his publication “Aplicaciones del método de MacCormack a diversos problemas
fluidomecánicos” [Ref 2] recommends the usage of interchangeable steps in each iteration of
the method, as well as does John D. Anderson [Ref 1]. They state that the alternate use of the
forward and rearward step can improve the performance of the method and prevent the
formation of preferred directions for the simulated flow.

That means that for some iterations the normal forward-rearward differences in the steps
would be used, and for others the order would be reversed to a rearward-forward sequence,
effectively changing the scheme to a corrector followed by a predictor. Mr. Carreño even
suggest sometimes using two predictor or two corrector steps.

These options were interesting for the supposed improvement in the behaviour of the flow
and they were tried to be implemented. However, despite all the effort put into them, no valid
program was achieved, and all attempts presented an unstable and divergent behaviour
wherever that magnitude gradients were just a little bit high.

27

2.3 MacCormack’s Method for Non-Uniform Grids

A rectangular uniform grid is rarely appropriate for the problems that CFD faces. In fact,
limiting this project only to them would have set important constrains in the variety of
problems and specially geometries that could have been analysed. For example, the
geometries inside the flow would have been limited to horizontal and vertical walls.

To overcome these limitations, the implementation of non-uniform grids must be set. The
strategy chosen has been to transition from the non-rectangular, non-uniform physical domain
to a rectangular and uniform computational domain using a transformation, make the
calculations in the computational domain, and then go back to the physical domain when it is
needed. For instance, to enforce boundary conditions, which are only known in the physical
world.

To discuss the way the equations have to be adapted it is going to be assumed that the
transformation is given by a mathematical relation that transforms the variables of direction
and space (x, y, t) from the physical space to an alternative set of variables that define the
transformed space (𝜉, 𝜂, 𝜏). This mathematical relation can be given two ways:

 Direct transformation: gives the transformed variables as functions of the physical
ones.

𝜉 = 𝜉(𝑥, 𝑦, 𝑡)

Equation 2.44

𝜂 = 𝜂(𝑥, 𝑦, 𝑡)

Equation 2.45

Figure 2.2. Example of non-uniform grid used. The points represent the physical equivalents of
the computational uniform grid points.

28

𝜏 = 𝜏(𝑡)

Equation 2.46

 Inverse transformation: gives the physical variables as functions of the transformed

ones.
𝑥 = 𝑥(𝜉, 𝜂, 𝜏)

Equation 2.47

𝑦 = 𝑦(𝜉, 𝜂, 𝜏)

Equation 2.48

𝑡 = 𝑡(𝜏)

Equation 2.49

Usually in these relations the time transformation is not really used, and so Equation 2.46 and
Equation 2.49 turn into 𝑡 = 𝜏. As this has been the case for this project and no time
transformation has been needed, in the following chapters the identity between t and 𝜏 is
going to be assumed and only the letter t will be used to denote time.

To properly use the transformations stated above, the derivatives with respect to x and y that
appear in the original equations (review subchapter 2.1) must be replaced with derivatives
with respect to 𝜉 and 𝜂. When the relation is given by the direct transformation, the
expressions are straightforward. Utilizing the chain rule of differential calculus:

𝜕

𝜕𝑥
= ൬

𝜕

𝜕𝜉
൰ ൬

𝜕𝜉

𝜕𝑥
൰ + ൬

𝜕

𝜕𝜂
൰ ൬

𝜕𝜂

𝜕𝑥
൰

Equation 2.50

𝜕

𝜕𝑦
= ൬

𝜕

𝜕𝜉
൰ ൬

𝜕𝜉

𝜕𝑦
൰ + ൬

𝜕

𝜕𝜂
൰ ൬

𝜕𝜂

𝜕𝑦
൰

Equation 2.51

𝜕

𝜕𝑡
= ൬

𝜕

𝜕𝜉
൰ ൬

𝜕𝜉

𝜕𝑡
൰ + ൬

𝜕

𝜕𝜂
൰ ൬

𝜕𝜂

𝜕𝑡
൰

Equation 2.52

Also, expressions for the second order derivatives exist, but as they have not been necessary
for the implementation of the program, they are not going to be developed. In Equation 2.50,
Equation 2.51 and Equation 2.52 the derivatives of the transformed variables with respect to
the physical variables are numbers, which depend on the point they are evaluated at, and are
called direct metrics. They can be easily calculated from the direct transformation.

𝐷𝑖𝑟𝑒𝑐𝑡 𝑚𝑒𝑡𝑟𝑖𝑐𝑠: ൬
𝜕𝜉

𝜕𝑥
൰ , ൬

𝜕𝜂

𝜕𝑥
൰ , ൬

𝜕𝜉

𝜕𝑦
൰ , ൬

𝜕𝜂

𝜕𝑦
൰ , ൬

𝜕𝜉

𝜕𝑡
൰ , ൬

𝜕𝜂

𝜕𝑡
൰.

29

The same expressions are not nearly as easily obtained when the transformation is given in the
inverse form. Now the direct metrics cannot be calculated directly. Instead, the derivatives
easily accessible are those of the physical variables with respect to the transformed ones. They
are called inverse metrics.

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠: ൬
𝜕𝑥

𝜕𝜉
൰ , ൬

𝜕𝑥

𝜕𝜂
൰ , ൬

𝜕𝑦

𝜕𝜉
൰ , ൬

𝜕𝑦

𝜕𝜂
൰ , ൬

𝜕𝑥

𝜕𝜏
൰ , ൬

𝜕𝑥

𝜕𝜏
൰.

Here, another simplification of the transformation will be made. The spatial variables are not
going to be dependent on time. This possible dependency has not been used in this project
anyway, and allows to significantly simplify the explanation. Starting from the exact differential
expressions:

𝑑𝜉 =
𝜕𝜉

𝜕𝑥
𝑑𝑥 +

𝜕𝜉

𝜕𝑦
𝑑𝑦

Equation 2.53

𝑑𝜂 =
𝜕𝜂

𝜕𝑥
𝑑𝑥 +

𝜕𝜂

𝜕𝑦
𝑑𝑦

Equation 2.54

𝑑𝑥 =
𝜕𝑥

𝜕𝜉
𝑑𝜉 +

𝜕𝑥

𝜕𝜂
𝑑𝜂

Equation 2.55

𝑑𝑦 =
𝜕𝑦

𝜕𝜉
𝑑𝜉 +

𝜕𝑦

𝜕𝜂
𝑑𝜂

Equation 2.56

Grouping the first two equations and the second two, using the matrix notation and solving for
the physical differentials in the second group, the relation obtained is:

⎣
⎢
⎢
⎢
⎡
𝜕𝜉

𝜕𝑥

𝜕𝜉

𝜕𝑦
𝜕𝜂

𝜕𝑥

𝜕𝜂

𝜕𝑦⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝜕𝑥

𝜕𝜉

𝜕𝑥

𝜕𝜂
𝜕𝑦

𝜕𝜉

𝜕𝑦

𝜕𝜂⎦
⎥
⎥
⎥
⎤

ିଵ

And using the determinant method to create the inverse of the matrix in the right side:

⎣
⎢
⎢
⎢
⎡
𝜕𝜉

𝜕𝑥

𝜕𝜉

𝜕𝑦
𝜕𝜂

𝜕𝑥

𝜕𝜂

𝜕𝑦⎦
⎥
⎥
⎥
⎤

=

൦

𝜕𝑦
𝜕𝜂

−
𝜕𝑥
𝜕𝜂

−
𝜕𝑦
𝜕𝜉

𝜕𝑥
𝜕𝜉

൪

ተ

𝜕𝑥
𝜕𝜉

𝜕𝑥
𝜕𝜂

𝜕𝑦
𝜕𝜉

𝜕𝑦
𝜕𝜂

ተ

=

൦

𝜕𝑦
𝜕𝜂

−
𝜕𝑥
𝜕𝜂

−
𝜕𝑦
𝜕𝜉

𝜕𝑥
𝜕𝜉

൪

𝐽

Equation 2.57

30

The determinant in the denominator, with the terms in the down-up diagonal transported, is
denominated as the Jacobian of the transformation. The relations of the direct metrics and the
inverse metrics, using the Jacobian, are therefore now known.

If these expressions are used to change Equation 2.50 and Equation 2.51, the results are the
expressions that allow replacing the derivatives with respect to the physical variables but this
time utilizing the inverse metrics, that are much more easily obtained from the inverse
transformation expressions.

𝜕

𝜕𝑥
=

1

𝐽
൤൬

𝜕

𝜕𝜉
൰ ൬

𝜕𝑦

𝜕𝜂
൰ − ൬

𝜕

𝜕𝜂
൰ ൬

𝜕𝑦

𝜕𝜉
൰൨

Equation 2.58

𝜕

𝜕𝑦
=

1

𝐽
൤൬

𝜕

𝜕𝜂
൰ ൬

𝜕𝑥

𝜕𝜉
൰ − ൬

𝜕

𝜕𝜉
൰ ൬

𝜕𝑥

𝜕𝜂
൰൨

Equation 2.59

It will not always be the case that the relation between the two set of variables is given by a
mathematical function. Actually, most of the applications in this project do not follow this rule.
Instead the grid is numerically generated, and as a result, the metrics do not have a
mathematical expression. When that happens, the direct and inverse metrics will be calculated
using central finite differentiation which, as will be discussed in the next chapter, can cause
some troubles due to the intrinsic approximation errors.

The overall goal of this subchapter is to transform Equation 2.5 into an alternative equation
with variants of the vectors U, F, G and S, and derivatives with respect to 𝜉 and 𝜂 as follows:

𝜕𝑈ଵ

𝜕𝑡
+

𝜕𝐹ଵ

𝜕𝜉
+

𝜕𝐺ଵ

𝜕𝜂
= 𝑆ଵ

The first steps are to use Equation 2.50 and Equation 2.51 into Equation 2.5, and multiply by
the Jacobian.

𝐽 ൬
𝜕𝑈

𝜕𝑡
൰ + 𝐽 ൬

𝜕𝐹

𝜕𝜉
൰ ൬

𝜕𝜉

𝜕𝑥
൰ + 𝐽 ൬

𝜕𝐹

𝜕𝜂
൰ ൬

𝜕𝜂

𝜕𝑥
൰ + 𝐽 ൬

𝜕𝐺

𝜕𝜉
൰ ൬

𝜕𝜉

𝜕𝑦
൰ + 𝐽 ൬

𝜕𝐺

𝜕𝜂
൰ ൬

𝜕𝜂

𝜕𝑦
൰ = 𝐽 ⋅ 𝑆

Equation 2.60

From the multiplication chain derivation rule, and rearranging the terms, the following
relations are held:

𝐽 ൬
𝜕𝐹

𝜕𝜉
൰ ൬

𝜕𝜉

𝜕𝑥
൰ =

𝜕

𝜕𝜉
൤𝐽𝐹 ൬

𝜕𝜉

𝜕𝑥
൰൨ − 𝐹

𝜕

𝜕𝜉
൬𝐽

𝜕𝜉

𝜕𝑥
൰

Equation 2.61

𝐽 ൬
𝜕𝐹

𝜕𝜂
൰ ൬

𝜕𝜂

𝜕𝑥
൰ =

𝜕

𝜕𝜂
൤𝐽𝐹 ൬

𝜕𝜂

𝜕𝑥
൰൨ − 𝐹

𝜕

𝜕𝜂
൬𝐽

𝜕𝜂

𝜕𝑥
൰

Equation 2.62

31

𝐽 ൬
𝜕𝐺

𝜕𝜉
൰ ൬

𝜕𝜉

𝜕𝑦
൰ =

𝜕

𝜕𝜉
൤𝐽𝐺 ൬

𝜕𝜉

𝜕𝑦
൰൨ − 𝐺

𝜕

𝜕𝜉
൬𝐽

𝜕𝜉

𝜕𝑦
൰

Equation 2.63

𝐽 ൬
𝜕𝐺

𝜕𝜂
൰ ൬

𝜕𝜂

𝜕𝑦
൰ =

𝜕

𝜕𝜂
൤𝐽𝐺 ൬

𝜕𝜂

𝜕𝑦
൰൨ − 𝐺

𝜕

𝜕𝜂
൬𝐽

𝜕𝜂

𝜕𝑦
൰

Equation 2.64

Substituting them into the Equation 2.60, the result is this other equation:

𝐽 ൬
𝜕𝑈

𝜕𝑡
൰ +

𝜕

𝜕𝜉
൤𝐽𝐹 ൬

𝜕𝜉

𝜕𝑥
൰ + 𝐽𝐺 ൬

𝜕𝜉

𝜕𝑦
൰൨ +

𝜕

𝜕𝜂
൤𝐽𝐹 ൬

𝜕𝜂

𝜕𝑥
൰ + 𝐽𝐺 ൬

𝜕𝜂

𝜕𝑦
൰൨ − 𝐹 ൤

𝜕

𝜕𝜉
൬𝐽

𝜕𝜉

𝜕𝑥
൰ +

𝜕

𝜕𝜂
൬𝐽

𝜕𝜂

𝜕𝑥
൰൨

− 𝐺 ൤
𝜕

𝜕𝜉
൬𝐽

𝜕𝜉

𝜕𝑦
൰ +

𝜕

𝜕𝜂
൬𝐽

𝜕𝜂

𝜕𝑦
൰൨ = 𝐽 ⋅ 𝑆

The terms multiplied by F and G can be rewritten by the means of the Equation 2.57, and be
this way proven equal to zero.

𝜕

𝜕𝜉
൬𝐽

𝜕𝜉

𝜕𝑥
൰ +

𝜕

𝜕𝜂
൬𝐽

𝜕𝜂

𝜕𝑥
൰ =

𝜕

𝜕𝜉
൬

𝜕𝑦

𝜕𝜂
൰ −

𝜕

𝜕𝜂
൬

𝜕𝑦

𝜕𝜉
൰ =

𝜕ଶ𝑦

𝜕𝜉𝜕𝜂
−

𝜕ଶ𝑦

𝜕𝜂𝜕𝜉
 = 0

𝜕

𝜕𝜉
൬𝐽

𝜕𝜉

𝜕𝑦
൰ +

𝜕

𝜕𝜂
൬𝐽

𝜕𝜂

𝜕𝑦
൰ =

𝜕

𝜕𝜉
൬−

𝜕𝑥

𝜕𝜂
൰ +

𝜕

𝜕𝜂
൬

𝜕𝑥

𝜕𝜉
൰ =

𝜕ଶ𝑥

𝜕𝜂𝜕𝜉
−

𝜕ଶ𝑥

𝜕𝜉𝜕𝜂
 = 0

So, the initial goal is reached, and the governing equation is:

𝜕𝑈ଵ

𝜕𝑡
+

𝜕𝐹ଵ

𝜕𝜉
+

𝜕𝐺ଵ

𝜕𝜂
= 𝑆ଵ

Equation 2.65

Where the new vectors 𝑈ଵ, 𝐹ଵ, 𝐺ଵand 𝑆ଵare related to the original vectors U, F, G and S as
these expressions, using the direct metrics:

𝑈ଵ = 𝐽 ⋅ 𝑈

Equation 2.66

𝐹ଵ = 𝐽 ⋅ 𝐹 ൬
𝜕𝜉

𝜕𝑥
൰ + 𝐽 ⋅ 𝐺 ൬

𝜕𝜉

𝜕𝑦
൰

Equation 2.67

𝐺ଵ = 𝐽 ⋅ 𝐹 ൬
𝜕𝜂

𝜕𝑥
൰ + 𝐽 ⋅ 𝐺 ൬

𝜕𝜂

𝜕𝑦
൰

Equation 2.68

𝑆ଵ = 𝐽 ⋅ 𝑆

Equation 2.69

Alternatively, the vectors 𝐹ଵ and 𝐺ଵ can be calculated with the inverse metrics:

32

𝐹ଵ = 𝐹 ൬
𝜕𝑦

𝜕𝜂
൰ − 𝐺 ൬

𝜕𝑥

𝜕𝜂
൰

Equation 2.70

𝐺ଵ = −𝐹 ൬
𝜕𝑦

𝜕𝜉
൰ + 𝐺 ൬

𝜕𝑥

𝜕𝜉
൰

Equation 2.71

The possibility of using both sets of expressions has been very important in the success of the
project, for reasons that will be explained in the next chapter.

Exactly as it happened in subchapter 2.2, the variables that form part of the new vectors 𝐹ଵ
and 𝐺ଵ must be differentiated in the opposite direction than the vector the form part of. As
now the original vectors F and G both are into the calculation of the new ones, keeping track of
what variable must be differentiated in what direction has been in some situations very messy.
However, it is not difficult to follow if the concepts explained previously are clear and the
procedure is done orderly, step by step.

If the viscosity terms stated in equations Equation 2.12, Equation 2.13 and Equation 2.14 and

the temperature transfer terms డ்

డ௫
 and డ்

డ௬
 are transformed by the derivative relations Equation

2.50 and Equation 2.51, the results are the following:

𝜏௫௫ =
2

3
𝜇 ൤2 ൬

𝜕𝑢

𝜕𝜉

𝜕𝜉

𝜕𝑥
+

𝜕𝑢

𝜕𝜂

𝜕𝜂

𝜕𝑥
൰ − ൬

𝜕𝑣

𝜕𝜉

𝜕𝜉

𝜕𝑦
+

𝜕𝑣

𝜕𝜂

𝜕𝜂

𝜕𝑦
൰൨

Equation 2.72

𝜏௬௬ =
2

3
𝜇 ൤2 ൬

𝜕𝑣

𝜕𝜉

𝜕𝜉

𝜕𝑦
+

𝜕𝑣

𝜕𝜂

𝜕𝜂

𝜕𝑦
൰ − ൬

𝜕𝑢

𝜕𝜉

𝜕𝜉

𝜕𝑥
+

𝜕𝑢

𝜕𝜂

𝜕𝜂

𝜕𝑥
൰൨

Equation 2.73

𝜏௫௬ = 𝜏௬௫ = 𝜇 ൤൬
𝜕𝑣

𝜕𝜉

𝜕𝜉

𝜕𝑥
+

𝜕𝑣

𝜕𝜂

𝜕𝜂

𝜕𝑥
൰ + ൬

𝜕𝑢

𝜕𝜉

𝜕𝜉

𝜕𝑦
+

𝜕𝑢

𝜕𝜂

𝜕𝜂

𝜕𝑦
൰൨

Equation 2.74

𝜕𝑇

𝜕𝑥
=

𝜕𝑇

𝜕𝜉

𝜕𝜉

𝜕𝑥
+

𝜕𝑇

𝜕𝜂

𝜕𝜂

𝜕𝑥

Equation 2.75

𝜕𝑇

𝜕𝑦
=

𝜕𝑇

𝜕𝜉

𝜕𝜉

𝜕𝑦
+

𝜕𝑇

𝜕𝜂

𝜕𝜂

𝜕𝑦

Equation 2.76

The terms డ௨

డక
, డ௨

డఎ
, డ௩

డక
, డ௩

డఎ
, డ்

డక
 and డ்

డఎ
 now must be calculated with forward, rearward, or central

differentiation depending on the vector they are going to be used into. What happens is the
following. The terms of equations Equation 2.72 to Equation 2.76 form part of the vectors F
and G, and at the same time they form part of 𝐹ଵ and 𝐺ଵ, which are differentiated differently.

33

With this reasoning, it becomes clear that two variants of the vectors F and G must be
calculated, which will be called 𝐹ிభ

, 𝐹
భ
, 𝐺ிభ

 and 𝐺ீభ
. Each variant is designated to be used in

the formation of one of the vectors 𝐹ଵ or 𝐺ଵ, and is formed with variables differentiated
accordingly to where they are going to be used.

The best way to visualize this concept is by looking at an example, in this case the viscosity
term 𝜏௫௫. These equations show explicitly the differentiation used for this term when
calculating 𝐹ଵ and 𝐺ଵ in the predictor step.

𝜏௫௫
௧

௜,௝ቚ
ிభ

=
2

3
𝜇௜,௝

௧ ቎2 ቌ
𝜕𝜉

𝜕𝑥
ቆ

𝑢௜,௝
௧ − 𝑢௜ିଵ,௝

௧

𝛥𝜉
ቇ +

𝜕𝜂

𝜕𝑥
ቆ

𝑢௜,௝ାଵ
௧ − 𝑢௜,௝ିଵ

௧

2 𝛥𝜂
ቇቍ

− ቌ
𝜕𝜉

𝜕𝑦
ቆ

𝑣௜,௝
௧ − 𝑣௜ିଵ,௝

௧

𝛥𝜉
ቇ +

𝜕𝜂

𝜕𝑦
ቆ

𝑣௜,௝ାଵ
௧ − 𝑣௜,௝ିଵ

௧

2 𝛥𝜂
ቇቍ቏

Equation 2.77

𝜏௫௫
௧

௜,௝ቚ
ீభ

=
2

3
𝜇௜,௝

௧ ቎2 ቌ
𝜕𝜉

𝜕𝑥
ቆ

𝑢௜ାଵ,௝
௧ − 𝑢௜ିଵ,௝

௧

2 𝛥𝜉
ቇ +

𝜕𝜂

𝜕𝑥
ቆ

𝑢௜,௝
௧ − 𝑢௜,௝ିଵ

௧

𝛥𝜂
ቇቍ

− ቌ
𝜕𝜉

𝜕𝑦
ቆ

𝑣௜ାଵ,௝
௧ − 𝑣௜ିଵ,௝

௧

2 𝛥𝜉
ቇ +

𝜕𝜂

𝜕𝑦
ቆ

𝑣௜,௝
௧ − 𝑣௜,௝ିଵ

௧

𝛥𝜂
ቇቍ቏

Equation 2.78

As said, the expressions can get confusing, but the compliance with the differentiation
requisite is important for the second order accuracy of the method. In order to alleviate the
section of extremely large expressions, not all the equivalents to Equation 2.77 and Equation
2.78 with the other variables are going to be shown. Just for comparison, appreciate how the
differentiation used changes in the corrector step.

𝜏௫̅௫
௧

௜,௝ቚ
ிതభ

=
2

3
𝜇̅௜,௝

௧ ቎2 ቌ
𝜕𝜉

𝜕𝑥
ቆ

𝑢ത௜ାଵ,௝
௧ − 𝑢ത௜,௝

௧

𝛥𝜉
ቇ +

𝜕𝜂

𝜕𝑥
ቆ

𝑢ത௜,௝ାଵ
௧ − 𝑢ത௜,௝ିଵ

௧

2 𝛥𝜂
ቇቍ

− ቌ
𝜕𝜉

𝜕𝑦
ቆ

𝑣̅௜ାଵ,௝
௧ − 𝑣̅௜,௝

௧

𝛥𝜉
ቇ +

𝜕𝜂

𝜕𝑦
ቆ

𝑣̅௜,௝ାଵ
௧ − 𝑣̅௜,௝ିଵ

௧

2 𝛥𝜂
ቇቍ቏

Equation 2.79

𝜏௫̅௫
௧

௜,௝ቚ
ீ̅భ

=
2

3
𝜇̅௜,௝

௧ ቎2 ቌ
𝜕𝜉

𝜕𝑥
ቆ

𝑢ത௜ାଵ,௝
௧ − 𝑢ത௜ିଵ,௝

௧

2 𝛥𝜉
ቇ +

𝜕𝜂

𝜕𝑥
ቆ

𝑢ത௜,௝ାଵ
௧ − 𝑢ത௜,௝

௧

𝛥𝜂
ቇቍ

− ቌ
𝜕𝜉

𝜕𝑦
ቆ

𝑣̅௜ାଵ,௝
௧ − 𝑣̅௜ିଵ,௝

௧

2 𝛥𝜉
ቇ +

𝜕𝜂

𝜕𝑦
ቆ

𝑣̅௜,௝ାଵ
௧ − 𝑣̅௜,௝

௧

𝛥𝜂
ቇቍ቏

Equation 2.80

34

The correct implementation of these expressions has been one of the most difficult parts of
the project, and its correctness is of vital importance. Despite not all the expressions appearing
in this theoretical chapter, the reader can check their implementation by taking a look at the
sections “Encode variables for predictor step” and “Encode variables for
corrector step“ of the script that appears at the end of subchapter 3.2.

35

3 Numerical resolution

To codify the technique and perform the computation required to obtain the results, a
programming language must be chosen to develop the code and then run it. In this project the
program of choice has been MATLAB®, due to several reasons. Among them, that it is a
program in which a considerable amount of focus is put into during the Aerospace Degree, and
so it didn’t require learning a new language. Also, the University of Seville has educational
licenses and it can be easily accessed.

There have been a few scripts written to achieve the numerical resolution. However, they are
structured as is going to be explained.

The base script is the one called “MainBasic.m”. It represents the bedrock of the coding and is
the one who calls the other scripts, that are defined as functions. Those functions are the
responsible of setting the starting conditions, the boundary conditions, and assess the results,
for instance to check the validity of the results and represent the plots. “MainBasic.m”, as well
as almost all the other scripts, have had multiple versions, denoted by the adding of, for
example, “_v1” or “_v3” to the tittle.

The script is structured in sections, and the following subchapters are going to explain the
high-level functioning of the script section by section. The different subscripts, called “auxiliary
functions”, vary depending on the problem that is going to be solved, thus will be treated in
the next chapter for each application.

Finally, the chapter will end by explaining the modifications of the code that are needed to
implement the non-uniform grid transformations by the method described in the subchapter
2.3. This chapter is mostly written to provide a comprehensive guide about how to understand
and read the code if any person wants to take this project as base for a future project.

3.1 The Program for Uniform Grids

Before starting the MacCormack’s technique to advance the simulation in time, the whole
problem and a lot of variables must be set. The purpose of the sections before the
MacCormack’s technique begins is just that.

After deleting all current plots any pre-existing variables in the work space, the script
“MainBasic.m” begins with the first section called “Properties of the air”, in which the basic
parameters of the air are set, such as the Prandtl number, the gas constant R, the ratio of
specific heats 𝛾, and the reference values at sea level 𝑇଴ and 𝜇଴ needed for the Sutherland’s
law. Then 𝑐௩ and 𝑐௣ are calculated from the values of R and 𝛾.

The second section is called “Entry air data”, which specifies the parameters of the incoming
air like Mach number and temperature. Following it begins the section “Geometry and grid
definition”. It determines the number of points in the grid, the security factor for the time step
and also the dimensions of the computational domain.

36

The most important of the set-up sections is the “Initial Conditions” section. It calls the
auxiliary function “Initial_Conditions_Application.m”, that must return the value of the
density, vertical and horizontal velocity, temperature and pressure at all grid points at the
simulation starting time. The values of the internal energy 𝑒, viscosity 𝜇 and the heat transfer
coefficient 𝑘 are calculated from this data.

Due to the evolution of the program, the values of the predicted and the corrected variables,
which are represented with the addition of “_p” and “_c” to the variables respectively, have to
be set in the first iteration. So, they are simply made equal to the initial conditions. After the
initial conditions are finished, the preparations end by allocating variables to speed up the
code and specifying the maximum time and iterations for the simulation.

The advance in time is achieved by a loop “while”, that checks in each iteration if the number
of iterations or the time are greater than the maximums specified, if convergence has been
achieved, or if a custom condition expressed by a “flag” variable has occurred. Before the loop,
the time, iterations, convergence and flag are set to zero. All the stopping conditions are
optional, and they can be disabled at will.

Inside the loop, the first section is dedicated to the calculation of the time step. A
mathematically proven criterion has not been demonstrated jet, however, following the
recommendation made by John Anderson in chapter 10 of [Ref 1], the Courant-Friedrichs-Lewy
(CFL) criterion has been used to determine the time step which has been empirically proven
enough to preserve a convergent behaviour.

(∆𝑡஼ி௅)௜,௝ = ቎
ห𝑢௜,௝ห

∆𝑥
+

ห𝑣௜,௝ห

∆𝑦
+ 𝑎௜,௝ඨ

1

∆𝑥ଶ
+

1

∆𝑦ଶ
+ 2𝑣௜,௝

ᇱ ൬
1

∆𝑥ଶ
+

1

∆𝑦ଶ
൰቏

ିଵ

Equation 3.1. Courant-Friedrichs-Lewy criterion.

Where

𝑣௜,௝
ᇱ = 𝑚𝑎𝑥 ቎

4
3

𝜇௜,௝(𝛾𝜇௜,௝/𝑃𝑟)

𝜌௜,௝
቏

Equation 3.2

The time step is the minimum of the values of ∆𝑡஼ி௅, with a security factor that ensures the
numerical stability that was set in the set-up phase.

∆𝑡 = 𝐾 ⋅ 𝑚𝑖𝑛(∆𝑡஼ி௅)௜,௝

Equation 3.3

As to apply the boundary conditions, the variables have to be decoded after each step. The
implementation of the predictor and corrector steps has multiple sections, and the structure
of these sections is the following:

37

1. Calculation of the variables for the predictor step with the equations Equation 2.27 to
Equation 2.32.

2. Formation of the vectors U, F, G and S as stated in the expressions Equation 2.6 to
Equation 2.9.

3. Calculation of the predicted vector U_p with the Equation 2.26. The predicted
variables have as common distinction the adding of “_p” to their names.

4. Decoding of the predicted primitive variables with the procedure explained at the
beginning of section 2.2.

5. Enforcement of the boundary conditions on the predicted primitive variables.

This enforcement is not done directly in the “MainBasic.m” script. It is done by calling an
auxiliary function called “Boundary_Conditions_Application.m”, which changes with each
application. This, together with the “Initial_Conditions_Application.m”, allows great flexibility
with the coding, as the main program is general and for each application only the specific
initial and boundary condition scripts have to be written.

6. Calculation of the variables for the corrector step with equations equivalent to
Equation 2.27 to Equation 2.32. Now, also new predicted values of viscosity and heat
transfer coefficient must be calculated to use them in the formation of the
“conservative form” vectors.

7. Formation of the predicted vectors U, F, G and S with the expressions Equation 2.6 to
Equation 2.9, only that now the predicted values of the variables are used.

8. Calculation of the corrected vector U_c with the Equation 2.33. The corrected variables
have as common distinction the adding of “_c” to their names.

9. Decoding of the corrected primitive variables with the procedure explained at the
beginning of section 2.2.

10. Enforcement of the boundary conditions on the corrected primitive variables with the
same “Boundary_Conditions_Application.m” function used in the predictor step.

11. Reformation of the vector U_c with the boundary conditions already applied.

12. Combination of the steps to achieve the final results with Equation 2.34.

The last part encompasses several sections with different purposes. The first section checks
the convergence of the code by comparing the new obtained density at time 𝑡 + ∆𝑡 with the
density at time t from the previous iteration in each computational point. If the maximum
difference is less than 10ି଼ the convergence variable is activated and, if the option is enabled,
the program exits the loop at the end of the current iteration. As a comment, this condition

38

could potentially be improved by substituting the static number with an expression that takes
into consideration the time step.

The next section decodes the obtained vector 𝑈௧ା∆௧, erasing the old variables from the
previous iteration in the process and after that the time and iterations are updated.

In the end, the current time and time step are displayed to allow a visual check of the correct
execution of the program. This slightly slows the program, but not much, and is very helpful
when dealing with a new script that may or may not work at the first time. Optionally, it can be
enabled the plotting of a figure to see the evolution of the variables. However, this greatly
slows the execution, and should only be used in exceptional situations.

Lastly, the variable “flag” can be used to stop the program if a custom condition has been met
and the option is enabled. In the code for this project, it checks if the viscosity has any complex
component, as this is signal that the simulation has somehow broken.

When the program ends the loop because one of the stopping conditions has been met, a
check of the validity of the results has been implemented by integrating the mass flow on the
boundaries of the computational domain. If the difference between the mass that enters the
domain and the mass than exits it is less than one percent, the solution is considered valid. If
the value is more than that, a warning is displayed and the amount of mass differential in
percentage with respect to the mass inflow is also displayed.

39

Main program for rectangular and uniform grids “MainBasic.m”

clear all; close all; clc;
tic

%%%%%%%%%%% MAIN PROGRAM OF THE MACCORMACK'S METHOD %%%%%%%%%%%

% FOR UNIFORM RECTANGULAR GRIDS

%--
%% Air properties

% Prandlt number
Pr = 0.71;
% Specific heats ratio
gam = 1.4;
% Ideal gas constant
R = 287;
% Heat coefficients
c_v = R/(gam-1);
c_p = gam*c_v;
% Reference values
T0 = 298;
nu0 = 1.849e-5;

%--
%% Air flow stream data

Minf = 4; % Choose the desired Mach number
Tinf = 298;
rhoinf = 1.225;
pinf = rhoinf*R*Tinf;
nuinf = nu0*(Tinf/T0).^(3/2).*((T0+110)./(Tinf+110));
uinf = Minf*sqrt(gam*R*Tinf);

%--
%% Geometry and grid fineness

Nx = 70; Ny = 70; % Choose the adequate grid fineness
m = Nx-1; n = Ny-1;
K = 0.3; % Choose the adequate safe factor

LHOR = 0.00001; % Modify to fit the desire dimensions
Reinf = rhoinf*uinf*LHOR/nuinf;
delta = 5*LHOR/sqrt(Reinf);
LVER = 5*delta; % or LVER = fix value; % Choose at will

dx = LHOR /(Nx-1);
dy = LVER /(Ny-1);

%--
%% Initial conditions

% Real variables
% Choose the correct auxiliary function depending on the application
[rho,u,v,T,p] = Initial_Conditions(rhoinf,uinf,Tinf,R,Nx,Ny);

e = c_v*T;
nu = nu0*T.*sqrt(T)/T0^(3/2).*((T0+110)./(T+110));

40

k = nu*c_p/Pr;

% Predictor variables
rho_p = rho;
u_p = u;
v_p = v;
T_p = T;
p_p = p;
e_p = e;
nu_p = nu;
k_p = k;

% Corrector variables
rho_c = rho;
u_c = u;
v_c = v;
T_c = T;
p_c = p;
e_c = e;
nu_c = nu;
k_c = k;

%--
%% Maximum time and iterations

tmax = 4e-7;
itermax = 5000;

%--
%% Allocate Variables

U = zeros(Nx,Ny,4);
F = zeros(Nx,Ny,4);
G = zeros(Nx,Ny,4);
S = zeros(Nx,Ny,4);
U_p = zeros(size(U));
U_c = zeros(size(U));
dudx = zeros(size(u));
dudy = zeros(size(u));
dvdx = zeros(size(u));
dvdy = zeros(size(u));
dTdx = zeros(size(u));
dTdy = zeros(size(u));

%--
%% MacCormack's Method advance

t = 0;
iter = 0;
conver = 0;
flag = 0;

% Enable and disable at will the conditions to stop the loop
while t<tmax && flag==0 && conver==0 && iter<itermax

 %--
 %% Time step calculation

 M = u./sqrt(gam*R*T);

41

 v_prim = max(max((4*gam*nu.*nu)./(3.*rho*Pr)));
 dt = 1./(abs(u)/dx + abs(v)/dy + sqrt(gam*R*T)*sqrt(1/dx^2+1/dy^2)
+ 2*v_prim*(1/dx^2+1/dy^2));
 dt = K*min(min (dt));
 %--
 %% Encode variables for predictor step

 V = sqrt(u.*u + v.*v);

 % DR means Rearward Difference
 % DC means Central Difference
 % DP means Forward Difference

 % tauxx x:DR y:DC

 dudx(1,:) = (u(2,:) - u(1,:))/dx;
 dudx(2:Nx,:) = (u(2:Nx,:) - u(1:Nx-1,:))/dx;

 dvdy(:,1) = (v(:,2) - v(:,1))/dy;
 dvdy(:,2:n) = (v(:,3:n+1) - v(:,1:n-1))/(2*dy);
 dvdy(:,Ny) = (v(:,Ny) - v(:,Ny-1))/dy;

 tauxx = 2/3*nu.*(2*dudx - dvdy);

 % tauyy x:DC y:DR

 dudx(1,:) = (u(2,:) - u(1,:))/dx;
 dudx(2:m,:) = (u(3:m+1,:) - u(1:m-1,:))/(2*dx);
 dudx(Nx,:) = (u(Nx,:) - u(Nx-1,:))/dx;

 dvdy(:,1) = (v(:,2) - v(:,1))/dy;
 dvdy(:,2:Ny) = (v(:,2:Ny) - v(:,1:Ny-1))/dy;

 tauyy = 2/3*nu.*(2*dvdy - dudx);

 % tauxy_F x:DR y:DC

 dudy(:,1) = (u(:,2) - u(:,1))/dy;
 dudy(:,2:n) = (u(:,3:n+1) - u(:,1:n-1))/(2*dy);
 dudy(:,Ny) = (u(:,Ny) - u(:,Ny-1))/dy;

 dvdx(1,:) = (v(2,:) - v(1,:))/dx;
 dvdx(2:Nx,:) = (v(2:Nx,:) - v(1:Nx-1,:))/dx;

 tauxy_F = nu.*(dudy + dvdx);

 % tauxy_G x:DC y:DR

 dudy(:,1) = (u(:,2) - u(:,1))/dy;
 dudy(:,2:Ny) = (u(:,2:Ny) - u(:,1:Ny-1))/dy;

 dvdx(1,:) = (v(2,:) - v(1,:))/dx;
 dvdx(2:m,:) = (v(3:m+1,:) - v(1:m-1,:))/(2*dx);
 dvdx(Nx,:) = (v(Nx,:) - v(Nx-1,:))/dx;

 tauxy_G = nu.*(dudy + dvdx);

42

 % dTdx x:DR

 dTdx(1,:) = (T(2,:) - T(1,:))/dx;
 dTdx(2:Nx,:) = (T(2:Nx,:) - T(1:Nx-1,:))/dx;

 % dTdy y:DR
 dTdy(:,1) = (T(:,2) - T(:,1))/dy;
 dTdy(:,2:Ny) = (T(:,2:Ny) - T(:,1:Ny-1))/dy;

 %--
 %% Predictor step: x:DP y:DP

 U(:,:,1) = rho;
 U(:,:,2) = rho.*u;
 U(:,:,3) = rho.*v;
 U(:,:,4) = rho.*(e+V.*V/2);

 F(:,:,1) = rho.*u;
 F(:,:,2) = rho.*u.*u + p - tauxx;
 F(:,:,3) = rho.*v.*u - tauxy_F;
 F(:,:,4) = rho.*(e+V.*V/2).*u + p.*u - k.*dTdx - u.*tauxx -
v.*tauxy_F;

 G(:,:,1) = rho.*v;
 G(:,:,2) = rho.*u.*v - tauxy_G;
 G(:,:,3) = rho.*v.*v + p - tauyy;
 G(:,:,4) = rho.*(e+V.*V/2).*v + p.*v - k.*dTdy - u.*tauxy_G -
v.*tauyy;

 U_p(2:m,2:n,:) = U(2:m,2:n,:) - dt*(F(3:m+1,2:n,:)-
F(2:m,2:n,:))/dx - dt*(G(2:m,3:n+1,:)-G(2:m,2:n,:))/dy +
dt*S(2:m,2:n,:);

 %--
 %% Decode variables of predictor step

 rho_p(2:m,2:n) = U_p(2:m,2:n,1);
 u_p(2:m,2:n) = U_p(2:m,2:n,2)./U_p(2:m,2:n,1);
 v_p(2:m,2:n) = U_p(2:m,2:n,3)./U_p(2:m,2:n,1);
 e_p(2:m,2:n) = U_p(2:m,2:n,4)./U_p(2:m,2:n,1) -
(u_p(2:m,2:n).*u_p(2:m,2:n) + v_p(2:m,2:n).*v_p(2:m,2:n))/2;
 T_p(2:m,2:n) = e_p(2:m,2:n)/c_v;
 p_p(2:m,2:n) = R*rho_p(2:m,2:n).*T_p(2:m,2:n);

 %--
 %% Boundary conditions of predictor step

 % Choose the correct auxiliary function depending on the
application
 [rho_p,u_p,v_p,T_p,p_p] =
Boundary_Conditions(rho_p,u_p,v_p,T_p,p_p,Nx,Ny);

 e_p(Nx,2:Ny-1) = c_v*T_p(Nx,2:Ny-1);

 %--
 %% Encode variables for corrector step

 V_p = sqrt(u_p.*u_p + v_p.*v_p);
 nu_p = nu0*(T_p/T0).^(3/2).*((T0+110)./(T_p+110));

43

 k_p = nu_p*c_p/Pr;

 % tauxx x:DP y:DC

 dudx(1:m,:) = (u_p(2:m+1,:) - u_p(1:m,:))/dx;
 dudx(Nx,:) = (u_p(Nx,:) - u_p(Nx-1,:))/dx;

 dvdy(:,1) = (v_p(:,2) - v_p(:,1))/dy;
 dvdy(:,2:n) = (v_p(:,3:n+1) - v_p(:,1:n-1))/(2*dy);
 dvdy(:,Ny) = (v_p(:,Ny) - v_p(:,Ny-1))/dy;

 tauxx_p = 2/3*nu_p.*(2*dudx - dvdy);

 % tauyy x:DC y:DP

 dudx(1,:) = (u_p(2,:) - u_p(1,:))/dx;
 dudx(2:m,:) = (u_p(3:m+1,:) - u_p(1:m-1,:))/(2*dx);
 dudx(Nx,:) = (u_p(Nx,:) - u_p(Nx-1,:))/dx;

 dvdy(:,1:n) = (v_p(:,2:n+1) - v_p(:,1:n))/dy;
 dvdy(:,Ny) = (v_p(:,Ny) - v_p(:,Ny-1))/dy;

 tauyy_p = 2/3*nu_p.*(2*dvdy - dudx);

 % tauxy_F x:DP y:DC

 dudy(:,1) = (u_p(:,2) - u_p(:,1))/dy;
 dudy(:,2:n) = (u_p(:,3:n+1) - u_p(:,1:n-1))/(2*dy);
 dudy(:,Ny) = (u_p(:,Ny) - u_p(:,Ny-1))/dy;

 dvdx(1:m,:) = (v_p(2:m+1,:) - v_p(1:m,:))/dx;
 dvdx(Nx,:) = (v_p(Nx,:) - v_p(Nx-1,:))/dx;

 tauxy_F_p = nu_p.*(dudy + dvdx);

 % tauxy_G x:DC y:DP

 dudy(:,1:n) = (u_p(:,2:n+1) - u_p(:,1:n))/dy;
 dudy(:,Ny) = (u_p(:,Ny) - u_p(:,Ny-1))/dy;

 dvdx(1,:) = (v_p(2,:) - v_p(1,:))/dx;
 dvdx(2:m,:) = (v_p(3:m+1,:) - v_p(1:m-1,:))/(2*dx);
 dvdx(Nx,:) = (v_p(Nx,:) - v_p(Nx-1,:))/dx;

 tauxy_G_p = nu_p.*(dudy + dvdx);

 % dTdx x:DP

 dTdx(1:m,:) = (T_p(2:m+1,:) - T_p(1:m,:))/dx;
 dTdx(Nx,:) = (T_p(Nx,:) - T_p(Nx-1,:))/dx;

 % dTdy y:DP
 dTdy(:,1:n) = (T_p(:,2:n+1) - T_p(:,1:n))/dy;
 dTdy(:,Ny) = (T_p(:,Ny) - T_p(:,Ny-1))/dy;

 %--
 %% Corrector step: x:DR y:DR

44

 U_p(:,:,1) = rho_p;
 U_p(:,:,2) = rho_p.*u_p;
 U_p(:,:,3) = rho_p.*v_p;
 U_p(:,:,4) = rho_p.*(e_p+V_p.*V_p/2);

 F_p(:,:,1) = rho_p.*u_p;
 F_p(:,:,2) = rho_p.*u_p.*u_p + p_p - tauxx_p;
 F_p(:,:,3) = rho_p.*v_p.*u_p - tauxy_F_p;
 F_p(:,:,4) = rho_p.*(e_p+V_p.*V_p/2).*u_p + p_p.*u_p - k_p.*dTdx -
u_p.*tauxx_p - v_p.*tauxy_F_p;

 G_p(:,:,1) = rho_p.*v_p;
 G_p(:,:,2) = rho_p.*u_p.*v_p - tauxy_G_p;
 G_p(:,:,3) = rho_p.*v_p.*v_p + p_p - tauyy_p;
 G_p(:,:,4) = rho_p.*(e_p+V_p.*V_p/2).*v_p + p_p.*v_p - k_p.*dTdy -
u_p.*tauxy_G_p - v_p.*tauyy_p;

 U_c(2:m,2:n,:) = U(2:m,2:n,:) - dt*(F_p(2:m,2:n,:)-F_p(1:m-
1,2:n,:))/dx - dt*(G_p(2:m,2:n,:)-G_p(2:m,1:n-1,:))/dy +
dt*S(2:m,2:n,:);

 %--
 %% Decode variables of corrector step

 rho_c(2:m,2:n) = U_c(2:m,2:n,1);
 u_c(2:m,2:n) = U_c(2:m,2:n,2)./U_c(2:m,2:n,1);
 v_c(2:m,2:n) = U_c(2:m,2:n,3)./U_c(2:m,2:n,1);
 e_c(2:m,2:n) = U_c(2:m,2:n,4)./U_c(2:m,2:n,1) -
(u_c(2:m,2:n).*u_c(2:m,2:n) + v_c(2:m,2:n).*v_c(2:m,2:n))/2;
 T_c(2:m,2:n) = e_c(2:m,2:n)/c_v;
% p_c(2:m,2:n) = R*rho_c(2:m,2:n).*T_c(2:m,2:n); % not necessary
decoding

 %--
 %% Boundary conditions of corrector step

 [rho_c,u_c,v_c,T_c,p_c] =
Bounday_Conditions(rho_c,u_c,v_c,T_c,p_c,Nx,Ny);

 e_c(Nx,2:Ny-1) = c_v*T_c(Nx,2:Ny-1);

 %--
 %% Encode variables for result and calculation of result

 U_c(:,:,1) = rho_c;
 U_c(:,:,2) = rho_c.*u_c;
 U_c(:,:,3) = rho_c.*v_c;
 U_c(:,:,4) = rho_c.*(e_c + (u_c.*u_c + v_c.*v_c)/2);

 U = (U_p + U_c)/2;

 %--
 %% Check for convergence

 if max(max(abs(U(:,:,1) - rho)))>1e-8
 conver = 0;
 else
 conver = 1;

45

 end

 %--
 %% Decode final variables

 rho = U(:,:,1);
 u = U(:,:,2)./U(:,:,1);
 v = U(:,:,3)./U(:,:,1);
 e = U(:,:,4)./U(:,:,1) - (u.*u + v.*v)/2;
 T = e./c_v;
 p = R*rho.*T;
 p(:,1) = 2*p(:,2) - p(:,3);

 [rho,u,v,T,p] = Boundary_Conditions(rho,u,v,T,p,Nx,Ny);

 nu = nu0*(T/T0).^(3/2).*((T0+110)./(T+110));
 k = nu*c_p/Pr;

 % Update time and iteration counts
 iter = iter + 1;
 t = t + dt;

 % Print at screen to check for correct execution
 display([t dt])
 if max(max(abs(imag(nu))))>0 && flag==0
 tbreak = t;
 flag = 1;
 end

% mesh(1:Ny,1:Nx,real(p))
% pause(0.01)

end

%--
%% Check the validity of the results by calculating the mass inflow
and outflow balance

Mass_in = trapz(0:dy:LVER,u(1,:).*rho(1,:));
Mass_out = trapz(0:dy:LVER,u(Nx,:).*rho(Nx,:));
if abs((Mass_in - Mass_out) / Mass_in*100) <= 1
 display('The solution seems valid checking the mass balance')
else
 display('The solution seems to violate the mass balance, it is not
valid')
end

%--
%% Viscosity force at the wall

f_pared = nu(:,1).*(u(:,2) - u(:,1))/dy;
F_pared = trapz(0:dx:LHOR,f_pared);
C_d = F_pared/0.5/rhoinf/uinf^2/LHOR;

F_press = trapz(0:dx:LHOR,p(:,1));

%--
%% Plots and ending

46

plot(1:Nx,p(:,1))
figure(2)
mesh(0:dy:LVER,0:dx:LHOR,real(p))
display(conver)
time = toc

% Additional plots and calculations using the results may be done at
% different scripts

47

3.2 Non-Uniform Grid Modifications

This subchapter will explain the modifications that has been made to the code in order to
implement the non-uniform grid transformations as they were explained in the subchapter
2.3. The new main program is now called “MainGridTrans_DirectMetrics.m”.

The first difference is that the set-up section “Geometry and grid definition” is now much more
complex. It makes use of an auxiliary, application specific function, which must return the
coordinates x and y of the grid points, the Jacobian at each point, and the direct and inverse
metrics. In principle, with the relations given by Equation 2.57, only one set of metrics could be
used. However, as it will be seen later, the inverse metrics are necessary at one point of the
coding. Using the x and y coordinates, the distance between points ∆𝑥 and ∆𝑦 must be
calculated too to use them in the Courant-Friedrichs-Lewy criterion.

As it has been said before, the fact that both vectors F and G form part of the new 𝐹ଵ and 𝐺ଵ
forces the formation of two variants of F and G, to comply with the opposite differentiation
needed for the second order accuracy. Thus, the vectors 𝐹ிభ

, 𝐹
భ
, 𝐺ிభ

 and 𝐺ீభ
 are formed,

each using the adequate variables. Then, the vectors 𝐹ிభ
 and 𝐺ிభ

 are used in the Equation 2.70,
together with the inverse metrics, to form 𝐹ଵ. The same happens with 𝐹

భ
 and 𝐺ீభ

 that are
used to form 𝐺ଵ with Equation 2.71.

An important commentary has to be made here. In the formation of 𝑈ଵ the Jacobian “J” is
used, and it is calculated using the inverse metrics. When exact analytical expressions are
used, the mixing of both direct and inverse metrics seems to be irrelevant. However, if the
metrics are approximately calculated with central differentiation, as it is the case in most of
the applications in this project, it exists a small error between the two sets. This very small
error adds-up iteration after iteration and ends up making the results inexact. To avoid that,
the expressions used to calculate 𝐹ଵ and 𝐺ଵ have been Equation 2.70 and Equation 2.71, which
use inverse metrics, instead of Equation 2.68 and Equation 2.69, which because of using direct
metrics produced this very subtle error.

48

Main program for non-uniform grids “MainGridTrans_DirectMetrics.m”

clear all; close all; clc;
tic

%%%%%%%%%%% MAIN PROGRAM OF THE MACCORMACK'S METHOD %%%%%%%%%%%

% FOR NON-UNIFORM GRID TRANSFORMATIONS

%--
%% Air properties

% Prandlt number
Pr = 0.71;
% Specific heats ratio
gam = 1.4;
% Ideal gas constant
R = 287;
% Heat coefficients
c_v = R/(gam-1);
c_p = gam*c_v;
% Reference values
T0 = 298;
nu0 = 1.849e-5;

%--
%% Air flow stream data

Minf = 4; % Choose the desired Mach number
Tinf = 298;
rhoinf = 1.225;
pinf = rhoinf*R*Tinf;
nuinf = nu0*(Tinf/T0).^(3/2).*((T0+110)./(Tinf+110));
uinf = Minf*sqrt(gam*R*Tinf);

%--
%% Geometry and grid fineness

Nxi = 100; Neta = 150; % Choose the adequate grid fineness
m = Nxi-1; n = Neta-1;
K = 0.1; % Choose the adequate safe factor

LHOR = 0.00001; % Modify to fit the desire dimensions
Reinf = rhoinf*uinf*LHOR/nuinf;
delta = 5*LHOR/sqrt(Reinf);
LVER = 1.6345e-05; % or LVER = value*delta; % Choose at will

[x,y,dxi,deta,dxidx,dxidy,detadx,detady,J,dxdxi,dxdeta,dydxi,dydeta] =
Geometry_Function(Nxi,Neta,LHOR,LVER);

delta_x(1,:) = x(2,:) - x(1,:);
delta_x(2:m,:) = (x(3:m+1,:) - x(1:m-1,:))/2;
delta_x(Nxi,:) = x(Nxi,:) - x(Nxi-1,:);

delta_y(:,1) = y(:,2) - y(:,1);
delta_y(:,2:n) = (y(:,3:n+1) - y(:,1:n-1))/2;
delta_y(:,Neta) = y(:,Neta) - y(:,Neta-1);

49

%--
%% Initial conditions

% Real variables
% Choose the correct auxiliary function depending on the application
[rho,u,v,T,p] = Initial_Conditions(rhoinf,uinf,Tinf,R,Nxi,Neta);

e = c_v*T;
nu = nu0*T.*sqrt(T)/T0^(3/2).*((T0+110)./(T+110));
k = nu*c_p/Pr;

% Predictor variables
rho_p = rho;
u_p = u;
v_p = v;
T_p = T;
p_p = p;
e_p = e;
nu_p = nu;
k_p = k;

% Corrector variables
rho_c = rho;
u_c = u;
v_c = v;
T_c = T;
p_c = p;
e_c = e;
nu_c = nu;
k_c = k;

%--
%% Maximum time and iterations

tmax = 2.5e-07; %1.5e-7;
itermax = 5000;

%--
%% Allocate Variables

U_p = zeros(Nxi,Neta,4);
U_c = zeros(Nxi,Neta,4);
S = zeros(Nxi,Neta,4);

%--
%% MacCormack's Method advance

t = 0;
iter = 0;
conver = 0;
flag = 0;

% Enable and disable at will the conditions to stop the loop
while t<tmax && flag==0 && conver==0 && iter<itermax

 %---
 %% Time step calculation

 M = u./sqrt(gam*R*T);

50

 v_prim = max(max((4*gam*nu.*nu)./(3.*rho*Pr)));
 dt = 1./(abs(u)./delta_x + abs(v)./delta_y +
sqrt(gam*R*T).*sqrt(1./delta_x.^2+1./delta_y.^2) +
2*v_prim.*(1./delta_x.^2+1./delta_y.^2));
 dt = K*min(min (dt));

 %---
 %% Encode variables for predictor step

 V = sqrt(u.*u + v.*v);

 % DR means Rearward Difference
 % DC means Central Difference
 % DP means Forward Difference

 % xi:DR
 dudxi_R(1,:) = (u(2,:) - u(1,:))/dxi;
 dudxi_R(2:Nxi,:) = (u(2:Nxi,:) - u(1:Nxi-1,:))/dxi;

 dvdxi_R(1,:) = (v(2,:) - v(1,:))/dxi;
 dvdxi_R(2:Nxi,:) = (v(2:Nxi,:) - v(1:Nxi-1,:))/dxi;

 dTdxi_R(1,:) = (T(2,:) - T(1,:))/dxi;
 dTdxi_R(2:Nxi,:) = (T(2:Nxi,:) - T(1:Nxi-1,:))/dxi;

 % xi:DC
 dudxi_C(1,:) = (u(2,:) - u(1,:))/dxi;
 dudxi_C(2:m,:) = (u(3:m+1,:) - u(1:m-1,:))/(2*dxi);
 dudxi_C(Nxi,:) = (u(Nxi,:) - u(Nxi-1,:))/dxi;

 dvdxi_C(1,:) = (v(2,:) - v(1,:))/dxi;
 dvdxi_C(2:m,:) = (v(3:m+1,:) - v(1:m-1,:))/(2*dxi);
 dvdxi_C(Nxi,:) = (v(Nxi,:) - v(Nxi-1,:))/dxi;

 dTdxi_C(1,:) = (T(2,:) - T(1,:))/dxi;
 dTdxi_C(2:m,:) = (T(3:m+1,:) - T(1:m-1,:))/(2*dxi);
 dTdxi_C(Nxi,:) = (T(Nxi,:) - T(Nxi-1,:))/dxi;

 % eta:DR
 dudeta_R(:,1) = (u(:,2) - u(:,1))/deta;
 dudeta_R(:,2:Neta) = (u(:,2:Neta) - u(:,1:Neta-1))/deta;

 dvdeta_R(:,1) = (v(:,2) - v(:,1))/deta;
 dvdeta_R(:,2:Neta) = (v(:,2:Neta) - v(:,1:Neta-1))/deta;

 dTdeta_R(:,1) = (T(:,2) - T(:,1))/deta;
 dTdeta_R(:,2:Neta) = (T(:,2:Neta) - T(:,1:Neta-1))/deta;

 % eta:DC
 dudeta_C(:,1) = (u(:,2) - u(:,1))/deta;
 dudeta_C(:,2:n) = (u(:,3:n+1) - u(:,1:n-1))/(2*deta);
 dudeta_C(:,Neta) = (u(:,Neta) - u(:,Neta-1))/deta;

 dvdeta_C(:,1) = (v(:,2) - v(:,1))/deta;
 dvdeta_C(:,2:n) = (v(:,3:n+1) - v(:,1:n-1))/(2*deta);
 dvdeta_C(:,Neta) = (v(:,Neta) - v(:,Neta-1))/deta;

 dTdeta_C(:,1) = (T(:,2) - T(:,1))/deta;

51

 dTdeta_C(:,2:n) = (T(:,3:n+1) - T(:,1:n-1))/(2*deta);
 dTdeta_C(:,Neta) = (T(:,Neta) - T(:,Neta-1))/deta;

 % tauxx
 tauxx_F1 = 2/3*nu.*(2*(dxidx.*dudxi_R + detadx.*dudeta_C) - (
dxidy.*dvdxi_R + detady.*dvdeta_C));
 tauxx_G1 = 2/3*nu.*(2*(dxidx.*dudxi_C + detadx.*dudeta_R) - (
dxidy.*dvdxi_C + detady.*dvdeta_R));

 % tauyy
 tauyy_F1 = 2/3*nu.*(2*(dxidy.*dvdxi_R + detady.*dvdeta_C) - (
dxidx.*dudxi_R + detadx.*dudeta_C));
 tauyy_G1 = 2/3*nu.*(2*(dxidy.*dvdxi_C + detady.*dvdeta_R) - (
dxidx.*dudxi_C + detadx.*dudeta_R));

 % tauxy
 tauxy_F1 = nu.*((dxidy.*dudxi_R + detady.*dudeta_C) + (
dxidx.*dvdxi_R + detadx.*dvdeta_C));
 tauxy_G1 = nu.*((dxidy.*dudxi_C + detady.*dudeta_R) + (
dxidx.*dvdxi_C + detadx.*dvdeta_R));

 % dTdx
 dTdx_F1 = dxidx.*dTdxi_R + detadx.*dTdeta_C;
 dTdx_G1 = dxidx.*dTdxi_C + detadx.*dTdeta_R;

 % dTdy
 dTdy_F1 = dxidy.*dTdxi_R + detady.*dTdeta_C;
 dTdy_G1 = dxidy.*dTdxi_C + detady.*dTdeta_R;

 %---
 %% Predictor step: xi:DP eta:DP

 U(:,:,1) = rho;
 U(:,:,2) = rho.*u;
 U(:,:,3) = rho.*v;
 U(:,:,4) = rho.*(e+V.*V/2);

 F_F1(:,:,1) = rho.*u;
 F_F1(:,:,2) = rho.*u.*u + p - tauxx_F1;
 F_F1(:,:,3) = rho.*v.*u - tauxy_F1;
 F_F1(:,:,4) = rho.*(e+V.*V/2).*u + p.*u - k.*dTdx_F1 - u.*tauxx_F1
- v.*tauxy_F1;

 G_F1(:,:,1) = rho.*v;
 G_F1(:,:,2) = rho.*u.*v - tauxy_F1;
 G_F1(:,:,3) = rho.*v.*v + p - tauyy_F1;
 G_F1(:,:,4) = rho.*(e+V.*V/2).*v + p.*v - k.*dTdy_F1 - u.*tauxy_F1
- v.*tauyy_F1;

 F_G1(:,:,1) = rho.*u;
 F_G1(:,:,2) = rho.*u.*u + p - tauxx_G1;
 F_G1(:,:,3) = rho.*v.*u - tauxy_G1;
 F_G1(:,:,4) = rho.*(e+V.*V/2).*u + p.*u - k.*dTdx_G1 - u.*tauxx_G1
- v.*tauxy_G1;

 G_G1(:,:,1) = rho.*v;
 G_G1(:,:,2) = rho.*u.*v - tauxy_G1;
 G_G1(:,:,3) = rho.*v.*v + p - tauyy_G1;

52

 G_G1(:,:,4) = rho.*(e+V.*V/2).*v + p.*v - k.*dTdy_G1 - u.*tauxy_G1
- v.*tauyy_G1;

 for i=1:4
 U1(:,:,i) = J.*U(:,:,i);
 F1(:,:,i) = F_F1(:,:,i).*dydeta - G_F1(:,:,i).*dxdeta;
 G1(:,:,i) = - F_G1(:,:,i).*dydxi + G_G1(:,:,i).*dxdxi;
 end

 U1_p(2:m,2:n,:) = U1(2:m,2:n,:) - dt*(F1(3:m+1,2:n,:)-
F1(2:m,2:n,:))/dxi - dt*(G1(2:m,3:n+1,:)-G1(2:m,2:n,:))/deta +
dt*S(2:m,2:n,:);

 %---
 %% Decode variables of predictor step

 for i=1:4
 U_p(2:m,2:n,i) = U1_p(2:m,2:n,i)./J(2:m,2:n);
 end

 rho_p(2:m,2:n) = U_p(2:m,2:n,1);
 u_p(2:m,2:n) = U_p(2:m,2:n,2)./U_p(2:m,2:n,1);
 v_p(2:m,2:n) = U_p(2:m,2:n,3)./U_p(2:m,2:n,1);
 e_p(2:m,2:n) = U_p(2:m,2:n,4)./U_p(2:m,2:n,1) -
(u_p(2:m,2:n).*u_p(2:m,2:n) + v_p(2:m,2:n).*v_p(2:m,2:n))/2;
 T_p(2:m,2:n) = e_p(2:m,2:n)/c_v;
 p_p(2:m,2:n) = R*rho_p(2:m,2:n).*T_p(2:m,2:n);

 %---
 %% Boundary conditions of predictor step

 % Choose the correct auxiliary function depending on the
application
 [rho_p,u_p,v_p,T_p,p_p] =
Boundary_Conditions(rho_p,u_p,v_p,T_p,p_p,Nxi,Neta);

 e_p(Nxi,2:Neta-1) = c_v*T_p(Nxi,2:Neta-1);

 %---
 %% Encode variables for corrector step

 V_p = sqrt(u_p.*u_p + v_p.*v_p);
 nu_p = nu0*(T_p/T0).^(3/2).*((T0+110)./(T_p+110));
 k_p = nu_p*c_p/Pr;

 % xi:DP
 dudxi_P_p(1:m,:) = (u_p(2:m+1,:) - u_p(1:m,:))/dxi;
 dudxi_P_p(Nxi,:) = (u_p(Nxi,:) - u_p(Nxi-1,:))/dxi;

 dvdxi_P_p(1:m,:) = (v_p(2:m+1,:) - v_p(1:m,:))/dxi;
 dvdxi_P_p(Nxi,:) = (v_p(Nxi,:) - v_p(Nxi-1,:))/dxi;

 dTdxi_P_p(1:m,:) = (T_p(2:m+1,:) - T_p(1:m,:))/dxi;
 dTdxi_P_p(Nxi,:) = (T_p(Nxi,:) - T_p(Nxi-1,:))/dxi;

 % xi:DC
 dudxi_C_p(1,:) = (u_p(2,:) - u_p(1,:))/dxi;
 dudxi_C_p(2:m,:) = (u_p(3:m+1,:) - u_p(1:m-1,:))/(2*dxi);
 dudxi_C_p(Nxi,:) = (u_p(Nxi,:) - u_p(Nxi-1,:))/dxi;

53

 dvdxi_C_p(1,:) = (v_p(2,:) - v_p(1,:))/dxi;
 dvdxi_C_p(2:m,:) = (v_p(3:m+1,:) - v_p(1:m-1,:))/(2*dxi);
 dvdxi_C_p(Nxi,:) = (v_p(Nxi,:) - v_p(Nxi-1,:))/dxi;

 dTdxi_C_p(1,:) = (T_p(2,:) - T_p(1,:))/dxi;
 dTdxi_C_p(2:m,:) = (T_p(3:m+1,:) - T_p(1:m-1,:))/(2*dxi);
 dTdxi_C_p(Nxi,:) = (T_p(Nxi,:) - T_p(Nxi-1,:))/dxi;

 % eta:DP
 dudeta_P_p(:,1:n) = (u_p(:,2:n+1) - u_p(:,1:n))/deta;
 dudeta_P_p(:,Neta) = (u_p(:,Neta) - u_p(:,Neta-1))/deta;

 dvdeta_P_p(:,1:n) = (v_p(:,2:n+1) - v_p(:,1:n))/deta;
 dvdeta_P_p(:,Neta) = (v_p(:,Neta) - v_p(:,Neta-1))/deta;

 dTdeta_P_p(:,1:n) = (T_p(:,2:n+1) - T_p(:,1:n))/deta;
 dTdeta_P_p(:,Neta) = (T_p(:,Neta) - T_p(:,Neta-1))/deta;

 % eta:DC
 dudeta_C_p(:,1) = (u_p(:,2) - u_p(:,1))/deta;
 dudeta_C_p(:,2:n) = (u_p(:,3:n+1) - u_p(:,1:n-1))/(2*deta);
 dudeta_C_p(:,Neta) = (u_p(:,Neta) - u_p(:,Neta-1))/deta;

 dvdeta_C_p(:,1) = (v_p(:,2) - v_p(:,1))/deta;
 dvdeta_C_p(:,2:n) = (v_p(:,3:n+1) - v_p(:,1:n-1))/(2*deta);
 dvdeta_C_p(:,Neta) = (v_p(:,Neta) - v_p(:,Neta-1))/deta;

 dTdeta_C_p(:,1) = (T_p(:,2) - T_p(:,1))/deta;
 dTdeta_C_p(:,2:n) = (T_p(:,3:n+1) - T_p(:,1:n-1))/(2*deta);
 dTdeta_C_p(:,Neta) = (T_p(:,Neta) - T_p(:,Neta-1))/deta;

 % tauxx
 tauxx_F1_p = 2/3*nu.*(2*(dxidx.*dudxi_P_p + detadx.*dudeta_C_p)
- (dxidy.*dvdxi_P_p + detady.*dvdeta_C_p));
 tauxx_G1_p = 2/3*nu.*(2*(dxidx.*dudxi_C_p + detadx.*dudeta_P_p)
- (dxidy.*dvdxi_C_p + detady.*dvdeta_P_p));

 % tauyy
 tauyy_F1_p = 2/3*nu.*(2*(dxidy.*dvdxi_P_p + detady.*dvdeta_C_p)
- (dxidx.*dudxi_P_p + detadx.*dudeta_C_p));
 tauyy_G1_p = 2/3*nu.*(2*(dxidy.*dvdxi_C_p + detady.*dvdeta_P_p)
- (dxidx.*dudxi_C_p + detadx.*dudeta_P_p));

 % tauxy
 tauxy_F1_p = nu.*((dxidy.*dudxi_P_p + detady.*dudeta_C_p) + (
dxidx.*dvdxi_P_p + detadx.*dvdeta_C_p));
 tauxy_G1_p = nu.*((dxidy.*dudxi_C_p + detady.*dudeta_P_p) + (
dxidx.*dvdxi_C_p + detadx.*dvdeta_P_p));

 % dTdx
 dTdx_F1_p = dxidx.*dTdxi_P_p + detadx.*dTdeta_C_p;
 dTdx_G1_p = dxidx.*dTdxi_C_p + detadx.*dTdeta_P_p;

 % dTdy
 dTdy_F1_p = dxidy.*dTdxi_P_p + detady.*dTdeta_C_p;
 dTdy_G1_p = dxidy.*dTdxi_C_p + detady.*dTdeta_P_p;

 %---

54

 %% Corrector step: xi:DR eta:DR

 U_p(:,:,1) = rho_p;
 U_p(:,:,2) = rho_p.*u_p;
 U_p(:,:,3) = rho_p.*v_p;
 U_p(:,:,4) = rho_p.*(e_p+V_p.*V_p/2);

 F_F1_p(:,:,1) = rho_p.*u_p;
 F_F1_p(:,:,2) = rho_p.*u_p.*u_p + p_p - tauxx_F1_p;
 F_F1_p(:,:,3) = rho_p.*v_p.*u_p - tauxy_F1_p;
 F_F1_p(:,:,4) = rho_p.*(e_p+V_p.*V_p/2).*u_p + p_p.*u_p -
k_p.*dTdx_F1_p - u_p.*tauxx_F1_p - v_p.*tauxy_F1_p;

 G_F1_p(:,:,1) = rho_p.*v_p;
 G_F1_p(:,:,2) = rho_p.*u_p.*v_p - tauxy_F1_p;
 G_F1_p(:,:,3) = rho_p.*v_p.*v_p + p_p - tauyy_F1_p;
 G_F1_p(:,:,4) = rho_p.*(e_p+V_p.*V_p/2).*v_p + p_p.*v_p -
k_p.*dTdy_F1_p - u_p.*tauxy_F1_p - v_p.*tauyy_F1_p;

 F_G1_p(:,:,1) = rho_p.*u_p;
 F_G1_p(:,:,2) = rho_p.*u_p.*u_p + p_p - tauxx_G1_p;
 F_G1_p(:,:,3) = rho_p.*v_p.*u_p - tauxy_G1_p;
 F_G1_p(:,:,4) = rho_p.*(e_p+V_p.*V_p/2).*u_p + p_p.*u_p -
k_p.*dTdx_G1_p - u_p.*tauxx_G1_p - v_p.*tauxy_G1_p;

 G_G1_p(:,:,1) = rho_p.*v_p;
 G_G1_p(:,:,2) = rho_p.*u_p.*v_p - tauxy_G1_p;
 G_G1_p(:,:,3) = rho_p.*v_p.*v_p + p_p - tauyy_G1_p;
 G_G1_p(:,:,4) = rho_p.*(e_p+V_p.*V_p/2).*v_p + p_p.*v_p -
k_p.*dTdy_G1_p - u_p.*tauxy_G1_p - v_p.*tauyy_G1_p;

 for i=1:4
 F1_p(:,:,i) = F_F1_p(:,:,i).*dydeta - G_F1_p(:,:,i).*dxdeta;
 G1_p(:,:,i) = - F_G1_p(:,:,i).*dydxi + G_G1_p(:,:,i).*dxdxi;
 end

 U1_c(2:m,2:n,:) = U1(2:m,2:n,:) - dt*(F1_p(2:m,2:n,:)-F1_p(1:m-
1,2:n,:))/dxi - dt*(G1_p(2:m,2:n,:)-G1_p(2:m,1:n-1,:))/deta +
dt*S(2:m,2:n,:);

 %---
 %% Decode variables of corrector step

 for i=1:4
 U_c(2:m,2:n,i) = U1_c(2:m,2:n,i)./J(2:m,2:n);
 end

 rho_c(2:m,2:n) = U_c(2:m,2:n,1);
 u_c(2:m,2:n) = U_c(2:m,2:n,2)./U_c(2:m,2:n,1);
 v_c(2:m,2:n) = U_c(2:m,2:n,3)./U_c(2:m,2:n,1);
 e_c(2:m,2:n) = U_c(2:m,2:n,4)./U_c(2:m,2:n,1) -
(u_c(2:m,2:n).*u_c(2:m,2:n) + v_c(2:m,2:n).*v_c(2:m,2:n))/2;
 T_c(2:m,2:n) = e_c(2:m,2:n)/c_v;
% p_c(2:m,2:n) = R*rho_c(2:m,2:n).*T_c(2:m,2:n); % not necessary
decoding

 %---
 %% Boundary conditions of corrector step

55

 [rho_c,u_c,v_c,T_c,p_c] =
Condiciones_Contorno_Rampa_ascendente(rho_c,u_c,v_c,T_c,p_c,Nxi,Neta);

 e_c(Nxi,2:Neta-1) = c_v*T_c(Nxi,2:Neta-1);

 %---
 %% Encode variables for result and calculation of result

 U_c(:,:,1) = rho_c;
 U_c(:,:,2) = rho_c.*u_c;
 U_c(:,:,3) = rho_c.*v_c;
 U_c(:,:,4) = rho_c.*(e_c + (u_c.*u_c + v_c.*v_c)/2);

 U = (U_p + U_c)/2;

 %---
 %% Check for convergence

 if max(max(abs(U(:,:,1) - rho)))>1e-8
 conver = 0;
 else
 conver = 1;
 end

 %---
 %% Decode final variables

 rho = U(:,:,1);
 u = U(:,:,2)./U(:,:,1);
 v = U(:,:,3)./U(:,:,1);
 e = U(:,:,4)./U(:,:,1) - (u.*u + v.*v)/2;
 T = e./c_v;
 p = R*rho.*T;
 p(:,1) = 2*p(:,2) - p(:,3);

 [rho,u,v,T,p] = Boundary_Conditions(rho,u,v,T,p,Nxi,Neta);

 nu = nu0*(T/T0).^(3/2).*((T0+110)./(T+110));
 k = nu*c_p/Pr;

 % Update time and iteration counts
 iter = iter + 1;
 t = t + dt;

 % Print at screen to check for correct execution
 display([t,dt])
 if max(max(abs(imag(T))))>0 && flag==0
 tbreak = t;
 flag = 1;
 end

% mesh(y,x,p)
% pause(0.001)

end

%--

56

%% Check the validity of the results by calculating the mass inflow
and outflow balance

Mass_in = trapz(y(1,:) , u(1,:).*rho(1,:));
Mass_out = trapz(y(Nxi,:) , u(Nxi,:).*rho(Nxi,:));
if abs((Mass_in - Mass_out) / Mass_in*100) <= 1
 display('The solution seems valid checking the mass balance')
else
 display('The solution seems to violate the mass balance, it is not
valid')
end

%--
%% Viscosity force at the wall

f_pared = nu(:,1).*(u(:,2) - u(:,1))/dy;
F_pared = trapz(0:dx:LHOR,f_pared);
C_d = F_pared/0.5/rhoinf/uinf^2/LHOR;

F_press = trapz(0:dx:LHOR,p(:,1));

%--
%% Plots and ending

plot(x(:,1) , p(:,1))
figure(2)
mesh(0:dy:LVER,0:dx:LHOR,real(p))
disp = [(Mass_in - Mass_out) / Mass_in*100 conver]
time = toc

% Additional plots and calculations using the results may be done at
% different scripts

57

4 Applications

4.1 Proof of Concept: The Flat Plate

Before any further using of the method, it is necessary the testing of the program that has
been created in order to check the correct implementation of the technique. This testing has
to be done with a problem about which other results already exist, provided by other authors,
so they can be compared to the ones in this project.

In this case the best problem to do so is the flat plate. In this problem the computational
domain is comprised of one rectangle, bellow which is the flat plate. It composes the lower
boundary of the domain. In the upper boundary, the stream of air is supposed to be unaltered,
and in the right boundary the air enters the domain also unaltered, as with supersonic flows
the flat plate cannot alter the flow upstream.

The dimension of the domain is 10ିହ m in the horizontal direction. In the vertical direction it is
set by calculating the approximated thickness of the boundary layer, estimated by the
Reynolds number, and multiplying it by a factor, in this case set to five.

𝑅𝑒ுைோஶ
=

𝜌ஶ𝑈ஶ𝐿ுைோ

𝜇ஶ
; 𝛿 =

5 𝐿ுைோ

ඥ𝑅𝑒ுைோஶ

Equation 4.1

𝐿௏ாோ = 5 ⋅ 𝛿

The boundary conditions that have been implemented are the ones expressed earlier, together
with a no slip condition in the flat plate surface and the calculation by extrapolation of the
pressure at the plate surface and of all the variables at the left side of the domain. However,
this boundary conditions have two important variants.

4.1.1 Constant Temperature Plate

In the first one the temperature of the plate is supposed to remain unaltered. The results for a
Mach 2 flow, with 70 x 70 grid points are shown here:

58

Figure 4.2 shows the pressure in the domain when stationary flow is reached. The hotter
colours represent higher values of pressure, and the blue ones represent lower values. It can
clearly be seen the presence of a shock wave at the point in which the flow contacts the plate.

In this three-dimensional representation the increase of pressure is even more evident. The
shock wave is created at the beginning of the plate, the leading-edge, where the pressure
reaches two times the atmospheric pressure, and then travels backwards and upwards, with
an angle with respect to the horizontal direction. In Figure 4.2 it can be seen that at the end of
the horizontal domain the shock wave reaches a height of 0.8 × 10ିହ.

Figure 4.2. Pressure (Pa) in flat plate, Mach 2, grid 70 x 70. Two-dimensional view.

Figure 4.1. Pressure in flat plate, Mach 2, grid 70 x 70. Three-dimensional view.

59

The velocity field is obviously different, represented in Figure 4.4. It also suffers the effect of
the shock wave, which reduces the velocity of the air. Despite that, the effect of the boundary
layer, caused by the no-slip condition, near to the plate is much more important.

The temperature field also suffers the effects of the boundary layer. Figure 4.3 indicates that
the air is heated a lot at the leading-edge point. Then, there are two differentiated regions of
hot air. The first is the air heated by the shock wave. The second is the boundary layer region,
due to fiction and possibly because of convection from the hotter leading-edge, but this latter
factor is just a theory. In the middle the temperature of the air is greater than in the exterior
but lower than in these two regions.

Figure 4.4. Velocity (m/s) in flat plate, Mach 2, grid 70 x 70. Two-dimensional view.

Figure 4.3. Temperature (K) in flat plate, Mach 2, grid 70 x 70. Two-dimensional view.

60

4.1.1.1 Comparison with previous results

As said previously, one of the aims when simulating the flat plate is to compare it with
previous results to check the validity of the program. In John D. Anderson’s book
“Computational Fluid Dynamics” [Ref 1], in chapter 10, this very same problem is solved, and a
few results and figures are offered so they can be compared with the results of this project.

This figure represents the surface pressure that he obtained in the plate with a Mach number
of 4 and a grid of 70x70 points. If these conditions are replicated the results are represented in
the following figure.

Looking at the constant temperature results obtained by John Anderson, the curve below in
Figure 4.5, and the Figure 4.6, it can be seen that they are identical. The pressure spike peaks
in around 2.9 times the outside pressure in both figures, then between the points 10 and 15 it
appears a region in which pressure stabilizes and even increases slightly, and at the end of the
plate the pressure is almost 1.4 times the outside pressure.

Figure 4.6. Surface pressure, Mach 4, Grid 70x70.

Figure 4.5. John D. Anderson’s “Computational Fluid Dynamics” [Ref 1]
results. Pressure along surface of plate with grid 70x70 and Mach 4.

61

To ensure that the results of the program developed are valid other figures are going to be
compared too. The next is the pressure profile in the vertical direction at the trailing edge.

John Anderson’s result is shown in Figure 4.8 and the obtained with the program in Figure 4.7,
and they are again identical. The pressure starts rising at 60 % of the total height, peaks at
around 40 % with a value of almost 1.8 and ends at a value of around 1.37.

Figure 4.8. John D. Anderson’s “Computational Fluid Dynamics” [Ref 1]
results. Pressure profile at trailing edge with grid 70x70 and Mach 4.

Figure 4.7. Trailing edge pressure profile, Mach 4, Grid 70x70.

62

This same trailing edge profile analysis can be made with the temperature. The results are also

the same, shown in figures Figure 4.10 and Figure 4.9. As it was said for Figure 4.3, there are
two regions of heated air, represented here by the two spikes in temperature in the profile,
one close to the plate and other at around 40 % of the height. The first spike reaches around
1.2 times the outside temperature and the inner spike reaches 1.6 times it.

The last comparison is going to be the velocity profile. This is going to be made by the trailing
edge Mach number profiles, shown in figures Figure 4.12 and Figure 4.11. From the (0,0) point,
which represents the no slip condition, the air accelerates to the exterior velocity of Mach 4.
The presence of the shock wave is also noticeable at around 40 % of the profile, provoking an
initial drop in velocity.

Figure 4.9. John D. Anderson’s “Computational Fluid Dynamics” [Ref 1]
results. Temperature profile at trailing edge with grid 70x70 and Mach 4.

Figure 4.10. Trailing edge temperature profile, Mach 4, Grid 70x70.

63

As a final conclusion it can be said that the code programmed obtains valid results and is ready
to analyse more complex situations.

4.1.1.2 Dependency with the grid points

One of the tests that can be made now is for example how the results vary with the fineness of
the grid. So, several simulations where made of the flat plate with Mach 2, only varying the
number of grid points, for the results to be compared.

Figure 4.11. Trailing edge temperature profile, Mach 4, Grid 70x70.

Figure 4.12. John D. Anderson’s “Computational Fluid Dynamics” [Ref 1]
results. Mach number profile at trailing edge with grid 70x70 and Mach 4.

64

What has been found is that at the trailing edge the results are almost the same. For instance,
the pressure profiles are shown in Figure 4.14. Simply the shock wave moves up slightly.

But at the leading edge the results change significantly. The pressure spike becomes more
intense, starts earlier and is thinner with the increase in number points. The resistance
coefficient rises a little bit, and the total vertical force, in Newtons, is almost unchanged.

Figure 4.14. Trailing edge pressure profiles, Mach 2, dependency with the grid points.

Figure 4.13. Surface pressure, Mach 2, dependency with the grid points.

65

 40 x 40 50 x 50 60 x 60 70 x 70 80 x 80 100x100 120x120 150x150
𝐂𝐝

 0.0569 0.0589 0.0604 0.0616 0.0626 0.0643 0.0655 0.0670

Vertical
force
(N)

-1.383 -1.386 -1.388 -1.389 -1.389 -1.390 -1.390 -1.389

4.1.1.3 Dependency with the Mach number

It is also interesting to make the analysis of how the Mach number affects the results. For
instance, looking at Figure 4.15 and comparing it with Figure 4.1, it is clear that the shock wave
has been made narrower. Also, the pressure spike is much greater, and other calculations like
the forces change too.

The maximum value of the pressure in the shock wave at the trailing edge rises with the Mach
number according to the Figure 4.18. Also, as mentioned before, the point of this maximum
gets closer to the flat plate, in what seems to be an asymptotic behaviour according to Figure
4.17.

Figure 4.15. Pressure (Pa) field, Grid 70 x 70 points, Mach number 10.

66

The pressure at the plate is considerably altered by the Mach number, shown in Figure 4.16.

Figure 4.18. Trailing edge maximum shock wave pressure value.

Figure 4.17. Trailing edge maximum shock wave pressure position.

Figure 4.16. Pressure at the surface of the plate

67

The resistance coefficient decreases, even though the actual friction force increases, due to
the increase in the external velocity that is used in the normalization.

The downward vertical force increases due to the increase in the overall pressure on the plate
surface.

4.1.2 Adiabatic Plate

The second variant of the boundary conditions is the case of the adiabatic plate. This time, the
temperature of the plate is not constant, instead there is no heat transfer crossing through it.
The results obtained by John Anderson for the adiabatic plate have already been shown in
figures Figure 4.5, Figure 4.8, Figure 4.9 and Figure 4.12.

Figure 4.20. Resistance coefficient.

Figure 4.19. Downward vertical force (N).

68

For this section not to be too large only the case of Mach number 4 and 70 x 70 grid points is
going to be discussed to compare it with the results obtained in [Ref 1].

To begin with, the surface pressure obtained by John Anderson in Figure 4.5 and the one
obtained in this project are identical. The pressure peak is slightly higher than five time the
outside value and the behaviour, with an increase in pressure around the grid point 10 and a
value of about 2.8 times the outside pressure.

Figure 4.21. Surface pressure for adiabatic plate, Mach 4, Grid 70 x 70 points.

Figure 4.22. Trailing edge pressure profile for adiabatic plate, Mach 4, Grid 70 x 70.

69

The trailing edge pressure profile is also the same in Figure 4.22 than in Figure 4.8, the
temperature profile is the same in Figure 4.23 than in Figure 4.9, and finally the Mach number
profile is the same in Figure 4.24 than in Figure 4.12.

To close the adiabatic plate case the temperature field is displayed in Figure 4.25. The air is
firstly heated by the shock wave and then heats more and more when approaching the
surface.

Figure 4.24. Trailing edge Mach number profile for adiabatic plate, Mach 4, Grid 70 x 70.

Figure 4.23. Trailing edge temperature profile for adiabatic plate, Mach 4, Grid 70 x 70.

70

4.1.3 Flat plate with compressed grid

Not only the program used for rectangular and uniform grids needs testing, also the used for
non-uniform grids does. To achieve this what has been done is solving the flat plate but now
using a compressed grid. In particular, the grid transformation is given by the following
relations:

𝑥 =
𝑒క − 1

𝑓

Equation 4.2

𝑦 =
𝑒ఎ − 1

𝑓

Equation 4.3

Theses relations create a compressed grid around the point (0,0), where f is a corrector factor
that determines the severity of this compression. Obtaining the analytical direct and inverse
metrics from Equation 4.2 and Equation 4.3 is easily achieved:

𝜕𝑥

𝜕𝜉
=

𝑒క

𝑓
 ;

𝜕𝑦

𝜕𝜂
=

𝑒ఎ

𝑓
 ;

𝜕𝜉

𝜕𝑥
=

𝑓

𝑓𝑥 + 1
 ;

𝜕𝜂

𝜕𝑦
=

𝑓

𝑓𝑦 + 1

Figure 4.25. Temperature (K) field for adiabatic plate.

71

With the rest been equal to zero. As a demonstration, the Figure 4.26 shows the grid
generated with this method for a factor of 10଺ and 15 x 15 points.

The only thing that is left to say is that with this grid the results obtained by the
“MainGridTrans_DirectMetrics.m” program have been exactly the same as the obtained by the
uniform grid, so they are not going to be repeated here. By checking that the results coincide,
the correct functioning of the program developed for non-uniform grid transformations has
been ensured.

4.1.4 Auxiliary functions for the flat plate

Initial Conditions Function (both for uniform and non-uniform grid)

function [rho,u,v,T,p] =
Initial_Conditions_FlatPlate(rhoinf,uinf,Tinf,R,Nxi,Neta)

rho(1:Nxi,1:Neta) = rhoinf;
u(1:Nxi,1) = 0;
u(1:Nxi,2:Neta) = uinf;
v(1:Nxi,1:Neta) = 0;
T(1:Nxi,1:Neta) = Tinf;
p(1:Nxi,1:Neta) = R*rho.*T;

Boundary Conditions Function (both for uniform and non-uniform grid)

function [rho,u,v,T,p] =
Boundary_Conditions_FlatPlate(rho,u,v,T,p,Nxi,Neta)

% CC at the right side
rho(Nxi,2:Neta-1) = 2*rho(Nxi-1,2:Neta-1) - rho(Nxi-2,2:Neta-1);
u(Nxi,2:Neta-1) = 2*u(Nxi-1,2:Neta-1) - u(Nxi-2,2:Neta-1);
v(Nxi,2:Neta-1) = 2*v(Nxi-1,2:Neta-1) - v(Nxi-2,2:Neta-1);
T(Nxi,2:Neta-1) = 2*T(Nxi-1,2:Neta-1) - T(Nxi-2,2:Neta-1);
p(Nxi,2:Neta-1) = 2*p(Nxi-1,2:Neta-1) - p(Nxi-2,2:Neta-1);

% CC at the plate surface

Figure 4.26. Compressed grid of 15x15 points and f = 10଺

72

rho(2:Nxi,1) = 2*rho(2:Nxi,2) - rho(2:Nxi,3);
p(2:Nxi,1) = 2*p(2:Nxi,2) - p(2:Nxi,3);
T(2:Nxi,1) = T(2:Nxi,2);

Geometry Function (only for compressed grid)

function
[x,y,dxi,deta,dxidx,dxidy,detadx,detady,J,dxdxi,dxdeta,dydxi,dydeta] =
Geometry_CompressedGrid(Nxi,Neta,LHOR,LVER)

f = 10^6;

xi_LHOR = log(f*LHOR+1);
eta_LVER = log(f*LVER+1);

dxi = xi_LHOR/(Nxi-1);
deta = eta_LVER/(Neta-1);

for j=1:Neta
 xi(:,j) = 0:dxi:xi_LHOR;
end
for i=1:Nxi
 eta(i,:) = 0:deta:eta_LVER;
end

for i=1:Nxi
 for j=1:Neta
 x(i,j) = (exp(xi(i,j)) - 1)/f;
 y(i,j) = (exp(eta(i,j)) - 1)/f;
 end
end

dxidx = f./(f*x+1);
dxidy = 0;
detadx = 0;
detady = f./(f*y+1);

dxdxi = exp(xi)/f;
dxdeta = 0;
dydxi = 0;
dydeta = exp(eta)/f;

J = dxdxi.*dydeta - dydxi.*dxdeta;

73

4.2 Forward Step

One of the interesting modifications that can be done to the flat plate is the case in which it
exists an adiabatic step facing the direction of the flow. In this case the air creates a strong
pressure increase in contact with the vertical wall and pushes back the solid surface. The
geometry includes a flat plate before the step that, as it is going to be seen, creates its own
shock wave before reaching the wall. The computational domain has been delimited to 10ିହ in
the horizontal direction and to 1.6 ⋅ 10ିହ in the vertical direction.

Inside the “solid step” there are grid points, as this problem has been solved with the code
that requires a uniform and rectangular grid. What has been done is adequately modifying the
initial and boundary conditions to enforce the variables inside the solid square in each time
step, thus isolating it from the rest of the flow field. In the walls of the step a no slip condition
has been coded so no flow permeates the wall.

The position and height of the wall can be modified at will and, in this case, it always starts at
70% of the horizontal distance, what means 0.7 ⋅ 10ିହ. The height is going to be variated to
see the effect it has over the results. See for instance the figure below, in which the pressure is

represented for a Mach 2 flow, with a step height of 30% of the vertical domain, 4.8 ⋅ 10ି଺.

Figure 4.27. Pressure (Pa) in forward step, Mach 2, step (3e-6 x 4.8e-6). Two-dimensional view.

74

In this example the flat plate creates its own shock wave, but the relatively slow velocity of the
flow makes the effect of the step almost erase it. In the next example, the same geometry but
at Mach 3, showed in three-dimensional view to better appreciate the figure, the effects of the
step are much more compressed close to it.

Now looking at the colour bar next to the figures Figure 4.27 and Figure 4.28 notice the great
difference in pressure that the different Mach numbers create over the vertical wall. In Figure
4.28, at the beginning of the flat plate it is appreciated the pressure increase equivalent to
Figure 4.16 at Mach 3, but still it is very small in comparison with the pressure near the wall.

It also starts to be seen certain interaction between the flat plate and the vertical wall. It starts
next to the plate, like if the flow is deflected away from the inner corner by an oblique shock
wave. This effect is much better seen by increasing the step height even more, to 50% (8 ⋅

10ି଺), shown in Figure 4.30 for Mach 2.

Figure 4.28. Pressure (Pa) in forward step, Mach 3, step (3e-6 x 4.8e-6). Three-dimensional view.

75

When the Mach number is increased, this oblique wave mixes with the step effects. Instead
what is strongly seen is a recirculating air region that is created near the corner of the step,
shown in Figure 4.29.

The mean pressure in the vertical wall for the steps of 4.8 ⋅ 10ି଺ and 8 ⋅ 10ି଺ is shown in
Figure 4.33. The mean pressure is almost unaffected by the step height, but greatly increases
when increasing the Mach number.

Figure 4.30. Pressure in forward step, Mach 2, step (3e-6 x 8e-6). Two-dimensional view.

Figure 4.29. Pressure in forward step, Mach 4, step (3e-6 x 4.8e-6). Two-dimensional view.

76

By comparing Figure 4.19 to Figure 4.31 it is safe to say that the downward vertical force
increases due to the presence of the step, which makes sense looking at the high pressure

Figure 4.33. Mean pressure for forward step. Dependency with step height and Mach
number.

Figure 4.31. Downward vertical force for forward step. Dependency with step height and
Mach number.

Figure 4.32. Backward horizontal force for forward step. Dependency with step height
and Mach number.

77

region created that is pushing the surface not only backwards but also downward.

When analysing the backward force, the Figure 4.32 shows that it increases with the Mach
number, and obviously with the step height, as there is more surface opposing the incoming
flow. For comparison, the friction force for the flat plate at Mach 2 was 0.18 Newtons, so
friction forces are neglectable compared with the pressure ones.

One last remark is to mention that the temperature field in this case is very similar to the
pressure field. For instance, the temperature field for Mach 4 flow with 4.8 ⋅ 10ି଺ step height
is shown in Figure 4.34. It is to be compared with the pressure of Figure 4.29, and the
similarities are evident. The only clear difference is the regions very close to the surfaces, in
which the temperature falls to accommodate with the constant temperature surfaces set in
the boundary conditions.

4.2.1 Auxiliary functions for the forward step

Initial Conditions Function

function [rho,u,v,T,p] =
Initial_Conditions_ForwardStep(rhoinf,uinf,Tinf,R,Nx,Ny)

% Step X direction beginning
Nxs = floor(0.7*Nx);

% Step height
Nya = floor(0.5*Ny);

rho(1:Nx,1:Ny) = rhoinf;
u(1:Nx,2:Ny) = uinf;
v(1:Nx,1:Ny) = 0;
T(1:Nx,1:Ny) = Tinf;
p(1:Nx,1:Ny) = R*rho.*T;

Figure 4.34. Temperature (K) in forward step, Mach 4, step (3e-6 x 4.8e-6). Two-dimensional view.

78

u(1:Nx,1) = 0;

u(Nxs:Nx,1:Nya) = 0;
v(Nxs:Nx,1:Nya) = 0;
T(Nxs:Nx,1:Nya) = Tinf;

Boundary Conditions Function

function [rho,u,v,T,p] =
Boundary_Conditions_ForwardStep(rho,u,v,T,p,Nx,Ny)

% Step X direction beginning
Nxs = floor(0.7*Nx);

% Step height
Nya = floor(0.5*Ny);

% Force variables at the solid square
u(Nxs:Nx,1:Nya) = 0;
v(Nxs:Nx,1:Nya) = 0;

T(Nxs:Nx,1:Nya) = 298;
p(Nxs+1:Nx,1:Nya-1) = 1.0477e+05;

% CC at the right side
rho(Nx,1:Ny-1) = 2*rho(Nx-1,1:Ny-1) - rho(Nx-2,1:Ny-1);
u(Nx,1:Ny-1) = 2*u(Nx-1,1:Ny-1) - u(Nx-2,1:Ny-1);
v(Nx,1:Ny-1) = 2*v(Nx-1,1:Ny-1) - v(Nx-2,1:Ny-1);
T(Nx,1:Ny-1) = 2*T(Nx-1,1:Ny-1) - T(Nx-2,1:Ny-1);
p(Nx,1:Ny-1) = 2*p(Nx-1,1:Ny-1) - p(Nx-2,1:Ny-1);

% CC at the solid surface
rho(2:Nxs,1) = 2*rho(2:Nxs,2) - rho(2:Nxs,3);
p(2:Nxs,1) = 2*p(2:Nxs,2) - p(2:Nxs,3);

% CC at the Nxs: vertical wall
rho(Nxs,1:Nya) = 2*rho(Nxs-1,1:Nya) - rho(Nxs-2,1:Nya);
p(Nxs,1:Nya) = 2*p(Nxs-1,1:Nya) - p(Nxs-2,1:Nya);

% CC at the Nya: horizontal wall
rho(Nxs+1:Nx,Nya) = 2*rho(Nxs+1:Nx,Nya+1) - rho(Nxs+1:Nx,Nya+2);
p(Nxs+1:Nx,Nya) = 2*p(Nxs+1:Nx,Nya+1) - p(Nxs+1:Nx,Nya+2);

79

4.3 Rearward Step

The complementary problem is to see what happens in the opposite situation, when the step
is now facing rearwards to the incoming flow. In this geometry, the flat plate above the solid
square creates a shock wave just as the flat plate without the step would do. However, after
that, the pressure falls significantly behind the step. The geometry has been delimited to 10ିହ
in the horizontal direction and to 1.5 ⋅ 10ିହ in the vertical direction.

This problem is less interesting than the previous one as the only meaningful thing that is to be
measured is the pressure behind the step. The more interesting behaviour, that discusses the
formation of the Prandtl-Meyer Expansion waves, is when the step becomes a slope and
constitutes the next application.

The pressure field for a Mach 2 flow with a step height of 30% of the total vertical dimension,
4.5 ⋅ 10ି଺, is shown in Figure 4.35.

The pressure increase in the shock wave created by the flat plate above the solid square is
identical to the normal flat plate. However, after that the pressure falls in an expansion wave
to a value lower than the external pressure.

Figure 4.35. Pressure (Pa) in rearward step, Mach 2, step (3e-6 x 4.5e-6). Two-dimensional view.

80

The peak of low pressure happens just at the corner of the step, where it exists a point that
almost reaches zero (and it has been a nightmare for the numerical stability of the program).
After the peak, the pressure starts to recover both when advancing down close to the surface
or back following the flow direction. It is seen clearly in Figure 4.36, that represents the
pressure for a Mach 4 flow with a rearward step of height 3 ⋅ 10ି଺.

The evolution of the mean pressure in the vertical wall is displayed in Figure 4.37. As it is
showed by the two lines, now the mean pressure at the wall, in contrast with the forward step
(Figure 4.33), highly depends on the step height. When the step is higher the overall mean
pressure is also higher. That is probably because for the lower step the peak of low pressure
represents more proportionally to the total vertical surface.

Figure 4.36. Pressure (Pa) in rearward step, Mach 4, step (3e-6 x 3e-6). Two-dimensional view.

Figure 4.37. Mean pressure in (Pa) for rearward step. Dependency with step height and Mach number.

81

Also, a dependency is appreciated regarding the Mach number. With higher flow velocities,
the vacuum effect grows behind the wall. This effect is stronger for higher steps and seems to
have diminishing behaviour with the increase in Mach.

The last piece of information that is needed to be discussed is the temperature field. Now it is
not similar to the pressure field as it was for the forward step. Instead, the air is heated in two
different regions, as it is seen in Figure 4.38 for a Mach 2 flow with a 3.5 ⋅ 10ି଺ step. The first
region of hot air is caused by the shock wave, but after it, it appears another region in which
the air is heated by friction.

The proof of that can be obtained by taking a look at the velocity field. In Figure 4.39 it is seen
that the heated region coincides with great velocity gradients caused by friction.

Figure 4.38. Temperature (K) in rearward step, Mach 2, step (3e-6 x 3.5e-6). Two-dimensional view.

Figure 4.39 Velocity (m/s) in rearward step, Mach 2, step (3e-6 x 3.5e-6). Two-dimensional view.

82

Also, it is appreciated that a recirculating air region is created at the proximity of the bottom
corner of the vertical wall, as isolating and analysing only the horizontal velocity field, showed
in Figure 4.40, reveals that this component reaches negative values and has a circular
behaviour.

The rearward step is a good application to test a demonstrated fact; that the stagnation
enthalpy is not affected in a shock wave. The stagnation enthalpy has the following expression:

ℎ଴ = 𝑐௣𝑇 +
𝑉ଶ

2

As it is shown in the figure below, the presence of the shock wave seen in Figure 4.35 does not
affect the stagnation enthalpy. Only the viscosity effects in the high velocity gradients do.

Stagnation enthalpy in rearward step, Mach 2, step (3e-6 x 4.5e-6).

4.3.1 Auxiliary functions for the rearward step

Initial Conditions Function

Figure 4.40. Zoom at the bottom corner, horizontal velocity (m/s) in rearward step,
Mach 2, step (3e-6 x 3.5e-6). Two-dimensional view.

83

function [rho,u,v,T,p] =
Initial_Conditions_RearwardStep(rhoinf,uinf,Tinf,R,Nx,Ny)

% Step X direction beginning
Nxs = floor(0.3*Nx);

% Step height
Nya = floor(0.2*Ny);

u(1:Nx,1:Ny) = uinf;
u(1:Nx,1:Nya) = 0;

v(1:Nx,1:Ny) = 0;

rho(1:Nx,1:Ny) = rhoinf;
T(1:Nx,1:Ny) = Tinf;
p(1:Nx,1:Ny) = R*rho.*T;

Boundary Conditions Function

function [rho,u,v,T,p] =
Boundary_Conditions_RearwardStep(rho,u,v,T,p,Nx,Ny,Tinf,pinf)

% Step X direction beginning
Nxs = floor(0.3*Nx);

% Step height
Nya = floor(0.2*Ny);

% Force variables in the solid square
u(1:Nxs,1:Nya) = 0;
v(1:Nxs,1:Nya) = 0;

T(1:Nxs,1:Nya) = Tinf;
p(1:Nxs-1,1:Nya-1) = pinf;

% CC at the right side
rho(Nx,1:Ny-1) = 2*rho(Nx-1,1:Ny-1) - rho(Nx-2,1:Ny-1);
u(Nx,1:Ny-1) = 2*u(Nx-1,1:Ny-1) - u(Nx-2,1:Ny-1);
v(Nx,1:Ny-1) = 2*v(Nx-1,1:Ny-1) - v(Nx-2,1:Ny-1);
T(Nx,1:Ny-1) = 2*T(Nx-1,1:Ny-1) - T(Nx-2,1:Ny-1);
p(Nx,1:Ny-1) = 2*p(Nx-1,1:Ny-1) - p(Nx-2,1:Ny-1);

% CC at the solid surface
rho(Nxs:Nx,1) = 2*rho(Nxs:Nx,2) - rho(Nxs:Nx,3);
%rho_p(2:Nx,1) = rho(2:Nx,1) - dt/2/dy*(3*rho(2:Nx,1).*u(2:Nx,1) -
4*rho(2:Nx,2).*u(2:Nx,2) + rho(2:Nx,3).*u(2:Nx,3));
p(Nxs:Nx,1) = 2*p(Nxs:Nx,2) - p(Nxs:Nx,3);

% CC at the Nxs: vertical wall
rho(Nxs,1:Nya) = 2*rho(Nxs+1,1:Nya) - rho(Nxs+2,1:Nya);
p(Nxs,1:Nya) = 2*p(Nxs+1,1:Nya) - p(Nxs+2,1:Nya);

% CC at the Nya: horizontal wall
rho(1:Nxs,Nya) = 2*rho(1:Nxs,Nya+1) - rho(1:Nxs,Nya+2);
p(1:Nxs,Nya) = 2*p(1:Nxs,Nya+1) - p(1:Nxs,Nya+2);

84

4.4 Rearward Slope and
The Prandtl-Meyer Expansion Waves

It is time to use the non-uniform grid transformation for the first time, turning the rearward
vertical wall into a slope. In this problem the horizontal and vertical dimensions of the
computational domain have been set to 10ିହ and 1.63 ⋅ 10ିହ respectively. The beginning and
height of the slope can be modified at will, and the slope falls from the indicated point till the
end of the computational domain.

Firstly, it is going to be studied the case in which still exist a portion of flat plate above the solid
surface. In this case the flat plate creates the typical shock wave that has been seen in previous
applications. This pressure field showed in Figure 4.41 for a 35º slope with Mach 3 shows
precisely that.

The temperature field on the other hand, Figure 4.43, reveals that the second region of heated
air, at least in this configuration, remains attached to the slope. That may be an indication that
the recirculating air region has not been formed. In addition, the temperature field reveals that
there exists a region in which the temperature falls below the external value. This is probably
because there the air is accelerated due to the expansion wave to velocities higher than the
incoming flow.

Figure 4.41. Pressure (Pa) in rearward slope, Mach 3, Slope angle 35º. Two-dimensional view.

85

Looking at the velocity field, Figure 4.42, it is confirmed that, as it was hinted by the
temperature, there is no recirculating area. Also, it is seen that at the area in which the
temperature falls, the velocity of the air is accelerated to even a greater value than the
external flow.

Figure 4.43. Temperature (K) in rearward slope, Mach 3, Slope angle 35º. Two-dimensional view.

Figure 4.42. Velocity (m/s) in rearward slope, Mach 3, Slope angle 35º. Three-dimensional view.

86

It is therefore interesting to see the surface pressure distribution and its dependency with the
slope angle and the Mach number. The Figure 4.44 shows the pressure surface profiles for
different angles of the slope.

The first curve corresponds to the flat plate and coincides with the results of section 4.1. It is
seen that the presence of a minimum slope already affects greatly to the results after the slope
corner. Then, the increase in the slope angle decreases the pressure in a diminishing fashion
with the angle. The behaviour of the pressure at the surface after the step is asymptotical and
is not expected to differ much more after the end of the computational domain.

Figure 4.44. Pressure at surface for rearward slope, Mach 3, dependency with slope angle.

Figure 4.45. Pressure at surface for rearward slope, slope angle 35º, dependency with Mach number.

87

When varying the Mach number, what is observed is that the pressure peak at the beginning is
accentuated, as was expected due to Figure 4.16, and what happens after that is that, at least
for an angle as big as 35 degrees, the pressure after the corner does not depend much on the
Mach number.

4.4.1 Prandtl-Meyer expansion waves

The most interesting part of this application is when the flat plate surface is eliminated, letting
only the slope. In this case, if the slope angle is big enough, there is no shock wave created. It
is interesting to investigate the transition between the behaviour of a flat plate and this other.

This Figure 4.46 represents the pressure for a Mach three flow with an angle of 26º. Now the
higher values of pressure correspond to the unperturbed flow, and the plate only creates an
expansion wave. It is known that it is an expansion wave because it decreases the pressure of
the air and accelerates it.

Figure 4.46. Pressure (Pa) in rearward slope, Mach 3, Slope angle 26º, no flat plate.

Figure 4.47. Velocity (m/s) in rearward slope, Mach 3, Slope angle 26º, no flat plate.

88

Looking at Figure 4.47 it is seen that the air accelerates over 100 m/s with respect to the
unperturbed air stream in the expansion wave. The elimination of the shock wave also
removes the heated air area created by it. Instead, the air cools in the expansion wave. Close
to the surface the air heats again due to friction effects, as it corresponds to high velocity
gradients observed in Figure 4.47.

Validating our results is very difficult as no exactly similar numerical experiment has been
found, but it can be tried by comparing them with the results obtained by John Anderson,
again in “Computational Fluid Dynamics” [Ref 1], in chapter 8. There, the analytical results for
the expansion wave problem is demonstrated.

The set-up and the problem in general that is solved in this chapter is quite different, so
differences in the results are to be expected. Specifically, the problem solved in the reference
has a free slip condition at the surface, and is treated with a step marching method, so its
dimensions are unreachable by our code, of over 10 meters. However, recreating the 5,352
degree angle and the Mach 2 flow in this project’s code, we obtain the following results.

The density at the surface at end of the computational domain is 1.071 kg/𝑚ଷ, that compared
with the 0.992 kg/𝑚ଷ of the analytical solution represents a 7.3% difference. Counting on the
differences in problems mentioned, it is reasonable to present the results obtained as not far
from reality. Making the same comparison it is obtained an 8.7% difference in pressure value,
0.81 ⋅ 10ହ Pa compared to the analytical 0.734 ⋅ 10ହ Pa, again reasonably far away given the
differences in set up.

Figure 4.48. Temperature (K) in rearward slope, Mach 3, Slope angle 26º, no flat plate.

89

When the slope angle is small a shock wave is created anyway, similarly to what happened to
the flat plate. See for instance the pressure field when the angle is lowered in Figure 4.49 and
compare it to Figure 4.46.

Thus, the transition happens between these two values of angle. Looking at the surface
pressure for different angles shown in Figure 4.50 it is seen that the pressure peak at the

beginning of the surface is reduced with the angle increase. With 18 degree angle it can be
considered insignificant and with 20 degrees it has already disappeared completely.

Figure 4.49. Pressure (Pa) in rearward slope, Mach 3, Slope angle 9.25º, no flat plate.

Figure 4.50. Pressure at surface for rearward slope, Mach 3, dependency with slope angle, no flat plate.

90

By comparing Figure 4.50 with the equivalent plots at different Mach numbers shown in Figure
4.52 and Figure 4.51, at Mach 2 and Mach 4 respectively, it is seen that the behaviour almost
does not change with the Mach number, and the pure expansion wave keeps happening at 20
degrees angle approximately.

Finally, when analysing the pressure profiles dependency with the Mach number, it is seen in
Figure 4.54 that a suction peak is created and accentuated when increasing the Mach near the
start of the slope. This behaviour is similar to the one seen in section 4.3 in the upper corner of

Figure 4.52. Pressure at surface for rearward slope, Mach 2, dependency with slope angle, no flat plate.

Figure 4.51. Pressure at surface for rearward slope, Mach 4, dependency with slope angle, no flat plate.

91

the rearward step, and as it did, has caused serious problems when dealing with the numerical
stability of the code.

To sum up, the mean pressure values at the wall are shown in the Figure 4.53. The overall
pressure is reduced when increasing the Mach number and with the slope angle. Also, it is
shown that when reducing the angle value the dependency with the Mach starts fading, until
eventually flips to become a higher pressure with higher Mach, as expected for the flat plate.

Figure 4.54. Pressure at surface for rearward slope, slope angle 26º, dependency with Mach number.

Figure 4.53. Mean pressure at surface of the slope. Dependency with Mach number and slope angle.

92

The diminishing pressure causes a backward force at the surface, if the external pressure is
used as reference it is positive in the upward-backward direction. Its plot is very similar to the
mean pressure plot, as the pressure and the force are directly related. However, when
calculating the resistance coefficient in the horizontal direction taking into account the
pressure forces, Figure 4.55, it is seen that due to the increase velocity for higher Mach
numbers, even with greater force, the coefficient is lower for them. The dependency with the
slope angle remains invariable.

4.4.2 Auxiliary functions for the rearward slope

Geometry Function

function
[x,y,dxi,deta,dxidx,dxidy,detadx,detady,J,dxdxi,dxdeta,dydxi,dydeta] =
Geometry_RearwardSlope(Nxi,Neta,LHOR,LVER)

xi_LHOR = LHOR;
eta_LVER = LVER;

dxi = xi_LHOR/(Nxi-1);
deta = eta_LVER/(Neta-1);

for j=1:Neta
 xi(:,j) = 0:dxi:xi_LHOR;
end
for i=1:Nxi
 eta(i,:) = 0:deta:eta_LVER;
end

% Slope X direction beginning
s = floor(0.0*Nxi);
xis = LHOR*(s-1)/(Nxi-1);

Figure 4.55. 𝐶ௗ due to pressure for the horizontal direction in rearward slope. Dependency with Mach number and slope angle.

93

% Slope height
a = 0.23*LVER;

y0(1:s) = a;
y0(s+1:Nxi) = a - (xi(s+1:Nxi) - xis)*a/(LHOR - xis);

for i=1:Nxi
 for j=1:Neta
 x(i,j) = xi(i,j);
 end
 y(i,:) = linspace(y0(i),LVER,Neta);
end

% Direct metrics DC
dxidx = Dx(xi,x);
dxidy = Dy(xi,y);
detadx = Dx(eta,x);
detady = Dy(eta,y);

% Inverse metrics DC
dxdxi = Dx(x,xi);
dxdeta = Dy(x,eta);
dydeta = Dy(y,eta);
dydxi = Dx(y,xi);

J = dxdxi.*dydeta - dydxi.*dxdeta;

Additional Functions (also for the leading edge)

function dudx = Dx(u,x)

[m,~] = size(x);

dudx(1,:) = (u(2,:) - u(1,:))./(x(2,:) - x(1,:));
dudx(2:m-1,:) = (u(3:m,:) - u(1:m-2,:))./(x(3:m,:) - x(1:m-2,:));
dudx(m,:) = (u(m,:) - u(m-1,:))./(x(m,:) - x(m-1,:));

function dudx = Dy(u,x)

[~,n] = size(x);

dudx(:,1) = (u(:,2) - u(:,1))./(x(:,2) - x(:,1));
dudx(:,2:n-1) = (u(:,3:n) - u(:,1:n-2))./(x(:,3:n) - x(:,1:n-2));
dudx(:,n) = (u(:,n) - u(:,n-1))./(x(:,n) - x(:,n-1));

Initial Conditions Function

function [rho,u,v,T,p] =
Initial_Conditions_RearwardSlope(rhoinf,uinf,Tinf,R,Nxi,Neta)

rho(1:Nxi,1:Neta) = rhoinf;
u(1:Nxi,1:Neta) = uinf;
u(2:Nxi,1) = 0;
v(1:Nxi,1:Neta) = 0;
T(1:Nxi,1:Neta) = Tinf;

94

p(1:Nxi,1:Neta) = R*rho.*T;

Boundary Conditions Function

function [rho,u,v,T,p] =
Boundary_Conditions_RearwardSlope(rho,u,v,T,p,Nxi,Neta)

% CC at the right side
rho(Nxi,2:Neta-1) = 2*rho(Nxi-1,2:Neta-1) - rho(Nxi-2,2:Neta-1);
u(Nxi,2:Neta-1) = 2*u(Nxi-1,2:Neta-1) - u(Nxi-2,2:Neta-1);
v(Nxi,2:Neta-1) = 2*v(Nxi-1,2:Neta-1) - v(Nxi-2,2:Neta-1);
T(Nxi,2:Neta-1) = 2*T(Nxi-1,2:Neta-1) - T(Nxi-2,2:Neta-1);
p(Nxi,2:Neta-1) = 2*p(Nxi-1,2:Neta-1) - p(Nxi-2,2:Neta-1);

% CC at the solid surface
rho(2:Nxi,1) = 2*rho(2:Nxi,2) - rho(2:Nxi,3);
p(2:Nxi,1) = 2*p(2:Nxi,2) - p(2:Nxi,3);

95

4.5 Leading Edge: Study of Shock Wave Angle

It is well known for the study of aerodynamic applications, and is comprehensibly explained by
A. B. Ripoll and Miguel Pérez-Saborid in “Fundamentos y aplicaciones de la mecánica de
fluidos” [Ref 3], that a leading edge that has a certain angle, frontally receiving a supersonic
flow, creates an oblique shock wave to adequate the flow to its solid geometry. In this section
this problem is going to be treated and the results obtained compared with the analytical
solutions for oblique shock waves.

Before anything else, a description of the geometry is given. It consists of an edge that has a
certain angle facing the stream of air. The horizontal dimension is set to 10ିହ 𝑚 and the edge
is situated at half this distance. The vertical dimension for the computational domain is
1.63 ⋅ 10ିହ 𝑚 in the positive direction and the same value in the negative direction.

The flow created is symmetrical, as can be seen in Figure 4.56 for a Mach 2 flow with an edge
semi-angle of 40 degrees, as the problem geometry and initial and boundary conditions also
are.

Figure 4.56. Pressure (Pa) for leading edge, Mach 2, edge semi-angle 40º.

96

The surface is set at constant temperature. That creates an effect seen in Figure 4.57, in which
the air is not heated if is arrives exactly from the symmetrical line, while the rest of the flow is
affected by the shock wave and heated substantially.

However, not always happens that the oblique shock wave begins before the leading edge. For
a Mach three flow with a 25 degrees semi-angle, the shock wave begins exactly at the leading
edge. When that happens, it is said that the shock wave is anchored to the edge.

It is interesting to know the pressure that the leading edge creates at the surface and its
dependency with the Mach number and the edge semi-angle. For a Mach two flow the

Figure 4.57. Temperature (K) for leading edge, Mach 2, edge semi-angle 40º

Figure 4.58. Pressure (Pa) for leading edge, Mach 3, edge semi-angle 25º.

97

pressure profiles at the surface of the edge, plotted with respect to the distance in the X
direction, are shown in Figure 4.59.

There is a change of behaviour between 20 and 25 degrees. With low angles the pressure rises
at the beginning of the surface, signalling that the shock wave is anchored. After that the
pressure at the surface starts high and only falls, a sign that the shock wave is no longer
anchored.

Figure 4.59. Pressure at the surface for a leading edge, Mach 2, dependency with edge semi-angle.

Figure 4.60. Pressure at the surface for a leading edge, Mach 3, dependency with edge semi-angle.

98

Looking at figures Figure 4.60 and Figure 4.61 that show the same pressure profiles for Mach
three and four respectively, it is clear that this behaviour also depends on the Mach number.
For Mach three and four, at a semi-angle of 30 degrees, the shock wave is still anchored. Also,
it is appreciated that a peak of pressure followed by a peak of suction is accentuated by both
the angle and the Mach number. At the beginning of the edge for Mach four, with the higher
values of semi-angle, the flow seems to become turbulent.

From [Ref 3] it is known that the analytical solution for the angle of an oblique shock wave
depends on the angle of the flow after the wave and the Mach number with the following
equation.

𝑡𝑎𝑛 𝛼 = 2 𝑐𝑜𝑡 𝛽 ቈ
𝑀ଵ

ଶ 𝑠𝑖𝑛ଶ 𝛽 − 1

𝑀ଵ
ଶ (𝛾 + 𝑐𝑜𝑠 2𝛽) + 2

቉

Equation 4.4

Where 𝛾 is the specific heat ratio and 𝑀ଵ is the Mach number of the incoming flow before the
shock wave. 𝛼 is the angle of the air stream after the shock wave, which in this case is the
same as the edge semi-angle, and 𝛽 the angle that the shock wave forms with respect to the
horizontal direction.

Figure 4.61. Pressure at the surface for a leading edge, Mach 4, dependency with edge semi-angle.

99

Looking at the pressure fields to locate the shock wave, the angle 𝛽 can be measured in each
configuration that has been tried in this project. When plotting the lines corresponding to
Equation 4.4, and plotting the pairs of values of edge semi-angle and shock wave angle created
measured, the result is Figure 4.62.

There, it can be seen that the results obtained match reasonably well with the theoretical
curves. Specially for Mach three and four at high angles the results fit almost perfectly.
However, when decreasing the edge semi-angle the accuracy decreases significantly, most
notably when going under ten degrees, where the angle of the oblique shock wave is
overestimated by the code. This also happens with Mach two, where overall the shock wave
angle is overestimated, although the accuracy also grows with the leading edge semi-angle.

The Figure 4.63 shows that the value of the mean pressure at the surface, and thus the
resistant force applied to the leading edge, is highly dependent on the edge semi-angle.
Moreover, the dependency is accentuated when increasing the Mach number.

Figure 4.62. Oblique shock wave angle with respect to leading edge semi-angle and Mach number. Comparison between
analytical and numerical results.

100

When comparing the Figure 4.63 to Figure 4.33, it can be seen that the leading edge creates
much lower pressures, about one order of magnitude lower, than the forward step. However,
it is expected that their behaviours become similar, if not identical, when the edge semi-angle
approaches 90 degrees.

However, to calculate the pressure resistance that the leading edge suffers it is necessary to
take into account the surface length and the surface angle. It is plotted at Figure 4.64, where it
can be seen that the resistance approaches zero when the angle also does, an expected
behaviour.

Figure 4.63. Mean pressure at the surface for leading edge, dependency with Mach number and leading edge semi-angle.

Figure 4.64. Backward pressure resistance force for leading edge, dependency with Mach number and leading edge semi-angle.

101

Also, it is clear that the higher the Mach number the higher the resistance that the leading
edge suffers, as well as happens when increasing the angle. However, when calculating the
resistance coefficient, the behaviour with α remains, but the one with the Mach number is
reversed, because of the increased velocity that takes part in the adimensionalization.

4.5.1 Auxiliary functions for the leading edge

Geometry Function

function
[x,y,dxi,deta,dxidx,dxidy,detadx,detady,J,dxdxi,dxdeta,dydxi,dydeta] =
Geometry_LeadingEdge(Nxi,Neta,LHOR,LVER)

xi_LHOR = LHOR;
eta_LVER = LVER;

dxi = xi_LHOR/(Nxi-1);
deta = eta_LVER/(Neta-1);

for j=1:Neta
 xi(:,j) = 0:dxi:xi_LHOR;
end
for i=1:Nxi
 eta(i,:) = 0:deta:eta_LVER;
end

% Edge X direction beginning
s = floor(0.5*Nxi);
xis = LHOR*(s-1)/(Nxi-1);

% Edge semi-angle (\alpha)
a = 30*pi/180;

Figure 4.65. Backward pressure resistance force for leading edge, dependency with Mach number and leading edge semi-angle.

102

y0(1:s) = 0;
y0(s+1:Nxi) = (xi(s+1:Nxi) - xis)*tan(a);

for i=1:Nxi
 for j=1:Neta
 x(i,j) = xi(i,j);
 end
 y(i,:) = linspace(y0(i),LVER,Neta);
end

% Direct metrics DC
dxidx = Dx(xi,x);
dxidy = Dy(xi,y);
detadx = Dx(eta,x);
detady = Dy(eta,y);

% Inverse metrics DC
dxdxi = Dx(x,xi);
dxdeta = Dy(x,eta);
dydeta = Dy(y,eta);
dydxi = Dx(y,xi);

J = dxdxi.*dydeta - dydxi.*dxdeta;

Initial Conditions Function

function [rho,u,v,T,p] =
Initial_Conditions_LeadingEdge(rhoinf,uinf,Tinf,R,Nxi,Neta)

% Beginning of the edge in the X direction
s = floor(0.5*Nxi);

rho(1:Nxi,1:Neta) = rhoinf;
u(1:Nxi,1:Neta) = uinf;
u(s:Nxi,1) = 0;
v(1:Nxi,1:Neta) = 0;
T(1:Nxi,1:Neta) = Tinf;
p(1:Nxi,1:Neta) = R*rho.*T;

Boundary Conditions Function

function [rho,u,v,T,p] =
Boundary_Conditions_LeadingEdge(rho,u,v,T,p,Nxi,Neta)

% Beginning of the edge in the X direction
s = floor(0.5*Nxi);

% CC at the right side
rho(Nxi,2:Neta-1) = 2*rho(Nxi-1,2:Neta-1) - rho(Nxi-2,2:Neta-1);
u(Nxi,2:Neta-1) = 2*u(Nxi-1,2:Neta-1) - u(Nxi-2,2:Neta-1);
v(Nxi,2:Neta-1) = 2*v(Nxi-1,2:Neta-1) - v(Nxi-2,2:Neta-1);
T(Nxi,2:Neta-1) = 2*T(Nxi-1,2:Neta-1) - T(Nxi-2,2:Neta-1);
p(Nxi,2:Neta-1) = 2*p(Nxi-1,2:Neta-1) - p(Nxi-2,2:Neta-1);

% CC at the surface

103

rho(2:Nxi,1) = 2*rho(2:Nxi,2) - rho(2:Nxi,3);
p(2:Nxi,1) = 2*p(2:Nxi,2) - p(2:Nxi,3);
u(2:s-1,1) = 2*u(2:s-1,2) - u(2:s-1,3);

104

5 Conclusions and Further Developments

Reaching the end of the project, it is safe to say that the overall objectives of the project,
which were developing a custom program that could numerically solve supersonic flows for
both uniform and non-uniform grids and obtaining those results for a few interesting
problems, have been met.

One of the conclusions that can be extracted from the hours of work put into this project is
that the numerical stability of the program is a serious problem for the expansion of it. In
general, it can be said that the Courant-Friedrichs-Lewy (CFL) criterion (Equation 3.1) is not
enough to preserve a convergent behaviour of the numerical solution, specially when sharp
edges like the ones that appear in the steps are involved. In those cases, a strong correction
made with the safety factor had to be made in order to obtain any solutions. In this project it
was considered the addition of numerical artificial viscosity to alleviate this problem, as John
D. Anderson discusses in chapter 6.6 of [Ref 1], but finally it was discarded as it would have
unnecessarily complicated the project, and in the end was not necessary to obtain the results.

Other conclusion reached is that the computation times can be efficiently optimised using the
program structure. One may wonder why the programs showed in chapter 3 are written the
way they are, with almost no auxiliary functions that perform small tasks like the
differentiation, which could have avoided some repetitions, also minimising the probability of
human error and making easier the creation of the program. Well the truth is that at the
beginning they were made this way. However, when any function was called it had to make a
copy of the variables it worked with, and then copy them back once it finished. This made the
original programs painfully slow, and with successive testing and improvements the
computation time was reduced in some cases to even a half of the original time.

Talking about the results I am very happy to see that they correspond with reasonable
accuracy with the external results obtained by other authors or with the analytical solutions
they have been compared to. It creates a profound satisfaction when something that has
required so much time and effort finally works, and the solutions obtained are exactly what
they were supposed to be, like what happened when comparing the results of the flat plate.
Because it has not been an easy task. I would say that this project is the single work that I have
invested more time into of all my life.

When developing the programs and the project overall, a lot of focus has been put into
explaining how the things work piece by piece, and making everything, specially the programs,
as easy to understand and manage as possible. The objective of this is to make it easier for a
future student to take this project as basis and expand the work with other ideas or analysing
other problems using the programs developed here. That was one of the key motivations of
creating the chapter 3 to explain the programs, and to make them modular, with the
information of the specific problems restricted to the auxiliary functions, which are
interchangeable.

In the future I would like to see another student using the programs to generate and solve
problems that due to time constrains have not been solved here, like the case of a rectangle or

105

the elliptic and rhomboidal profiles. Also, it would be very interesting to investigate the
artificial viscosity theme, or other similar method of stabilising the flow around sharp edges, so
the numerical stability becomes less of a concern. This may be achieved by introducing
turbulent viscosity in the method. The inclusion of chemical and radiating effects for the
hypersonic flow in a future version of the program would be very interesting too, and as a final
suggestion, the method could be modified to represent an axil-symmetrical flow. This way a
non-bidimensional problem could be analysed, in contrast with all the ones done here, without
really needing the expansion to three-dimensional space, that although could be easily done in
the equations, would require an enormous amount of computational power.

106

6 References

[1] John D. Anderson Jr., “Computational Fluid Dynamics, The Basis with Applications”,
McGraw-Hill, United States of America, 1995

[2] Manuel Carreño Ruiz, “Aplicaciones del método de MacCormack a diversos problemas
fluidomecánicos”, Universidad de Sevilla, Sevilla, 2016

[3] A. B. Ripoll y Miguel Pérez-Saborid, “Fundamentos y aplicaciones de la mecánica de
fluidos”, McGraw-Hill Interamericana, Madrid, 2005

[4] Pablo José Ruiz Contreras, “El Método de Colocación para el problema de convección
de Rayleigh-Bénard”, Universidad de Sevilla, Sevilla, 2013

[5] Ángel Ruy-Díaz Rojas, “Cálculo de Capas Límite en Régimen Hipersónico”, Universidad
de Sevilla, Sevilla, 2017

[6] John D. Anderson Jr., “Hypersonic and High Temperature Gas Dynamics. Second
Edition”, American Institute of Aeronautics and Astronautics, United States of America,
2006

[7] Frederick Abernathy, “Fundamentals of Boundary Layers”, National Committee for
Fluid Mechanics Films, Harvard University, 1968

[8] Robert W. MacCormack, “Numerical Computation of Compressible and Viscous Flow”,
American Institute of Aeronautics and Astronautics, United States of America, 2014

107

