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Phase field or Diffuse interface models

I N

‘Sh'ar‘p interface Phése field

e Sharp-interface models
o PDE for each phase + coupled interface conditions
o Very difficult numerically (interface tracking)
o Diffuse interface Phase-field models
¢ Phase function with distinct values (for instance +1 and -1) in
each phase, with a smooth change in the interface (of width
e).
e Surface motion depending on the physical energy
dissipation.
¢ When interface width ¢ tends to zero, recover a sharp
interface model.
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Design numerical schemes for diffuse-interface phase-field
problems:

© Efficient in time (Linear schemes, adaptive time-step).

@ Suitable to use (standard) Finite Elements (mesh
adaptation)

©® Mimic properties of the continuous problem: Dissipative
Energy law, maximum principle, mass conservation, ...

O Good finite and large time accuracy (infinite equilibrium
states)

Numerical analysis:
© Large time Energy Stability
@ Unique Solvability of the schemes
@ Convergence of iterative algorithms approximating nonlinear

schemes
% /68
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Allen-Cahn and Cahn-Hilliard models

The Allen-Cahn and the Cahn-Hilliard models are gradient flows for
the same Free Energy (Liapunov functional):

E0) = Eomelo) + Epacls) = [ (G170 + Flo) ) o

where F(¢) is a double-well potential taking two minimum (stable)
values:

F(¢) = 4%2((;52 —1)? at ¢ = +1 (polynomial potential: Ginzburg-Landau)
0E . o
e Allen-Cahn: ¢; + ’y% =0 = Maximum Principle

e Cahn-Hilliard: ¢; — V - (M(¢)V%) = 0 = Mass Conservation

E ) 1
where ‘;—¢ = —A¢ + f(p) with f(¢) = F'(¢) = 6—2(¢>3 - ¢).
In both cases:
diE(o(t)) <O0.
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Cahn-Hilliard Model

Weak formulation: Find (¢, w) such that
¢ L>((0,T);H(Q) and we L?((0,T);H(Q))
satisfying
(6, W)+ (YW, VW) =0 VweH(Q)
(w, v&) + <f(¢ ) ( ) 0 VdeH(Q).
Energy Law:

GEGO)+7 [ [Vwidx~0

Mathematical Analysis: Abels, Garcke, Grasselli, Miranville,
Schimperna, ...
Numerical Analysis: Boyer, Elliot, Feng, Gémez, Hughes, Prohl,
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Second Order Schemes for the Cahn-Hilliard model

Generic Second order Finite Difference schemes (Crank-Nicolson
for linear terms)

(66", W) + (VWi vw) =0 vweH(Q)

(F( ). 8) (1107 15) - (r48) =0 ¥ i

where 6;¢™ = (¢! — ¢™)/k (discrete time derivative).

Discrete Energy Law: Testing by (W, ¢) = (w2, 5;¢™t")

StE(@™ ) + 4[|V w2 (|2, + NDprste8™) + NDphovie(¢™, 6™) = 0,
where

. n+1 ny.__ ¢n+1_|_¢n n+1\ _ 1 n+112) _
NDopie(9"*",6") = (V (F—5 =), Vg™ ) o ( | 5IVem ) =0
and

NDphobic(¢™, ¢") = (fk(¢"+1,¢")»5t¢"+1) — 0t (/Q F(¢"+1)>
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Energy Stability

Definition
Numerical schemes are energy-stable if

SE(S™) + 4 / vwtER <0, .
Q

In particular, the discrete energy decreases,

E(¢™") < E(¢"), Vn.
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Eyre’s decomposition

[Eyre]
Splitting the potential term

F(¢) = Fe(¢)+Fe(¢) with F/ >0 (convex) and F/ <0 (concave)

Taking implicitly the convex term and explicitly the non-convex one, i.e.

1
(o™, 0" = 1o(8™) + fol0") = 5 ((6"7) = "),

Properties:
e First order accurate
e Nonlinear scheme
e Unconditionally unique solvable

e Unconditionally energy-stable
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Midpoint (MP)

Midpoint approximation of the potential term [Elliot], [Du],
[Lin],...

it oy _ F(e™) = F(¢")
fk(¢ +17¢): ¢n+1_¢n

Then
1
NDphobic(¢"",¢") =0 = §E(¢"") +~|Vw 2|, =0

Properties:
e Second order accurate
¢ Nonlinear scheme
« Conditionally unique solvable (k < ¢4 /)
¢ Unconditionally energy-stable
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Midpoint (MP). Newton Scheme

Theorem
e Solvability hypothesis

g4
Y
e Convergence hypothesis
K1/2
—a <C and (k!ﬁr)n_)oﬁ =0.
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[Wang et al.]

Splitting the potential term F(¢) = Fc(¢) + Fe(¢) with

F/ >0 (convex) and F/ < 0 (concave), Taking MP for the
convex term and BDF2 for the non-convex:

Fe(¢™7) — Fe(")

(o™, ", 0" )= ST g

+ 3 (386067 — 1ot ).

Properties:
e Second order accurate
e Nonlinear scheme
e Unconditionally unique solvable
e Unconditionally energy-stable for a perturbed energy

E(¢n+1) _ E(¢n+1) _{_/(2/Q é|5t¢nﬂ|2dxa

1
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(US2). Newton Scheme

Theorem

e Unconditionally unique solvable
e Convergence hypothesis (Idem MP)

k1/2
6_4 < C and l4m

(k.h)—0 h2 =0
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Optimal Dissipation Scheme (OD2)

Aim: Design fX(¢"t1, ¢"), linear, second order accurate and
NDphobic(¢"", ¢") = O(K?)
Idea: Using a Hermite quadrature formula,
F(o™1) — F(¢") 1 o
= f(¢)d
¢n+1 — " ¢n+1 — N /¢>” (¢) ¢
fl n
= (o) + 1 ) 1 ey (ot - o2
We define
1
(O™, ") = F(6") + (6™ = M (6")

Properties:
e Second order
e Linear scheme
« Conditionally solvable (k < 8¢*/~)
Remark: We can not control the sign of NDphob,-C(¢”+1 o)
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(OD2-BDF2)

Splitting the potential term F(¢) = Fc(¢) + Fe(¢) with
F/ > 0 (convex) and F/ < 0 (concave), OD2 approximation of the
convex term and BDF2 the non-convex one,

(671,67, 0= 10" + 2(67 — OO + 3 (31a(o") — (0™ )

Properties:
e Second order
e Linear scheme
e Unconditionally solvable

Remark: We can not control the sign of NDphob,c(¢”+‘ , oM
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Time step adaptivity.

We have developed a new adaptive-in-time algorithm by using a
criterion related to the 'residual energy law’.

Generic Algorithm:
Given ¢",¢"1,dt"1, dt", resmax and resmin:
© Compute ¢! and

E n-+1 — E(o"
Rentim ST EE) L oz,

® If |RE"*1| > resmax, take dt" = dt"/6 and go to 1).
0>1)

© If |[RE"| < resmin, take dt"™! = odt".

O Take t"t1 = t" 4 dit" and go to next time step.
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decomposition.

Comparative: OD2, MP, US2 and OD2-BDF2

e P;-cont. FE for ¢y, w.
e 0=10,12,h=1/90,7=10"% ¢ = 1072, resmax = 10 and
resmin = 1.

e In Newton’s method, a tolerance parameter to/ = 10~2. The
time-step is reduced in the case that the method does not
converge in 10 iterations.

e Random initial data (the same for all the schemes).
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Numerical Simulations. Dynamic

Figura: Dynamic of the model for the random initial condition
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Numerical Simulations.

Mixing energy
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Figura: Mixing energy in [0, 0.5]
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Numerical Simulations.

Mixing energy
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Figura: Mixing energy in [0.5, 1]
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Numerical Simulations.

Mixing energy
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Figura: Mixing energy in [1, 5]
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Numerical Simulations.

Mixing energy
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Figura: Mixing energy in [5, 8.5]
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Numerical Simulations. Equilibrium solution of MP

Figura: Equilibrium solution of MP
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Numerical Simulations.

Time steps
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Figura: Time steps in [0, 0.5]
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Numerical Simulations. Time step
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Figura: Time steps in [0.5, 1]
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Numerical Simulations.

Time steps
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Numerical Simulations.

Time steps
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Numerical Simulations.

Time steps
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Figura: Mixing energy in [6, 8.5]
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Numerical Simulations. Efficiency

Computational cost:

MP | OD2 | OD2-BDF2 | US2
# Time steps 339 | 2642 4340 3691
# Linear systems solved | 3896 | 3533 5687 12812

(OD2 with constant time step k = 10~* =~ 80000 iterations)

Conclusions:
MP OD2 OD2-BDF2 US2 LM2

Linear X v v X v
Unconditionally Unique Solvable X X v v v
Conditionally Unique Solvable v v

Unconditionally Energy-Stable E(¢) v X X X X
Uncond. (Modified-Energy)-Stable E(¢) X X v v
One-Step Algorithm v v X X X
Time-step Adaptivity X v v v X

Figura: Features of schemes
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3D Numerical Simulations.

OD2 time scheme.

Finite element discretization in space, with ¢, and wj, in
Py-cont. FE

Q=100,1%3, h=1/30,y=10"% ¢ =10"2, resmax = 10
and resmin = 1.

Random initial data.

View I View II
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Applications

LINEAR UNCONDITIONAL ENERGY-STABLE SPLITTING
SCHEMES FOR A PHASE-FIELD MODEL FOR
NEMATIC-ISOTROPIC FLOWS WITH ANCHORING EFFECTS
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Types of Liquid Crystals

thermotropic liquid crystals

temperature

liquid crystal (mesophases) liquid
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Figura: Types of Liquid Crystals
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Types of Liquid Crystals
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Figura: Types of Liquid Crystals




Nematic Liquid Crystals

Ginzburg-Landau formulation (penalized version of Ericksen-Leslie system):
U+ U-Vu+Vp—V oy — V- 0nem =0,

V.-u=0,
Q)
dt+(U'V)d+"YnemW207

3 Enem

W="5q >

where (6 - /6d) denotes the variational derivative with respect to d, ynem > 0 is the
relaxation time coefficient,

oyis = 2vDu,
Onem = _)\nem(Vd)tVd s
and
1 2 : 1 2 2
Enem(d) = —|Vd|® + G(d) | dx with G(d) = —(|d]c—1)".
a\2 4n?
It is known that this system satisfies the following energy law,
d 2 6Enem |?
— [Ekin(U) 4+ XnemEnem(d)] + 2/ v|Dul|*dx + )\nem/ “Ynem dx =0.
dt Q Q od
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Nematic-Isotropic. The variables of the problem

The following variable will take part in the description of the
model:

o the solenoidal velocity u(t,x), t € (0, T), x € Q C R3
o the pressure of the fluid p(t, x),

o the director field d(t, x), that represents the average
orientation of the liquid crystal molecules,

e the function c(t, x) localizing the two components along the
domain Q c RY (d = 2 or 3) filled by the mixture,

—1,1) inthe interface part,

—1 in the Newtonian Fluid part,
c(t,x) =< €
1 in the Nematic Liquid Crystal part.
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Nematic-Isotropic. Energy

The total energy of the system is given by
Etot(ua d7 C) = Ekin(u) + )\mixEmix(C) + )\nemEnem(dy C) + )\anch Eanch(dy C)
with

En(u) = %/ﬂ|u|2dx kinetic energy,

Enix(C) / (%|VC|2 + F(c)> dx mixing energy,
Q
Eem(d,c) = /I(c) <%|Vd|2+G(d)> dx elastic energy,
Q
where

F(O) = g5( 17 Gld) =

4
and we represent their derivatives as f(c) := F’(c) and g(d) := G'(d).
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Nematic-Isotropic. The anchoring effect

At the interface between the nematic and newtonian fluids, liquid
crystals prefer to orientate following a certain direction (called as
easy direction).
Three effects can be described:
e the parallel case, where the director vector is parallel to the
interface,
e the homeotropic case, where the director vector is normal to
the interface,
e no anchoring.

NO PARALLEL HOMEOTROPIC
ANCHORING ANCHORING ANCHORING
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Nematic-Isotropic. The anchoring effect

1
Eanch(d7 C) = E/Q (51 |d|2|VC‘2 + 52 |d . VC|2> dx

where the anchoring energy will take different forms depending
on the anchoring effect considered, that is,

(0,0) no anchoring,
(61,02) =<1 (0,1) parallel anchoring, (2)
(1,—1) homeotropic anchoring.
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Nematic-Isotropic. The localizing functional /(c)

It represents the volume fraction of liquid crystal at each point x € Q and its derivative
will be denoted by i(c) := /(c). It could take different forms but any admissible form
must satisfy the following properties:

® |c C3(R),

® [(c)=0ifc<—1,

® J(c)=1ifc>1,

® J(c) e (0,1)ifce (—1,1).
We consider the following interpolation function

0 if c < —1,
I(c) == 11—6(c+1)3(302—90+8) if ce(=1,1),
1 ifc>1,

and its derivative is defined as

15 _
i(c) ::I’(c):{ ﬁ(c+1)2(0*1)2 ifce(=1,1),
0 otherwise .
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Nematic-lsotropic. The model

Combining the Least Action Principle (LAP) and the Maximum
Dissipation Principle (MDP), we arrive to the following PDE
system, fulfilled in the time space domain (0, T) x Q:

(U +U-VU+Vp—V - 0o =0,
V-u=0,
dt+(U'V)d+'7nemwzov
i ()
W="5d>
Ct+U-Ve—V - (ymixV) =0,
[ 1= 5.
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Nematic-Isotropic. The total stress tensor

The total tensor reads,

Otot = Ovis + Omix + Tnem + Tanch,

being:
ovis = 2vDu viscosity,
omix = —AmixVC® VC mixing tensor,
Onem = —Anem!(€)(Vd)!Vd nematic tensor,

and the anchoring tensor o,,c, has the form:

(UanCh)ij = Aanch [51 |d|2 Ve Ve + 0o (d : VC) (VC (= d):|

40
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Nematic-lsotropic. The expression for w and .

Taking into account that the total energy of the system is given by
E[Ot(uy d7 C) = Ekin(u) + )\mix Emix(C) + )\nemEnem(d7 C) + )\anch Eanch(da C)

then the variational derivatives of E are

W= 5 pen[-V - (I(0)V ) + () G ()] + A
and
= S il A0 ]+ Al (0) (1967 + G(@) A 2o
where the anchoring terms will depend on each case:
0 No anchoring,,
% =< (d-Ve)Ve Parallel anch. , (4)
|[Vc2d — (d-Ve)Ve  Homeotropic anch. .
and
0 No anchoring,
(SE;i(;’Ch ={ —V-[(d-Ve)d] Parallel anch., (5)

—V - [|d*Vc—(d-Vc)d]  Homeotropic anch.
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Nematic-lsotropic. The model

The PDE system (3) is closed with the following initial and
boundary conditions:

Ult—o = Uy, dl|i=0 =do, Clt=0= Co in Q,
ulag = (I(c)vd)n|,, =0 in (0, T), ®)
oc

=0 in (0, T),
Q

_ (V5Etot) n
o0 oc

on
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Nematic-Isotropic. Reformulation of the stress

tensor

Lemma
The following relation holds:

—V - omix =V * Onem — V * Ganeh = —1t VC — (Vd)’w+ Ve
where

1 1 Aanc
© = Anem 1(€) <§ |Vd|? + G(d)> 4+ Amix (E |Vel? + F(c)>—|—Th W(d,c),

with W(d, c) = (61 |d|2 |Vc]2 + 6z |d - VoP?).
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Nematic-lsotropic. The variational formulation

(ug, @) + ((u- V)u, @) + (v(c)Du, DT) — (P, V - &) — ((w)fw, u) +(cVy, ) =0,

(V - u, b) =0,
<df7 W> + ((U : V)d7 W) + 'Ynem(wy W) =0,
A1)V, V8) + Aoen(1(0) 9, ) + N * 2 = (w, ),

(Clv p) - (Cu7 Vp) + ’Ymix(vﬂv vﬁ) =0,

2
Amix (V6 VZ) + Amix (F(0), ) + Anem <i(c) ['VQ"' + G(d)} ,a> + Aaneh 5?;“‘ —(n7),

for each (&1, p, W, d, 71, ) € H)(Q) x L3(Q) x H'(Q) x H'(Q) x H'(Q) x H'(Q).
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Nematic-Isotropic. Continuous energy law

Using adequate test functions, we can prove that the previous system satisfies the
following (dissipative) energy law:

d
9w, d,c) + / ()| DUl dX + oo / IW[2 X + i / IV dx = 0.
at Q Q Q

From the energy law, we deduce the following regularity for a (possible) solution:
u e L>(0, T;L2(Q)) N L2(0, T; H'(Q)),

w e L[2(0, T; L3(Q)),

Ve € L°(0, T; L3(Q)),

Vi € L3(0, T; L3(Q)),

Jo F(c)dx € L>°(0, T),

1 @)
ING) (§|Vd\2 + G(d)) dx € L>=(0,T)

Eancn(c, d) € L*(0, T),
ce L0, T; H'(Q)),
Jo(e)d|* € L=(0,T),
d e L>(0, T; L3(Q)).
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Nematic-Isotropic. Numerical schemes

For simplicity, we describe our numerical scheme using an
uniform partition of the time interval: t, = nk, where kK > 0
denotes the (fixed) time step. Moreover, hereafter we denote

an+1 —_a"

n+1 .
ora = K

46
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Nematic-Isotropic. Numerical schemes

Definition
A numerical scheme is energy-stable if it satisfies

51‘Etot(un+1,dn+1 7 Cn-|—1) +/ V(Cn+1)|Dun+1 |2 dx
Q
e / W2 X i / V1 dx <0, ¥n.
Q Q

In particular, energy-stable schemes satisfy the energy
decreasing in time property, i.e.,

Etot(un+1 9 dn+1a Cn+1) S Etot(un7 dn7 Cn)a Vn'

47
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Nematic-Isotropic. Coupled Nonlinear Implicit Scheme

Given (u”, p", d", w", c", ™), find (u"HT, p™t1, @™ WY T mT guch that,

un+1 —u"
(T’ a) + ((u”+1 -v)u”*‘,u) — ("™, v - o)+ 2(vDu™, D)

_ ((Vdn+1)twn+1 , l_l) + (cn+1 V;LH‘H o) =0,
(V- u"tp) =0,

gt _ gn ; . .
(7,( > W) + ((un+ - v)d™ ,V_V> + Ynem(w" T, W) =0,

_ _ SEanch _ _
Anen(IC" )T 98) 4 Anen(IC"H) (™), 8) + Agren (M @), @) — (w1, 8) o0,

Cn+1 _ cn
(7, ﬂ) — ™™ V) + (V" V) =0,

12
n+1 - n+1y = i1 |Vd"+ |
Amix (VT VE) + Amix(F(777), ©) + Anem | i(c77)

+ G(d™! )} ,5)

SE.
+Xanch (%““(c"“,d”“), 6) — ("7 =0,
®

Disadvantages of this scheme:
® High computational cost (Coupled + Nonlinear system)

® it is not clear that any iterative method to approximate the nonlinear scheme will converge(several
nonlinearities)

®  Energy-stability ?
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Nematic-Isotropic. Splitting schemes

May 2016 Giordano Tierra Approximating energy-based models

We have designed two splitting first-order schemes, denoted by
(dn+1 7 Wn+1 ) SN (Cn+1 , Mn+1 ) — (un+1 , pn+1 )7

or
(Cn+1 ’ Hn+1) N (d”+1, Wn+1) - (un+1,p”+1),

decoupling computations for nematic part (d, w) from the
phase-field part (c, /:) (or the contrary in the second case) and
from the fluid part (u, p).
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Nematic-Isotropic. Splitting schemes

STEP 1 )
Find (d™', w™') € D, x Wy, s. t, for each (d, w) € Dy, x W),
n+1 _ An
(%’ W) + ((u* : v)dn7 W) + 'Ynem(wnJH’ W) = 07

Am(/(cn)wn+1 : va) n )\nem(l(c”)gk(d”“ ,d"), a)
Fanch (Ad(d"+1, cn, a) —(w",d) =0,

where  u*:=u" 42k (Vd")w™,

g,(d"*1, d") is an approximation of g(d(t,,1)) and
k

Ag(d™1, c") is the discrete approximation of 5’?:‘“ (Altpe1), ltmsn)):

Ag(d™1, M) = 8¢ |V 2 d™ 4 6, (d™ - V) Ve
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Nematic-Isotropic. Splitting schemes

STEP 2:
Find (¢™1, ") € Cp x My s. t., for (Z,71) € Ch x My,

<Cn+1 _—y

k ’ﬁ) - ( nU**7 V/_l) + ’Ymix(v,un-"_1 ) vﬁ) = 07

)\mix(vcn+1 , VE) + )‘nﬂx(fk(cn+17 Cn)? a)
"‘)\nem (ik(cn+1 , Cn) |:%|vdn+1 |2 + G(dn+1 ):| ,5>

e (Ac(d7H1, 011, VE) — (17, 2) = 0,

where Ut =u"—2kc"v, !
/ s

fx(c™1, ") and i (¢, ") are approximations of f(c(t,,1)) and
i(c(tay1)), resp. and A (d™', c"1) is the discrete approximation of

5Eanc
5o (d(then), C(t)):

/\C(dn+17 Cn+1) = &y |dn+1 |2 \viedan + 3 (dn+1 . VC"+1) gt

May 2016 Giordano Tierra Approximating energy-based models
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Nematic-Isotropic. Splitting schemes

STEP 3:
Find (u™t, p"1) € V), x Py s. t, for each (T, p) € Vi x Py

un+1 _ _ | | _
(T’ u) + C(un7 un+ ) U) - (pn+ ,V . U)
+(v(c™)Du™, D) = 0,
(V : un+1ap) = 07
where -

Ui=—F5—,

and
clu,v,w) = ((u-V)v, w) + %(V-u, v w).
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Nematic-Isotropic. Local (in time) discrete energy law

Scheme given by STEPS 1-3 satisfies the following local
discrete energy law:

SE@™, ™ U™ 4 e W ||§2
+7mix||v,ll,n+1 ||%2 + ”I/(Cn+1 )1/2Dun+1 H%z
1 1 1
+NDI 4 NDEET(c) + NDIE (1)

+NDgh+.ﬂ}c + Nngﬂ,ic + ND{;QP + NDM = 0.
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Nematic-Isotropic. Local (in time) discrete energy law

The numerical dissipation terms are:

1 . U — u*||, + ||u — u|%,
NDG™ = o | U™ Ul + 5
R a2
2
n+1¢ -.n k .. n N1 2
NDelast(C ): )\nemE I(C ) ‘51‘Vd ’ ax,
Q

NDMH (Cn) = Anem / i(Cn) <gk(dn+1 , dn) . 5tdn+1 _ 5tG(dn+1 )) d
Q

penal

2
ND™! o K / ‘cwc"“‘ dx,
philic 2 o

NDgljc_)llic = Amix /Q (fk(Cn+1 , C") 5tC”+1 _ 5{F(Cn+1)> dX,

May 2016 Giordano Tierra Approximating energy-based models
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Nematic-Isotropic. Local (in time) discrete energy law

n+1)2
NDGly = doen [ (—'W | +G(d"+1))
Q

interp 2
x (f(c™, cM) ;e — §l(c"TY)) dx,
and

NDn+1

anch

k
:>\a.nch§/ (51 (|5td”+1|2|Vc"|2+|d”+1|2|5th"+1|2)
Q

+0p (|6, d™1 - VN2 + [d™MT VST 2) ) dx.

with (91, o) defined in (2) depending on the type of anchoring.
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Nematic-Isotropic. The functions f, g, and ik

QUESTION:
How to define f(c™', c"), g,(d™ 1, d"), ik(c"*1, c™) to obtain
linear unconditionally energy-stable schemes ?

That is, we want fi(c™1, c"), g, (d", d"), ix(c™, c") linear
such that

NDL (") >0, NDGEL >0, and NDEl >0.
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Nematic-Isotropic. The function f;

W) = HeN 4 3 [Pl (™ =), (@)
in our case reduces to
fk(cn+1 7 Cn) :7(Cn) + (Cn+1 . Cn) (10)
where f(c) is the C'-truncation of F'(c):
832(C+ 1) ife< -1,
o) = 81—2(02—1)0 it o e [-1,1], (11)

5%(0—1) if c>1,
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Nematic-Isotropic. The functions g, and i

V51
2

where g(d) is the C'-truncation of g(d):

d .
g(d){z(d”'? fld|> 1,
(d2-1)d il <1,

g, (@™, d") = g(d") + —— (d"" —d"), (12)

and we also take

5\/_

(™ ey = i) + S (M = ). (13)
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Nematic-Isotropic. Well-Posedness of the Schemes

Lemma
If Dy, C Wy, then there exist a unique solution (d"+1, w1 of STEP 1 using the
potential approximation (12) for g, (d"t', d").

Lemma
If1 € Cp, then there exist a unique solution (c"t1, /"*+1) of STEP 2 using the potential
approximations (10) and (13) for fy(c™1, ¢") and ix(c™1, c"), respectively.

Lemma
If the pair of FE spaces (V,, Pp) satisfies the discrete inf-sup condition

’V -u
38 >0 suchthat |pll2<B sup u Vpe€ Py, (14)
gevy\{oy Ul
then there exist a unique solution (u™t1, p"+1) of STEP 3.
We propose the following choice for the discrete spaces:
(u,p) ~ P2 x Py, (c,n)~Prx Py and  (d,w)~ Py xPy, (19)

that satisfy the assumptions of Lemmas 6, 7 and 8.

May 2016 Giordano Tierra Approximating energy-based models



Nematic-Isotropic. Numerical simulations

The newtonian fluid is represented by blue color while the
nematic fluid is represented by red one.
For simplicity we are considering constant viscosity v(c) = vy.

Q [O,T] h dt 140] n
[-1,1] | [0,10] | 2/90 | 0,001 | 1,0 | 0,075

Anem | Amix | Aanch | Ynem | Ymix £

0,1 | 0,01 | 0,1 0,5 | 0,01 | 0,05
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Nematic-Isotropic. Circular droplet and director

field parallel to the y-axis
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Nematic-Isotropic. Circular droplet and director

field parallel to the y-axis

TOTAL ENERGY -- CASE 1
T

==No Anchoring|

==+Homeotropic

b

‘QMM‘
|

Time
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Nematic-Isotropic. Elliptic droplet with two points

defects at (+1/2,0)

e A Hedgehog defect at (1/2,0) and an Antihedgehog defect

at(—1/2,0)

do(x) = d/\/|d[2 + 0,052, with d = (x* + y? — 0,25, y).
Defect annihilation in Nematic Liquid Crystals

Defect annihilation in Nematic Liquid Crystals Drops

63/68
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Nematic-Isotropic. Circular droplet and director

field parallel to the y-axis

TOTAL ENERGY -- CASE 2
T

==No Anchoring

==+Homeotropic

Time
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Nematic-lsotropic. Spinodal Decomposition

 Random initial data for ¢, i.e., ¢ € [-1072,1072] in
Q=1[0,1] x [0,1], t € [0,1] and dt = 10~4.
¢ The initial director vector is computed using the function:

d=I(c) (sin(x y)sin(x y),cos(x y) cos(xy)) .
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Nematic-lsotropic. Spinodal Decomposition

TOTAL ENERGY —- CASE 3

iy, H
--.----a—u;_-.----.-.. -------- .
il T TP T

‘ =—No Ahchoring

== Parallel
===Homeotropic
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