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Abstract. In this paper we show that the one-dimensional Piecewise
Affine Maps (PAMs) are equivalent to planar Pseudo-Billiard Systems
(PBSs) or so called “strange billiards”. The reachability problem for
PAMs is still open, however the more general model of rational one-
dimensional maps is shown to be universal with undecidable reachability
problem.

1 Introduction

In the present work we investigate a class of hybrid systems defined by one-
dimensional piecewise maps. We mainly interested in a class of one-dimensional 
piecewise-affine maps (PAMS) for which reachability problem is still open. It 
was recently shown that PAM is equivalent to hierarchical piecewise constant 
derivatives system (HPCD)[1]. In this paper we show that PAM is equivalent to 
planar pseudo-billiard system (PBS). PBS is also referred as “strange billiards” 
model that is a well known object in bifurcation and chaos theory [3]. HPCD 
is a hybrid automaton where each state is defined by planar piecewise constant 
derivatives system (PCD). In contrast to HPCD, the model of PBS can also be 
seen as two dimensional linear hybrid automaton but with only one state. In 
the second part of this paper we are exploring the complexity of more general 
class of one-dimensional maps that includes a class of affine maps. We show 
that the one-dimensional piecewise rational map (PRM) is universal model of 
computation with undecidable reachability problem. Moreover it is possible to 
show that there is a particular map, that corresponds to the universal Minsky 
machine, for which the reachability problem is undecidable.

2 Equivalence Between PBS and PAM

The pseudo billiard model is already appeared in a different context and became 
an abstract framework for several practical problems. By the pseudo billiard 
we understand a number of segments with assigned to them vector fields. The 
computation in this system can be described by the dynamics of the particle, 
which initially moves with the constant velocity (in a particular direction) inside 
a given region (not necessarily a polyhedron) and changes it instantaneously at



the moment of a collision with the boundary to the velocity defined by a given
vector field (not necessarily a constant one) on the boundary. We start with a
more general definition for PBS’s, where we have no constraints on distributing
the segments around the space. In this case, a particle can touch the segments
by both faces, and therefore it may cross them by the action of their projection
vectors.

Definition 1. A Pseudo Billiard System (PBS) is a pair (A, V), where A is a
set of pairwise disjoint segments in R2 (closed, open or semi-open), and V =
{vA}A∈A is a set of vectors in R2 (vA is called the projection vector of A).

The dynamic of a particle in PBS can be defined as follows. Let a particle P
that is represented by a vector x and is located on a segment A ∈ A, i.e. x ∈ A.
The transition function that move P from x to a position x′ can be defined as
follows: x′ = x+λvA, where x ∈ A and λ = min{δ > 0 : x+ δvA ∈

⋃
A′∈A A′}.

In this case we say that x′ is (directly) reachable from x and we denote it as
x ⇒ x′. Since we have a set of pairwise disjoint segments it is clear that for any
x there is a unique x′ if x ⇒ x′ and x �= x′. We also assume that minimum in λ
always exists (particles do not go to infinity).

Definition 2. A PBS is reflecting, if for every A ∈ A, two sets of points Pre(A)
and Post(A) are in the same half-plane determined by A, where Pre(A) is a set
of points from which points on A are directly reachable and Post(A) is a set of
points which are directly reachable from points on A.

Definition 3. We say that f : R → R is piecewise affine map (PAM) if there
exists a partition of dom(f) in a finite number of pairwise disjoint intervals of
R (we allow the intervals to be closed, open or semi-open intervals), I, and for
every I ∈ I, there exists aI , bI ∈ R such that: ∀x ∈ I, f(x) = aIx + bI.

In this section we will study the equivalence between the models introduced
above. We will say that two models are equivalent if for every system of one
type there exists a system of another type that simulates it and vice versa.
In particular, the equivalence of one-dimensional PAM, planar PBS and planar
reflective PBS can be shown by several geometric constructions. Moreover us-
ing the result that model of hierarchical piecewise constant derivative systems
(HPCDs) [1] is equivalent to one-dimensional PAMs we can state that planar
PBS is equivalent to two-dimensional HPCDs. Hence the complexity that can
be obtained with any of them is the same.

Theorem 1. For every PBS, {A, V}, there exists a PAM that simulates it and
the number of intervals in the PAM is bounded1 by |A|(|A| + 2).

In the proof of Theorem 1 for every segment of the PBS, we construct all possible
projections on the other segments that in their turn are bounded in size by |A|+2.

1 In case of reflecting PBSs, the bound can be reduced to |A| + 2.



Theorem 2. Let f be a PAM with N affine functions. Let R be the number of
affine maps, fi, with ai < 0. Then, there is a reflecting PBS simulating f using,
at most, 2N + R reflecting segments.

Proof. Let f : I → I be a PAM expressed in such a way that I =
⋃n

i=1 Ii is union
of pairwise disjoint intervals, and for every i, f|Ii

= fi, where fi(x) = aix + bi is
an affine function.

The first step of the proof consists in assigning to every interval of the PAM
a segment in R2 where we simulate the dynamic of the system. Since fi : Ii → I
is affine, and Ii is an interval, fi(Ii) must be an interval too. Hence, the image of
every interval of our partition must be inside an union of intervals of our partition
that constitutes a larger interval. To make more direct the proof, we will maintain
the continuity among intervals of f by considering for every interval, Ii ⊆ R, of
f , the segment Ai = Ii × {0} ⊆ R2.

Now, we will simulate the dynamic of each affine map separately. Because
the segments Ai are in the same line, we can’t go directly from one to another
by using projections, therefore we will make use of auxiliary reflection segments
to produce the same result as f produces. Depending on the coefficients of the
affine map, there are three different cases:

Case 1: ai > 0. In case 1 there is no flip from Ai to fi(Ai), so we will need
only one reflecting auxiliary segment to simulate the application of f , Bi.
Case 2: ai < 0. In case 2 there is a flip from Ai to fi(Ai), so we will need
two reflecting auxiliary segments, Bi and B′

i, to simulate the function f.
Case 3: ai = 0. In case 3 f(Ai) is a point, and we will make use of only one
reflecting auxiliary segment, Bi, to project to this point.

We can construct simultaneously all these segments with projection vectors
on R2 without disturbing one to each other, obtaining a reflecting PBS for a
complete construction for PAM. It is easy to see from the above construction
that the resulting PBS simulates the given PAM. From above construction, we
can obtain an upper bound to the number of segments we need in a reflecting
PBS to simulate a PAM. The presented method of construction is not efficient in
general, but it works for any possible PAM. In a number of PAM’s, it is possible
to reduce the number of elements of the PBS simulating the PAM.

3 Unpredictability in Rational Piecewise Maps

Now we consider the more general class of rational functions. We define it over Q
to show that even in this case the predictability of its behaviour is an undecidable
problem.

Definition 4. A Piecewise Rational Map (PRM) is a function that is defined on
a finite sequence of disjoint intervals I− = (−∞, r−], I+ = [l+, +∞), Ii = [li, ri]
with r−, l+, li,ri ∈ Q, i = 1..k and uses rational functions 2 for different parts of
its domain I = {I1 ∪ . . . ∪ Ik}.
2 f(x) = P (x)/Q(x) is a rational function, where P and Q are polynomials in x as

indeterminate, and Q is not the zero polynomial.



Let A be a 2-counter machine with a set of states S = {1, 2, . . . , n}. The con-
figuration of A is a triple [k, l, s] where k and l are values of two counters and
s is a current state of A. Let us define the mapping φ : N × N × N → Q that
is an isomorphism between a configuration [k, l, s] of A and a rational number
s + 1

2k+13l+1 that is shifted to the interval (0,1):

φ([k, l, s]) → 1
10H

(s +
1

2k+13l+1 ), H = 
lg(|S|)�.

Instead of classical Minsky machine with two counters c,d from now on we will
consider the equivalent model of one counter machine where the counter holds
an integer whose prime factorization is 2c · 3d. Increment (decrement) of the
counters c and d can be done by multiplication (division) by 2 and 3 and zero
testing corresponds to testing of divisibility by 2 and 3.

Let A be in a configuration [k, l, s] that is mapped to x by φ. We can multi-
ply/divide a virtual counter by 2 or/and 3 using the following expression

(10Hx − s)2a3b + s

10H
,

where a,b are integers. For example, to check the emptiness of the first counter
we need to add an integer 2k3l+1 using the expression 1

2(10Hx−s) + x. Then we
can easily check whether a virtual counter is divisible by 2 iteratively applying
x − 2 until the point x in the interval [3, +∞). Finally a point x should reach
either the interval [2, 3], which corresponds to k �= 0, or the interval [1, 2], which
corresponds to k = 0.

In a similar way we can check divisibility by 3 from a state s using negative
numbers. If x ∈ [ s

10H , s+1
10H ] we apply −( 1

3(10Hx−s) + x) and then x + 3 for any
point in the interval (−∞, −4]. After that the number x should appear in the
interval [−4, −3], which corresponds to l �= 0 or in the interval [−3, −1], which
corresponds to l = 0.

Theorem 3. One-dimensional piecewise rational map with a finite number of
intervals is the universal model of computation.

Thus, the problem whether a point x ∈ Q can be mapped to y ∈ Q in a one-
dimensional piecewise rational map is undecidable. In contrast to the work [2]
we have shown that the more natural extension of affine functions in dimension
one is universal. As a next step it would be reasonable to raise a question about
the complexity of piecewise linear rational maps.
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